Calibration of a fully-constrained parallel cable-driven robot · Research Report n ° 7879 Janvier...

22
HAL Id: hal-00668921 https://hal.inria.fr/hal-00668921 Submitted on 10 Feb 2012 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Calibration of a fully-constrained parallel cable-driven robot Julien Alexandre Dit Sandretto, David Daney, Marc Gouttefarde, Cédric Baradat To cite this version: Julien Alexandre Dit Sandretto, David Daney, Marc Gouttefarde, Cédric Baradat. Calibration of a fully-constrained parallel cable-driven robot. [Research Report] RR-7879, INRIA. 2012, pp.21. <hal- 00668921>

Transcript of Calibration of a fully-constrained parallel cable-driven robot · Research Report n ° 7879 Janvier...

HAL Id: hal-00668921https://hal.inria.fr/hal-00668921

Submitted on 10 Feb 2012

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Calibration of a fully-constrained parallel cable-drivenrobot

Julien Alexandre Dit Sandretto, David Daney, Marc Gouttefarde, CédricBaradat

To cite this version:Julien Alexandre Dit Sandretto, David Daney, Marc Gouttefarde, Cédric Baradat. Calibration of afully-constrained parallel cable-driven robot. [Research Report] RR-7879, INRIA. 2012, pp.21. <hal-00668921>

ISS

N0

24

9-6

39

9IS

RN

INR

IA/R

R--

78

79

--F

R+

EN

G

RESEARCH

REPORT

N° 7879Janvier 2012

Project-Teams COPRIN

Calibration of a

fully-constrained parallel

cable-driven robot

Julien Alexandre dit Sandretto

David Daney

Marc Gouttefarde

Cedric Baradat

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

rt♦♥ ♦ ②♦♥str♥ ♣r

r♥ r♦♦t

♥ ①♥r t ♥rtt♦∗

♥②†

r ♦ttr‡

r rt§

Pr♦t♠s P

sr ♣♦rt ♥ ♥r ♣s

strt ♥ ♥tt♦♥ ♦ t ♠♦ ♣r♠trs ♦r ♣r r♥ r♦♦t s ♣r♦r♠ ② s♥ ♦t rt♦♥ ♥ srt♦♥ ♣♣r♦ ♠♥♣t♦r st ss ♦♥ ♣r rttr ♥ s t♦ ♦♥tr♦ t rs ♦ r♦♠ ♦ ts ♠♦♣t♦r♠ s♦ tt t ♠♦ ♣t♦r♠ s ② ♦♥str♥ ② t s ❯♥r s♦♠ ②♣♦tss♦♥ ♣r♦♣rts t ♥trst ♦ r♥♥② ♥ tt♦♥ s ①♣♦t t♦ srt ② s♥♣r♦♣r♦♣t s♥s♦rs s ♣♣r♦ s ♦♠♣r t♦ t ts t♦ ♠♣♠♥t rt♦♥♣r♦ss t♦♥② ♥ t♦♦s ♥ ♦rt♠ ♠♣r♦♠♥ts r ♣rs♥t t♦ ♣r♦r♠ t♣r♠tr ♥tt♦♥ ♦♠♣t ①♣r♠♥tt♦♥ ts t r♦♦t r② ♠♣r♦♠♥ttr rt♦♥ ♦r srt♦♥ ❲ s♦ tt t s ②♣♦tss ♦♥ ♣r♦♣rts r r ♦r♦r t ♥st♠♥t ♥ tr♠s ♦ t♠ ♥ ♦st t♦ ♦t♥ t ①tr♥ ♠sr♠♥ts ♦rrt♦♥ ♣r♦ss ♦s ♥♦t r♥ ttr rsts ♥ ♦s ♥♦t ♥ t s♠♣t② ♥ ♥②♦ t s rt♦♥ ♣r♦ss

②♦rs rt♦♥ r♥ ♦♦t ♥♠ts

∗ ♥r† ♥r‡ r♠♠§ ♥

t♦♥♥ ♥ r♦♦t ♣rè à âs

sr♦♥tr♥t

r♣♣♦rt rr

♥r

és♠é ♦♠♥t ♣rés♥t s réstts ♥ ét♦♥♥ t ♥ t♦ét♦♥♥ ♥ r♦♦t ♣rè à âs ♣s rt♥s ♠ét♦s ♥tt♦♥s♦♥t ♦♠♣rés t ♥ ♥♦ ♣♣r♦ t ♦ st ért

♦tsés t♦♥♥ ♦♦t à âs ♥é♠tq

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

♦♥t♥ts

♥tr♦t♦♥

r♥ r♦♦t ♦ ♦ t r♦♦t

♥♠t rt♦♥s♣ tt qr♠ ♦rr ♥♠ts sss♦♥ ♦♥ ♥rs ♥♠t ♦♥

♥♥② ♥ tt♦♥

rt♦♥ ♥r

❲t st qrs rt♦♦♥ st♥ rss♦♥ ❳ ♦♥ ♥r st qrs s♦♥ ♦t♥s

r♥ r♦♦t s rt♦♥ t ①tr♥ ♠srs rt♦♥ t♦t ①tr♥ ♠srs

①♣r♠♥ts sr♣t♦♥ ♦ t ♣r♦t♦t②♣

s ♦ ♥ t♦♦s

♦ ♦♦s

sr♠♥t qst♦♥ ♣r♦ss t②

sts Pr♠tr ♥tt② rt♦♥ t ①tr♥ ♠srs rt♦♥ t♦t ①tr♥ ♠srs ❱t♦♥

sss♦♥

♦♥s♦♥s ♥ tr ♦rs ♦♥s♦♥s tr ♦rs

♥♦♠♥ts

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

♥tr♦t♦♥

♣ts ♦ ♣r r♦♦ts ①♣♥ tr s ♥ t ♥str ♣♣t♦♥sr♦♠ s♣ ♣♥♣ t♦ ♣rs srr② ❬❪

s ♦ t♦r♥s ♥ ♠♥tr♥ ♦r ss♠② t ♦♠tr② ♦ t t ♠♥♣t♦r ♦s ♥♦t ♦rrs♣♦♥ t♦ t sr s♥ ♥ ts t♦rt♥♠t ♠♦ ♦♥sq♥t② t ♣r♦r♠♥s ♦ t ♠♥♣t♦r s sts r② r r ♥♦t ♦st s ♣r♦♠ ♦ ②♣ss ② ♠♣r♦♥ t t♦rt ♥♠t ♠♦ ② ♥♥ t t s ♦ t♥♠t ♣r♠trs s ♣r♠trs ♥♥ t ♦♠tr② ♦ t r♦♦tr♠ ♥ ♣t♦r♠ ♥ tt♦r ♣rts r ♣r♦ ② ♥♠t rt♦♥ ♣r♦r rt♦♥ ♦♥ssts ♥ ♥t②♥ ♠♦ ♣r♠trs tr♦r♥♥t ♥♦r♠t♦♥ ♦♥ t stt ♦ t r♦♦t ♣r♦ ② ♠sr♠♥ts ts ♦ rt♦♥ r ♦t ♣rt ♥ ♦♠♣tt♦♥ ♥ ①♣r♠♥t ♣♥ tr♠♥s t t②♣ ♦ r♥♥t ♥♦r♠t♦♥ ♥ t ② t♦♦t♥ t♠ ♥ ♦rr t♦ ♠♣r♦ t ♥♠r ♥tt♦♥ ♦ t ♥♠t♣r♠trs ♦♠♣t ♥ ♥①t st♣

