Calculus Applied to Business Part04

download Calculus Applied to Business Part04

of 15

Transcript of Calculus Applied to Business Part04

  • 8/21/2019 Calculus Applied to Business Part04

    1/36

    Calculus Applied to Business and Economics

    Rules in Finding the Derivative of a Function

    Prof. Kenneth James T. Nuguid

    May 3, 2013

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

  • 8/21/2019 Calculus Applied to Business Part04

    2/36

    Average Rate of Change

    Average Rate of Change

    The average rate of change of  y  with respect to  x , as  x   changesfrom  x 1   to  x 2  is the ratio of the change in output to the change ininput:

    Average Rate of Change =  y 2 − y 1x 2 − x 1

    =  f   (x 2) − f   (x 1)

    x 2 − x 1.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

  • 8/21/2019 Calculus Applied to Business Part04

    3/36

    Average Rate of Change

    Average Rate of Production

    Example 1. The following graph shows the total production of suits by Raggs, Ltd., during one morning of work. What was thenumber of suits produced at Raggs, Ltd., from 9 A.M. to 11 A.M.?

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

  • 8/21/2019 Calculus Applied to Business Part04

    4/36

    Average Rate of Change

    Solution: At 9 A.M., 20 suits had been produced. At 11 A.M., 64suits had been produced. From 9 A.M. to 11 A.M., the average

    number of suits produced was64suits − 20suits

    3 − 1hour   = 44suits

    2hr  = 22

    suits

    hr  .

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

  • 8/21/2019 Calculus Applied to Business Part04

    5/36

    Average Rate of Change

    Difference Quotient

    If we change  x 1  by x   and  x 2  by x  + h  in the definition of averagerate of change, we get

    Average Rate of Change =  f   (x  + h) − f   (x )

    (x  + h) − x    =  f   (x  + h) − f   (x )

    h  .

    The average rate of change is also called the  difference quotient.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

  • 8/21/2019 Calculus Applied to Business Part04

    6/36

    Average Rate of Change

    Economic Utility

    Exercise 1a. Utility is a type of function that occurs in economics.

    When a consumer receives x units of a certain product, a certainamount of pleasure, or utility  U , is derived. The following is agraph of a typical utility function.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

  • 8/21/2019 Calculus Applied to Business Part04

    7/36

    Average Rate of Change

    Economic Utility

    a.  Find the average rate of change of U as  x  changes from 0 to 1;from 1 to 2; from 2 to 3; from 3 to 4.

    b.  Why do you think the average rates of change are decreasing asx   increases?

    Compound Interest

    Exercise 1b. The amount of money, in a savings account that pays6% interest, compounded quarterly for  t  years, when an initial

    investment of P20,000 is made, is given byA(t ) = 20, 000(1.015)4t .

    Find   A(5)−A(3)5−3   , and interpret this result.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

  • 8/21/2019 Calculus Applied to Business Part04

    8/36

    Instantaneous Rate of Change

    Instantaneous Rate of Change

    The slope of the tangent line at (x , f   (x )) is

    m = limh→0

    f   (x  + h) − f   (x )h

      .

    This limit is also called the  instantaneous rate of change.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    f

  • 8/21/2019 Calculus Applied to Business Part04

    9/36

    Derivative of a Function

    Derivative of a Function

    For a function  y  = f   (x ) its  derivative  is the function  f  (x ) definedby

    f  (x ) = limh→0

    f   (x  + h) − f   (x )h

      ,

    provided that the limit exists. If  f  (x ) exists then we say that  f    is

    differentiable at  x .

    Example 2. For  f   (x ) = x 2, find   f  (x ). Find   f  (−3) and   f  (4).Solution:

    f  

    (x ) = limh→0

    f   (x  + h)−

    f   (x )

    h   = limh→0

    (x  + h)2

    −x 2

    h

    = limh→0

    x 2 + 2xh + h2 − x 2h

      = limh→0

    h(2x  + h)

    h  = lim

    h→02x  + h  = 2x .

