BSS 11 BSS Operational Theory

914
CHAPTER 2 BSS OVERVIEW CHAPTER 3 BSSC CABINET OPERATIONAL THEORY CHAPTER 4 HORIZONMACRO OPERATIONAL THEORY CHAPTER 5 HORIZONMICRO/COMPACT OPERATIONAL THEORY CHAPTER 1 COURSE ADMINISTRATION

description

Explain the BSS operational theory

Transcript of BSS 11 BSS Operational Theory

Page 1: BSS 11 BSS Operational Theory

CHAPTER 2BSS OVERVIEW

CHAPTER 3BSSC CABINET

OPERATIONAL THEORY

CHAPTER 4HORIZONMACRO

OPERATIONAL THEORY

CHAPTER 5HORIZONMICRO/COMPACT

OPERATIONAL THEORY

CHAPTER 1COURSE ADMINISTRATION

Page 2: BSS 11 BSS Operational Theory
Page 3: BSS 11 BSS Operational Theory

CHAPTER 7EQUIPMENT APPRECIATION

CHAPTER 8BSS SOFTWARE

CHAPTER 9BSS CUSTOMER MMI

OVERVIEW

CHAPTER 10COURSE ASSESSMENT

CHAPTER 6 HORIZONOFFICE

Page 4: BSS 11 BSS Operational Theory
Page 5: BSS 11 BSS Operational Theory

GLOSSARY OF TERMS

Page 6: BSS 11 BSS Operational Theory
Page 7: BSS 11 BSS Operational Theory

Cellular Infrastructure Group

BSS11BASE STATION SYSTEMS – OPERATIONAL

THEORY

FOR TRAINING PURPOSES ONLY

ISSUE 1 REVISION 2

Page 8: BSS 11 BSS Operational Theory

FOR TRAININGPURPOSES ONLY

ISSUE 1REVISION 2

BSS11BASE STATION

SYSTEMS –OPERATIONAL

THEORY

Page 9: BSS 11 BSS Operational Theory

BSS11BASE STATION SYSTEMS –

OPERATIONAL THEORY

Page 10: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

ISSUE 1 REVISION 2

BSS11Base Station Systems –

Operational Theory

� Motorola 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000All Rights ReservedPrinted in the U.K.

Page 11: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Copyrights, notices and trademarks

CopyrightsThe Motorola products described in this document may include copyrighted Motorola computerprograms stored in semiconductor memories or other media. Laws in the United States and othercountries preserve for Motorola certain exclusive rights for copyright computer programs, including theexclusive right to copy or reproduce in any form the copyright computer program. Accordingly, anycopyright Motorola computer programs contained in the Motorola products described in this documentmay not be copied or reproduced in any manner without the express written permission of Motorola.Furthermore, the purchase of Motorola products shall not be deemed to grant either directly or byimplication, estoppel or otherwise, any license under the copyrights, patents or patent applications ofMotorola, except for the rights that arise by operation of law in the sale of a product.

RestrictionsThe software described in this document is the property of Motorola. It is furnished under a licenseagreement and may be used and/or disclosed only in accordance with the terms of the agreement.Software and documentation are copyright materials. Making unauthorized copies is prohibited bylaw. No part of the software or documentation may be reproduced, transmitted, transcribed, storedin a retrieval system, or translated into any language or computer language, in any form or by anymeans, without prior written permission of Motorola.

AccuracyWhile reasonable efforts have been made to assure the accuracy of this document, Motorolaassumes no liability resulting from any inaccuracies or omissions in this document, or from the useof the information obtained herein. Motorola reserves the right to make changes to any productsdescribed herein to improve reliability, function, or design, and reserves the right to revise thisdocument and to make changes from time to time in content hereof with no obligation to notify anyperson of revisions or changes. Motorola does not assume any liability arising out of the applicationor use of any product or circuit described herein; neither does it convey license under its patentrights of others.

Trademarks

and MOTOROLA are trademarks of Motorola Inc.UNIX is a registered trademark in the United States and other countries, licensed exclusively throughX/Open Company Limited.Tandem , Integrity , Integrity S2 , and Non-Stop-UX are trademarks of Tandem ComputersIncorporated.X Window System , X and X11 are trademarks of the Massachusetts Institute of Technology.Looking Glass is a registered trademark of Visix Software Ltd.OSF/Motif is a trademark of the Open Software Foundation.Ethernet is a trademark of the Xerox Corporation.Wingz is a trademark and INFORMIX is a registered trademark of Informix Software Ltd.SUN, SPARC, and SPARCStation are trademarks of Sun Microsystems Computer Corporation.IBM is a registered trademark of International Business Machines Corporation.HP is a registered trademark of Hewlett Packard Inc.

Page 12: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

General information 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important notice 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . About this manual 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cross references 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Text conventions 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First aid in case of electric shock 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Warning 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Artificial respiration 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burns treatment 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reporting safety issues 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Warnings and cautions 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Warnings 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cautions 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General warnings 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Warning labels 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific warnings 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High voltage 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF radiation 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Laser radiation 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lifting equipment 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Do not ... 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Battery supplies 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Toxic material 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Human exposure to radio frequency energy (PCS1900 only) 8. . . . . . . . . . . . . . . . . . . . . . Introduction 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definitions 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum permitted exposures 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum permitted exposure ceilings 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example calculation 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power density measurements 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Other equipment 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Beryllium health and safety precautions 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Health issues 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inhalation 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Skin contact 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eye contact 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Handling procedures 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Disposal methods 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product life cycle implications 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General cautions 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Caution labels 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific cautions 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fibre optics 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Static discharge 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 13: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Devices sensitive to static 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special handling techniques 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Motorola GSM manual set 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generic manuals 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tandem OMC 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scaleable OMC 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Related manuals 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Service manuals 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Category number 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Catalogue number 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering manuals 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 1Course Administration i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter Objectives 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Course Introduction 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 2BSS Overview i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter Objectives 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GSM Network Components 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mobile Station (MS) 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Station System (BSS) 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Network Switching System (NSS) 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operations and Maintenance System 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station System Components 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Station System (BSS) 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcoder (XCDR) 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfacing 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoding 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station Controller (BSC) 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfacing 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Transceiver Station (BTS) 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfacing 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF Equipment 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 3Base Station System Controller (BSSC) Cabinet Operational Theory i. . .

Chapter Objectives 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcoder (XCDR) Functionality 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcoder (XCDR) 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terrestrial Interface 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main Control Processor 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronizing clock 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoder Static Switch 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 14: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

v

Base Station Controller (BSC) Functionality 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signalling Interface Interconnections (RXCDR/BSC/BTS) 3–10. . . . . . . . . . . . . . . . . . . . . . . . Message Transfer Link (MTL) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio Signalling Link (RSL) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoder Base Site Link (XBL) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operations and Maintenance Link (OML) 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Broadcast Link (CBL) 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station System Control (BSSC) Cabinet Overview 3–14. . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet types 3–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration options 3–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External features 3–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSSC Cabinet Internal Components 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU / RXU Shelf (up to two per cabinet) 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Distribution Board 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribution Alarm Board 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interconnect panel 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distribution Alarm Board (DAB) 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch settings (BSSC2) 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm functions 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Visual warnings 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communications 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuses and LEDs (BSSC2) 3–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Distribution Unit (PDU) 3–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input power 3–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSSC2 Cabinet Cabling 3–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power supply modules 3–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet power requirements 3–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrated Power Supply Module (IPSM) 3–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 3–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Enhanced Power Supply Module (EPSM) 3–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 3–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shelf Internal Connections Overview 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time Division Multiplexed (TDM) highway 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motorola Cellular Advanced Processor (MCAP) bus 3–46. . . . . . . . . . . . . . . . . . . . . . . Local Area Network (LAN) 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial bus 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station Unit (BSU) Shelf 3–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Station Unit Shelf Assembly 3–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Station Unit (BSU) 3–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU shelf 3–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 15: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vi

Remote Transcoder Unit (RXU) Shelf 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remote Transcoder Unit Shelf Assembly 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remote Transcoder Unit (RXU) 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bus Termination Card (BTC) 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Processor (GPROC) Board 3–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPROC module 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTS and BSC GPROC functions 3–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RXCDR GPROC functions 3–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Processor (GPROC2) 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communication 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Troubleshooting and diagnostics 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTS and BSC GPROC2 functions 3–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPROC2 task groups and device types 3–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RXCDR GPROC2 functions 3–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type 43 interconnect board 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T43 connectors 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Balanced-line Interconnect Board (BIB) 3–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location 3–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIB connectors 3–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiple Serial Interface (MSI/MSI2) 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MSI/MSI2 module 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General features 3–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1 Data 3–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T1 Data 3–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoded environment (E1) 3–81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoded environment (T1) 3–81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC68000 processor 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EPROM 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock extraction 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame decoding 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 3–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EPROM 3–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock extraction 3–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame decoding 3–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1/T1/JT1 line to TDM interface circuits 3–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 16: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vii

