B.structures report-project2 done

29
SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Centre for Modern Architecture Studies in Southeast Asia (MASSA) Bachelor of Science (Honours) (Architecture) BUILDING STRUCTURES [ARC 2522/ 2523] Project 2 Extension of a R. C. bungalow LING TECK ONG 0303127 CHUNG KA SENG 0316922 POH WEI KEAT 0303646 LEE YIANG SIANG 0302966 CELINE TAN JEAN INN 0303669 WONG SOON FOOK 0302953 WONG KIEN HOU 0312104 WONG JIA XIN 1101G13277 Tutor: Mr. Mohd Adib Ramli

Transcript of B.structures report-project2 done

Page 1: B.structures report-project2 done

 

SCHOOL  OF  ARCHITECTURE,  BUILDING  &  DESIGN    Centre  for  Modern  Architecture  Studies  in  Southeast  Asia  (MASSA)    Bachelor  of  Science  (Honours)  (Architecture)    BUILDING  STRUCTURES  [ARC  2522/  2523]        

Project  2  -­‐  Extension  of  a  R.  C.  bungalow                                      

LING  TECK  ONG  0303127  CHUNG  KA  SENG  0316922  POH  WEI  KEAT  0303646  LEE  YIANG  SIANG  0302966  

CELINE  TAN  JEAN  INN  0303669  WONG  SOON  FOOK  0302953  WONG  KIEN  HOU  0312104  WONG  JIA  XIN  1101G13277  

 Tutor:  Mr.  Mohd  Adib  Ramli    

Page 2: B.structures report-project2 done

Table  of  Content    1.0  Introduction  of  the  case  study    

 

2.0  Measured  Drawings  

 

3.0  3D  Model  

                           3.1  Perspective  views  

                           3.2  Structural  layout  

 

4.0  Case  study:  Appraisal  of  structural  system  

  4.1  Structural  element    

  4.2  Structural  system  of  case  study    

  4.3  Indication  on  plans    

  4.4  Distribution  in  the  structure    

 

5.0  Conclusion    

 

6.0  References  

 

 

 

 

 

 

 

 

 

 

 

 

Page 3: B.structures report-project2 done

 

1.0  Introduction  

  In  this  project,  we  are  introduced  to  structural  theory,  force  calculation  and  basic  

structural  proposal.  This  project  will  allow  us  to  understand  the  building  structure.  Our  

case  study  is  a  two  storey  bungalow  house.  It  is  located  at  No.  4,  Jalan  SS1/  34,  Seksyen  

26,  Petaling  Jaya,  46300  Sea  Park,  Selangor.  This  bungalow  has  quite  a  large  garden  area  

at  the  side.  

 

  Observations  of  the  structure  of  the  bungalow  were  made  and  recorded.  We  are  

able  to  identify  the  columns  and  beams  from  our  site  visit.    

 

  The  bungalow  has  5  bedrooms.  An  extension  has  been  made  to  the  bungalow.  

The  side  is  extended  by  2  terraces  on  the  ground  floor  while  the  back  is  extended  by  

adding  a  space  for  utility  and  wet  kitchen.  

 

  Our  case  study  is  using  column  and  beam  structural  system  and  the  orthographic  

drawing  of  the  bungalow  is  provided  in  order  to  help  our  understanding  of  the  building  

structure.  

 

 

 

Page 4: B.structures report-project2 done

Figure  1:  Front  facade  of  bungalow  

 

 Figure  2:  Extended  area  -­‐  2  terraces  

 

 Figure  3:  Extended  area  -­‐  wet  kitchen  and  utility  room  

Page 5: B.structures report-project2 done

 Figure  4:  Land  area  available  for  extension  

 

 Figure  5:  Existing  column  located  in  the                                Figure  6:  Existing  column  located  in  the    

                                     living  room  still  in  use  after                                                                              dry  kitchen  still  in  use  after    

                                     extension                                                                                                                                                    extension  

 