    Thus,  f  (−

    3) = 2(−

    3) =−

    6 and  f  (4) = 2(4) = 8.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    D i i f F i

  • 8/21/2019 Calculus Applied to Business Part04

    10/36

    Derivative of a Function

    Exercise 2a. For  f   (x ) = x 3. Find   f  (x ). Find   f  (−1) and   f  (1.5).At which values of  x   is the derivative 0?Exercise 2b. For  f   (x ) =   1

    x . Find  f  (x ). Then find  f  (−1) and  f  (2)

    At which values of  x   is the derivative 0?.

    A function is not differentiable at a point  x  = a   if:

    a.  there is a discontinuity at  x  = a.

    b.  there is a corner at  x  = a  or

    c.  there is a vertical tangent at  x  = a.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    L ib i N i

  • 8/21/2019 Calculus Applied to Business Part04

    11/36

    Leibniz Notation

    Leibniz Notation

    Let  y  be a function of  x , i.e.   y  = f   (x ), then the derivative of  y 

    with respect to  x  or the derivative of the function   f   (x ) withrespect to  x   is given by

    dy 

    dx   = y  = f  (x ).

    When we wish to evaluate a derivative at a number, e.g. at  x  = 2,we write

    dy 

    dx 

    x =2

    = f  (2).

    Example. If  y  = f   (x ) = x 2 then   dy dx 

      = y  = f  (x ) = 2x   and

    dy 

    dx x =2 = f  (2) = 2(2) = 4.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    B i R l f Diff ti ti

  • 8/21/2019 Calculus Applied to Business Part04

    12/36

    Basic Rules of Differentiation

    Differentiation Rules

    i.  For any constant  c , if  y  = c , then   d dx 

    c  = 0.

    ii.  For any real number  n, if  y  = x n, then   d dx 

    x n = n · x n−1.iii.  For any constant  c ,   d 

    dx [c  · f   (x )] = c  ·   d 

    dx f   (x ).

    iv.  The derivatie of a sum is the sum of the derivatives:

    dx [f   (x ) ± g (x )] =   d 

    dx f   (x ) ± d 

    dx g (x ).

    v.  The derivatie of a sum is given by:

    dx [f   (x ) · g (x )] =   d 

    dx f   (x ) · [g (x )] +   d 

    dx g (x ) · [f   (x )].

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    B i R l f Diff ti ti

  • 8/21/2019 Calculus Applied to Business Part04

    13/36

    Basic Rules of Differentiation

    Example 3. Find each of the following derivatives:

    i.   d dx 

    7x 4

    ii.   d dx 

    (   15x 2

    )

    iii.   d dx 

    (5x 3

    −7)

    iv.   d dx 

    24 −√ x  +   5

    Solution:

    i.   d dx 

    7x 4 = 7  d dx 

    x 4 = 7(4x 4−1) = 28x 3

    ii.   d dx 

    (   15x 2

    ) =   d dx 

    (5x −2) = 5((

    −2)x −2−1) =

    −10x −3

    iii.   d dx (5x 3 − 7) = 5(  d dx x 3) −   d dx 7 = 5(3x 2) − 0 = 15x 2iv.

    dx 

    24 −√ x  + 5

     = 0 − d 

    dx  √ 

    + 5

     d 

    dx 

    1

    = − d dx 

    x 1/2

    + 5  d 

    dx 

    x −1

    = −1

    2x 

    12−1 + 5(−1)(x −1−1

    =−

    1

    2

    x −12

     −5(x −2) =

    −1

    2√ x  −5

    x 2 .

