C3_L3 Special Matrices and Gauss Seidal (1)

download C3_L3 Special Matrices and Gauss Seidal (1)

of 24

Transcript of C3_L3 Special Matrices and Gauss Seidal (1)

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    1/24

    CHAPTER 3

    Special Matrices

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    2/24

    SPECIAL MATRICESBanded Matrix:

    A banded matrix is a square matrix that has all elements equal to zero, with the exception of a band centered on the main diagonal.

    The dimensions of a banded system can be quantified by two

    parameters:

    a) The bandwidth BW, and

    b) The half bandwidth HBW.

    These two values are related by

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    3/24

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    4/24

    A banded matrix with a bandwidth of 3 is called a tridiagonal

    system. It can be expressed generally as

    TRIDIAGONAL SYSTEM

    n

    n

    n

    n

    nn

    nnn

    r

    r

    r

    r

    r

    x

    x

    x

    x

    x

    f e

    g f e

    g f e

    g f e

    g f

    1

    3

    2

    1

    1

    3

    2

    1

    111

    333

    222

    11

    Notice that we have changed our notation for the

    coefficients from a and b to e, f , g and r .

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    5/24

    By LU decomposition, the tridiagonal system is transformed to

    TRIDIAGONAL SYSTEM

    n

    nn

    n

    n

    nn

    nnn

    f

    g f

    g f

    g f

    g f

    e

    e

    e

    e

    f e

    g f e

    g f e

    g f e

    g f

    ~

    ~

    ~

    ~

    1~1~

    1~1~

    1

    11

    33

    22

    11

    1

    2

    2

    111

    333

    222

    11

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    6/24

    A tridiagonal system can be solved efficiently by using Thomas

    algorithm. The algorithm consists of three steps:

    1. Decomposition:

    where k = 2,3,.,n

    THOMAS ALGORITHM

    1

    1

    ~~~

    k k k k

    k

    k k

    g e f f

    f e

    e

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    7/24

    2. Forward Substitution:

    where k = 2,3 ,.,n

    3. Back Substitution:

    where k = n- 1 ,n- 2,..,2,1

    THOMAS ALGORITHM

    1~~

    k k k k r er r

    k

    k k k k

    n

    nn

    f x g r x

    f

    r x

    ~~

    ~~

    1

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    8/24

    Solve the following tridiagonal system:

    EXAMPLE 1

    8.200

    8.0

    8.0

    8.40

    04.2100

    104.210

    0104.21

    00104.2

    4

    3

    2

    1

    x

    x

    x

    x

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    9/24

    LU decomposition

    SOLUTION

    323.1000

    1395.100

    01550.10

    00104.2)(04.2100

    1395.100

    01550.10

    00104.2

    )(04.2100104.210

    01550.10

    00104.2

    )(

    04.2100

    104.210

    0104.21

    00104.2

    3395.1

    1

    4

    2550.1 13

    104.21

    2

    R R

    R R

    R R

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    10/24

    The factors employed to obtain the upper triangular matrix are

    LU decomposition

    SOLUTION

    323.1000

    1395.100

    01550.10

    00104.2

    1717.000

    01645.00

    00149.0

    0001

    ]][[][ U L A

    717.0~

    645.0~

    49.0~

    395.11

    4

    550.11

    3

    04.21

    2

    f

    f

    f

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    11/24

    Forward decomposition

    Thus, the right-hand-side vector has been modified to

    SOLUTION

    996.210)221.14)(717.0(8.200

    221.14)8.20)(645.0(8.0

    8.20)8.40)(49.0(8.0

    4

    3

    2

    r

    r

    r

    996.210

    221.14

    8.20

    8.40

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    12/24

    Back decomposition

    SOLUTION

    970.65

    778.93

    538.124

    480.159

    04.2)778.93)(1(8.40

    1

    550.1)538.124)(1(.20

    2

    395.1)480.159)(1(221.14

    3

    323.1996.210

    4

    1

    211

    2

    322

    3

    433

    4

    4

    f T g r

    f T g r

    f T g r

    f r

    x

    x

    x

    x

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    13/24

    a) Solve the following tridiagonal system with the Thomas algorithm

    b) Determine the matrix inverse for [A] based on the LU

    decomposition and unit vectors.