The Generic Clock (GCLK) 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock control/alarm logic 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buffered test ports 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference oscillator 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference dividers 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference encoders 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference fail detect 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GCLK Operating Modes 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Free Run 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hold Frequency 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set Frequency 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Closed loop 3–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GCLK Synchronization Configuration 3–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcoder Board 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Architecture 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processor 3–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Digital Signal Processor (DSP) 3–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subrate multiplexer modes 3–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Line interface 3–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching 3–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCAP interface 3–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDM interface 3–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic DSP Processor (GDP) 3–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Parallel Interface Extender (PIX) 3–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIX module 3–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Battery Backup Board (BBBX) 3–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BBBX module 3–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Local Area Network (LAN) 3–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LANX module 3–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 3–110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local LAN data switching 3–110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended LAN data switching 3–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus arbiter 3–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Redundant LAN 3–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shelf ID 3–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front panel 3–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 17: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

viii

Motorola Cellular Advanced Processor (MCAP) 3–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MCAP Communications 3–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Address Area 3–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Area 3–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dual Port Ram (DPR) 3–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Downlink communication 3–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Uplink communication 3–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Time Division Multiplexed (TDM) Bus 3–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDM Frame Structure 3–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDM Bus Integrity 3–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Kiloport Switch (KSW) 3–126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Architecture 3–128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing reference 3–128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switchbound TDM interface structure 3–128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expansion switchbound highways 3–130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timeslot Interchange (TSI) 3–130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three-Party Conference (TPC) memory 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fixed/dynamic pattern registers 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Outbound selection MUX 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Highway monitor 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog timer 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt logic 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial interface logic 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KSW switching 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KSW in a BSC 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KSW in a RXCDR 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSSC Cabinet Extension and Expansion 3–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remote (KSWXR) 3–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local (KSWXL) 3–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expansion (KSWXE) 3–140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Clock Extender (CLKX) 3–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLKX module 3–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generic Clock (GCLK) Distribution 3–144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix AStudent Exercise, Cabinet Inter-Connection i. . . . . . . . . . . . . . . . . . . . . . . . . .

Pre-requisites AppA–3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interconnection Exercise AppA–3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment AppA–3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site Configuration AppA–3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PART A – KSW and GCLK Expansion/Extension AppA–3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PART B – Board Requirement and LAN Extension AppA–3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 18: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ix

LANX Extender AppA–3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix BCabinet Inter-Connection Answers i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Board Requirement and LAN Extension AppB–3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part B AppB–3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 4Horizonmacro Operational Theory i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter Objectives 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Transceiver Station (BTS) 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSC–BTS Interconnection Requirements 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSC–BTS Interconnection Configuration 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro Indoor Introduction and Manual Definition 4–10. . . . . . . . . . . . . . . . . . . . . . . . . Overview of Horizonmacro Indoor and external view 4–10. . . . . . . . . . . . . . . . . . . . . . .

Overview of Horizonmacro Outdoor 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overview of Horizonmacro 12 Carrier Outdoor 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cabinet Structure of the Horizonmacro Indoor 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Empty cabinet and SURF harness 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SURF harness and cabinet attachment 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Top panel 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Top panel description 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cage Backplane Interface panel harness Assembly (CBIA) 4–24. . . . . . . . . . . . . . . . . . . . . . . CBIA overview 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CBIA cage function 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CBIA backplane function 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CBIA harness function 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interface panel function 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cabinet Door and Hood 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Door function 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hood function 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Securing pins and removal 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stacking Bracket Function 4–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indoor temperature control system 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of indoor temperature control system 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature shutdown sensors 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet restart after shutdown 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indoor fan overview 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fan operation and restart 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filter sheet option and effect on fans 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Supply Modules (PSMs) 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Types of PSM and overview 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSM location and redundancy 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Circuit Breaker Module (CBM) 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit Break Module (CBM) overview 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of CBM 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 19: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

x

Outdoor cabinet structure 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of structure description 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Backplane 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SURF harness 4–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SURF harness detail 4–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Top section 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Top section description 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Krone blocks 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Earth plates 4–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blank and expansion plates 4–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power supply enclosure 4–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply enclosure overview 4–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply unit 4–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarms interface board 4–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarms interface board connectors 4–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS test switches 4–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Customer equipment racking 4–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Outdoor cabinet doors and lid 4–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Door function 4–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lid function 4–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro outdoor temperature control 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature control overview 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet over temperature control 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature sensors 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet restart after shutdown 4–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thermal Management System (TMS) 4–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS overview 4–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat exchanger components 4–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS functional description 4–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro outdoor power supplies 4–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply overview 4–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power distribution overview 4–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC distribution description 4–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC power distribution 4–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC distribution overview 4–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC distribution description 4–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Customer equipment power supplies 4–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal battery backup 4–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External battery backup connection 4–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Control and Alarm Board (CAB) 4–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to the CAB 4–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB indicators and controls 4–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB front panel fuses 4–85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB control functions 4–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB alarm functions 4–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB additional functions 4–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Outdoor Power Supply Module (TOPSM) 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TOPSM overview 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TOPSM functional description 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LED display 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monitoring 4–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection circuits 4–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal protection 4–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control and alarm signals 4–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 20: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xi

Power Supply Module (PSM) 4–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MicroBCU Power Supply Module (BPSM) 4–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auxiliary equipment housing overview 4–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to the auxiliary equipment housing 4–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary equipment housing mechanical design 4–102. . . . . . . . . . . . . . . . . . . . . . . . . . .

Temperature control within the auxiliary equipment housing 4–104. . . . . . . . . . . . . . . . . . . . . . . Temperature control equipment 4–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the temperature control equipment 4–104. . . . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary equipment housing as a battery box 4–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

External alarms interface board 4–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function of the external alarms interface board 4–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarms interface board connections 4–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro 12 carrier outdoor enclosure structure 4–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to the enclosure 4–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enclosure description 4–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarm Interface Module (AIM) 4–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of the AIM 4–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AIM connectors and switches 4–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Primary ac terminal box 4–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Primary ac terminal box location and function 4–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fan tray 4–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to the fan tray 4–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fan tray description 4–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the smoke detector 4–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enclosure lighting description 4–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Doors and hood 4–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Door function 4–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the door locks 4–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hood function 4–122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hood operation 4–122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cable entry to the enclosure 4–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cable entry overview 4–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low level cable entry 4–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional high level cable entry 4–126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional cable shroud and termination bracket 4–128. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overview of the power distribution equipment 4–130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the power distribution equipment 4–130. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AC power distribution 4–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC distribution description 4–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC circuit breakers 4–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC power distribution 4–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC distribution description 4–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC circuit breakers 4–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC fuses 4–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The power control module 4–140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of the power control module 4–140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front panel controls and indicators 4–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm management 4–144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm inputs 4–144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm output signals 4–145. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 21: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xii

The rectifier module 4–146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The dc connector panel 4–148. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of the dc connector panel 4–148. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Internal battery backup 4–150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of the internal battery backup system 4–150. . . . . . . . . . . . . . . . . . . . . . . . . . . Battery thermal charge compensation 4–152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro digital modules 4–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCUF and NIU redundancy 4–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full size and half size modules 4–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview locations and redundancy 4–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital module and CTU connections 4–156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Main Control Unit with dual FMUX (MCUF) 4–158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCUF overview 4–158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capability to replace MCU of M-Cell6 and M-Cell2 4–158. . . . . . . . . . . . . . . . . . . . . . . . . GPROC KSW and GLCK functions 4–158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front panel interfaces 4–160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front panel switches and indicators 4–162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIX and GPS interfaces 4–162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRAM, flash EPROM and code loading functions 4–164. . . . . . . . . . . . . . . . . . . . . . . . . . ASIC functionality 4–166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sync block functionality 4–168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Link to redundant MCUF 4–170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Network Interface Unit (NIU) 4–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of NIU 4–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU functionality 4–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU locations 4–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU command identity number 4–174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control processor 4–176. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU/MCUF framing and clocks 4–176. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distance measurement 4–178. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio Signalling Links (RSL) 4–178. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T1 NIU need to set link type 4–178. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type 43 interconnect board 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of T43/BIB-NIU connection 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU to T43 mapping and command ID 4–181. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fibre Optic Mulitplexer (FMUX) module and FMUX function 4–184. . . . . . . . . . . . . . . . . . . . . . Overview of FMUX module and internal MCUF FMUX 4–184. . . . . . . . . . . . . . . . . . . . . FMUX Functional explanation 4–186. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarm module 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm module overview 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm module functionality 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm module replacement – effect on alarms 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm collection from extension cabinets 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm module display presentation 4–190. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 22: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xiii