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    B si R l s f Diff ti ti

  • 8/21/2019 Calculus Applied to Business Part04

    14/36

    Basic Rules of Differentiation

    Exercise 3a. Find each of the following derivatives:

    i.   d dx 

    4√ 

    x  +   6x 4

    ii.   d dx x 0.7 +   3x 

    4  − 0.01x 2iii.   d 

    dx (   2

    3x 4)

    iv.   d dx 

    (−x 3 + 6x 2)v.   d 

    dx 3x 5 + 2   3√ x  +   1

    3x 2 +

    √ 5

    Exercise 3b. Evaluate the following:

    i.   If  f   (x ) = x 2 + 4x  − 5 find  f  (10).

    ii.   If  y  = x 3 + +2x  − 5, find   dy dx 

    x =−

    2

    .

    iii.   If  y  = x  +   2x 3

    , find   dy dx 

    x =1

    .

    iv.   If  y  =   3√ 

    x  +√ 

    x , find   dy dx x 

    =64

    .

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Basic Rules of Differentiation

  • 8/21/2019 Calculus Applied to Business Part04

    15/36

    Basic Rules of Differentiation

    Example 4. Find   d dx 

    (x 4 − 2x 3 − 7)(3x 2 − 5x ) without simplifying.

    Solution: Let  f   (x ) = x 4 − 2x 3 − 7 and  g (x ) = 3x 2 − 5x   thendifferentiating  f   (x ) and  g (x ) we get

    f  (x ) = 4x 3 − 6x 2g (x ) = 6x  − 5.

    Hence, applying the product rule, we obtaind 

    dx [f   (x ) · g (x ) = f   (x ) · g (x ) + g (x ) · f  (x )

    dx (x 4 − 2x 3 − 7)(3x 2 − 5x ) = (x 

    4 − 2x 3 − 7)(6x  − 5)+ (3x 2 − 5x )(4x 3 − 6x 2).

    Exercise 4. Use the product rule to differentiate

    y  = (2x 5 + x 

     −1)(3x 

     −2).

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Basic Rules of Differentiation

  • 8/21/2019 Calculus Applied to Business Part04

    16/36

    Basic Rules of Differentiation

    Example 5. Find   d dx 

    x 5

    x 2

     without simplifying.

    Solution: Let  f   (x ) = x 5 and  g (x ) = x 2 then differentiating  f   (x )

    and  g (x ) we get

    f  (x ) = 5x 4

    g (x ) = 2x .

    Hence, applying the quotient rule, we obtain

    dx 

    f   (x )

    g (x )

     =

      g (x ) · f  (x ) − f   (x ) · g (x )[g (x )]2

    dx x 5

    x 2

     =

      x 2

    ·5x 4

    −x 5

    ·2x 

    (x 2)2

    = 5x 6 − 2x 6

    x 4  =

     3x 6

    x 4  = 3x 2.

    Exercise 5. Use the quotient rule to differentiate  y  =   1+x 2

    x 3  .

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    17/36

    Applications

    Instantaneous Rate of ChangeExample 6.   Basketball Ticket Prices . The average price, in pesos,of a ticket for a PBA basketball game  x  years after 1990 can beestimated by

    p (x ) = 94.1−

    1.9x  + 0.9x 2.

    a.  Find the rate of change of the average ticket price with respectto the year,   dp 

    dx .

    b.  What is the average ticket price in 2010?c.  What is the rate of change of the average ticket price in 2010?

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    18/36

    Applications

    Solution:

    a.   dp dx 

      = p (x ) = −1.9 + 0.9(2)x  = −1.9 + 1.8x .b.  The average ticket price  x  yrs after 1990 is given by  p (x ) and

    2010 is 20 years after 1990. Hence, the average ticket price in2010 is given by

    p (20) = 9.41 − 1.9(20) + 0.9(202) = P 331.41.

    c.  The rate of change of the average ticket price in 2010 is thevalue of  p (x ) when  x  = 20. Hence,

    p (20) = −1.9 + 1.8(20) = P 34.1 per year.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    19/36

    Applications

    Exercise 6a.   Advertising . A firm estimates that it will sell  N   unitsof a product after spending  a  thousands of pesos on advertising,

    where  N (a) = −a2

    + 300a + 6.a.  Find the rate of change of the number of units sold with respect

    to the amount spent on advertising,   dN da

      = N (a).

    b.  How many units will be sold after spending P100,000?

    c.  What is the rate of change of  a = 100?