♠♦r s♠♣ ♥ ♦♠♠♦♥ ♣♣r♦ t♦ rt ♣r r♦♦t s t♥rs ♠t♦ s ♣rs♥t ♥ ❬ ❪ ss t ♠sr♠♥ts ♦ t ♣♦s♦♦r♥ts ♦t♥ ② t♦♦t ❬❪ ♦r ♠r ❬❪ s r♥♥t♥♦r♠t♦♥ ♥ ♦t♥ ② ♦tr ①tr s♥s♦rs s s ♥♥♦♠trs ❬❪ ♦r♥② t②♣ ♦ ♦♠tr ♦♥str♥ts ❬❪ ♥ t srt♦♥ s t ♥ssr②t r ♣r♦ ② t♦♥ ♥tr♥ s♥s♦rs ♥② s♦t♦♥s ♥♣r♦♣♦s ♦r ♣r ♠♥♣t♦rs ♥ s♦♠ ♦ t♠ ❬ ❪ ♠② s②♣t t♦ t s t t ♥ t ♣rs♥t ♣♣r ♥ ♥ ❬ ❪ ♥t♠sr♥ s s ♥ t♦♥ s♠♥t tt ♥s t s ♥ t♠♦ ♦ ♦ ♣t♦r♠ s ♦♥sr

s ♣♣r ♦ss ♦♥ ②♦♥str♥ ♣r r♥ r♦♦t r♥ r♦♦ts sr ♥trst♥ ♣r♦♣rts r ♠ss ♦ ♠♦♥♣rts ♦r s ♦ ♥ ♠ss s ♦ r♦♥rt♦♥ ♥ s♣② ♣♦t♥t② r② r ♦rs♣ ② r ♥♦t② s ♦r ②♥ ♠rs②st♠ ❬❪ ♥ ♥ ♣r♦♣♦s ♦r ② ♦s tr♥s♣♦rtt♦♥ ♦r ♦r♥t♥ ② s ♥ ♦r ♦♥t♦r rt♥ ❬❪ ♦st ♦ ts ♥ts s ♦♠♣① ♥♠t ♥ ②♥♠ ♦r t♦ t ①t② ♠ss ♥ stt② ♦ t s ♥ ♦rr t♦ ② ♦♥str♥ t ♠♦ ♣t♦r♠ t ♥♠r♦ s ♠st rtr t♥ t ♥♠r ♦ ❬❪ ♥ s r♥♥t②tt r♥ r♦♦ts st♥ss s ♥r② ♥ ♥ ♦r st r♦♦t s tt ② t s ♦r s① r sts ♥ r♥♦♥ r♥ r♦♦t ♥♠ts ❬ ❪ t ♦♥r♥♥ tr rt♦♥ ♥♠t rt♦♥ s ♦♥ sr t♦♥ ♦r t ♦♥t s♥s♦rs ♥ r♣♦rt ♥ ❬ ❪ ♥ ♥ ❬❪ rs♣t② rs srt♦♥♣r♦r ♦r ♣♥r r♦♦t s ♥tr♦ ♥ ❬❪

s ♠♥t♦♥ ♦r ♦t ♥♦r♠t♦♥ ♣r♦ r♥♥t qt♦♥ss ♦r ♣r♠tr ♥tt♦♥ ♦t ♦ ♦♠♣tt♦♥ ♠t♦s ♥♦♣ s ♦♥ s t ♥♦♥ ♥r st sqrs ♣♣r♦ ♦♠♣ts t ♣r♠trs s♦ s t♦ ♠t ♠♦ st♠t♦♥s t ♠srs ♠r♠t♦s r ♦rt♦♦♥ st♥ rrss♦♥ ❬❪ ♥ χ2 s ② Pt ♥❬❪ r♥t ♣♣r♦s ♥ ♣r♦♣♦s tr♥ ♣t ② ❲♠♣r♥ ❬❪ ♦r ♥ ♦r♥ ♥tr ♣♣r♦ ♣r♦♣♦s ② ♥② ♥ ♥ ❬❪

♥ ts ♣♣r ♥♠ts ♥ r♥♥② ♦ t r♥ r♦♦ts rst ❲ ♣r♦♣♦s s♠♣ ♥ r♦st ♠t♦ ♦r srt♦♥ ♥♦♠♣r t t ♠♦r st♥r ♥rs rt♦♥ ♥ tst tr♦①♣r♠♥ts t r♥t ♣r♠trs ♥tt♦♥ ♠t♦s s ♦♥ ♥♦♥ ♥r

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

st sqrs ♣♣r♦ ♥② t rsts ♦t♥ ♥ t s ♦ t str♥♥t r♥ ♠♥♣t♦r r t♥ sss

r♥ r♦♦t

s st② s ♣rt ♦ ♣r♦t ♦♦ ♦♥tr♦ ♦ ♥t ♦♦t ♥♦t② ♠s t s♥♥ ♣r r♦♦t ♥ n = 6 rs ♦ r♦♠♥ r② r ♦rs♣ ♥ ts ♣♣r s♠ s ♣r♦t♦t②♣ ♦ ts ♣r r♦♦t s st t ss m = 8 s ♦♥tr♦♥ t ♠♦t♦♥ ♦ ts♠♦ ♣t♦r♠ ♥ ts ♦♠tr② s ♥ ♦s♥ s♦ tt t ♣t♦r♠ s ②♦♥str♥ ② t s

♦ ♦ t r♦♦t

r r♥ r♦♦t

♠♦♥ ♣t♦r♠ ♦r ♥t♦r ♠♦ rr♥ r♠ ΩC s ♦♥♥t t♦ t s ① rr♥ r♠ ΩO ② m = 8 s m > n t♦ ② ♦♥tr♦ ❬❪ ith ♦♥♥ts t ♣♦♥t Ai ♦ t s ♦♦r♥t ai ♥ ΩO t♦ t ♣♦♥t Bi ♦♥ t ♠♦ ♣t♦r♠ ♦♦r♥t bi ♥ ΩC ♣♦s ♦ t ♠♦ ♥ ② t ♣♦st♦♥ P ♥ t ♦r♥tt♦♥ ♦ ΩC

①♣rss ♥ ΩO s rt② ♦♥tr♦ ② t ♥t ♥ t t♥s♦♥ ♦

♥♠t rt♦♥s♣

♠♣t ♥♠t s②st♠ ♦ qt♦♥s s ♥ ②

||P + Rbi − ai||2 − L2

i = 0, i = [1...m]

r Li s t st♥ AiBi

tt qr♠

stt qr♠ s ♥ ② ♠♥s♦♥ qt♦♥ s②st♠

W · τ = F

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

r τ = [τ1, ..., τm] s t t♦r ♦ t♥s♦♥s s t t♦r ♦r♥s ♦♠♥t♦♥ ♦ ♦rs ♥ ♠♦♠♥ts ♣♣ ♦♥ t ♣t♦r♠ ♥ W =−J−T J−1 ♥ t s♦ ♥rs ♥♠ts ♦♥ ♠tr① ♥t♦♥ ♦t ♣♦s ♥ t ♦♠tr ♣r♠trs ♦ t r♦♦t ❬❪