Page 6: B.structures report-project2 done

2.0  Measured  Drawings  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WE

T K

ITC

HE

NU

LTIL

ITY

DIN

ING

RO

OM

DR

Y K

ITC

HE

NR

OO

M

LIV

ING

RO

OM

TER

RA

CETERRACE

EN

TRA

NC

E

RO

OM

A B C D E

12

34

12

34

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY A

N A

UTO

DESK

EDU

CA

TION

AL PR

OD

UC

TPRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

FIRS

T  FLOOR  PLAN

 GRO

UND  FLOOR  PLAN

 

Page 7: B.structures report-project2 done

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXISTING TERRACE

ULT

ILIT

Y

RO

OM

FIR

ST

FLO

OR

PLA

N

EN

TRA

NC

E

B C

GR

OU

ND

FLO

OR

PLA

N

F

12

D E F

12

EX

ISTI

NG

LIV

ING

RO

OMEX

ISTI

NG

DIN

ING

RO

OM

EX

ISTI

NG

DR

YK

ITC

HE

N

EX

ISTI

NG

WE

TK

ITC

HE

N

B C D E

43

54

3

EX

ISTI

NG

MA

STE

RB

ED

RO

OM

EX

ISTI

NG

BE

DR

OO

M 1

EX

ISTI

NG

BE

DR

OO

M 2

EX

ISTI

NG

RO

OM

EX

ISTI

NG

BA

TH 1

EX

ISTI

NG

BA

TH 2

A

14

2

3785

2509

A

23

13

4

3398

2562

3707

321030845733

3785

EXISTING TERRACE

C1

150x

300

3707

3398

exte

rior b

eam

150x

610

150m

m th

kflo

or s

lab

inte

rior b

eam

150x

450

STI

FFE

NE

R15

0x15

0

PA

D F

OO

TIN

G12

00x1

200

5

2498

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY A

N A

UTO

DESK

EDU

CA

TION

AL PR

OD

UC

T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Page 8: B.structures report-project2 done

3.0  3D  Model  3.1  Perspective  Views  

 

 Figure  7:  front  perspective  view  

 

 Figure  8:  right  perspective  view  

 

Page 9: B.structures report-project2 done

 Figure  9:  left  perspective  view  

 

 

 Figure  10:  right  perspective  view  

 

 

 

 

Page 10: B.structures report-project2 done

 

 Figure  11:  bird  eye  view  

 

 

 

 

 

 

 

 

 

 

 

 

Page 11: B.structures report-project2 done

3.2  Structural  Layout  

 

 

   

 

 

Page 12: B.structures report-project2 done

 

 

4.0  Case  study:  Appraisal  of  structural  system  4.1  Structural  element  

 

The  studied  bungalow  is  identified  to  be  using  shallow  foundation  and  pad  footing  is  

used.  

 

 Figure  7:  section  of  pad  footing  

 

 

-­‐  most  economical  shallow  foundation  types  but  are  more  susceptible  to  differential          

     settlement.  

-­‐  usually  support  single  concentrated  loads,  such  as  those  imposed  by  columns.  

-­‐  isolated  or  independent  slab  of  concrete  foundation  to  support  concrete  columns  or    

     steel  pillars,  detached  brick  or  masonry  piers.  

-­‐  the  pier  or  column  bearing  on  the  centre  point  of  the  slab.  

-­‐  the  thickness  is  govern  by  the  same  consideration  as  for  strip  footing  and  is  made  not    

     less  than  the  projection  of  the  slab  beyond  the  face  of  the  column  or  pier,  or  the  edge    

     of  the  base  plate  of  a  steel  stanchion.  

-­‐  in  whatever  circumstances  the  thickness  should  be  less  than  150mm  thick,  and  should    

Page 13: B.structures report-project2 done

     the  base  become  very  "wide  and  thicker",  the  reduction  in  thickness  can  be  effected  by    

     introducing  reinforcement  to  the  slab.  

