buck-ref

download buck-ref

of 4

Transcript of buck-ref

  • 8/3/2019 buck-ref

    1/4

    References

    Background1. Allmeling, C.; Jokuszies, A.; Reimers, K.; Kall, S.; Vogt, P. M., Use of spider silk

    fibres as an innovative material in a biocompatible artificial nerve conduit.Journal of

    Cellular and Molecular Medicine 2006, 10, (3), 770-777.2. Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J. S.; Lu, H.;Richmond, J.; Kaplan, D. L., Silk-based biomaterials.Biomaterials 2003, 24, (3), 401-

    416.

    3. Bini, E.; Foo, C. W. P.; Huang, J.; Karageorgiou, V.; Kitchel, B.; Kaplan, D. L., RGD-

    functionalized bioengineered spider dragline silk biomaterial.Biomacromolecules

    2006, 7, (11), 3139-3145.

    4. Dong, Z. Y.; Lewis, R. V.; Middaugh, C. R., Molecular Mechanism of Spider Silk

    Elasticity.Archives of Biochemistry and Biophysics 1991, 284, (1), 53-57.5. Elices, M.; Perez-Rigueiro, J.; Plaza, G. R.; Guinea, G. V.JOM2005, 57.

    6. Foo, C. W. P.; Kaplan, D. L., Genetic engineering of fibrous proteins: spider dragline

    silk and collagen.Advanced Drug Delivery Reviews 2002, 54, (8), 1131-1143.7. Gosline, J. M.; Denny, M. W.; Demont, M. E., Spider Silk as Rubber.Nature 1984,

    309, (5968), 551-552.

    8. Gosline, J. M.; Guerette, P. A.; Ortlepp, C. S.; Savage, K. N., The mechanical design

    of spider silks: From fibroin sequence to mechanical function.Journal of

    Experimental Biology 1999, 202, (23), 3295-3303.

    9. Grubb, D. T.; Jelinski, L. W., Fiber morphology of spider silk: The effects of tensile

    deformation.Macromolecules 1997, 30, (10), 2860-2867.10. Guan, Z. B., Supramolecular design in biopolymers and biomimetic polymers for

    properties. Polymer International 2007, 56, (4), 467-473.11. Hayashi, C. Y.; Shipley, N. H.; Lewis, R. V., Hypotheses that correlate the sequence,

    structure, and mechanical properties of spider silk proteins.International Journal of

    Biological Macromolecules 1999, 24, (2-3), 271-275.12. Hinman, M. B.; Jones, J. A.; Lewis, R. V., Synthetic spider silk: a modular fiber.

    Trends in Biotechnology 2000, 18, (9), 374-379.

    13. Hu, X.; Vasanthavada, K.; Kohler, K.; McNary, S.; Moore, A. M. F.; Vierra, C. A.,Molecular mechanisms of spider silk. Cellular and Molecular Life Sciences 2006, 63,

    (17), 1986-1999.

    14. Ittah, S.; Cohen, S.; Garty, S.; Cohn, D.; Gat, U., An essential role for the C-terminal

    domain of a dragline spider silk protein in directing fiber formation.

    Biomacromolecules 2006, 7, (6), 1790-1795.

    15. Jin, H. J.; Kaplan, D. L., Mechanism of silk processing in insects and spiders.Nature

    2003, 424, (6952), 1057-1061.16. Kubik, S., High-performance fibers from spider silk.Angewandte Chemie-

    International Edition 2002, 41, (15), 2721-+.

    17. Lefevre, T.; Rousseau, M. E.; Pezolet, M., Protein secondary structure and orientationin silk as revealed by Raman spectromicroscopy.Biophysical Journal 2007, 92, (8),

    2885-2895.

  • 8/3/2019 buck-ref

    2/4

    18. Lele, A. K.; Joshi, Y. M.; Mashelkar, R. A., Deformation induced hydrophobicity:implications in spider silk formation. Chemical Engineering Science 2001, 56, (20),

    5793-5800.

    19. Lewis, R. V., Spider silk: Ancient ideas for new biomaterials. Chemical Reviews 2006,106, (9), 3762-3774.

    20. Madhavamoorthi, P. Spider silk. Synthetic Fibres2004, Apr/Jun, 10-17.21. Marcotte, I.; van Beek, J. D.; Meier, B. H., Molecular disorder and structure of spiderdragline silk investigated by two-dimensional solid-state NMR spectroscopy.

    Macromolecules 2007, 40, (6), 1995-2001.

    22. Perez-Riguero, J.; Elices, M.; Llorca, J.; Viney, C., Tensile properties of Argiope

    trifasciata drag line silk obtained from the spider's web.Journal of Applied Polymer

    Science 2001, 82, (9), 2245-2251.