♦rr ♥♠ts

♦rr ♥♠ts ♦♥ssts ♥ t s♦♥ ♦ q s♦ s t♦ tr♠♥t ♣♦st♦♥ ♥ ♦r♥tt♦♥ ♦r ♥ st ♦ ♥ts Li ♥ t s rm = n tr r s♦♠ ♦rt s♦t♦♥s ❬❪ ♣r♦ ①t s♦t♦♥s ♦r ♦r r♥ r♦♦t r m > n ♥ ①t ♦rr ♥♠ts♦♥ssts ♥ s♦♥ ♥ ♦r♦♥str♥ s②st♠ ♦ qt♦♥s s② s♥t s♦t♦♥ ♦r r♥♦♠ st ♦ ♥ts ♥ t tr r s♦♠ ♦♥str♥tst ♠♥s♦♥ q t♦ m−n ♥♥ t ♦♠tr② ♦ t r♦♦t t t st♦ ♦♥t ♦♦r♥ts ♥♦r♠t♦♥ tt ♥ s t♦ srt t r♦♦t

♥ rt♦♥ ♣r♦ss t ♥♠t ♣r♠trs r ♥♦t st♠t♥ t ♥ts r ♥♦♥ ♣ t♦ ♠sr♠♥t rr♦rs ♥ ts s t s♦ ♥ ♥rt rr♦rs ♥ ①t s♦t♦♥ ♦ ♦♥str♥t ♦ ♦♥ ♥ ♦♠♣① ♥ s♦t♦♥ s t♦ s s ♦♥ t♦♥♣s♦♥s♠ FKNR t m = n t ts ♦♥r♥ t r♦♥st♠t ts ♥♦t rt♥ m > n ♥ ♣♣r♦①♠t ♥♠ FKLS s s ♦♥ ♥♦♥♥r st sqrs ♦rt♠ t rs rr♦r ♣r♦s ♥ ♥① s♦♥ t qt② ♦ ♥♦ ♦ ♥♠t ♣r♠trs ♦r ts s♠♦ ♦♥r t♦ ♦ ♠♥♠♠ tr♦r ♣r♦♥ r♦♥ ♥♦r♠t♦♥ ♥t ♥tt♦♥ ♣r♦ss

sss♦♥ ♦♥ ♥rs ♥♠t ♦♥

r♥ ①♣r♠♥tt♦♥ r♠r r♥ t♥ t ♥rs ♥♠t♦♥ ♦♠♣t t ♥t r♥s ♥ t ♥rs ♥♠t ❬❪ ♥st ①♣tt♦♥s t ♥t r♥s ♦♥ s ttr rsts ♥ tr♠s ♦♥♠r ♦ trt♦♥s ♥ ♣rs♦♥ r♥ t t♦♥♣s♦♥ s♠ s♦r s♦♥ t rt ♥♠t ♣r♦♠ ❲ s t ♦♦♥ t♦r ♥ ♦rrt♦ r♣rs♥t t ♣♦st♦♥ ♥ t ♦r♥tt♦♥s X = [x, y, z, αv] t ♦r♥tt♦♥t♦r δ = αv s ♦♥ t t ①s t♦r ♥ α t r♦tt♦♥ ♥ ❲ ♥♦tt

Ω = αv + sinαv + (1− cosα)v × v

❲ s② ♠ ♦♥ ♦rr ②♦r ♣♣r♦①♠t♦♥ t α s♠

Ω ≈ αv + αv = δ

Pr♦♣♦st♦♥ rst ♦rr ②♦r ♣♣r♦①♠t♦♥ s t♦♦ str♦♥ ♦r t ♦s

♥s ♣r♦♣♦s s♦♥ ♦rr cosα ≈ 1− α2

2♥ sinα ≈ α

♣♣r♦①♠t♦♥ ♦ Ω ♦♠s

Ω2 = αv + αv + (1− (1− α2

2))v × v

♦♣

Ω2 = δ + α2

2v × v = δ + 1

2· αv × αv

❲ δ = αv + αv ♥ s♦ αv = δ − αvΩ2 = δ + 1

2· αv × (δ − αv) = δ + α

2· v × δ t♦ v × v = 0

Pr♦♣♦st♦♥ ♥ ♣♣r♦①♠t♦♥ ♥ ♦rr ♦r ♠♦r ♥s ♥ st♠t♦♥ ♦t rt ♦ ♥ ♥ t ♥ s ♥♦t s♥t

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

♦♥ ♥t r♥s rst ♦rr ♦♥ ♦rr♠r ♦ trt♦♥s

Prs♦♥ ♠ ♣s ♠s ♠s ♠s

r sts ♠♠ ♥ s♦♠ rs♦t♦♥ ♦ rt ♥♠ts

Pr♦♣♦st♦♥ ss ♥rs ♥♠t ♦♥ Jinv = [ni, ni × BiC]♦ rrtt♥ s

λi = [ni, ni ×BiC] · X + [ni, ni×BiC] · (0,α

2v × δ)

= [ni, ni ×BiC] · X + [ni, (ni×BiC)×α

2v] · (0, δ)

= [ni, ni ×BiC + (ni ×BiC)×α

2v] · X

♥ s♦ Jinv ♦♠s

Jinv = [ni, ni ×BiC + (ni ×BiC)×α

2v]

r ♣rr t♦ ♣ t ss Pr ♥ ♦♦r♥ts ♦♥ ♦ rt

Jinv2 = Jinv · (I + M)

r s t ♣r r♦ss ♣r♦t ♦ α2v

sts ♥ s♠t♦♥ ♦rrt tr♠ α2· v × (ni × BiC) s tt♥

s♦♠t♠s r♥ ♥♦ t♦ ♥ trt♦♥s ♥ t♦r ♥ t ♣rs♦♥ ♦ t

sts ♥ ♥♠r ♦ trt♦♥s t♠ ♥ ♣rs♦♥ ♥ ♦rr ♥♠ts s♠ r ♣rs♥t ♥ ❲ s♦ ♦♦ rsts ♥ srt♦♥ ♥ ts s t ♣♦st♦♥ r ♥♦t ♥♦♥ ♥ t rr♦r ♦ ♠♣♦rt♥t ts ♥ ♦♥ s s♦ r② s

♦ ♦♥ ♦rr ♥♠t s♠ s♥ ts ♦rrt tr♠ sttr ♥ str s♦t♦♥ srt♦♥ ♣r♦r ♥s ♦t ♦ t♠ ♥♥ s♦♠ s ♦♥r ♥ t ss ♦♥ ♥t ♦ t

♥♥② ♥ tt♦♥

s ♥ ♥ ❬ ❪ t r♦♦t st ♥ ts ♣♣r s r♥♥t ♥tr♠s ♦ tt♦♥ s t ♥t♦r ♠♦t♦♥ s ♦r♦♥str♥ ② ttt♦rs ♥ qst♦♥ s t♦ ♥ ♦ ts r♥♥② ♥ s t♦ ♣r♦r♥♥t ♥♦r♠t♦♥ ♦♥ t stt ♦ t r♦♦t

♦♥sr t stt② ♥ t ♠ss ♦ t s t ♥ts ♣♥♦♥ t t♥s♦♥s ♥ ♦♥ t ♣♦s ♦ t r♦♦t s s ♠♦ ② mt♦♥ qt♦♥s Li = L(ρi, τi) t ρi t rtr ♦♦r♥t ♥t ♦t i ♥♦♥ ② r♠ s ♦♥sq♥ t ♥♠t ♥ t stt♠♦ qs ♥ r ♥ t ♥♠r ♦ qt♦♥s ♦r ♦♥ ♦♥rt♦♥♦ t r♦♦t s q t♦ m ♥ q ♥ ♥ q srt♦♥ ♣r♦♠ s♦♥sr t ♣♦s ♦♦r♥ts P ♥ R r ♥♥♦♥ ♦r ♥♦♥

