Calculation of anisotropy energy and temperature ...

47
Calculation of anisotropy energy and temperature dependence of anisotropy A. Meo, R. W. Chantrell, R. F. L. Evans Department of Physics, University of York, York, YO10 5DD, UK 1 st Advanced VAMPIRE Workshop

Transcript of Calculation of anisotropy energy and temperature ...

Page 1: Calculation of anisotropy energy and temperature ...

Calculation of anisotropy energy and temperature dependence of

anisotropyA.Meo,R.W.Chantrell,R.F.L.EvansDepartmentofPhysics,UniversityofYork,York,YO105DD,UK

1st Advanced VAMPIRE Workshop

Page 2: Calculation of anisotropy energy and temperature ...

2

ConstraintMonteCarloalgorithm

Page 3: Calculation of anisotropy energy and temperature ...

Constraint Monte Carlo (CMC) algorithm

3

1. Why Monte Carlo (MC) algorithms?• Determine macroscopic equilibrium quantities

2. Issue• Standard MC allows to determine magnetic properties at

thermal equilibrium (magnetisation)

• At thermal equilibrium magnetocrystalline energy (MAE)can’t be determined since magnetisation is parallel to easyaxis

3. Solution• Investigate the system while in quasi-equilibrium condition

Page 4: Calculation of anisotropy energy and temperature ...

CMC

4

• CMC algorithm1 allows to constrains the direction of the globalmagnetisation while it allows the single spins to vary

• This allows to calculate restoring torque acting on themagnetisation

• From the torque, MAE can be obtained

1.ConstrainedMonteCarlomethodandcalculationofthetemperaturedependenceofmagneticanisotropy,P.Asselin,R.F.L.Evans,J.Barker,R.W.Chantrell,R.Yanes,O.Chubykalo-Fesenko,D.Hinzke,andU.Nowak,Phys.Rev.B82,054415(2010)

Page 5: Calculation of anisotropy energy and temperature ...

CMC step

5

• In CMC trial move acts on 2 spins at time:1. (Assume constraint direction along +z-axis) Select 2 spins i,j2. Apply MC move to first spin 𝑆"# → 𝑆"#%

3. Move second spin 𝑆"& to compensate change ofmagnetisation in xy-components (𝑀( = 𝑀* = 0):

,𝑆"&(% = 𝑆"#( + 𝑆"&( − 𝑆"#(%

𝑆"&*% = 𝑆"#* + 𝑆"&* − 𝑆"#*%

4. Adjust z-component of new spin j

/𝑆"&0% = 𝑠𝑖𝑔𝑛 𝑆"&0 1 − 𝑆"&(6 − 𝑆"&*6

1 − 𝑆"&(6 − 𝑆"&*6 > 0

Page 6: Calculation of anisotropy energy and temperature ...

CMC step

6

5. Calculate new magnetisation

9𝑀0% = 𝑀0 + 𝑆"#0% + 𝑆"&0% − 𝑆"#0 − 𝑆"&0

𝑀0% > 0

6. Calculate the change in energy

9∆𝐸# = 𝐸#% − 𝐸#

∆𝐸#& = ∆𝐸# + ∆𝐸&

7. Compute the acceptance probability of the moves

𝑃 = 𝑚𝑖𝑛 1,𝑀0%

𝑀0

6 𝑆"&0𝑆"&0%

𝑒𝑥𝑝 −∆𝐸#& 𝑘C𝑇⁄

Geometricalfactor

Boltzmannprobabilitydensity

Page 7: Calculation of anisotropy energy and temperature ...

Free energy

7

• In ensemble at constant temperature and volume, energy of thesystem given by Helmoltz free energy:

𝐹 = 𝑈 − 𝑇𝑆

• How can we obtain it?Calculating the restoring torque acting on the magnetisation ofthe system

Page 8: Calculation of anisotropy energy and temperature ...

Free energy

8

• For a reversible system, the variation of free energy is:

∆𝐹 = H𝛿𝑊K

L

• In a magnetic system the workW done on a system is equivalentto the torque T that acts on the whole system:

M 𝛿𝑊 = 𝑇 𝑑𝜗𝜗 = angleformedbyspinandnetfieldactingonspins

➡ ∆𝐹 = −∫ 𝑇 𝑑𝜗KL

Page 9: Calculation of anisotropy energy and temperature ...