Horizonmacro RF Modules 4–192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF overview 4–192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive RF hardware 4–194. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit (Tx) RF hardware 4–194. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rx/Tx single antenna duplexing 4–194. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF main component explanation 4–196. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF loopback purpose 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF loopback hardware 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF loopback software operation 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of RF test modes 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Compact Transceiver Unit (CTU) 4–200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of CTU 4–200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU internal boards 4–200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU connectors and reset 4–202. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm reporting 4–202. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU Tx function 4–204. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU Rx function 4–206. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU digital processing and control functions 4–208. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU uplink/downlink 4–212. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frequency hopping 4–214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of frequency hopping 4–214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesizer Frequency Hopping (SFH) 4–214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SFH example not through BCCH 4–216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SFH example hopping through BCCH carrier 4–216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Band frequency hopping 4–218. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Sectorized Universal Receiver Front end (SURF) module 4–222. . . . . . . . . . . . . . . . . . . . SURF module overview 4–222. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of 1800 SURF 4–224. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of 900 SURF 4–226. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transmit (Tx) blocks overview 4–228. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tx block overview 4–228. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit block connectors 4–228. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Blanking plate 4–230. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of blanking plate 4–230. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of feedthrough plate 4–230. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Hybrid Combining Unit (HCU) plate 4–232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HCU overview 4–232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HCU connectors 4–232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Twin Duplexed Filter (TDF) 4–234. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of TDF 4–234. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDF connectors 4–234. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dual band TDF 4–236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of Dual band TDF 4–236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dual band TDF connectors 4–236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Duplexed Combining bandpass Filter (DCF) 4–238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DCF connectors 4–238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DCF overview 4–238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Dual-stage Duplexed combining Filter (DDF) 4–240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of DDF 4–240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDF connectors 4–240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 23: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xiv

The Cavity Combining Block (CCB) 4–242. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB overview 4–242. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB Control Board (TCB) and set switch 4–242. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCB and link redundancy 4–242. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB configuration 4–244. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB functional description and diagram 4–244. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix CSuggested RF Configurations i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Suggested RF configurations AppC–4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overview of configuration diagrams AppC–4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 1 AppC–4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 1 or 2 AppC–4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 3 or 4 AppC–4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 3 AppC–4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 4 AppC–4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 5 or 6 AppC–4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for sector 1/1 or 2/2 AppC–4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for sector 1/1 AppC–4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for single cabinet sector 3/3 AppC–4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 3/3 AppC–4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 4/4 AppC–4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 5/5 or 6/6 AppC–4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for single cabinet sector 1/1/1, 1/1/2, 1/2/2 or 2/2/2 AppC–4–9. . . . . . . . . . . . Configuration for 2 cabinet sector 2/2/2 AppC–4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 3/3/3 or 4/4/4 AppC–4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 4/4/4 AppC–4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 3 cabinet sector 4/4/4 AppC–4–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for sector 5/5/5 or 6/6/6 AppC–4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for sector 8/8/8 AppC–4–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for dual band 1/1/1-3/3/3 AppC–4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 5Horizonmicro/Horizoncompact Operational Theory i. . . . . . . . . . . . . . . . . . . . Horizonmicro manual definition and introduction 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overview of equipment 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BTS enclosure 5–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BTS enclosure 5–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Booster 5–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of booster 5–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BTS power supply system 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BTS power supply system 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BTS Power Supply Module (PSM) 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribution board 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of battery backup 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AC-DC Power Supply Module (PSM) 5–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarms, warnings and shutdown 5–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optional Battery Backup 5–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of battery 5–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Booster power supply 5–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of booster power supply 5–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC power connector 5–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 24: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xv

Booster Power Supply 5–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC-DC BPSM 5–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Heat management of BTS 5–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BTS heat management 5–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module heaters 5–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Enclosure cooling 5–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of enclosure cooling 5–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Airflow within the enclosure 5–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of enclosure cooling 5–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Heat management of booster 5–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of booster enclosure cooling 5–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Digital modules 5–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of digital modules 5–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Radio Digital Interface System (RDIS) 5–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of RDIS 5–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Main Control Unit, micro (MCU-m) 5–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of MCU-m 5–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processor functionality 5–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68LC060 processor 5–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QUICC32 processor 5–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCMCIA 5–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crosspoint switch 5–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sync block 5–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMI interface 5–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic board ID 5–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic site ID and calibration data 5–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Olympus Radio Architecture Controller (ORAC) function 5–48. . . . . . . . . . . . . . . . . . . . . . . . . Overview of ORAC 5–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DINO/RHINO 5–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of DINO/RHINO 5–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of DINO/RHINO 5–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to DINO/RHINO functionality 5–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processing section of DINO/RHINO 5–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset switches 5–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Line interface framers 5–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio signalling links 5–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL interface 5–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

High bit-rate Digital Subscriber Line (HDSL) module 5–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of HDSL 5–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of HDSL 5–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Line termination modules 5–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of line termination modules 5–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminology for Tx and Rx 5–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features of line termination modules 5–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL link options 5–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GPS receiver 5–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of GPS receiver 5–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of GPS receiver 5–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 25: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xvi

RF modules 5–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dual Transceiver (DTRX) module 5–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of DTRX module 5–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesizer section 5–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver section 5–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter section 5–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature detectors 5–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of combiner isolator 5–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Isolator 5–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of isolator 5–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Booster 5–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of booster 5–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System description 5–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of booster 5–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 6Horizonoffice i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Standard equipment 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional equipment 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Architecture of BTS 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horizonoffice hardware 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Controller Unit Enclosure 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU shelf 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL modem shelf 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of power distribution unit 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of fan cooling system 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Specifications 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of specifications 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Environment 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weights 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque values 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power requirements 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power consumption 6–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CU to RF head interconnection 6–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF head receiver sensitivity 6–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF head transmitter output 6–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency band characteristics 6–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External features of CU 6–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal features of CU 6–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interconnect panel 6–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of interconnect panel 6–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HIB board 6–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of HIB board 6–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of HIB 6–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of HIB 6–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E1 interface 6–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of E1 interface 6–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of E1 interface 6–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of CIM and BIM boards 6–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 26: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xvii

Base Shelf Unit (BSU) assembly 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BSU 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU numbering 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU shelf 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ventilation 6–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Backplane connectors 6–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HDSL modem shelf 6–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of HDSL modem shelf 6–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL connectors 6–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power supply system 6–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of power supply system 6–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IPSM 6–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of IPSM 6–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Distribution Unit (PDU) components 6–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of PDU 6–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input power 6–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit breakers 6–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Distribution Alarm Board (DAB) 6–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of DAB 6–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuses and LEDs 6–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch settings 6–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm functions 6–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Visual warnings 6–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communicate alarms 6–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cabinet Protection Board (CPB) 6–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of Cabinet Protection Board (CPB) 6–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirement of CPB 6–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specifications of CPB 6–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection 6–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fan cooling 6–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of fan cooling system 6–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of fan cooling system 6–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements for fan cooling 6–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarm processing 6–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to alarms 6–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements for CU alarm system 6–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controller power system alarms 6–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controller alarm details 6–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Digital Modules 6–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full size boards 6–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Half size boards 6–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HDSL modem boards 6–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to HDSL modem boards 6–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Processor (GPROC2) 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of GPROC2 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of GPROC2 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPROC2 board 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communication 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 27: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xviii

The Bus Termination Card (BTC) 6–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of BTC 6–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of BTC 6–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Kiloport Switch (KSW) 6–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of KSW 6–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of KSW 6–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description of KSW 6–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Clock (GCLK) 6–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of GCLK 6–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of GCLK 6–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 6–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Multiple Serial Interface (MSI) 6–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of MSI 6–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of MSI 6–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 6–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The LANB Extender half size board (LANX) 6–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of LANX 6–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of LANX 6–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description of LANX 6–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Parallel Interface Extender (PIX) board 6–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of PIX 6–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of PIX 6–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Battery Backup Board (BBBX) 6–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of BBBX 6–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of BBBX 6–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Management Interface Extender (MIX) board 6–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of MIX 6–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of MIX 6–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfaces 6–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System clock and interface 6–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 6–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Line Terminal Unit (LTU) 6–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of LTU 6–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of LTU 6–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controls and indicators 6–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Exchange office Management Unit (EMU) 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of EMU 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of EMU 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controls and indicators 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarms 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 28: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xix

RF head 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of RF head 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF features 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External interfaces 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multicarrier head mode 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of RF head 6–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Physical description of RF head 6–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power system 6–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF transceiver board 6–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF Loopback 6–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connector pin-out details 6–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main source supply input 6–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Battery input / output 6–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm connector on RF PCB 6–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL connector 6–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multi head Sync Input connector 6–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multi head Sync Output connector 6–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 7Equipment Appreciation i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter Objectives 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSS Equipment Appreciation 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSC/XCDR 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Base Transceiver Station (BTS) 7–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 8BSS Software i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSS Software 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Objectives 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Software architecture 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Executive and Protocol 8–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSS Executive 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating System Structure 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Process Isolation and Memory Protection 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flexible Interprocess Communication 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Operations and Maintenance 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Areas 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OMC Interface 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Man Machine Interface (MMI) 8–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Configuration Management (CM) 8–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Configuration Management Database Dependencies 8–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . Device and Function Dependancies 8–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Performance Management (PM) 8–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fault Management (FM) 8–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 29: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xx

Central Authority (CA) 8–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Central Authority Device States 8–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fault Detection and Handling System 8–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSS Alarm Categories 8–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault reporting 8–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Categories 8–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarm Message Format 8–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Message formats: Standard Alarm 8–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Severity 8–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Category 8–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Switch Manager (SM) 8–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization Process (IP) 8–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization in ROM 8–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization in RAM 8–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call Processing (CP) 8–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call Processing at the BSC 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Message Transfer Part L2 (MTP_L2) 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Message Transfer Part L3/SCCP Pre–processor 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . SCCP State Machine (SSM) 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connectionless Manager (CLM) 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call Processing at the BTS 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio Resource State Machine (RRSM) 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio Channel Interface (RCI) 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Resource Manager (CRM) 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Broadcast Scheduler (CBS) 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Allocation Manager (AM) 8–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Radio Subsystem (RSS) 8–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RSS Layer 1 Protocol (Layer 1) 8–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSS Configuration and Fault Management (CFM) 8–48. . . . . . . . . . . . . . . . . . . . . . . . .