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

♦ t ①tr♥ ♦r F t st ♦ m rs τi t♦ t♥ ♥ ♦♥t srt♦♥ s ♣♦ss ♦♥② ♥ ♥♦r♠t♦♥ ♥ ♣rt r ♥ ♦tt t♥s♦♥s τi

s♣♣♦s tt t stt② ♥ t ♠ss ♦ t s r ♥ t ♥♠t ♥ t stt rt♦♥s♣s r t♥ ♥♣♥♥t ♥ ♥ s♦ s♣rt② ♥ ♦tr ♦rs t 6 ♣♦s ♦♦r♥ts ♣♦st♦♥ ♥♦r♥tt♦♥ ♦ t ♠♦ ♣t♦r♠ s♦ r♦♠ t m = 8 ♥♠t rt♦♥s ♦ q ② r s♠♣② ♥t♦♥s ♦ ♦♠tr ♣r♠trsξ = [a1..m, b1..m,∆l1..m] ♥ ♦♥tr♦ ♥ts ρ1..m ❲ rtrt♦♥ Li = ρi + ∆li r ∆li s t ♦st ♥t ♥ t ith i = 1..ms s②st♠ s ♥♦ ♦r♦♥str♥ ♥ s t♦ qt♦♥s tr ♣♦s ♦♦r♥t ♠♥t♦♥ tt ♥ t ♥tr♥ ♠sr♠♥t ρi ♥ t ♥♠t♣r♠trs ξ s ②♣♦tss ♦♥ ♣r♦♣rts s♠♣s t rt♦♥ t② ♦ ts ②♣♦tss ♥ r t ♥ r♥ ♠♦ s♠t♦♥♦r ♦r tst ❬ ❪ ❲ s ♥ t ♦♦♥ tt t ♥t r♥♣r♦t♦t②♣ s ♥ ts s

rt♦♥

rt♦♥ ♦ s t♦ ♥♥ t r♦♦t ♣r♦r♠♥s ② ♠♣r♦♠♥t♦ ♠♦ ♥♦ ttr ♦♥ssts ♥ ♥t②♥ t ♠♦ ♣r♠trstr♦ r♥♥t ♥♦r♠t♦♥ ♦♥ t stt ♦ t r♦♦t ♣r♦ ② ♠sr♠♥ts

❲ s tt rt♦♥ ♥ ♦♥sr s ♥r ♣r♦ss ❬❪❲ ♠ r♥ t♥ t s r t♦♥ ①tr♥♠srs ♦♥ t stt ♦ t r♦♦t ♥ t s r t ♣r♦♣r♦♣t s♥s♦rt ♦ t r♦♦t r s♥t ♦r rt♦♥ s♦ srt♦♥

r♦♦ts st m > n r r♥♥t ♥ tr♠s ♦ ♠sr♠♥t ♠ t ②♣♦tss ♦ ♥♦♥ st ♥ ♠ssss s s st♦♥

♥r

s ♦♥ ❬❪ ♦r ♦ t NC ♠sr ♦♥rt♦♥ t rt♦♥ qt♦♥s ♥s tr t②♣s ♦ rs ♠sr♠♥ts Mk k = 1..NC t ♣r♠trs ξ ♥t t♦ ♥t② ♦♠tr ♣r♠trs ♥ ♥♥♦♥s rs Υ rqr t♦ ♠♦ ♦r qt♦♥s s rs Υ = [Υ, Υ1..NC

] s♦

❼ ♦♥st♥t Υ tr s ♦ ♥♦t ♥ r♥ t rt♦♥ ♣r♦ss

❼ ❱r s ♥t♦♥ ♦ t r♦♦t ♦♥rt♦♥s Υk=1..NC

❲ ♦♥sr s②st♠ ♦ qt♦♥s ♥♥ st ♦ ♠srs M ♥ t♥♥♦♥s V = [ξ,Υ] ♥ t rt♦♥ qt♦♥s

fk(Mk, V ) ≃ 0, k = [1...NC ]

s♦t♦♥ ♦ t s②st♠ ♦ ♦♠♣t ② r♥t ♠t♦s ♠♦st ♦t♠ ♥♦♥ ♥r st sqrs s♦t♦♥ ♠♥♠③s t rtr FT .Ft F = [f1, . . . , fNc

]T s ♦ ♦t♥ t ss ♥rrqrt ♦rt♠ t s♦♠ ♠♣r♦♠♥t ♦♥ rtr♦♥ ♥t♦♥ r ♣♦ss

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

❲t st qrs

❲ t♥q ♥tr♦s t t② t♦ ♣r♦rt③ ♠sr ② ♦♥sr♥t rtr♦♥ FT ΣF F t ♠tr① ΣF s t s ♥t♦♥ ♦ ♥♦♦♥ s♦♠ ♥rt♥ts ♥ t t ♠sr♠♥t ♠♦ tr♦ ♦r♥ ♠tr① ΣM ♥r ♣♣r♦①♠t♦♥ ♦ ΣF s ♦t♥ s ΣF = JT

MΣMJM

t JM = ∂F∂M

rt♦♦♥ st♥ rss♦♥

ts ♥t♦ ♦♥t t ♣♦ss rr♦rs ♥ ♠sr♠♥ts ❬❪ ♥ ♦♥srst rtr FT ΣF F + MT ΣMM ❲ ♣t M s t r♥ t♥ trr♥t M ♥ t ♥t M

χ2 ♣r♠ts ♦♥tr♦ ♦ t♦♥ ♥ ♥tt♦♥ ♦ t ♥♥♦♥s ❬❪ ♦♥sr rtr s ♥♦ FT ΣF F + MT ΣMM + V T ΣV V ❲ ♣t V s tr♥ t♥ t rr♥t V ♥ t ♥t V

♦♥ ♥r st qrs s♦♥ ♦t♥s

ss ♥♦♥ ♥r st sqrs ♣r♦♠s s♦♥ s s ♦♥ trt ♥r♣♣r♦①♠t♦♥ s♥ ②♦rs ♥r③t♦♥ Prt r♥tt♦♥ s t♦♦♥ ♦r♦♥str♥ ♥r s②st♠

JV ·∆V = ∆F

t t ♦♥ JV = ∂f∂V

♥ t ♦♥t♦♥ t♦ ♦t♥ ♥ ♦r♦♥str♥s②st♠ ♦ qt♦♥s ♥ ②

NC × dimfk > dimξ + dimΥ + NC × dimΥk

s②st♠ ♦ q ♥ s♦ t ♥ ❱ s♥r ♦♠♣♦st♦♥ ♦ JV

♥ ♦rr t♦ ♣r♠trs r s♦ t ♦♦♥ ♦♥t♦♥ s t♦ r ❬❪

rank(JV ) = dim(V )

= dimξ + dimΥ + NC × dimΥk

r♥ r♦♦t s

♦r t ♣r r♦♦t rt♦♥ t qt♦♥s s r rt② t ♥♠t rt♦♥s♣s ♣r♦ tt t ②♣♦tss ♦ ♥ stt②♥ ♠ss s st♦♥ s ♣t

fk,i(Mk, V ) = ||Pk + Rkbi − ai||2 − (ρk,i + ∆li)