    EXAMPLE 2

    105

    25

    41

    8.04.00

    4.08.04.0

    04.08.0

    3

    2

    1

    x

    x

    x

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    14/24

    a)

    We have

    Decomposition:

    For k = 2,

    SOLUTION

    10525

    41

    8.04.004.08.04.0

    04.08.0

    3

    2

    1

    x x

    x

    105,8.0,4.0

    25,4.0,8.0,4.0

    41,4.0,8.0

    333

    2222

    111

    r f e

    r g f e

    r g f

    6.0)4.0)(5.0(8.0~~

    5.08.04.0~

    1222

    1

    22

    g e f f

    f e

    e

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    15/24

    For k = 3,

    Thus, the LU decomposition is

    SOLUTION

    53333.0)4.0)(66667.0(8.0~~

    66667.0

    6.0

    4.0~

    ~

    2333

    2

    33

    g e f f f

    ee

    53333.000

    4.06.00

    04.08.0

    166667.00

    015.0

    001

    ]][[][ U L A

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    16/24

    Forward substitution:

    For k = 2,

    For k = 3,

    Thus, the right-hand-side becomes

    SOLUTION

    5.45)41)(5.0(25~ 1222 r er r

    53333.000

    4.06.00

    04.08.0

    166667.00

    015.0

    001

    ]][[][ U L A

    3333.135)5.45)(66667.0(105~~ 2333 r er r

    3333.135

    5.45

    41

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    17/24

    Back substitution:

    For k = 3,

    For k = 2,

    For k = 1,

    Thus, the required solution is

    SOLUTION

    53333.000

    4.06.00

    04.08.0

    166667.00

    015.0

    001

    ]][[][ U L A

    75.25353333.0

    3333.135

    3

    33

    f

    r x

    2456.0

    )]75.253)(4.0(5.45[

    2

    3222

    f

    x g r x

    75.1738.0)]245)(4.0(41[

    1

    2111 f

    x g r x

    75.253,245,75.173 321 x x x

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    18/24

    b) The LU decomposition is

    To compute the first column of the inverse,

    SOLUTION

    53333.000

    4.06.00

    04.08.0

    ][,

    166667.00

    015.0

    001

    ][ U L

    333335.0,5.0,1

    066667.0

    05.0

    1

    0

    0

    1

    166667.00

    015.0

    001

    }{ where ,

    0

    01

    }]{[

    321

    32

    21

    1

    3

    2

    1

    3

    2

    1

    d d d

    d d

    d d

    d

    d

    d

    d

    d

    d d

    D D L

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    19/24

    And

    By back substitution, we have

    The first column of the inverse is

    SOLUTION

    333335.053333.0

    5.04.06.0

    14.08.0

    333335.0

    5.01

    53333.000

    4.06.0004.08.0

    }{}]{[

    31

    3121

    2111

    31

    21

    11

    1

    A

    A A

    A A

    A

    A A

    D AU

    875.1,25.1,625.0 112131 A A A

    625.0

    25.1

    875.1

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    20/24

    For the second column,

    SOLUTION

    66667.0,1,0

    066667.0

    15.0

    00

    1

    0

    166667.00

    015.0

    001

    }{ where ,

    0

    10

    }]{[

    321

    32

    21

    1

    3

    2

    1

    3

    2

    1

    d d d

    d d

    d d

    d d

    d

    d

    d

    d d

    D D L

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    21/24

    And

    By back substitution, we have

    The second column of the inverse is

    SOLUTION

    66667.053333.0

    14.06.0

    04.08.0

    66667.0

    10

    53333.000

    4.06.0004.08.0

    }{}]{[

    32

    3222

    2212

    32

    22

    12

    1

    A

    A A

    A A

    A

    A A

    D AU

    25.1,5.2,25.1 122232 A A A

    25.1

    5.2

    25.1

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    22/24

    For the third column,

    SOLUTION

    1,0,0

    166667.0

    05.0

    0

    1

    0

    0

    166667.00

    015.0

    001

    ,

    1

    0

    0

    }]{[

    321

    32

    21

    1

    3

    2

    1

    d d d

    d d

    d d

    d

    d

    d

    d

    D L

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    23/24

    And

    By back substitution, we have

    The third column of the inverse is

    SOLUTION

    153333.0

    04.06.0

    04.08.0

    1

    00

    53333.000

    4.06.0004.08.0

    }{}]{[

    33

    3323

    2313

    33

    23

    13

    1

    A

    A A

    A A

    A

    A A

    D AU

    625.0,25.1,875.1 132333 A A A

    875.1

    25.1

    625.0

  • 8/12/2019 C3_L3 Special Matrices and Gauss Seidal (1)

    24/24

    The matrix inverse is

    SOLUTION

    875.125.1625.0

    25.15.225.1

    625.025.1875.1

    ][ 1 A