Handover Detection and Power Control (HDPC) 8–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Handover Decision Criteria 8–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Motorola Systems 8–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call Establishment 8–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description 8–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 30: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxi

Voice Channel Assignment 8–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description 8–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intra BSS Handover 8–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description 8–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 9BSS Customer MMI Overview i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Objectives 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MMI Structure 9–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to BSS MMI 9–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Security 9–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Command Categories 9–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Command/Database Parameter Types 9–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Device and Function Dependencies 9–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Emon Prompt 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Executive Monitor and Command List 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emon and Security 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emon and Rlogin (Remote Login) 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emon and Initialization 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 10Course Assessment i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Objectives 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Course Assessment Completion 10–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Answer Grid 10–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Glossary of Terms i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Numbers iii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A iv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B vii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D xv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E xviii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F xx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G xxii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H xxiv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I xxv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K xxvii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L xxviii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M xxx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N xxxiv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O xxxvi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P xxxviii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q xli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 31: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxii

R xlii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S xlv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T xlix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U lii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V liii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W liv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X lv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z lvi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 32: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 General information

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

1

General information

Important notice

If this manual was obtained when you attended a Motorola training course, it will not beupdated or amended by Motorola. It is intended for TRAINING PURPOSES ONLY. If itwas supplied under normal operational circumstances, to support a major softwarerelease, then corrections will be supplied automatically by Motorola in the form ofGeneral Manual Revisions (GMRs).

Purpose

Motorola Global System for Mobile Communications (GSM) Technical Education manualsare intended to support the delivery of Technical Education only and are not intended toreplace the use of Customer Product Documentation.

Failure to comply with Motorola’s operation, installation and maintenanceinstructions may, in exceptional circumstances, lead to serious injury or death.

WARNING

These manuals are not intended to replace the system and equipment training offered byMotorola, although they can be used to supplement and enhance the knowledge gainedthrough such training.

About thismanual

Page 33: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2General information

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2

Cross references

Throughout this manual, cross references are made to the chapter numbers and sectionnames. The section name cross references are printed bold in text.

This manual is divided into uniquely identified and numbered chapters that, in turn, aredivided into sections. Sections are not numbered, but are individually named at the topof each page, and are listed in the table of contents.

Text conventions

The following conventions are used in the Motorola GSM manuals to represent keyboardinput text, screen output text and special key sequences.

Input

Characters typed in at the keyboard are shown like this.

Output

Messages, prompts, file listings, directories, utilities, and environmentalvariables that appear on the screen are shown like this.

Special key sequences

Special key sequences are represented as follows:

CTRL-c Press the Control and c keys at the same time.

ALT-f Press the Alt and f keys at the same time.

| Press the pipe symbol key.

CR or RETURN Press the Return (Enter) key. The Return key isidentified with the ↵ symbol on both the X terminal andthe SPARCstation keyboards. The SPARCstationkeyboard Return key is also identified with the wordReturn.

Page 34: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 First aid in case of electric shock

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3

First aid in case of electric shock

Warning

Do not touch the victim with your bare hands until the electric circuit isbroken.Switch off. If this is not possible, protect yourself with dry insulatingmaterial and pull or push the victim clear of the conductor.

WARNING

Artificialrespiration

In the event of an electric shock it may be necessary to carry out artificial respiration.Send for medical assistance immediately.

Burns treatment

If the patient is also suffering from burns, then, without hindrance to artificial respiration,carry out the following:

1. Do not attempt to remove clothing adhering to the burn.

2. If help is available, or as soon as artificial respiration is no longer required, coverthe wound with a dry dressing.

3. Do not apply oil or grease in any form.

Page 35: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Reporting safety issues

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4

Reporting safety issues

Introduction

Whenever a safety issue arises, carry out the following procedure in all instances.Ensure that all site personnel are familiar with this procedure.

Procedure

Whenever a safety issue arises:

1. Make the equipment concerned safe, for example, by removing power.

2. Make no further attempt to tamper with the equipment.

3. Report the problem directly to GSM MCSC +44 (0)1793 430040 (telephone) andfollow up with a written report by fax +44 (0)1793 430987 (fax).

4. Collect evidence from the equipment under the guidance of the MCSC.

Page 36: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Warnings and cautions

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5

Warnings and cautions

Introduction

The following describes how warnings and cautions are used in this manual and in allmanuals of the Motorola GSM manual set.

Warnings

Definition

A warning is used to alert the reader to possible hazards that could cause loss of life,physical injury, or ill health. This includes hazards introduced during maintenance, forexample, the use of adhesives and solvents, as well as those inherent in the equipment.

Example and format

Do not look directly into fibre optic cables or optical data in/out connectors.Laser radiation can come from either the data in/out connectors orunterminated fibre optic cables connected to data in/out connectors.

WARNING

Cautions

Definition

A caution means that there is a possibility of damage to systems, or individual items ofequipment within a system. However, this presents no danger to personnel.

Example and format

Do not use test equipment that is beyond its calibration due date when testingMotorola base stations.

CAUTION

Page 37: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2General warnings

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6

General warnings

Introduction

Observe the following warnings during all phases of operation, installation andmaintenance of the equipment described in the Motorola GSM manuals. Failure tocomply with these warnings, or with specific warnings elsewhere in the Motorola GSMmanuals, violates safety standards of design, manufacture and intended use of theequipment. Motorola assumes no liability for the customer’s failure to comply with theserequirements.

Warning labelsPersonnel working with or operating Motorola equipment must comply with any warninglabels fitted to the equipment. Warning labels must not be removed, painted over orobscured in any way.

Specificwarnings

Warnings particularly applicable to the equipment are positioned on the equipment andwithin the text of this manual. These must be observed by all personnel at all times whenworking with the equipment, as must any other warnings given in text, on the illustrationsand on the equipment.

High voltageCertain Motorola equipment operates from a dangerous high voltage of 230 V ac singlephase or 415 V ac three phase mains which is potentially lethal. Therefore, the areaswhere the ac mains power is present must not be approached until the warnings andcautions in the text and on the equipment have been complied with.

To achieve isolation of the equipment from the ac supply, the mains input isolator mustbe set to off and locked.

Within the United Kingdom (UK) regard must be paid to the requirements of theElectricity at Work Regulations 1989. There may also be specific country legislationwhich need to be complied with, depending on where the equipment is used.

RF radiationHigh RF potentials and electromagnetic fields are present in the base station equipmentwhen in operation. Ensure that all transmitters are switched off when any antennaconnections have to be changed. Do not key transmitters connected to unterminatedcavities or feeders.

Refer to the following standards:

� ANSI IEEE C95.1-1991, IEEE Standard for Safety Levels with Respect to HumanExposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz.

� CENELEC 95 ENV 50166-2, Human Exposure to Electromagnetic Fields HighFrequency (10kHz to 300GHz).

Laser radiationDo not look directly into fibre optic cables or optical data in/out connectors. Laserradiation can come from either the data in/out connectors or unterminated fibre opticcables connected to data in/out connectors.

Page 38: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 General warnings

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7

Liftingequipment

When dismantling heavy assemblies, or removing or replacing equipment, the competentresponsible person must ensure that adequate lifting facilities are available. Whereprovided, lifting frames must be used for these operations. When equipments have to bemanhandled, reference must be made to the Manual Handling of Loads Regulations1992 (UK) or to the relevant manual handling of loads legislation for the country in whichthe equipment is used.

Do not ...... substitute parts or modify equipment.

Because of the danger of introducing additional hazards, do not install substitute parts orperform any unauthorized modification of equipment. Contact Motorola if in doubt toensure that safety features are maintained.

Battery supplies

Do not wear earth straps when working with standby battery supplies.

Toxic material

Certain Motorola equipment incorporates components containing the highly toxic materialBeryllium or its oxide Beryllia or both. These materials are especially hazardous if:

� Beryllium materials are absorbed into the body tissues through the skin, mouth, ora wound.

� The dust created by breakage of Beryllia is inhaled.

� Toxic fumes are inhaled from Beryllium or Beryllia involved in a fire.

See the Beryllium health and safety precautions section for further information.

Page 39: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Human exposure to radio frequency energy (PCS1900 only)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8

Human exposure to radio frequency energy (PCS1900 only)

IntroductionThis equipment is designed to generate and radiate radio frequency (RF) energy. Itshould be installed and maintained only by trained technicians. Licensees of the FederalCommunications Commission (FCC) using this equipment are responsible for insuringthat its installation and operation comply with FCC regulations designed to limit humanexposure to RF radiation in accordance with the American National Standards InstituteIEEE Standard C95.1-1991, IEEE Standard for Safety Levels with Respect to HumanExposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz.

DefinitionsThis standard establishes two sets of maximum permitted exposure limits, one forcontrolled environments and another, that allows less exposure, for uncontrolledenvironments. These terms are defined by the standard, as follows:

Uncontrolled environmentUncontrolled environments are locations where there is the exposure of individuals whohave no knowledge or control of their exposure. The exposures may occur in livingquarters or workplaces where there are no expectations that the exposure levels mayexceed those shown for uncontrolled environments in the table of maximum permittedexposure ceilings.