2

= 0

♦r k = 1...NC ♥ i = 1...m♦ ts sss t♦ r♥t rt♦♥ ♣♣r♦s t ♥ t♦t

①tr♥ ♠sr♠♥ts

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

rt♦♥ t ①tr♥ ♠srs

♥ t♦♥ t♦ t rtr ♦♦r♥ts ♥ ② t ♣r♦♣r♦♣t s♥s♦rst ♠sr♠♥t ♦ t r♦♦t ♣♦s ♣♦st♦♥ ♥ ♦r♥tt♦♥ ♣r♦ ② ♥①tr♥ ♠r ♦r sr trr s ss♠ t♦ rt♦♥ s②st♠ t♦ s♦ s ♠ ♦ t ♥t♦♥s fk,i(Mk, V ) t t♦♦♥ t

❼ Mk = [ρi,k, Pk, Rk]

❼ ξ = [ai, bi,∆li]

❼ V = [Υ, ξ] = [∅, ξ] = ξ

♥ t ①♣r♠♥tt♦♥ st♦♥ s♦ ts s②st♠ t tst sqrs ♥ ♥ ♠t♦

rt♦♥ t♦t ①tr♥ ♠srs

♦♥t ♥② ①tr♥ ♠sr♠♥t ♥ rt t r♦♦t t t♣r♦♣r♦♣t s♥s♦rs ♦♥②

rt♦♥ s②st♠ t♦ s♦ s st ♠ ♦ t ♥t♦♥s fk,i(Mk, V )t t t ♦♦♥ t

❼ Mk = [ρi,k]

❼ ξ = [ai, bi,∆li]

❼ V = [Υ, ξ] = [Pk, Rk, ξ]

❲t ts t t ♦♥ JV ♦ q s ♦♠♣♦s ♦ t ♦♥ ♦♥♠ts ♣r♠trs s ♥ rt♦♥ s Jξ ♥ ♦ t ♥rs ♥♠ts♦♥ JΥ

♥ t② ♦ rt♦♥ s t♦ ♠♥t t Υk = [Pk, Rk] rs ❬❪♥ t ♥tt♦♥ t♦r V = [Υk, ξ] ♥ ❬❪ t s ♦♥ ♥rt② t ♥trt ♦rr ♥♠ts ♥ ♦rr t♦ tr♠♥ Υ ♥ trt♦♥ ♦ t♥tt♦♥ ♦rt♠ ❲ ♣r♦♣♦s ♦♠♣t ♥tt♦♥ ♦♦s ♦rΥ t♦tr t ξ s ♦s s t♦ ♦ t ♣r♦♠ ♦ t ♦♥r♥

rtr ♦♠♣r ♠♥t♦♥ ♥ t ♦rr ♥♠ts ♥ t ♦♠♣t ♣♣r♦

♦rt♠ ♦rr ♥♠t

∆F > ǫ ♦[P,R]j+1 ← FK(ξj , [P , R]j , M)

ξj+1 ← IS(ξj , [P , R]j+1, M)♥

♥ ♦rt♠ s ♥ ♥tt♦♥ s♠ t② ♦ ♥♦♥ ♥r st sqr s♠ s♦♥ t s②st♠

♦rr ♥♠ts st♣ ss ♥ ♣♣r♦①♠t♦♥ ♦ t ♣r♠trsξ t♦ ♥ t ♣♦s ♦ t r♦♦t [P,R] ♦r ♦♥rt♦♥s t s♦t♦♥ s t♥♥♦t sts ♥ ♥ r r♦♠ t ①♣t ♣♦st♦♥ st♦♥ ♦♥sq♥t② ♥ trt♦♥ ♠② ♥♦t ♠♣r♦ t rt♦♥ t ♥st tr♦rtst s ♣♥♦♠♥♦♥ s ♦sr ♥ ♦r s s s ② s t ♦♦♥♠t♦ rrr t♦ s ♦♠♣t ♥tt♦♥ ♣r♦ss

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

♦rt♠ ♦♠♣t ♥tt♦♥

∆F > ǫ ♦Vj+1 ← IS(Vj , M)

♦♠♣t ♥tt♦♥ ss ♦♥② ♥ ♥tt♦♥ s♠ t ♣♦s ♦♦r♥ts ♥ t ♦♠tr ♣r♠trs r ♦♠♣t t t s♠ t♠ ♥tr♦r ♥rt♥t② ♦♥ t ♣♦s tr♠♥t♦♥ ♦♥r♥ s ♠♥t

♥ t ①♣r♠♥tt♦♥ st♦♥ s♦ ts s②st♠ t t stsqrs ♥ χ2 ♠t♦

①♣r♠♥ts

sr♣t♦♥ ♦ t ♣r♦t♦t②♣

♣r♦t♦t②♣ s♦♥ ♥ s t ② ♥ ♦♦rt♦♥ tt ♥ s s s s♠ s ♣r♦t♦t②♣ ♦ t tr r ♣r r♦♦t t♦ t ♥ ♦♦ ♣r♦t r♠♦r

r Prt ♦ t ♣r♦t♦t②♣

① s r♦♥r r♥ r♦♦t t s ♦♥ r♦♥♥s r tt t♦ t t ♦r♥rs ♦ s♣ ♣t♦r♠ ♦♦t ♥t♠trs ② ♠♥s ♦ s♣r ♦♥ts ♥s r ① ② ♦♥ ♦r ♣♦sts ♣ t♦ tr ♠trs rr♥ t t ♦r ♦r♥rs ♦ tr ②♦r ♠trs rt♥

s

s r ♦ ♥③ st t s♥str♥ ① strtr ♥ ♠tr♦ ♠♠

s♥ ♦ t tt♦♥ s②st♠ s s tt t ♣t ♥t ♦ t str♦ t r♥t ♣②s s ♦♥st♥t r♦♠ t r♠ t♦ t ②t r♠

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

s ♥ t♦ t ♠♦t♦r stt♦r t ♣rs♠t ♦♥t ♥r r♥ ♥ r♦s♥ sr♥t s②st♠ tr♥sts t r♠ tt ② t ②s♥s ♣ t t s♠ ♣ ♦♥ t r♠ ②t s stt ♥ rt♦♥ ♦t s ♠♥♠③ ② ♣r♦r♥t♥ t ②t ①s t♦r t ♥tr ♦ t♦rs♣ tt♦rs r rt rs r♦♠ t ♦t♦♥

tt♦rs ♥ ♦♣t ♥r♠♥t ♥♦rs t ♥s ♦ ♠sr t t♥s♦♥ ♥ t s ♦♥ ♣② ♦♥ r♦♦t ①s s q♣♣ t♦r s♥s♦rs r♦♠ ♥s sr♠♥t

♦♥tr♦ s②st♠ s s ♦♥ ①P rt r♦♠ t♦rs ♥ ♦rr t♦♠♥♠③ t r♥ t rs r ♥tr③ ♥ ♣ ♥r t ♠♦t♦rs♦r s♥s♦rs ♥ ♥♦rs ② r ♦♥♥t t♦ t ♦♥tr♦ s②st♠ ② ♠♥s♦ rt♠ s

♦ ♥ t♦♦s

♥ t ♦♦♥ ♣rr♣ sr t ♠♦ ♥ t t♦♦s ♠♣♠♥t♦r t ♥tt♦♥ ♦ ① ♣r♦t♦t②♣ ♥♠t ♣r♠trs

❲ ♦♦s t ss ♦♠tr ♠♦ ♦ q t♦t t stt qr♠rt♦♥s♣ ♦ q ♥ t ♥ ♥t t stt② ♥ ♠ss ♦ t ss ss♠♣t♦♥ s ♥ r ② ♦♠♣t♥ t ♣♦ss strt♥ ♦♦♥ ♠♠tr ♥ ② r♥ ♠♦ ♦♠♣rs♦♥ ❬ ❪