                                             

 

 

   

 

 

 

 

Figure  8:  pad  footing  showing  grade  beam  

 

Shallow  Foundations  

Shallow  foundation  systems  can  be  classified  as  spread  footings,  wall  and  continuous  

(strip)  footings,  and  mat  (raft)  foundations.  Variations  are  combined  footings,  

cantilevered  (strapped)  footings,  two-­‐way  strip  (grid)  footings,  and  discontinuous  

(punched)  mat  foundations.    

 

 

 

 

 

 

 

Grade  beam  

 

A  grade  beam  or  grade  beam  

footing  is  a  component  of  a  

building's  foundation.  It  

consists  of  a  reinforced  

concrete  beam  that  transmits  

the  load  from  a  bearing  wall  

into  spaced  foundations  such  

as  pile  caps  or  caissons.  It  is  

used  in  conditions  where  the  

surface  soil’s  load-­‐bearing  

capacity  is  less  than  the  

anticipated  design  loads.  

Combined  footings  

(Fig.  8)  are  used  

where  the  bearing  

areas  of  closely  

spaced  columns  

overlap.  

Page 14: B.structures report-project2 done

Figure  8:  combined  footing  

 

Figure  8:  cantilever  footing  

 

 

 

 

Figure  9:  continuous  footings  for  (a)  a  wall,  (b)  several  columns  

 

 

Cantilever  footings  

(Fig.  9)  are  designed  

to  accommodate  

eccentric  loads.  

Continuous  wall  

and  strip  

footings  (Fig.  9)  

can  be  designed  

to  redistribute  

bearing-­‐stress  

concentrations  

and  associated  

differential  

settlements  in  

the  event  of  

variable  bearing  

conditions  or  

localized  

ground  loss  

beneath  

footings.  

 

Page 15: B.structures report-project2 done

 

 

 

Figure  10:  reinforced  concrete  building  elements  

To  distribute  the  load  of  the  foundation  on  the  soil,  spread  footings  are  installed  below  

the  building's  foundation.  This  type  of  footing  is  continous  below  the  perimeter  of  the  

house  walls  and  may  be  thickened  or  widened  at  the  points  where  concentrated  loads  

are  applied  e.g.  columns.  These  components  are  constructed  from  concrete  and  are  

often  reinforced  with  rebar  or  steel  to  add  additional  support.  Depending  on  the  size  

and  configuration  of  the  building,  the  footers  can  be  buried  just  below  ground  level  or  

several  feet  below  the  surface.  In  cold  climates,  they  are  always  placed  below  the  frost  

line  to  minimize  problems  with  concrete  heaving  that  occurs  during  freeze/thaw  cycles.  

This  type  of  footer  design  is  highly  beneficial  to  builders  and  homeowners.  Since  they  

transfer  the  weight  of  the  building  over  a  large  area,  they  have  little  risk  of  failure.  

 

 

Page 16: B.structures report-project2 done

 

 

Reinforced  Concrete  Column  

A  reinforced  concrete  column  is  a  structural  members  designed  to  carry  compressive  

loads,  composed  of  concrete  with  an  embedded  steel  frame  to  provide  reinforcement.  

For  design  purposes,  the  columns  are  separated  into  two  categories:  short  columns  and  

slender  columns.  

 

Short  Column  A  short  column  is  a  structural  member  whose  relatively  short  length  virtually  ensures  it  

will  fail  in  compression  if  it  is  evenly  loaded  along  its  axis.  Columns  can  be  classified  as  

short,  intermediate,  or  long,  depending  on  their  lengths,  their  material  properties,  and  

the  lengths  of  other  columns  in  the  same  structure.  A  short  column  differs  from  a  

medium  or  long  column,  each  of  which  can  fail  by  bending  when  evenly  loaded  along  the  

axis.  

 

Slender  Column  A  slender  column  is  one  whose  length  is  large  in  comparison  to  its  cross-­‐sectional  

dimensions  and,  when  loaded  to  its  extreme,  fails  by  buckling  (abruptly  bending)  out  of  

its  straight-­‐line  shape  and  suddenly  collapsing  before  reaching  the  compressive  

strength  of  its  material.  This  is  called  a  condition  of  instability.  An  intermediate  column  

falls  between  the  classifications  of  short  and  slender.  When  loaded  to  its  extreme,  the  

intermediate  column  falls  by  a  combination  of  compression  and  instability.  