Controlled environment

Controlled environments are locations where there is exposure that may be incurred bypersons who are aware of the potential for exposure as a concomitant of employment, byother cognizant persons, or as the incidental result of transient passage through areaswhere analysis shows the exposure levels may be above those shown for uncontrolledenvironments but do not exceed the values shown for controlled environments in thetable of maximum permitted exposure ceilings.

Maximumpermittedexposures

The maximum permitted exposures prescribed by the standard are set in terms ofdifferent parameters of effects, depending on the frequency generated by the equipmentin question. At the frequency range of this Personal Communication System equipment,1930-1970MHz, the maximum permitted exposure levels are set in terms of powerdensity, whose definition and relationship to electric field and magnetic field strengths aredescribed by the standard as follows:

Power density (S)Power per unit area normal to the direction of propagation, usually expressed in units ofwatts per square metre (W/m2) or, for convenience, units such as milliwatts per squarecentimetre (mW/cm2). For plane waves, power density, electric field strength (E) andmagnetic field strength (H) are related by the impedance of free space, 377 ohms. Inparticular,

� ���

���� ���� ��

where E and H are expressed in units of V/m and A/m, respectively, and S in units ofW/m2. Although many survey instruments indicate power density units, the actualquantities measured are E or E2 or H or H2.

Page 40: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Human exposure to radio frequency energy (PCS1900 only)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9

Maximumpermittedexposureceilings

Within the frequency range, the maximum permitted exposure ceiling for uncontrolledenvironments is a power density (mW/cm2) that equals f/1500, where f is the frequencyexpressed in MHz, and measurements are averaged over a period of 30 minutes. Themaximum permitted exposure ceiling for controlled environments, also expressed inmW/cm2, is f/300 where measurements are averaged over 6 minutes. Applying theseprinciples to the minimum and maximum frequencies for which this equipment is intendedto be used yields the following maximum permitted exposure levels:

Uncontrolled Environment Controlled Environment

1930MHz 1970MHz 1930MHz 1970MHz

Ceiling 1.287mW/cm2 1.313mW/cm2 6.433mW/cm2 6.567mW/cm2

If you plan to operate the equipment at more than one frequency, compliance should beassured at the frequency which produces the lowest exposure ceiling (among thefrequencies at which operation will occur).

Licensees must be able to certify to the FCC that their facilities meet the above ceilings.Some lower power PCS devices, 100 milliwatts or less, are excluded from demonstratingcompliance, but this equipment operates at power levels orders of magnitude higher, andthe exclusion is not applicable.

Whether a given installation meets the maximum permitted exposure ceilings depends, inpart, upon antenna type, antenna placement and the output power to which thisequipment is adjusted. The following example sets forth the distances from the antennato which access should be prevented in order to comply with the uncontrolled andcontrolled environment exposure limits as set forth in the ANSI IEEE standards andcomputed above.

Page 41: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Human exposure to radio frequency energy (PCS1900 only)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

10

Examplecalculation

For a base station with the following characteristics, what is the minimum distance fromthe antenna necessary to meet the requirements of an uncontrolled environment?

Transmit frequency 1930MHz

Base station cabinet output power, P +39.0dBm (8 watts)

Antenna feeder cable loss, CL 2.0dB

Antenna input power Pin P–CL = +39.0–2.0 = +37.0dB (5watts)

Antenna gain, G 16.4dBi (43.65)

Using the following relationship:

� ������

���

Where W is the maximum permissible power density in W/m2 and r is the safe distancefrom the antenna in metres, the desired distance can be calculated as follows:

� �����

���� �

������ �

��� ������ � �����

where W = 12.87 W/m2 was obtained from table listed above and converting frommW/cm2 to W/m2.

The above result applies only in the direction of maximum radiation of theantenna. Actual installations may employ antennas that have defined radiationpatterns and gains that differ from the example set forth above. The distancescalculated can vary depending on the actual antenna pattern and gain.

NOTE

Power densitymeasurements

While installation calculations such as the above are useful and essential in planning anddesign, validation that the operating facility using this equipment actually complies willrequire making power density measurements. For information on measuring RF fields fordetermining compliance with ANSI IEEE C95.1-1991, see IEEE Recommended Practicefor the Measure of Potentially Hazardous Electromagnetic Fields - RF and Microwave,IEEE Std C95.3-1991. Copies of IEEE C95.1-1991 and IEEE C95.3-1991 may bepurchased from the Institute of Electrical and Electronics Engineers, Inc., Attn:Publication Sales, 445 Hoes Lane, P.O. Box 1331, Piscattaway, NJ 08855-1331,(800) 678-IEEE or from ANSI, (212) 642-4900. Persons responsible for installation of thisequipment are urged to consult these standards in determining whether a giveninstallation complies with the applicable limits.

Other equipmentWhether a given installation meets ANSI standards for human exposure to radiofrequency radiation may depend not only on this equipment but also on whether theenvironments being assessed are being affected by radio frequency fields from otherequipment, the effects of which may add to the level of exposure. Accordingly, the overallexposure may be affected by radio frequency generating facilities that exist at the timethe licensee’s equipment is being installed or even by equipment installed later.Therefore, the effects of any such facilities must be considered in site selection and indetermining whether a particular installation meets the FCC requirements.

Page 42: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Beryllium health and safety precautions

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

11

Beryllium health and safety precautions

Introduction

Beryllium (Be), is a hard silver/white metal. It is stable in air, but burns brilliantly inOxygen.

With the exception of the naturally occurring Beryl ore (Beryllium Silicate), all Berylliumcompounds and Beryllium metal are potentially highly toxic.

Health issues

Beryllium Oxide is used within some components as an electrical insulator. Captivewithin the component it presents no health risk whatsoever. However, if the componentshould be broken open and the Beryllium Oxide, which is in the form of dust, released,there exists the potential for harm.

Inhalation

Inhalation of Beryllium Oxide can lead to a condition known as Berylliosis, the symptomsof Berylliosis are similar to Pneumonia and may be identified by all or any of thefollowing:

Mild poisoning causes fever, shortness of breath, and a cough that producesyellow/green sputum, or occasionally bloodstained sputum. Inflammation of the mucousmembranes of the nose, throat, and chest with discomfort, possibly pain, and difficultywith swallowing and breathing.

Severe poisoning causes chest pain and wheezing which may progress to severeshortness of breath due to congestion of the lungs. Incubation period for lung symptomsis 2–20 days.

Exposure to moderately high concentrations of Beryllium in air may produce a veryserious condition of the lungs. The injured person may become blue, feverish with rapidbreathing and raised pulse rate. Recovery is usual but may take several months. Therehave been deaths in the acute stage.

Chronic response. This condition is more truly a general one although the lungs aremainly affected. There may be lesions in the kidneys and the skin. Certain featuressupport the view that the condition is allergic. There is no relationship between thedegree of exposure and the severity of response and there is usually a time lag of up to10 years between exposure and the onset of the illness. Both sexes are equallysusceptible. The onset of the illness is insidious but only a small number of exposedpersons develop this reaction.

First aid

Seek immediate medical assistance. The casualty should be removed immediately fromthe exposure area and placed in a fresh air environment with breathing supported withOxygen where required. Any contaminated clothing should be removed. The casualtyshould be kept warm and at rest until medical aid arrives.

Page 43: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Beryllium health and safety precautions

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

12

Skin contact

Possible irritation and redness at the contact area. Persistent itching and blisterformations can occur which usually resolve on removal from exposure.

First aid

Wash area thoroughly with soap and water. If skin is broken seek immediate medicalassistance.

Eye contact

May cause severe irritation, redness and swelling of eyelid(s) and inflammation of themucous membranes of the eyes.

First aid

Flush eyes with running water for at least 15 minutes. Seek medical assistance as soonas possible.

Handlingprocedures

Removal of components from printed circuit boards (PCBs) is to take place only atMotorola approved repair centres.

The removal station will be equipped with extraction equipment and all other protectiveequipment necessary for the safe removal of components containing Beryllium Oxide.

If during removal a component is accidently opened, the Beryllium Oxide dust is to bewetted into a paste and put into a container with a spatula or similar tool. Thespatula/tool used to collect the paste is also to be placed in the container. The containeris then to be sealed and labelled. A suitable respirator is to be worn at all times duringthis operation.

Components which are successfully removed are to be placed in a separate bag, sealedand labelled.

Disposalmethods

Beryllium Oxide or components containing Beryllium Oxide are to be treated ashazardous waste. All components must be removed where possible from boards and putinto sealed bags labelled Beryllium Oxide components. These bags must be given to thesafety and environmental adviser for disposal.

Under no circumstances are boards or components containing Beryllium Oxide to be putinto the general waste skips or incinerated.

Product life cycleimplications

Motorola GSM and analogue equipment includes components containing Beryllium Oxide(identified in text as appropriate and indicated by warning labels on the equipment).These components require specific disposal measures as indicated in the preceding(Disposal methods) paragraph. Motorola will arrange for the disposal of all suchhazardous waste as part of its Total Customer Satisfaction philosophy and will arrangefor the most environmentally “friendly” disposal available at that time.