    23. Rotondi, K. S.; Gierasch, L. M., Natural polypeptide scaffolds: beta-sheets, beta-turns,

    and beta-hairpins.Biopolymers 2006, 84, (1), 13-22.24. Rousseau, M. E.; HernandezCruz, D.; West, M. M.; Hitchcock, A. P.; Pezolet, M.,

    Nephila clavipes Spider Dragline Silk Microstructure Studied by Scanning

    Transmission X-ray Microscopy.Journal of the American Chemical Society 2007,129, (13), 3897-3905.

    25. Scheibel, T. Spider silks: recombinant synthesis, assembly, spinning, and engineering

    of synthetic proteins.Microbial Cell Factories2004, 3.

    26. Scheller, J.; Conrad, U. Production of spider silk proteins in transgenic tobacco andpotato.Molecular Farming2004, 171-181.

    27. Seidel, A.; Liivak, O.; Calve, S.; Adaska, J.; Ji, G. D.; Yang, Z. T.; Grubb, D.; Zax, D.

    B.; Jelinski, L. W., Regenerated spider silk: Processing, properties, and structure.

    Macromolecules 2000, 33, (3), 775-780.

    28. Simmons, A.; Ray, E.; Jelinski, L. W., Solid-State C-13 Nmr of Nephila-ClavipesDragline Silk Establishes Structure and Identity of Crystalline Regions.

    Macromolecules 1994, 27, (18), 5235-5237.

    29. Simmons, A. H.; Michal, C. A.; Jelinski, L. W., Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 1996, 271,

    (5245), 84-87.

    30. Stark, M. et al. Macroscopic fibers self-assembled from recombinant miniature spidersilk proteins.Biomacromolecules 2007. ASAP.

    31. Stephens, S.J. et al.Mat. Res. Soc. Symp. Proc.2003, 774, 2.3.1-2.3.10.

    32. Tanner, D.; Fitzgerald, J. A.; Phillips, B. R., The Kevlar Story - an Advanced

    Materials Case-Study.Angewandte Chemie-International Edition in English 1989, 28,(5), 649-654.

    33. van Beek, J. D.; Hess, S.; Vollrath, F.; Meier, B. H., The molecular structure of spider

    dragline silk: Folding and orientation of the protein backbone. Proceedings of the

    National Academy of Sciences of the United States of America 2002, 99, (16), 10266-

    10271.

    34. Vendrely, C.; Scheibel, T. Biotechnological Production of Spider-Silk ProteinsEnables New Applications.Macromolecular Bioscience 2007, 7, 401-409.

    35. Vollrath, F.; Knight, D. P., Liquid crystalline spinning of spider silk.Nature 2001,

    410, (6828), 541-548.

  • 8/3/2019 buck-ref

    3/4

    36. Vollrath, F.; Porter, D., Spider silk as a model biomaterial.Applied Physics a-

    Materials Science & Processing 2006, 82, (2), 205-212.

    37. Xu, M.; Lewis, R. V., Structure of a Protein Superfiber - Spider Dragline Silk.

    Proceedings of the National Academy of Sciences of the United States of America

    1990, 87, (18), 7120-7124.

    38. Yang, Y.; Chen, X.; Shao, Z. Z.; Zhou, P.; Porter, D.; Knight, D. P.; Vollrath, F.,Toughness of spider silk at high and low temperatures.Advanced Materials 2005, 17,(1), 84-89.

    39. Work, R. W.; Emerson, P. D.Journal of Arachnology. 1982, 10, 1-10.

    Biosynthetic Methods40. Fahnestock, S. R.; Bedzyk, L. A., Production of synthetic spider dragline silk protein

    in Pichia pastoris.Applied Microbiology and Biotechnology 1997, 47, (1), 33-39.

    41. Fahnestock, S. R.; Irwin, S. L., Synthetic spider dragline silk proteins and theirproduction in Escherichia coli.Applied Microbiology and Biotechnology 1997, 47, (1),

    23-32.

    42. Islam, S. et al. U.S. Patent. 20040102614, 2004.43. Karatzas, C. N.; Turcotte, C. PCT Int. Appl. WO03057727, 2003.

    44. Karatzas, C. PCT Int. Appl. WO0156626, 2001.

    45. Lazaris, A.; Arcidiacono, S.; Huang, Y.; Zhou, J. F.; Duguay, F.; Chretien, N.; Welsh,

    E. A.; Soares, J. W.; Karatzas, C. N., Spider silk fibers spun from soluble recombinantsilk produced in mammalian cells. Science 2002, 295, (5554), 472-476.

    46. O'Brien, J. P.; Fahnestock, S. R.; Termonia, Y.; Gardner, K. C. H., Nylons from

    nature: Synthetic analogs to spider silk.Advanced Materials 1998, 10, (15),1185-1195.

    47. Prince, J. T.; Mcgrath, K. P.; Digirolamo, C. M.; Kaplan, D. L., Construction,Cloning, and Expression of Synthetic Genes Encoding Spider Dragline Silk.