Torque

9

• Total torque acting on the system is given by

𝑇 =Q𝑇#

#

= Q𝑆"#

#

×𝐻# =Q𝑆"#

#

× −𝜕ℋ𝜕𝑆"#

• The magnitude of the average of the total internal torque T iscalculated from thermodynamic average of T:

𝑇 = 𝑇

• Once the torque is calculated, the free energy can be computed

Page 10: Calculation of anisotropy energy and temperature ...

Uniaxial anisotropy

10

• Let’s assume the material has a single axis along which themagnetic moments prefer to alignà Uniaxial anisotropy

• Internal energy U is given by:𝑈 = 𝐾W sin 𝜗6

• At zero temperature

𝑇 = −𝜕𝐹𝜕𝜗 = −

𝜕𝑈𝜕𝜗 = −𝐾W sin 2𝜗

• sin 2𝜗 holds at all temperatures, while KuàKu(T)

Page 11: Calculation of anisotropy energy and temperature ...

Uniaxial anisotropy: Torque & free energy

11

-1.0

-0.5

0.0

0.5

1.0

π / 2 3π / 4 π

Tota

l tor

que/

k u

Angle from easy axis (rad)

0K50K

100K300K

0.0

0.2

0.4

0.6

0.8

1.0

0 π / 4 π / 2 3π / 4 π

Free

ene

rgy ∆

F / k

u

Angle from easy axis (rad)

0K50K

100K300K

sin(2q) sin2(q)

Page 12: Calculation of anisotropy energy and temperature ...

Uniaxial anisotropy: Temperature scaling

12

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

K(T)

/Ku,

M(T

)/Ms

Temperature (K)

M/MsK(T)/Ku

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-1 -0.8 -0.6 -0.4 -0.2 0

ln(K

eff(T

)/ku)

ln(M(T)/Ms)

Fit, 1.0 m3.0Data

2.H.B.CallenandE.Callen,J.Phys.Chem.Solids27,1271(1966).

𝐾(𝑇) ∝ 𝑀(𝑇)_

InagreementwithCallen-Callentheory2

Page 13: Calculation of anisotropy energy and temperature ...

13

Handson

Page 14: Calculation of anisotropy energy and temperature ...

Main parameters for CMC simulations

14

sim:constraint-angle-theta-minimum = 0.0sim:constraint-angle-theta-maximum = 0.0sim:constraint-angle-theta-increment= 10.0

sim:constraint-angle-phi-minimum = 0.0sim:constraint-angle-phi-maximum = 90.0sim:constraint-angle-phi-increment= 15.0

sim:integrator = constrained-monte-carlosim:program = cmc-anisotropy

output:constraint-thetaoutput:constraint-phioutput:mean-magnetisation-lengthoutput:mean-total-torque

Page 15: Calculation of anisotropy energy and temperature ...

Plotting data with gnuplot

15

# In bash we can sort the data in a file based on specific keys (-k):>sort -k 1g -k 3g output

# Enter in gnuplot:> Gnuplot

#column ($) 3 is the azimuthal angle phi, column 6 is y-component of torque##In gnuplot we can have conditional statements with the following syntax:($1==0 ?$3:0/0):($6)

#Once in gnuplot, type the following commands where > plot ‘<sort -k 1g -k 3g output’ u($1==0?$3:0/0):($6) w l

FILE to plot COLUMNS to plot

PLOT with lines

Page 16: Calculation of anisotropy energy and temperature ...

Practice on CMC

16

Page 17: Calculation of anisotropy energy and temperature ...

Torque

17

-1.0

-0.5

0.0

0.5

1.0

0 π / 4 π / 2

Tota

l tor

que/

k u

Angle from easy axis (rad)

0K100K300K600K

1000K1600K

Page 18: Calculation of anisotropy energy and temperature ...

Temperature scaling

18

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

K(T)

/Ku,

M(T

)/Ms

Temperature (K)

M/MsK(T)/Ku

Page 19: Calculation of anisotropy energy and temperature ...

Scaling of anisotropy vs magnetisation

19

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-1 -0.8 -0.6 -0.4 -0.2 0

ln(K

eff(T

)/ku)

ln(M(T)/Ms)

Fit, 1.0 m3.0Data

Page 20: Calculation of anisotropy energy and temperature ...

Practice on CMC

20

Page 21: Calculation of anisotropy energy and temperature ...