    Exercise 6b.   Demand . A demand function for a certain product isgiven by  D (p ) = 100 −√ p .a.  Find the rate of change of quantity demanded with respect to

    price,   dD dp 

      = D (p ).

    b.  How many units will the consumer want to buy when the priceis P25 per unit?

    c.  What is the rate of change of  p  = P 25?

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    20/36

    Applications

    Marginal Analysis

    Let  C (x ), R (x ),   and  P (x ) represent, respectively, the total cost,

    revenue, and profit from the production and sale of x items.The  marginal cost  at  x , given by  C (x ) is the approximate cost of the (x  + 1)st   item:

    C (x )

    ≈C (x  + 1)

    −C (x ) or   C (x  + 1)

    ≈C (x ) + C (x ).

    The   marginal revenue  at  x , given by  R (x )is the approximaterevenue from the (x  + 1)st   item:

    R (x )

    ≈R (x  + 1)

    −R (x ) or   R (x  + 1)

    ≈R (x ) + R (x ).

    The  marginal profit  at  x , given by  P (x ) is the approximate profitfrom the (x  + 1)st   item:

    P (x )

    ≈P (x  + 1)

    −P (x ) or   P (x  + 1)

    ≈P (x ) + P (x ).

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    21/36

    Applications

    Marginal Analysis

    Example 7. Given

    C (x ) = 62x 2 + 27, 500 and   R (x ) = x 3 − 12x 2 + 40x  + 10,

    find each of the following.

    a.   Total profit  P (x ),

    b.  Total cost, revenue, and profit from the production and sale of 50 units of the product

    c.  The marginal cost, revenue, and profit when 50 units areproduced and sold.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    22/36

    Applications

    Solution:

    a.  The total profit is given by

    Total profit = P (x ) = R (x ) − C (x )= x 3 − 12x 2 + 40x  + 10 − (62x 2 + 27, 500)= x 3

    −74x 2 + 40x 

     −27, 490.

    b.  The total cost, revenue, and profit from the production and saleof 50 units of the product are given by:

    C (50) = 62

    ·502 + 27, 500 = $182, 500

    R (50) = 503 − 12 · 502 + 40 · 50 + 10 = $97, 010P (50) = R (50) − C (50) = 97, 010 − 182, 500 = −$85, 490.

    There is a loss of $85,490 when 50 units are produced and sold.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    23/36

    Applications

    c.

    C (x ) = 124x 

    R (x ) = 3x 2 − 24x  + 40P (x ) = 3x 2 − 148x  + 40.

    Hence,

    C (50) = 124(50) = $6, 200

    R (50) = 3 · (502) − 24(50) + 40 = $6, 340P (50) = 3 · (502) − 148(50) + 40 = $140

    Therefore, once 50 units have been made, the approximate costof the 51st unit is $6,200 and from the sale of the 51st unit anapproximat revenue of $6,340 is expected. So, from theproduction and sale of the 51st item, an approximate profit of $140 will be gained.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    24/36

    pp

    Exercise 7a. Given

    R (x ) = 50x 

     −0.5x 2 and   C (x ) = 10x  + 3,

    find each of the following.

    a.   Total profit  P (x ),b.  Total cost, revenue, and profit from the production and sale of 

    40 units of the product

    c.  The marginal cost, revenue, and profit when 40 units areproduced and sold.

    Exercise 7b. Given

    R (x ) = 5x    and   C (x ) = 0.001x 2 + 1.2x  + 60,

    find each of the following.a.   Total profit  P (x ),b.  Total cost, revenue, and profit from the production and sale of 

    100 units of the productc.  The marginal cost, revenue, and profit when 100 units are

    produced and sold.Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    25/36

    pp

    Because of economies of scale and other factors, it is common forthe cost, revenue (price), and profit for, say, the 10th item to differ

    from those for the 1000th item. For this reason, a business is ofteninterested in the  average  cost, revenue, and profit associated withthe production and sale of  x   items.