Page 44: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 General cautions

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

13

General cautions

Introduction

Observe the following cautions during operation, installation and maintenance of theequipment described in the Motorola GSM manuals. Failure to comply with thesecautions or with specific cautions elsewhere in the Motorola GSM manuals may result indamage to the equipment. Motorola assumes no liability for the customer’s failure tocomply with these requirements.

Caution labels

Personnel working with or operating Motorola equipment must comply with any cautionlabels fitted to the equipment. Caution labels must not be removed, painted over orobscured in any way.

Specific cautions

Cautions particularly applicable to the equipment are positioned within the text of thismanual. These must be observed by all personnel at all times when working with theequipment, as must any other cautions given in text, on the illustrations and on theequipment.

Fibre optics

The bending radius of all fibre optic cables must not be less than 30 mm.

Static discharge

Motorola equipment contains CMOS devices that are vulnerable to static discharge.Although the damage caused by static discharge may not be immediately apparent,CMOS devices may be damaged in the long term due to static discharge caused bymishandling. Wear an approved earth strap when adjusting or handling digital boards.

See Devices sensitive to static for further information.

Page 45: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Devices sensitive to static

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

14

Devices sensitive to static

Introduction

Certain metal oxide semiconductor (MOS) devices embody in their design a thin layer ofinsulation that is susceptible to damage from electrostatic charge. Such a charge appliedto the leads of the device could cause irreparable damage.

These charges can be built up on nylon overalls, by friction, by pushing the hands intohigh insulation packing material or by use of unearthed soldering irons.

MOS devices are normally despatched from the manufacturers with the leads shortedtogether, for example, by metal foil eyelets, wire strapping, or by inserting the leads intoconductive plastic foam. Provided the leads are shorted it is safe to handle the device.

Special handlingtechniques

In the event of one of these devices having to be replaced observe the followingprecautions when handling the replacement:

� Always wear an earth strap which must be connected to the electrostatic point(ESP) on the equipment.

� Leave the short circuit on the leads until the last moment. It may be necessary toreplace the conductive foam by a piece of wire to enable the device to be fitted.

� Do not wear outer clothing made of nylon or similar man made material. A cottonoverall is preferable.

� If possible work on an earthed metal surface. Wipe insulated plastic work surfaceswith an anti-static cloth before starting the operation.

� All metal tools should be used and when not in use they should be placed on anearthed surface.

� Take care when removing components connected to electrostatic sensitivedevices. These components may be providing protection to the device.

When mounted onto printed circuit boards (PCBs), MOS devices are normally lesssusceptible to electrostatic damage. However PCBs should be handled with care,preferably by their edges and not by their tracks and pins, they should be transferreddirectly from their packing to the equipment (or the other way around) and never leftexposed on the workbench.

Page 46: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Motorola GSM manual set

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

15

Motorola GSM manual set

Introduction

The following manuals provide the information needed to operate, install and maintain theMotorola GSM equipment.

Generic manuals

The following are the generic manuals in the GSM manual set, these manuals arerelease dependent:

Categorynumber

Name Cataloguenumber

GSM-100-101 System Information: General 68P02901W01

GSM-100-201 Operating Information: GSM System Operation 68P02901W14

GSM-100-311 Technical Description: OMC in a GSM System 68P02901W31

GSM-100-313 Technical Description: OMC Database Schema 68P02901W34

GSM-100-320 Technical Description: BSS Implementation 68P02901W36

GSM-100-321 Technical Description: BSS CommandReference

68P02901W23

GSM-100-403 Installation & Configuration: GSM SystemConfiguration

68P02901W17

GSM-100-423 Installation & Configuration: BSS Optimization 68P02901W43

GSM-100-501 Maintenance Information: Alarm Handling atthe OMC

68P02901W26

GSM-100-521 Maintenance Information: Device StateTransitions

68P02901W57

GSM-100-523 Maintenance Information: BSS FieldTroubleshooting

68P02901W51

GSM-100-503 Maintenance Information: GSM StatisticsApplication

68P02901W56

GSM-100-721 Software Release Notes: BSS/RXCDR 68P02901W72

Tandem OMC

The following Tandem OMC manuals are part of the GSM manual set for systemsdeploying Tandem S300 and 1475:

Categorynumber

Name Cataloguenumber

GSM-100-202 Operating Information: OMC SystemAdministration

68P02901W13

GSM-100-712 Software Release Notes: OMC System 68P02901W71

Page 47: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Motorola GSM manual set

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

16

Scaleable OMC

The following Scaleable OMC manuals replace the equivalent Tandem OMC manuals inthe GSM manual set:

Categorynumber

Name Cataloguenumber

GSM-100-202 Operating Information: Scaleable OMC SystemAdministration

68P02901W19

GSM-100-413 Installation & Configuration: Scaleable OMCClean Install

68P02901W47

GSM-100-712 Software Release Notes: Scaleable OMCSystem

68P02901W74

Related manuals

The following are related Motorola GSM manuals:

Categorynumber

Name Cataloguenumber

GSM-001-103 System Information: BSS Equipment Planning 68P02900W21

GSM-002-103 System Information: DataGen 68P02900W22

GSM-005-103 System Information: Advance OperationalImpact

68P02900W25

GSM-008-403 Installation & Configuration: Expert Adviser 68P02900W36

Service manuals

The following are the service manuals in the GSM manual set, these manuals are notrelease dependent. The internal organization and makeup of service manual sets mayvary, they may consist of from one to four separate manuals, but they can all be orderedusing the overall catalogue number shown below:

Categorynumber

Name Cataloguenumber

GSM-100-020 Service Manual: BTS 68P02901W37

GSM-100-030 Service Manual: BSC/RXCDR 68P02901W38

GSM-105-020 Service Manual: M-Cell2 68P02901W75

GSM-106-020 Service Manual: M-Cell6 68P02901W85

GSM-201-020 Service Manual: M-Cellcity 68P02901W95

GSM-202-020 Service Manual: M-Cellaccess 68P02901W65

GSM-101-SERIES ExCell4 Documentation Set 68P02900W50

GSM-103-SERIES ExCell6 Documentation Set 68P02900W70

GSM-102-SERIES TopCell Documentation Set 68P02901W80

GSM-200-SERIES M-Cellmicro Documentation Set 68P02901W90

Page 48: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Motorola GSM manual set

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

17

Category number

The category number is used to identify the type and level of a manual. For example,manuals with the category number GSM-100-2xx contain operating information.

Cataloguenumber

The Motorola 68P catalogue number is used to order manuals.

Orderingmanuals

All orders for Motorola manuals must be placed with your Motorola Local Office orRepresentative. Manuals are ordered using the catalogue number. Remember, specifythe manual issue required by quoting the correct suffix letter.

Page 49: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Motorola GSM manual set

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

18

Page 50: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 1

Course Administration

Page 51: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 52: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 1Course Administration i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter Objectives 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Course Introduction 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 53: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Page 54: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Chapter Objectives

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

1–1

Chapter ObjectivesOn completion of this chapter the student should be able to:

� Identify and explain procedures to be undertaken in accordance with courseadministration policy.

Page 55: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Course Introduction

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

1–2

Course Introduction

Facility Entry and exit:

Control of movement whilst attending the Motorola training facility at Europark is by theuse of the pac tag system. A pac tag will be issued daily upon signing in at the frontsecurity reception desk.

Fire Drill:

In the event of the fire alarm sounding all students are to proceed as instructed andassemble at the front of the building, outside reception, on the grass verge.

Fire exit points/routes are displayed in reception and at the entrance of the classroomcorridor. Students are advised to familiarise themselves with this information.

Participant List:

All students are to complete the participant list as indicated. Correct spelling of thestudent’s name is essential. It is from this list that the name of the student will be takenfor inclusion on the end of course certificate.

Next Of Kin Forms:

All overseas students are requested to complete a Next Of Kin form. This will be used inthe case of an emergency to contact a relative in the student’s home country.

Name Cards:

All students are to complete the name card found at the front of their course manuals,and place it in a prominent position on their desk.

Toilets:

Toilets are located through the door at the base of the stairs to the rear of the frontsecurity desk. Alternative toilets are at the top of the stairs behind the front securitydesk.

Smoke Room:

The designated smoking room is located in the vicinity of the ground floor toilets throughthe pac tag controlled door. Other than this location smoking is allowed nowhere onMotorola premises. Students who wish to smoke outside must do so beyond theperimeter fence.

Customer Care Administrator:

The customer care administrator at Europark is located in course reception, situatedthrough the double doors just to the right of Europark reception main entrance. Studentswith administrative problems are to contact the customer care administrator.

It is not the job of the customer care administrator to book taxies or arrangeaccommodation.

A taxi service can be contacted using the phone located at course reception.

Accommodation problems are to be directed to BTI in Glasgow (Tel: 8706074777).

Page 56: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Course Introduction

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

1–3

Student telephone: (Swindon Only)

The ONLY free phone students are permitted to use is the allocated student phone nextto the customer care administration reception desk; a pay phone also located in thatarea.

The student phone should only be used in the case of personal emergency or forimportant business calls.

Calls should be kept to a maximum of 5 minutes to allow other students to use thephone.

The phone is electronically locked from making international calls at all times except1200 – 1400 and 1500 – 1530 daily.