Torque

21

-1.0

-0.5

0.0

0.5

1.0

0 π / 4 π / 2

Tota

l tor

que/

k c

Angle from easy axis (rad)

θ=0 0K100K300K600K

θ=π/8 0K100K300K600K

Torque depends on both rotational (q) and azimuthal (f) angle

Page 22: Calculation of anisotropy energy and temperature ...

Temperature scaling

22

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

K(T)

/Kc,

M(T

)/Ms

Temperature (K)

M/MsK(T)/Kc

Page 23: Calculation of anisotropy energy and temperature ...

Scaling of anisotropy vs magnetisation

23

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

-1 -0.8 -0.6 -0.4 -0.2 0

ln(K

eff(T

)/kc)

ln(M(T)/Ms)

Fit, 1.0 m9.9Data

Page 24: Calculation of anisotropy energy and temperature ...

24

More complex systems

0.0

0.2

0.4

0.6

0.8

1.0

0 π / 4 π / 2 3π / 4 π

Ener

gy b

arrie

r / k

u

Angle from easy axis (rad)

0K100K200K300K

mz+1

0

-1

mz

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350 400 450

(Ene

rgy

barri

er/k

u)/V

olum

e

Temperature (K)

d=10nm15nm20nm25nm30nm35nm40nm50nm

CoFeBMgOCoFeB

-1.0

-0.5

0.0

0.5

1.0

π / 2 3π / 4 π

Tota

l tor

que/

k u

Angle from easy axis (rad)

0K50K

100K300K

Page 25: Calculation of anisotropy energy and temperature ...

More complex systems

25

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

Δf(1

0-18

J)

θ[rad]

z =1nmz =2nmz =3nmz =4nmz =5nmz =6nmz =7nmz =8nmz =9nm

z =10nmz =11nmz =12nm

ImagesanddatakindlyfromRazvan Ababei

Page 26: Calculation of anisotropy energy and temperature ...

Practice on CMC

26

Page 27: Calculation of anisotropy energy and temperature ...

Main parameters for CMC simulations

27

material[1]:constrained=true #false for other material

material[1]:constraint-angle-theta-minimum=0.0material[1]:constraint-angle-theta-maximum=0.0material[1]:constraint-angle-theta-increment=10.0

material[1]:constraint-angle-phi-minimum=0.0material[1]:constraint-angle-phi-maximum=90.0material[1]:constraint-angle-phi-increment=15.0

#------------------------------------------#------------------------------------------sim:integrator = hybrid-constrained-monte-carlosim:program = hybrid-cmc

output:material-constraint-thetaoutput:material-constraint-phi

Page 28: Calculation of anisotropy energy and temperature ...

Constraining only uniaxial material

28

-1.0

-0.5

0.0

0.5

1.0

0 π / 4 π / 2

Tota

l tor

que/

k u

Angle from easy axis (rad)

0K100K300K500K

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

K(T)

/Ku,

M(T

)/Ms

Temperature (K)

M/MsK(T)/Ku

Page 29: Calculation of anisotropy energy and temperature ...

Constraining only uniaxial material

29

-1.0

-0.5

0.0

0.5

1.0

0 π / 4 π / 2

Tota

l tor

que/

k c

Angle from easy axis (rad)

0K100K300K500K

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

K(T)

/Kc,

M(T

)/Ms

Temperature (K)

M/MsK(T)/Kc

Page 30: Calculation of anisotropy energy and temperature ...

Practice on CMC

30

Page 31: Calculation of anisotropy energy and temperature ...

31

Dipolefields

Page 32: Calculation of anisotropy energy and temperature ...

32

Dipole energy

For N interacting dipoles (macro-cells), the total dipole-dipoleenergy is given by:

𝐸`ab = −12Q𝑚c

𝜇e4𝜋 Dci𝑚i

j

cki

Where Dqp is the dipolar matrix and𝑚i,c are the moments of thedipoles p,q. In terms of magnetic induction 𝐸`ab can be writtenas:

𝐸`ab = −12Q𝑚cBc

`abj

cki

where Bqdip is the dipolar field experienced by moment q.

Page 33: Calculation of anisotropy energy and temperature ...

33

• The system is divided into cubic macro-cells

• Each cell is supposed to have uniform magnetisation

• The dipolar interaction is calculated between macro-cellsconsidering for each one a pairwise summation.

• A self-demagnetisation term is added, to include the internal fieldof the macro-cell.

Hc`ab =

𝜇e4𝜋Q

3 𝜇i r �̂�ci �̂�ci − 𝜇i𝑟ci

_

cki

−𝜇e3𝜇c𝑉c

Bare macro-cell approach

Page 34: Calculation of anisotropy energy and temperature ...