♦♦s

❲ s t♦♦♦① s ♦♥ ❯ ♥t rr② ♦♥t♥s ♥t♦♥s ♦r r♦♦t ♠♦♥ r♥t ♠t♦s ♦r ♣r♠trs ♥tt♦♥ χ2 ♥ ♥♦♥ ♥r s♦r s ♦♥ ♥rrqrt

♦r t ♦trs tr♥ ♥ ♠♣♦rt♥t st♣ sr ♥ ❬❪ s tr s ♦♥ s ss♥ ♦r t♦ ③r♦ ♥r ♣r♠ts t♦♠♣tt♦♥ ♦ ♦♦ t ♦r ♠sr

♥ t♦♥ ♥t♦♥ ♦♥ t rt♦♥ ♦ t ♣r♠tr ♦srt② s ♦♥ ♦♠♣♦st♦♥ ♦ t ♥tt♦♥ ♠tr① s ♥ s

sr♠♥t

♠sr♠♥ts r ♠ ② ♠♥s ♦ sr trr s②st♠ ♥ ♣♦rt ♠sr♥ r♠

qst♦♥ ♣r♦ss

qst♦♥ ♦ t ♠sr♠♥ts r ♠ ♥ r♥t st♣srst ♦♥ t st♠t♦♥ ♦ ♦♠tr ♣r♠trs ❲ ♠sr t

②t ♣♦st♦♥s ♦♥ t r♠ t t sr trr ♥ t tt♠♥t ♣♦♥ts♦♥ t ♠♦ ♣t♦r♠ t ♣♦rt ♠sr♥ r♠

♣♦s ♠sr♠♥t st♣ ♦ t♥ strt ❲ ♣ t ♠♦ ♣t♦r♠♥ r♥t ♣♦ss ♥ t♦♦ ♠srs ♦ tr t②♣s

❼ Pr♦♣r♦♣t s♥s♦rs s ♥ts

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

❼ r♦♦t ♦r s♥s♦rs s t t♥s♦♥ ♥ t s ♦♥t sts t ♥ ts ♣♣r

❼ P♦st♦♥s ♦ tr ♣♦♥ts ♠sr t t sr s t ♣♦st♦♥ ♥♦r♥tt♦♥ ♦ t ♠♦ ♣t♦r♠

♦♠♠♥t t♦♦ t ♠srs ♦♥ t ♦rrs ♦ t ♦rs♣ ❬❪ tt ♣r♦t♦t②♣ t♦ ♥♦♥♠tr ♦♥tr♦ ♥t ♣r♦ r ♦rs♣♦♠♣r t ai ♥ t t ♣t♦r♠ ♦ ♠♦ ♦t ♠ r♦♥ t♥tr ♥ r♦tt rs ♥ tr rt♦♥s

♦ r ♦♥ t♦ s tt ts ♦ ♥ ♣r♦♠ ♦r t ♥tt♦♥ ♦ ♣r♠trs

t②

♠sr s s ts ♣rs♦♥ s ♥♦♥ ♥ ts ♥ ♠♥ st♠tt ①♣t rr♦r ♦r s rr♦r s s ♥ t rt♦♥st♣ ♥ ♥ t ♦♠♣tt♦♥ ♦ t ts ♦ t ♥tt♦♥ ♣r♦ss ♥♦r s ♦♥sr ♠① t♥ t ♣rs♦♥ ♦ ♠sr♠♥t ♥ t ② t qst♦♥ s ♦♥♠①♠③ ♦♥ ♣r♣♦s σposes = 5mmσlength = 5mm σA = 20mm σB = 10mm σ∆l = 100mm

sts

r♦♠ t ♠srs ♦♥ s ♠srs ♦r t ♥tt♦♥ ♥ ♦r t♦♥ ♦trs r ♠♥t

♥ ♦r rt♦♥ st② ♥ t t ♦ ♦ ♣t♥ t ♦♥ ♥t r♦♦t ♠ ♥ ♠♣♦rt♥t ♦r ♥st♠♥t t♦ ♦t♥ st♠t ♥♠t ♣r♠trs ② sr ♥ ♠sr♠♥ts ♥ ♦rr t♦ t r♦st♥ss♦ t ♦rt♠s s

rst s ♥ tr♠s ♦ ♦♥r♥ ♥t ♥ ♥ rr♦rs ♦♥ ♥ts ♥ ♠♣r♦♠♥t ♦♥ t t♦♥ ♠srs

Pr♠tr ♥tt②

♥t② ♥t t [ai, bi,∆li]i=1..8 t ♦♥ str♦♥ ♣♥♥t♥ t ai ♥ t bi s ♠ r♦♠ t s♠ r♦tt♦♥s ♦ ② t♣r♦t♦t②♣ ♣r♠trs ai ♥ bi r ♥ ② t rt♦♥ Rbi − ai ♥ t♥tt♦♥ qt♦♥s ts ♥♦t ♥ ♠♣♦rt♥t ♣r♦♠ ♥ t ♣r♠trs♦ t ♣t♦r♠ r ♥♦♥ s② t♦ ♠sr ♥ ♦♥t ♥ ♥ ∆li ♥ai ♥s t ♥ ♦♥rt♦♥ rstrt♥ ♦ ♠♦t♦rs t ♥ t♣rtr s ♦ srt♦♥ ts ♥ssr② t♦ ♦♦s t rr♥ r♠ ♦t r♦♦t s ♦♦s ❬❪ a1x = a1y = a1z = a2y = a2z = a3z = 0

rt♦♥ t ①tr♥ ♠srs

rsts ♦ t rt♦♥ q rs rr♦r ♦♥ t ♥ts r♦t ♥ t rst ♣rt ♦ t

tr trt♦♥s r ♦rrt ♠♥♠♠ t ♠♠ rr♦r t ♠♠♦r ❲ ♥ ♠♠ ♦r ♥ tr ♦t trt♦♥s t s♦r st♦♣s tt ①♣t ♣rs♦♥ ∆F < 10−8 ♦♥r♥ r♦♥ s ♥♦tt ♥t ♣r♠trs r ♥♦t ♥ssr②

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

❲ ♥tt♦♥ ♦♥rt♦♥s

♥t rr♦r ♠♥st ♠♥st♠♠ ♠♠ ♠♠ ♠♠

♥ rr♦r ♠♥st ♠♥st♠♠ ♠♠ ♠♠ ♠♠

❱t♦♥ ♦♥rt♦♥srr♦r ♦♥ rt♦♥ qt♦♥

♥t ♥ ♥t ♥

♠♠ ♠♠ ♠♠ ♠♠rr♦r ♦♥ ♣♦st♦♥♥

♥t ♥ ♥t ♥

rr♦r ♦♥ ♦r♥t♥

♥t ♥ ♥t ♥

sts ♦r t rt♦♥

rt♦♥ t♦t ①tr♥ ♠srs

rsts ♦ t rt♦♥ q rs rr♦r ♦♥ t ♥ts r♦t ♥ t rst ♣rt ♦ t

♥♥♦♥ ♣r♠trs Υk = [P,R]k r ♥t③ t FKLS ♣r♦ss ♦♥r♥ s ♦r t ♠sr♠♥t ♦♥rt♦♥s ♦t tt t ♥♠t ♣r♠tr st♠t♦♥ s t♦♦ r♦ FKLS ♦s♥t ♥ ♣ts♦t♦♥ ♥ t srt♦♥ ♥♥♦t strt

s ♦r t rt♦♥ tr trt♦♥s r ♦rrt ♠♥♠♠ t ♠♠ rr♦r t ♠♠ ♦r ❲ ♥ ♠♠ ♦r χ2 ♥ tr ♦t trt♦♥st s♦r st♦♣s t t ①♣t ♣rs♦♥ ∆F < 10−8