Mobile Phones:

Mobile phones are to be turned to silent (vibrate) mode, or switched off during lessons. Ifa student has to make or receive a call they must leave the room to do so.

Student Badge:

A student badge will be issued on a daily basis whilst the student is attending a course atMotorola. The front security desk at Europark main entrance reception will issue thestudent badge.

The issued badge entitles the holder to:

� A free meal at lunchtime:1 x soft drink.1 x starter.1 x main course.1 x dessert.

� Free hot drinks from the restaurant vending machines throughout the day.

No confectionery can be obtained using the student badge.

Course Brochure:

A course brochure advertising all courses run by Motorola, Technical Education andDocumentation, is available on request.

Prerequisites:

All students attending this course should have attended CP02 – Introduction to DigitalCellular.

Course Assessment:

The assessment paper, which is to be undertaken at the end of the course, is forMotorola evaluation purposes only. Certificates will be issued regardless of theassessment mark obtained.

Course Evaluation Form:

A course evaluation form is to be completed at the end of the course. Guidelines on howto complete the form are to be followed rigidly, as the results will be scanned. Theinstructor delivering the course will issue instructions on how to complete the evaluationform correctly.

Page 57: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Course Introduction

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

1–4

Page 58: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 2

BSS Overview

Page 59: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 60: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 2BSS Overview i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter Objectives 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GSM Network Components 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mobile Station (MS) 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Station System (BSS) 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Network Switching System (NSS) 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operations and Maintenance System 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station System Components 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Station System (BSS) 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcoder (XCDR) 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfacing 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoding 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station Controller (BSC) 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfacing 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Transceiver Station (BTS) 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfacing 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF Equipment 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 61: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Page 62: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Chapter Objectives

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–1

Chapter ObjectivesOn completion of this chapter the student should be able to:

� Describe the various components that make up a Public Land Mobile Network(PLMN), and explain their role within the network.

� Describe where in the PLMN the Base Station Subsystem resides, explaining thesimplified functional requirements of each component within it.

Page 63: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2GSM Network Components

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–2

GSM Network ComponentsThe following is a listing with a brief explanation of the major system components of theGSM System.

Mobile Station(MS)

The radio equipment and man-machine interface that a subscriber needs to accessPLMN services.

Base StationSystem (BSS)

The fixed end of the radio interface that provides control and radio coverage functions forone or more sites and their associated mobile stations. The BSS includes:

Base Transceiver Station (BTS) – The BTS cabinet is capable of operating as a BTS oras a completely self-contained BSS with up to five RF carriers in a single cabinet. TheBTS is discussed in greater detail later in this course.

Base Station Controller (BSC) – The BSC cabinet is only used at BSC sites andprovides the required expansion capabilities to interface to the maximum number ofremote BTS’s allowed by the Motorola GSM BSS offering. The BSC can be a cabinet toitself or as a function at other cabinets. The BSC is discussed in greater detail later inthis course.

Transcoder Function (XCDR) – Converts the signal from 64kbs A-law to 13kbit/s GSMspeech.

NetworkSwitchingSystem (NSS)

Mobile Switching Centre (MSC) – The telephone switching exchange for mobileoriginated or terminated subscriber traffic.

Authentication Centre (AUC) – Generates and stores authentication parameters forsubscriber identification.

Equipment Identity Register (EIR) – The data base oriented processing network entitythat contains centralized data base information for validating mobile stations based ontheir international mobile equipment identity.

Visitor Location Register (VLR) – The database oriented processing network entity thattemporarily contains information for subscribers roaming in a given location area.

Home Location Register (HLR) – The database oriented processing network entity thatcontains the master data base of the subscribers to a PLMN.

Echo Canceller (EC) – Performs echo suppression for all voice circuits.

Interworking Function (IWF) – Performs data rate adaptation between Public LandMobile Network (PLMN) and other existing land networks.

Page 64: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 GSM Network Components

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–3

Operations andMaintenanceSystem

Operations and Maintenance Centre (OMC) – A central network entity that controlsand monitors other network entities, including the quality of service provided by thenetwork. Two OMCs are used, OMC-R for the BSS monitoring and OMC-S for MSCmonitoring.

Network Management Centre (NMC) – Performs hierarchical regionalized networkmanagement of the complete GSM system.

Page 65: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2GSM Network Components

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–4

Base Station System Components

BSS11_02_02

PSTN

AUC HLR IWF EIR EC

MSCVLR

OMC–S NMC

OMC–R

MSCVLR

XCDR BSC

BSS

BTS BTS

XCDR

BSCBTS BTS

BSS

NSS

NMS

XCDR BSC

BSS

BTS BTS

Page 66: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Station System Components

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–5

Base Station System Components

Base StationSystem (BSS)

The GSM Base Station System is the equipment found at a cell site. It comprises of acombination of digital and RF equipment. The BSS provides the link between the mobileequipment and the Mobile Services Switching Centre.

The BSS communicates with the Mobile Station over the digital air interface and with theMobile Services Switching Centre (MSC) via 2 Mbit/s links.

The BSS consists of three major hardware components:

1. The Transcoder (XCDR)

The Transcoder is used to reduce the data rate of signals from the Network SwitchingSystem so that they can be efficiently sent over the air interface. Although theTranscoder is considered to be a part of the BSS, it is very often located closer to theMSC.

2. The Base Station Controller (BSC)

The BSC, as its name implies, provides the control for the BSS. The BSCcommunicates directly with the MSC. The BSC may control single or multiple BTSs.

3. The Base Transceiver Station (BTS)

The BTS contains the RF components that provide the air interface for a particular cell.This is the part of the GSM network which communicates with the mobile. The Antennais included as part of the BTS.

Page 67: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Station System Components

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–6

Base Station System (BSS)

BSS11_02_03

BTS

BSS

BSC

XCDR

Network Switching System

Page 68: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Transcoder (XCDR)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–7

Transcoder (XCDR)The first task carried out by the BSS, on information coming from the MSC, is‘Transcoding’. This converts the information from 64kbit/s PCM into 13kbit/s GSMdefined speech.

To do this the Transcoder needs to meet certain functional requirements. These can bedivided into three areas.

Interfacing

The serial links carrying the information from the Mobile Services Switching Centre(MSC) to the Transcoder (XCDR) must meet the correct interface and termination pointsat the XCDR.

Serial links carrying information leaving the XCDR, going to the Base Station Controller(BSC), must again be interfaced correctly. Formatting of the information must also beundertaken by the interface prior to placement onto the link.

Transcoding

The primary function of the Transcoder is to perform transcoding and data–rate adaption.A Transcoder Rate Adaption Unit provides this function.

Switching

Speech and data information from a trunk circuit, coming into the Transcoder, must berouted to the correct BSC. A unit called a Kiloport Switch provides for this function.

These functional requirements are performed under ‘processor control’. This gives theflexibility to make changes with software variations.

A more detailed functional description of the XCDR will be given in chapter 3.

Page 69: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Transcoder (XCDR)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–8

Transcoder Functional Requirements

BSS11_Ch2_04

Switch

Interface Interface Interface Interface

TRAU TRAU TRAU TRAU

Interface Interface Interface Interface

64kbit/s PCM

16kbit/s*

16kbit/s*

ControlProcessor

MSCE1 Links2.048Mbit/s

E1 Links2.048Mbit/s

XCDR

* 16kbit/s after the TRAU module will bemade up 13kbit/s speech/data information+ 3kbit/s TRAU data.

BSC BSC

Page 70: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Station Controller (BSC)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–9

Base Station Controller (BSC)The BSC provides overall Base Station System control. Being at the centre of the BSS itprovides connectivity between the MSC and a number of BTS’s.

To fulfil the role of BSC, specific functional requirements need to be met. These can besplit into two areas.

Interfacing

The transcoded information coming over the E1 links from the XCDR must meet with thecorrect interface and termination points at the BSC.

E1 links connecting the BSC to BTS’s under its control must also meet with correctinterface points. Information being placed onto the link must be correctly formatted by theinterface.

Switching

The BSC provides routing for transcoded speech and data, from the XCDR, to the BTScovering the cell in which the Mobile Station (MS) is located. A unit called a KiloportSwitch provides this function.

These functional requirements are performed under ‘processor control’. This gives theflexibility to make changes with software variations.

A more detailed functional description of the BSC will be given in section 3.

Page 71: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Station Controller (BSC)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–10

BSC Functional Requirements

BSS11_02_05

ControlProcessor

E1 Links2.048Mbit/sBSC

16kbit/s

16kbit/s*

XCDR

Interface Interface Interface Interface

Interface Interface Interface Interface

E1 Links

2.048Mbit/s

BTS BTS BTS BTS

SWITCH

Page 72: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–11

Base Transceiver Station (BTS)The BTS provides the Base Station System with the radio link via which the MScommunicates with the network.

To provide this facility the BTS needs to meet certain functional requirements. These canbe divided into three areas.

Interfacing

Information from the BSC arrives at the BTS on E1 links. These links must be correctlyinterfaced and terminated.

Switching

Speech and data arriving at the BTS needs to be routed to the correct MS. This isachieved by kiloport switch functionality on a module at the BTS.

RF Equipment

The speech and data information is sent to the MS over a radio link. RF equipment at theBTS provides this function.