34

Inter-intra dipole approachWe can write the dipolar matrix as summation of the contributionfrom interaction with other cells (inter) and internal to themacrocell (intra) [G. J. Bowden et al, J.Phys.:Condens. Matter,28(2016),066001]:

B`ab = Bc`ab + Bi

`ab + Bivwxy

= Dciaz{w|𝑚i + Diiaz{|}𝑚i + ~�_ 𝑚i/𝑉i

Dciaz{w| + Diiaz{|} =QQDc&,i#az{w|��

i�

��

c�

+ Q QDi&i#az{|}��

i�

��

i�ki�

=Dci

INTER INTRA

Interaction between thespins in cell p and spins incell q (atomistic)

Interaction betweenmoments inside cell p(atomistic)

Page 35: Calculation of anisotropy energy and temperature ...

35

• Bivwxy =~�_𝑚irepresent the Maxwellian internal field of a

dipole.

• 𝑚i is the macro-moment of the cell p and Vp is the volume ofthe same cell.

• Dci#����,Dii#���L do not correspond to real dipole-dipolematrices, but their sum Dci does.

• Dci#����,Dii#���L are casted in terms of usual dipolar matrix

Inter-intra dipole approach

Page 36: Calculation of anisotropy energy and temperature ...

36

The dipolar matrix for the interaction between different macro-cells, is given by:

Dc&,i#az{w| =

1𝑟i#c&_

(3𝑥i#c&6 − 1) 3𝑥i#c&𝑦i#c& 3𝑥i#c&𝑧i#c&3𝑦i#c&𝑥i#c& (3𝑦i#c&6 − 1) 3𝑦i#c&𝑧i#c&3𝑧i#c&𝑥i#c& 3𝑧i#c&𝑦i#c& (3𝑧i#c&6 − 1)

Same in case of internal term (replace qj→pj) for Di#,i&az{|}.

Warning: Assumption is that moments in the macro-cell are allaligned along the same direction, i.e. parallel to each other.

Dipolar matrixes

Page 37: Calculation of anisotropy energy and temperature ...

37

• This approach works independently of the shape of the macro-cell.

• After ~ 2 macro-cells, contribution of intra term Daz{|}becomes negligible and a bare macro-cell method could beused.

• Since it requires parallel moments, the size of the macro-cellshould be less than the domain-wall width.

Notes on the approach

Page 38: Calculation of anisotropy energy and temperature ...

38

Test: Demagnetisation factor of ellipsoid

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10

Dem

agnetis

atio

n fact

or

Aspect ratio (c/a)

sphere

Osborn’s relationshipsmacrocell = system-size (=L)

75% L50% L25% L10% L7.5% L5.0% L

Osborn’srelationship:

Aspectratio=k0 =c/a

Page 39: Calculation of anisotropy energy and temperature ...

39

Handson

Page 40: Calculation of anisotropy energy and temperature ...

Main parameters

40

cells:macro-cell-size=10.1 !A

dipole:solver=tensordipole:field-update-rate=100dipole:cutoff-radius=2

Page 41: Calculation of anisotropy energy and temperature ...

Practice on Dipole fields

41

0

Page 42: Calculation of anisotropy energy and temperature ...

Practice on Dipole fields

42

Page 43: Calculation of anisotropy energy and temperature ...

Practice on Dipole fields – final snapshot

43

Page 44: Calculation of anisotropy energy and temperature ...

44

• Download Povray from github repository:https://github.com/POV-Ray/povray/tree/3.7-stable

• To install look at “README.md” in “unix” directory:

Povray – visualising spin cofigurations

Page 45: Calculation of anisotropy energy and temperature ...

45

Povray – visualising spin cofigurations: How to compile it

git clone https://github.com/POV-Ray/povray.git

cd unix/

./prebuild.sh

cd ../

./configure COMPILED_BY="your name <email@address>"

make

make install

Page 46: Calculation of anisotropy energy and temperature ...

46

Povray – Running povray

> /path/to/vdc/vdc

> povray spins # generate all snapshots

# or you can do

> povray +KFI0 –KFF0 spins.pov

# You can add some option as size of the image

> povray –W800 –H600 spins

# You can add some option as antialiasing

> povray +A0.3 spins

Page 47: Calculation of anisotropy energy and temperature ...

47

Thankyouforyoutime!