 

 

 

 

 

 

Page 17: B.structures report-project2 done

 

Reinforced  Concrete  Beam  

A  beam  bends  under  bending  moment,  resulting  in  a  small  curvature.  At  the  outer  face  

(tensile  face)  of  the  curvature  the  concrete  experiences  tensile  stress,  while  at  the  inner  

face  (compressive  face)  it  experiences  compressive  stress.    

 

 

 

Singly  Reinforced  Beam  A  singly  reinforced  beam  is  one  in  which  the  concrete  element  is  only  reinforced  near  

the  tensile  face  and  the  reinforcement,  called  tension  steel,  is  designed  to  resist  the  

tension.  

 

Doubly  Reinforced  Beam  A  doubly  reinforced  beam  is  one  in  which  besides  the  tensile  reinforcement  the  

concrete  element  is  also  reinforced  near  the  compressive  face  to  help  the  concrete  resist  

compression.  The  latter  reinforcement  is  called  compression  steel.  When  the  

compression  zone  of  a  concrete  is  inadequate  to  resist  the  compressive  moment  

(positive  moment),  extra  reinforcement  has  to  be  provided  if  the  architect  limits  the  

dimensions  of  the  section.  

 

Under-­‐Reinforced  Beam  An  under-­‐reinforced  beam  is  one  in  which  the  tension  capacity  of  the  tensile  

reinforcement  is  smaller  than  the  combined  compression  capacity  of  the  concrete  and  

the  compression  steel  (under-­‐reinforced  at  tensile  face).  When  the  reinforced  concrete  

element  is  subject  to  increasing  bending  moment,  the  tension  steel  yields  while  the  

concrete  does  not  reach  its  ultimate  failure  condition.  As  the  tension  steel  yields  and  

stretches,  an  "under-­‐reinforced"  concrete  also  yields  in  a  ductile  manner,  exhibiting  a  

large  deformation  and  warning  before  its  ultimate  failure.  In  this  case  the  yield  stress  of  

the  steel  governs  the  design.  

Page 18: B.structures report-project2 done

 

 

Over-­‐Reinforced  Beam  An  over-­‐reinforced  beam  is  one  in  which  the  tension  capacity  of  the  tension  steel  is  

greater  than  the  combined  compression  capacity  of  the  concrete  and  the  compression  

steel  (over-­‐reinforced  at  tensile  face).  So  the  "over-­‐reinforced  concrete"  beam  fails  by  

crushing  of  the  compressive-­‐zone  concrete  and  before  the  tension  zone  steel  yields,  

which  does  not  provide  any  warning  before  failure  as  the  failure  is  instantaneous.  

 

Balanced-­‐Reinforced  Beam  A  balanced-­‐reinforced  beam  is  one  in  which  both  the  compressive  and  tensile  zones  

reach  yielding  at  the  same  imposed  load  on  the  beam,  and  the  concrete  will  crush  and  

the  tensile  steel  will  yield  at  the  same  time.  This  design  criterion  is  however  as  risky  as  

over-­‐reinforced  concrete,  because  failure  is  sudden  as  the  concrete  crushes  at  the  same  

time  of  the  tensile  steel  yields,  which  gives  a  very  little  warning  of  distress  in  tension  

failure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 19: B.structures report-project2 done

 

 

 

4.2  Structural  System  of  Case  Study    

Moment  Resisting  Frames    

Moment-­‐resisting  frames  are  rectilinear  assemblages  of  beams  and  columns,  with  the  

beams  rigidly  connected  to  the  columns.  It  is  use  to  resist  lateral  forces  by  the  

development  of  bending  moment  and  shear  force  in  the  frame  members  and  joints.  