    Biochemistry 1995, 34, (34), 10879-10885.

    48. Qu, Y.; Payne, S. C.; Apkarian, R. P.; Conticello, V. P., Self-assembly of apolypeptide multi-block copolymer modeled on dragline silk proteins.Journal of theAmerican Chemical Society 2000, 122, (20), 5014-5015.

    49. Smeenk, J. M.; Otten, M. B. J.; Thies, J.; Tirrell, D. A.; Stunnenberg, H. G.; van Hest,J. C. M., Controlled assembly of macromolecular beta-sheet fibrils.Angewandte

    Chemie-International Edition 2005, 44, (13), 1968-1971.

    50. Mcbride, L. J.; Caruthers, M. H., Nucleotide Chemistry .10. An Investigation of

    Several Deoxynucleoside Phosphoramidites Useful for SynthesizingDeoxyoligonucleotides. Tetrahedron Letters 1983, 24, (3), 245-248.

    Chemical Methods51. Ayres, L.; Adams, P. H. H. M.; Lowik, D. W. P. M.; van Hest, J. C. M., beta-sheet

    side chain polymers synthesized by atom-transfer radical polymerization.

    Biomacromolecules 2005, 6, (2), 825-831.52. Cuniff, P.M. et al. Polymers for Advanced Technologies2003, 5, 401-410.

    53. Dattagupta, N.; U.S. Patent 4,968,602; 1990.

  • 8/3/2019 buck-ref

    4/4

    54. Korley, L. T. J.; Pollock, G. S.; Kojic, N.; Ko, M. S.; McKinley, G. H.; Hammond, P.T. Synthesis, characterization, and resin spinning of silk-like thermoplastic

    polyurethanes and polyesters. Polymer Preprints2002, 43, 474-475.

    55. Korley, L. T. J.; Pate, B. D.; Thomas, E. L.; Hammond, P. T., Effect of the degree ofsoft and hard segment ordering on the morphology and mechanical behavior of

    semicrystalline segmented polyurethanes. Polymer2006, 47, (9), 3073-3082.56. Rathore, O.; Sogah, D. Y., Self-assembly of beta-sheets into nanostructures bypoly(alanine) segments incorporated in multiblock copolymers inspired by spider silk.

    Journal of the American Chemical Society 2001, 123, (22), 5231-5239.

    57. Rathore, O.; Winningham, M. J.; Sogah, D. Y., A novel silk-based segmented block

    copolymer containing GlyAlaGlyAla beta-sheets templated by phenoxathiin.Journal

    of Polymer Science Part a-Polymer Chemistry 2000, 38, (2), 352-366.

    58. Sogah, D. Y.; Osman, R.; Geno, J. Design and synthesis of biomolecular materials

    based on spider and bombyx mori silks. Polymer Preprints 2004, 45, 453-454.59. Wagner, G.; Feigel, M., Parallel Beta-Sheet Conformation in Macrocycles.

    Tetrahedron 1993, 49, (47), 10831-10842.

    60. Winningham, M. J.; Sogah, D. Y., A modular approach to polymer architecturecontrol via catenation of prefabricated biomolecular segments: Polymers containing

    parallel beta-sheets templated by a phenoxathiin-based reverse turn mimic.

    Macromolecules 1997, 30, (4), 862-876.

    61. Yao, J. R.; Xiao, D. H.; Chen, X.; Zhou, P.; Yu, T. Y.; Shao, Z. Z., Synthesis andsolid-state secondary structure investigation of silk-proteinlike multiblock polymers.

    Macromolecules 2003, 36, (20), 7508-7512.

    62. Zhou, C. C.; Leng, B. X.; Yao, J. R.; Qian, J.; Chen, X.; Zhou, P.; Knight, D. P.; Shao,Z. Z., Synthesis and characterization of multiblock copolymers based on spider

    dragline silk proteins.Biomacromolecules 2006, 7, (8), 2415-2419.

    Books:63. Byrom, D.Biomaterials. Stockton Press: New York, 1991.64. Callister, W. D.Materials Science and Engineering: An Introduction. John Wiley &

    Sons, Inc. 2003.

    65. Fraser, R. D. B.; MacRae, T. P. Conformations in Fibrous Proteins and Related

    Synthetic Polypeptides. Academic Press: New York, 1973.

    66. Kaplan, D.; Adams, W. W.; Farmer, B.; Viney, C. Silk Polymers. American Chemical

    Society: Washington, D.C., 1994.

    Images obtained from:

    http://www2.dupont.com/DuPont_Home/en_US/index.html

    http://biomed.brown.edu

    www.aerostar.com/military.htmhttp://www.nexiabiotech.com/en/00_home/index.php

    B. Z. Shakhashiri, Chemical Demonstrations, A Handbook for Teachers of Chemistry,Wisconsin, 1983, Vol.1, p.213-215.