❱t♦♥

rst s♠♣ t♦♥ s ♦♥ ② t ♥ ♦ ♠♦ ♠♣r♦♠♥t ♦♥t t♦♥ ♠srs rsts rs rr♦r ♦♥ t ♥tsr t♥ ♣rs♥t ♥ t s♦♥ ♣rt ♦ t ♦r rt♦♥ ♥ t ♦rsrt♦♥

♦♥ t t ♠♥♣t♦r r② ② ♦♠♣t♥ t ♠♣r♦♠♥t ♦ ♥r ♣♦st♦♥♥ ❲ ♠sr ♠♦♥ r♥ t♥ t♦t♦♥ ♦♥rt♦♥s ♦♥ ♣♦st♦♥ ∆Pmeas ♥ ♦♥ ♦r♥tt♦♥ ∆Rmeas ♥r ♥s ❲ ♦♠♣t t t♦rt ♠♦♥ ∆Pλ ♥ t r♦tt♦♥ ∆Rλ

t ♣r♦ss r λ ♠♥s t ♥ ♦ ♥♠t ♣r♠trs s ♥t ♥t ♣♦st ❲ rt♦♥ ♣♦st ♣♦st ❲ srt♦♥♦r ♣♦st χ2 ♥tt♦♥ rsts r ♥ s rt rr♦r ♥ ♣r♥ts♥ ♥ ② 100 ∗ (∆Pλ−∆Pmeas

∆Pmeas)

r♣ rst ♦r ♦♥ s♣♠♥t s s♦♥ ♥ t ♥ ♦r t♣♦st♦♥♥ ♥ ♦r t ♦r♥t♥

♦♠♣t rsts r ①♣rss t ♠①♠ rr♦r ♦♥ P ♥ R ♥♥ ♣r♥ts ② r s♦♥ ♥ t ♦r ♣rt ♦ t ♦r rt♦♥ ♥t ♦r srt♦♥

❲ s tt t ♦r♥t♥ s ♥♦t ♣rt② ♦rrt ①♣t ♦r t χ2

♠t♦ ♣r♦② s ♦ ♥♦t ♦t♥ ♠sr♠♥ts ♥ ♦rs♣

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

❲ χ2

♥tt♦♥ ♦♥rt♦♥s♥t rr♦r ♠♥st ♠♥st

♠♠ ♠♠ ♠♠ ♠♠♥ rr♦r ♠♥st ♠♥st

♠♠ ♠♠ ♠♠ ♠♠❱t♦♥ ♦♥rt♦♥s

rr♦r ♦♥ rt♦♥ qt♦♥

♥t ♥ ♥t ♥

♠♠ ♠♠ ♠♠ ♠♠rr♦r ♦♥ ♣♦st♦♥♥

♥t ♥ ♥t ♥

rr♦r ♦♥ ♦r♥t♥

♥t ♥ ♥t ♥

sts ♦r t srt♦♥

r rr♦r ♦♥ ♣♦st♦♥♥ ♦r ♥t ♣r♠trs ♥ tr r♥t♥tt♦♥ ♠t♦s

t r♥t ♦r♥tt♦♥s rr t♥ rs

sss♦♥

rstrt ♦rs♣ t s♠ ♣♦ss ♠♦s ♥ rt♦♥ t t r♠♠♥s♦♥ ♥ s♠ r♦tt♦♥ ♠♣ts ss t♥ rs s♠ t♦ ♥t ♦♠tr② s ♦r t ♣r♦t♦t②♣ tr ♣r r♦♦t rttr r♥t ♥ ♦r♥ t ts r♠r

s ts s t♦ rt ♦♥② t ♣♦st♦♥ ♦ t ai ♥ t ∆lit② t ♦♠tr② ♦ t ♣t♦r♠ ♥ ♥♦♥ ♥ s② t♦ t ts♣r♦♠ s ♥tr② ②♣ss

♦rt♠s s ♦r t ♥tt♦♥ r ♣♦r ♥ tr♠ ♦ ♦♥r♥ ♥ rs rr♦r sss♦♥s ♦s ♦♥ t rsts ♦t ♥♣♥♥t♠srs ♦ ♠t♦ ♥ ♠♥② ♦♥ t ♦♠♣rs♦♥ t♥ rt♦♥♥ srt♦♥

♦♠♣rs♦♥ t♥ rt♦♥ t st sqrs ♥ s ♥♦ts♠♣ s t ♣r♠tr ♥tt♦♥ rsts r ♦s t ♠♥s tt t♠srs t sr trr ♦ rr♦rs

♥ t s ♦ srt♦♥ ♥t ♣r♠tr st♠t♦♥ s ss♥t s t st② rs ♦♥ t ♥ s t♦ ♦♦s s♣ ♣r♦ss ♥ ♦rs ♦♦ rst st♠t♦♥ ♥ tr♦r ♥ t♦♥ t♦ ♦♦ ♦♥r

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

r rr♦r ♦♥ ♦r♥t♥ ♦r ♥t ♣r♠trs ♥ tr r♥t♥tt♦♥ ♠t♦s

♥ t χ2 ♣r♦s t♦♥ ♦♥tr♦ s♦♠ ♣r♠trs r ♥♦t ♣rt②♥t t♦ t r♦♦t ♦♠tr② ♦r ♠sr♠♥t s ♦sr ♥ t♦r♥tt♦♥ r② st sqrs s♦ ♦♦ rsts

r ♦♠♣rs♦♥ s ts t♥ rt♦♥ ♥ srt♦♥ ♥ ts①♣r♠♥ts ♥ ♦♥ tt srt♦♥ s ♦♦ ♥♦ rsts

♦r♦r t srt♦♥ s qt ♣ t ♥ts r ♥ ②t ♦♥tr♦ t s♥t r②

♥ t ♦tr ♥ t st♠t♦♥ ♦ ♣r♠trs t rt♦♥♣r♦ss s ♠♦r r♦st t♥ srt♦♥ ♥ s② r rst♥♥ ♥tt♦♥ ♦ t r♦♦t ♣r♠trs

♦♥s♦♥s ♥ tr ♦rs

♦♥s♦♥s

♥ ts ♣♣r r ①♣r♠♥t② t ②♣♦tss ♦ srt♦♥♣t② ♦r ♣rtr ♣r r♥ r♦♦t ♦ t♦s ♦ s t♦ tst s♠♣ ♥ ♣♣r♦ ♦r t ♠♥t♦♥ ♦ ♣♦s rs ♥ t srt♦♥♣r♦ss ❲ tr② tr r♥t ♠t♦s r r♦♠ t st sqrs ♣♣r♦♦r t ♣r♠tr ♥tt♦♥ ♥ ♠ s♦♠ ♣r♦♣♦ss ♦♥ tr s ♦♦♥ ♦r r♦♦t ♥ tr rt ♦♥t rt ♥♠ts♣r♠tr st♠t♦♥ ♦r srt ♦t t r♦st ♦rt♠s

tr ♦rs

r♦♦t ♥r ♦♥strt♦♥ ♦r t ♦♦ ♣r♦t r♥t ♦♠tr② ♥ r♥t s t♦ ♥ ② ♦s ♦r tt ♥ ♠♦ s♥ ♣r♦rss t ♠ss ♥ stt② ♦♥srt♦♥ tr ♦rs ♥rtt♦♥ ♦ t ♥tt♦♥ rsts ♥ t ♣r♦t ♣♥ t♦ s ♠r♦r ♣♦s s♥s♥ ♥ r ♦♣♥ rt♦♥ ♠t♦ s ♦♥ ts♦♥ rst