    Average Cost, Revenue and Profit

    Let  C (x ), R (x ),   and  P (x ) be the cost, revenue and profitfunctions for producing and selling  x   items, then

    C (x )

    x   = average cost of producing  x   items,

    R (x )x 

      = average revenue for selling x   items, and

    P (x )

    x   = average profit for selling x   items.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    26/36

    pp

    Application: Average Cost, Revenue and Profit

    Example 8. Ken’s Greenhouse finds that the cost (in pesos) of growing   x hundred  sunflowers is modeled by

    C (x ) = 20, 000 + 10, 000   4√ 

    x .

    If the revenue from the sale of   x hundred  sunflowers is given by

    R (x ) = 12, 000 + 9, 000√ 

    x ,

    find each of the following.

    a.  The average cost, the average revenue, and the average profitwhen  x  hundred sunflowers are grown and sold.

    b.  The rate at which average profit is changing when 300sunflowers are being grown and sold.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    27/36

    pp

    Solution:a.   We let  AC , AR ,   and  AP  represent average cost, average

    revenue, and average profit, respectively. Then

    AC (x ) =

      C (x )

    x    =

     20, 000 + 10, 000   4√ 

    x    ;

    AR (x ) =  R (x )

    x   =

     12, 000 + 9, 000√ 

    x   ;

    AP (x ) =  P (x )

      =  R (x ) − C (x )

      = −8, 000 + 9, 000√ x  − 10, 000   4√ x 

      .

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    28/36

    b.  To find the rate at which average profit is changing when 300

    sunflowers are being grown, we calculate  A

    P (3) (remember thatx   is in hundreds:

    AP (3) =  d 

    dx 

    −8, 000 + 9, 000x 1/2 − 10, 000x 1/4

    x =3

    = 4, 500x 1/2 − 2, 500x 1/4 + 8, 000 − 9, 000x 1/2 + 10, 0001/4

    x 2

    = 7, 500x 1/4 − 4, 500x 1/2 + 8, 000

    x 2

    x =3

    = 7, 500   4√ 3 − 4, 500√ 3 + 8, 000

    32

    = P 1, 119.59

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Applications

  • 8/21/2019 Calculus Applied to Business Part04

    29/36

    Exercise 8. Sparkle Pottery has determined that the cost, in pesos,of producing  x  vases is given by

    43, 000 + 21x 0.6.

    If the revenue from the sale of  x  vases is given by  R (x ) = 650x 0.9,find the rate at which the average profit per vase is changing when50 vases have been made and sold.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Chain Rule and Higher Derivatives

  • 8/21/2019 Calculus Applied to Business Part04

    30/36

    Extended Power Rule

    Suppose that  g (x ) is a differentiable function of  x . Then, for any

    real number  n,

    dx [g (x )]n = n[g (x )]n−1 · d 

    dx g (x ).

    Example 9. Find  y 

    if  y  = (1 + x 2

    )3

    . Solution: Using the ExtendedPower Rule with  g (x ) = 1 + x 2, we have

    y  = 3(1 + x 2)2 · d dx 

    (1 + x 2)

    = 3(1 + x 2

    )2

    · 2x = 6x (1 + x 2)2.

    Exercise 9a. Differentiate:   f   (x ) = (1 + x 3)1/2 Exercise 9b.Differentiate:   f   (x ) = (1

    −x 2)3 + (5 + 4x )2

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Chain Rule and Higher Derivatives

  • 8/21/2019 Calculus Applied to Business Part04

    31/36

    Chain Rule

    The derivative of the composition  f   ◦ g   is given byd 

    dx [(f  

     ◦g )(x )] =

      d 

    dx [f   (g (x ))] = f  (g (x ))

    ·g (x ).