By  virtue  of  the  rigid  beam-­‐column  connections,  a  moment  frame  cannot  displace  

laterally  without  bending  the  beams  or  columns  depending  on  the  geometry  of  the  

connection.    

 

 

 

 

 

Flexural  yielding  of  beams  and  columns  and  shear  yielding  of  column  panel  zones  are  

the  primary  source  of  lateral  stiffness  and  strength  for  the  entire  frame.  Beam  column  

joints  in  a  reinforced  concrete  moment  resisting  frame  are  crucial  zones  for  transfer  of  

loads  effectively  between  the  connecting  in  the  structure.  

Types  of  joints  in  frames  

The  joint  defined  as  the  portion  of  the  column  within  the  depth  of  the  deepest  beam  that  

frames  into  the  column.  There  are  3  types  of  joints  in  a  moment  resisting  frame:  

1. Interior  joint-­‐  when  4  beams  frame  into  the  vertical  faces  of  a  column.  

2. Exterior  joint-­‐  when  1  beam  frames  into  vertical  face  of  the  column  and  2  other  

beams  frame  from  perpendicular  directions  into  the  joint.  

Page 20: B.structures report-project2 done

3. Corner  joint-­‐  when  a  beam  each  frames  into  two  adjacent  vertical  faces  of      a  

column.    

 

 

 

 

 

 

 

 

Column  and  Beams  Structural  Systems  

Foundation  utilize  a  combination  of  bearing  walls,  columns  and  piers  to  transmit  

building  loads  directly  to  earth.  These  structural  elements  can  form  various  types  of  

substructures.  

 

 

 

 

   

   

 

 

 

 

 

 

 

COLUMN   BEAM TIMBER  FLOORING

This  diagram  shows  the  

components  of  the  building  

structure  highlighting  on  the  

columns  and  beams.  Timber  

flooring  were  applied  on  the  

first  floor  with  a  layer  of  slab.  

The  Concrete  slabs-­‐on-­‐grade  

supported  directly  by  the  

earth  at  the  bottom  and  

thickened  to  carry  wall  and  

column  loads  which  is  

economical  for  one  and  two  

storey  building  in  climate  

where  no  ground  frost  occur.  

beam  

column  

timber  flooring  

concrete  slab  

Page 21: B.structures report-project2 done

 

Floor  Systems  

 

One  Way  Slab  

 

 

Two  Way  Slab  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  rectangular  reinforced  concrete  slab  which  sp

ans  a  distance  very  much  greater  in  one  

direction  than  the  other;  under  these  conditions

,  most  of  the  load  is  carried  on  the  shorter  span.    

A  rectangular,  reinforced  concrete  slab  having  

a  span  on  the  long  side  that  is  less  than  twice      

the  span  on  the  short  side  and  transfer  their  

loads  to  all  the  four  support  walls.  

Page 22: B.structures report-project2 done

4.3  Indication  of  plans    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 23: B.structures report-project2 done

 

Indication  of  columns  and  beams  in  structural  plans  

 

 

 

 

 

Page 24: B.structures report-project2 done

4.4  Distribution  in  the  Structure  

 

To  determine  whether  a  slab  is  one  way  or  two  way  slab,  divide  the  longer  span  of  the  

panel  (L)  by  the  shorter  span  panel  (B).  

 

If  L/B  is  greater  than  or  equal  to  2,  it  is  a  one  way  slab.  

 

If  L/B  is  lesser  than  2,  it  is  a  two  way  slab.  

 

 

 

Figure  of  a  one  way  slab  load  distribution.  It  is  supported  by  beams  in  only  2  sides.  

 

 

Figure  of  a  two  way  slab  load  distribution.  It  is  supported  by  beams  in  all  4  sides.  