♥♦♠♥ts

s ♦r s s♣♣♦rt ♦r ♦♥ ♣rt ② t r♥ t♦♥ sr ♥② ♥r r♥t ♦♦ ♣r♦t ♥ ♦r t ♦tr♣rt ② t é♦♥ ♥♦♦ss♦♥ ♥r r♥t ♥s t♦ s r♦♠tt♦♥ ♦r rt sss♦♥s

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

r♥s

❬❪ ②♠

❬❪ st♥ s♥r ♥ ❲s♠ ♥t ♣r♠trs ♦r ♣rr♦♦ts ♥♠t rt♦♥ ♥ ♥tr♥t♦♥ ♦♥r♥ ♦♥ ♦♦ts ♥t♦♠t♦♥ ♦♠ ♣s ♦ ♦r ♠②

❬❪ st♥ s♥r ♥ ❲s♠ rt♦♥ ♦ ♣r r♦♦tst t♦ ♥♥♦♠trs ♥ ♦♦ts ♥ t♦♠t♦♥ ♦♠ ♣s

❬❪ P ♦s r ②r ♥ ♦rt ♥ st ♥ ♥t ♦rt♠ ♦r ♥♦♥♥r ♦rt♦♦♥ st♥ rrss♦♥ ♦r♥♦♥ ♥t ♥ ttst ♦♠♣t♥

❬❪ P ♦rstr♦♠ ♦r♥ ♦rstr♦♠ t② t♠ t♥ ♥ ❲ sr ♠s♣ r♥r♦♦t t srt♦♥ ♣ts ♦♦ts r♥st♦♥s ♦♥ ♦t

❬❪ P ♦ssr ♥ ss♣♥ r♦♦t ♦♥t♦r rt♥ s②st♠t♦♠t♦♥ ♥ ♦♥strt♦♥

❬❪ ♠ ♦r ♦♠tr s r♦♦ts ♣rs ♥tr♥s ♣r s sP tss ❯♥rst

❬❪ ♥② rt♦♥ ♦ ♦ ♣t♦r♠ s♥ ♠♦t② ♦♥str♥ts♥ ♥ Pr♦ t ❲♦r ♦♥rss ♦r② ♦ ♥ ♥ ♥s♠s ♥♥ ♣s

❬❪ ♥② t♦♥♥ ♦♠trq s r♦♦ts ♣rs P tss ♦♣ ♥t♣♦s

❬❪ ♥② ♦s ♥r s rt ♥ ❨s P♣② ♥tr ♠t♦ ♦r rt♦♥ ♦ ♣r r♦♦ts ❱s♦♥ s ①♣r♠♥ts♥s♠ ♥ ♥ ♦r②

❬❪ Prr♦t r♥♦s Pr ♠♥s♠s ♥ r♥♥② ♥ st ♥t♦♦q♠ ♦♦rt sr ♥tr ♣s

❬❪ ♦ttr P rt ♥ ♥② tr♠♥t♦♥ ♦ t r♥♦sr ♦rs♣ ♦ ♦ ♣r r♥ ♠♥s♠s ♥ r♥♥♥r ♥ ♦t t♦rs ♥s ♥ ♦♦t ♥♠ts ♣s ♣r♥r tr♥s

❬❪ r♥ ♥ ② ♥r t♦r② ♦ r rt♦♥s ♦ ss♣♥ Pr♦♥s ♦ t ♦② ♦t② ♦ ♦♥♦♥ rs t♠t ♥ P②s ♥s ♣♣

❬❪ ♥Prr rt Pr ♦♦ts ♥ t♦♥ ♦♠ ♣r♥r

❬❪ ♥ ♥ t② ♥ t♣ rr♦♠ P♦st♦♥♥ ♥s♠ ❯s♥ ❲rs ♦♣♠♥t P♥r ♦♠♣t② str♥ P♦st♦♥♥ ♥s♠♥tr♥t♦♥ ♦r♥ ♣♥ ♦t② ♦r Prs♦♥ ♥♥r♥ ♣

rt♦♥ ♦ ②♦♥str♥ ♣r r♥ r♦♦t

❬❪ ♠t Pt ♥ ♦r♥ ♠♥♥ rt♦♥ ♦ ①♣♦ ♠♥t♦♦ s♥ r♥♥t ♥tr♥t♦♥ ♦r♥ ♦ ♥ ♦♦s ♥♥tr ♠r

❬❪ P ♥ ♥r P rt♥t ♥ ♦ ♥♠t rt♦♥♦ ♣r ♠♥s♠s ♥♦ ♣♣r♦ s♥ s ♦srt♦♥ ♦♦ts r♥st♦♥s ♦♥

❬❪ ♦♦r♦ ❱r♦♥ r ♥ ♠♦r ♣♦rt ♣r ♠♥♣t♦r ♦r sr ♥ rs t rs r♥ rtqs ♥♥ ♥tt♦♥ ♦rt♠ ♦r t ♥stt♦♥ ♥ ♥strtr ♥r♦♥♠♥ts ♥ ♥t♥t ♦♦ts ♥ ②st♠s Pr♦♥s ♥tr♥t♦♥ ♦♥r♥ ♦♥ ♦♠ ♣s ♦

❬❪ ❨♦ ♥ ♥ ♥ r♦ ♥s s ♥♠trt♦♥ ♠t♦ ♦r ♥Pr tt ♠♥s♠s s♥ ♦rr srs ♦r♥ ♦ ♥ s♥

❬❪ ❱r③r ♥ ♦ts ♥♠t rt♦♥ ♦ rtt♣r r♦♦t ♥s♠ ♥ ♥ ♦r②

❬❪ ❲♠♣r ♥ r rt♦♥ ♦ r♦♦ts ♥ ♥♠t ♦s♦♦♣s s♥ ♥♦♥♥r stsqrs st♠t♦♥ Pr♦ ♦ ♥t②♠♣ ♦r② ♣s

❬❪ rs ❲ ❲♠♣r ♦♥ ♦r ♥ ts♦ r ♥ ♠♣t♦♦♣ ♠t♦ ♦r ♥♠t rt♦♥ ♥ ts ♣♣t♦♥ t♦ ♦s♥♠♥s♠s r♥st♦♥s ♦♥ ♦♦ts ♥ t♦♠t♦♥ ♦t

❬❪ ♥q ❩♥ s♦r② ♥ ❨♥ ♥♠t rt♦♥ ♦ strt ♣t♦r♠ s♥ ♣♦s ♠sr♠♥ts ♦t♥ ② s♥ t♦♦t ♥ ♥t♥t ♦♦ts ♥ ②st♠s ♠♥ ♦♦t ♥trt♦♥♥ ♦♦♣rt ♦♦ts Pr♦♥s ♥tr♥t♦♥♦♥r♥ ♦♥ ♦♠ ♣s ♦

❬❪ ♥q ❩♥ ❨♥ ♥ r♥ s♦r② rt♦♥ ♦ strt ♣t♦r♠s ♥ ♦tr ♣r ♠♥♣t♦rs ② ♠♥♠③♥ ♥rs ♥♠trss ♦r♥ ♦ ♦♦t ②st♠s

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

PublisherInriaDomaine de Voluceau - RocquencourtBP 105 - 78153 Le Chesnay Cedexinria.fr

ISSN 0249-6399