    The Chain Rule often appears in another form. Suppose thaty  = f   (u ) and  u  = g (x ). Then

    dy 

    dx   =

      dy 

    du  ·du 

    dx .

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Chain Rule and Higher Derivatives

  • 8/21/2019 Calculus Applied to Business Part04

    32/36

    Example 10. Suppose  y  = 2 +√ 

    u  and  u  = x 3 + 1. Finddy 

    du 

    ,

    du 

    dx 

      ,   and   dy 

    dx 

    . Solution:

    dy 

    du   =

     1

    2u −1/2 and

      du 

    dx   = 3x 2.

    Then

    dy 

    dx   =

      dy 

    du  · du 

    dx 

    =  1

    2√ 

    u  · 3x 2

    =   3x 2

    2√ 

    x 3 + 1Substituting  u  = x 3 + 1.

    Exercise 10. If  y  = u 2 + u  and  u  = x 2 + x , find   dy dx 

    .

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Chain Rule and Higher Derivatives

  • 8/21/2019 Calculus Applied to Business Part04

    33/36

    Application: Chain Rule

    Example 11. A total-revenue function is given by

    R (x ) = 1, 000 

    x 2 − 0.1x ,

    where  R (x ) is the total revenue, in thousands of dollars, from thesale of items. Find the rate at which total revenue is changing

    when 20 items have been sold.

    Solution:   R (x ) = rate of change of revenue with respect to thenumber of items sold.

    R (x ) = 1, 000

    12

    (x 2 − 0.1x )−1/2 · d dx 

    (x 2 − 0.1x )

    = 500 · (2x  − 0.1)√ 

    x 2 − 0.1x .

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Chain Rule and Higher Derivatives

  • 8/21/2019 Calculus Applied to Business Part04

    34/36

    Hence,

    R (20) = 500 · (2(20) − 0.1) 

    202 − 0.1(20)= 1, 000.

    Example 11a. A company determines that its total cost, inthousands of pounds, for producing items is  C (x ) =

    √ 5x 2 + 60

    and it plans to boost production  t  months from now according tothe function  x (t ) = 20t  + 40. How fast will costs be rising 4months from now?

    Example 11b. If P10,000 is invested at interest rate   i , compoundedquarterly, in 5 yr it will grow to an amount,  A, given by

    A(i ) = 10, 000

    1 +

      i 

    4

    20.

    Find the rate of change,   dAdi 

      and interpret.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Chain Rule and Higher Derivatives

  • 8/21/2019 Calculus Applied to Business Part04

    35/36

    Second Derivative

    Given a differentiable function  f   (x ). Suppose that its derivative

    function  f  

    (x ) can also be differentiated. Then we can define thesecond derivative   f   ”(x ) as the function given by

    f   ”(x ) =  d 

    dx f  (x ).

    Hence, it is clear that  f   ” is the derivative of  f  (x ).

    Example12. Let  f   (x ) = x 5 − 3x 4 + x . Its second derivative isfound by differentiating  f  (x ).

    f   ”(x ) =   d dx f  (x )

    =  d 

    dx (5x 4 − 12x 3 + 1)

    = 20x 3

    −36x 2.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics

    Chain Rule and Higher Derivatives

  • 8/21/2019 Calculus Applied to Business Part04

    36/36

    Exercise 12a. If  y  =   1x , what is  y ”.Exercise 12b. If  y  = (x 2 + 10x )20, find  y   and  y ”.Exercise 12c. A company determines that monthly sales  S , inthousands of dollars, after  t  months of marketing a product isgiven by

    S (t ) = 2t 3 − 40t 2 + 220t  + 160.

    a.   Find  S (t ) and  S ”(t ).

    b.  Find the value in (a.) when  t  = 1,

    2,

    4. Interpret the results.

    Prof. Kenneth James T. Nuguid   Calculus Applied to Business and Economics