 

 

Page 25: B.structures report-project2 done

 

 

Page 26: B.structures report-project2 done

 

 

 

 

 

Page 27: B.structures report-project2 done

5.0  Conclusion  

 

To  conclude  our  group  project,  we  have  gained  knowledge  which  involves  structural  

theory  and  basic  structural  proposal.  As  going  through  structural  appraisal  by  

identifying  the  structural  members,  we  have  learnt  of  basic  structure  layout  drawing  for  

architectural  drawings  as  well  as  considerations  on  beam  and  column  sizing  that  will  

affect  the  integrity  of  a  structure.  Appraisal  of  structural  system  is  done  in  ways  such  as  

using  assisting  tools,  thorough  research  of  ways  and  thanks  to  our  lecturer  who  has  

given  out  great  hand  on  producing  the  final  products.  The  report  produced  gave  us  an  

insight  from  structural  member  comprising  of  reinforced  concrete  material  throughout  

the  whole  building  started  from  the  roof  beam  above  throughout  the  basic  skeletal  

structure  that  in  the  end  transfer  the  load  to  ground  beam.  They  are  connected  through  

joint  and  the  coordination  of  structural  members  allow  the  load  to  be  transfer  uniformly  

and  effectively.  Difference  from  main  supporting  structural  system  such  as  column  to  

minor  structural  stiffener  is  identified  as  well  in  this  project.  

Last  but  not  least,  we  would  like  to  thank  Mr.  Mohd  Adib  Ramli  for  his  guidance  

throughout  this  project.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 28: B.structures report-project2 done

6.0  References  

 

1. "Column  -­‐  Definition  and  More  from  the  Free  Merriam-­‐Webster  Dictionary".  Merriam-­‐webster.com.  2012-­‐08-­‐31.  Retrieved  2013-­‐07-­‐04.

2.  Hool,  George  A.;  Johnson,  Nathan  Clarke  (1920).  "Elements  of  Structural  Theory  -­‐Definitions".  Handbook of Building Construction (Google  Books).  vol.  1  (1st  ed.).  New York:  McGraw-­‐Hill.  p.  2.  Retrieved  2008-­‐10-­‐01.  "A  cantilever  beam  is  a  beam  having  one  end rigidly  fixed  and  the  other  end  free."

3.  Bǎnicǎ,  Florinel-­‐Gabriel  (2012).  Chemical Sensors and Biosensors:Fundamentals and Applications.  Chichester,  UK:  John  Wiley  &  Sons.  p.  576.  ISBN  9781118354230.

4.  R.J.  Wilfinger,  P.  H.  Bardell  and  D.  S.  Chhabra:  The  resonistor  a  frequency  selective  device  utilizing  the  mechanical  resonance  of  a  silicon  substrate,  IBM  J.  12,  113-­‐118  (1968)

5.  P.  C.  Fletcher,  Y.  Xu,  P.  Gopinath,  J.  Williams,  B.  W.  Alphenaar,  R.  D.  Bradshaw,  R.  S  Keynton,  "Piezoresistive  Geometry  for  Maximizing  Microcantilever  Array  Sensitivity,"presented  at  the  IEEE  Sensors,  Lecce,  Italy,  2008.

6.  The  Architects'  Journal  Existing  stadiums:  St  James'  Park,  Newcastle.  1  July  2005  9.

7. G.  Noselli,  F.  Dal  Corso  and  D.  Bigoni,  The  stress  intensity  near  a  stiffener  disclosed  by photoelasticity.  International  Journal  of  Fracture,  2010,  166,  91–103. Koiter,  W.T.,  On  the  diffusion  of  load  from  a  stiffener  into  a  sheet.  Q.  J.  Mech.  Appl.  Math. 1955,  VIII,  164–178.

8.  Nilson,  Darwin  ,  Dolan.  Design of Concrete Structures.  the  MacGraw-­‐Hill  Education,  2003. p.  80-­‐90.

Page 29: B.structures report-project2 done

9.  ASCE/SEI 7-05 Minimum Design Loads for Buildings and Other Structures.  American Society  of  Civil  Engineers.  2006.  p.  1.  ISBN  0-­‐7844-­‐0809-­‐2.

10.  Avallone,  E.A.,  and  Baumeister,  T.  (ed.).  Mark's Standard Handbook for Mechanical