A control processor oversees the operation of these functions. This permits changesthrough variations in software.

A more detailed description of the functionality of the BTS will be given in chapter 4.

Page 73: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–12

BTS Functional Requirements

BSS11_02_06

ControlProcessor

E1 Links2.048Mbit/sBTS

16kbit/s

BSC

RFEquipment

RFEquipment

RFEquipment

RFEquipment

Interface Interface

MS

SWITCH

Page 74: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

2–13

Page 75: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 3

Base Station System Controller

(BSSC) Cabinet Operational

Theory

Page 76: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 77: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 3Base Station System Controller (BSSC) Cabinet Operational Theory i. . .

Chapter Objectives 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcoder (XCDR) Functionality 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcoder (XCDR) 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terrestrial Interface 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main Control Processor 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronizing clock 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoder Static Switch 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station Controller (BSC) Functionality 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signalling Interface Interconnections (RXCDR/BSC/BTS) 3–10. . . . . . . . . . . . . . . . . . . . . . . . Message Transfer Link (MTL) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio Signalling Link (RSL) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoder Base Site Link (XBL) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operations and Maintenance Link (OML) 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Broadcast Link (CBL) 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station System Control (BSSC) Cabinet Overview 3–14. . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet types 3–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration options 3–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External features 3–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSSC Cabinet Internal Components 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU / RXU Shelf (up to two per cabinet) 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Distribution Board 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribution Alarm Board 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interconnect panel 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distribution Alarm Board (DAB) 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch settings (BSSC2) 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm functions 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Visual warnings 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communications 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuses and LEDs (BSSC2) 3–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Distribution Unit (PDU) 3–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input power 3–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSSC2 Cabinet Cabling 3–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power supply modules 3–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet power requirements 3–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrated Power Supply Module (IPSM) 3–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 3–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 78: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Enhanced Power Supply Module (EPSM) 3–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 3–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shelf Internal Connections Overview 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time Division Multiplexed (TDM) highway 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motorola Cellular Advanced Processor (MCAP) bus 3–46. . . . . . . . . . . . . . . . . . . . . . . Local Area Network (LAN) 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial bus 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Station Unit (BSU) Shelf 3–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Station Unit Shelf Assembly 3–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Station Unit (BSU) 3–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU shelf 3–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remote Transcoder Unit (RXU) Shelf 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remote Transcoder Unit Shelf Assembly 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remote Transcoder Unit (RXU) 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bus Termination Card (BTC) 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Processor (GPROC) Board 3–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPROC module 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTS and BSC GPROC functions 3–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RXCDR GPROC functions 3–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Processor (GPROC2) 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communication 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Troubleshooting and diagnostics 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTS and BSC GPROC2 functions 3–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPROC2 task groups and device types 3–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RXCDR GPROC2 functions 3–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type 43 interconnect board 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T43 connectors 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Balanced-line Interconnect Board (BIB) 3–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location 3–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIB connectors 3–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 79: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

v

Multiple Serial Interface (MSI/MSI2) 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MSI/MSI2 module 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General features 3–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1 Data 3–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T1 Data 3–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoded environment (E1) 3–81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcoded environment (T1) 3–81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC68000 processor 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EPROM 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock extraction 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame decoding 3–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 3–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EPROM 3–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock extraction 3–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame decoding 3–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1/T1/JT1 line to TDM interface circuits 3–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Clock (GCLK) 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock control/alarm logic 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buffered test ports 3–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference oscillator 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference dividers 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference encoders 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference fail detect 3–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GCLK Operating Modes 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Free Run 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hold Frequency 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set Frequency 3–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Closed loop 3–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GCLK Synchronization Configuration 3–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transcoder Board 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Architecture 3–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processor 3–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Digital Signal Processor (DSP) 3–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subrate multiplexer modes 3–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Line interface 3–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching 3–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCAP interface 3–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDM interface 3–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic DSP Processor (GDP) 3–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Parallel Interface Extender (PIX) 3–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 3–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIX module 3–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 80: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vi

The Battery Backup Board (BBBX) 3–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BBBX module 3–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Local Area Network (LAN) 3–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LANX module 3–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 3–110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local LAN data switching 3–110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended LAN data switching 3–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus arbiter 3–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Redundant LAN 3–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shelf ID 3–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front panel 3–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Motorola Cellular Advanced Processor (MCAP) 3–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MCAP Communications 3–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Address Area 3–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Area 3–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dual Port Ram (DPR) 3–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Downlink communication 3–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Uplink communication 3–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Time Division Multiplexed (TDM) Bus 3–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDM Frame Structure 3–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDM Bus Integrity 3–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Kiloport Switch (KSW) 3–126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Architecture 3–128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing reference 3–128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switchbound TDM interface structure 3–128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expansion switchbound highways 3–130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timeslot Interchange (TSI) 3–130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three-Party Conference (TPC) memory 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fixed/dynamic pattern registers 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Outbound selection MUX 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Highway monitor 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog timer 3–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt logic 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial interface logic 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KSW switching 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KSW in a BSC 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KSW in a RXCDR 3–134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSSC Cabinet Extension and Expansion 3–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remote (KSWXR) 3–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local (KSWXL) 3–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expansion (KSWXE) 3–140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 81: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vii

The Clock Extender (CLKX) 3–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 3–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 3–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLKX module 3–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generic Clock (GCLK) Distribution 3–144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 82: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

viii

Page 83: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Chapter Objectives

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–1

Chapter ObjectivesOn completion of this chapter the student should be able to:

� Describe the generic functions of a Transcoder (XCDR).

� Describe the generic functions of a Base Station Controller (BSC).

� Identify and state the function of the XCDR, BSC and Base Transceiver Station(BTS) signalling interconnections.

� Identify and state the function of the BSSC major subassemblies.

� Describe the configuration of the Base Station Unit (BSU) cage.

� State the function and describe the simplified principles of operation of thefollowing BSSC Field Replaceable Units (FRUs):

Generic Processor module (GPROC).

Multiple Serial Interface module (MSI).

Generic Clock module (GCLK).

Transcoder module (XCDR).

Generic Digital Processor module (GDP).

Parallel Interface Extender module (PIX).

Battery Back-up Board (BBBX).

� State the function and describe the simplified principles of operation of the BSSCcommunications buses.

� Describe the use of the BSSC cabinet extension and expansion options.

Page 84: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Transcoder (XCDR) Functionality

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–2

Transcoder (XCDR) FunctionalityThe Transcoder (XCDR) is required to convert the speech or data output from the MSC(64 kbit/s PCM), into the form specified by GSM specifications for transmission over theair interface, that is, between the BSS and MS (13 kbit/s).

The 64 kbit/s Pulse Code Modulation (PCM) circuits from the MSC, if transmitted on theair interface without modification, would occupy an excessive amount of radio bandwidth.This would use the available radio spectrum inefficiently. The required bandwidth istherefore reduced by processing the 64 kbit/s circuits so that the amount of informationrequired to transmit digitized voice falls to 13 Kbit/s. 3 kbit/s of TRAU data containsinformation to control the channel coders and call status information such as is DTX onor off during the call.

The Transcoding function may be located at the MSC, BSC, or BTS.

The TRAU data of 3 kbit/s is added to the 13 kbit/s channel leaving the Transcodingfunction to form a gross traffic channel of 16 kbit/s which is transmitted over theterrestrial interfaces to the BTS. At the BTS the TRAU data is removed and the 13 kbit/sis processed to form a gross data rate of 22.8 kbit/s for transmission over the airinterface.

For data transmissions the data is not Transcoded but data rate adapted from 9.6 kbit/s(4.8 kbit/s or 2.4 kbit/s may also be used) up to a gross rate of 16 kbit/s for transmissionover the terrestrial interfaces. Again this 16 kbit/s contains a 3 kbit/s TRAU.

As can be seen from the diagram opposite, although the reason for Transcoding is toreduce the data rate over the air interface, the loading of the terrestrial links is alsoreduced approximately on a 4:1 ratio.

Page 85: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Transcoder (XCDR) Functionality

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–3

Transcoder Operation

J

BSS11_3_1

16

P

O

N

M

L

K

J

I

MTL1

H

G

D

E

D

C

B

A

SYNC

16

MTL2

X

W

V

U

T

S

R

Q

SYNC

RE

SE

RV

ED

RE

SE

RV

ED

TRANSCODER

MTL1

RE

SE

RV

ED

RE

SE

RV

ED

SYNCMTL2

X W C B A

P O

SYNC

16

16

00

00

64 kbit/s TS on E1 64 kbit/s TS on E1

16 kbit/s TCH2 bits per sub group

64 kbit/s TCH8bits per sub group

BSC MSC

Page 86: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Transcoder (XCDR)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–4

Transcoder (XCDR)The function of the Transcoder is to interface the data link from the MSC to the mobile,via the BSS.

TerrestrialInterface

The Terrestrial interface provides the necessary connection to the network via a suitablelink. This interface provides the correct formatting and impedance matching to therelevant physical link. The most common link types are 2.048Mbit/s E1 link or1.544Mbit/s T1.

Main ControlProcessor

This is the main processor of the site and can be split into two main areas:

� Site Control

This section is in control of the main processes and hardware to maintain the siteintegrity. The main functions include internal data bus control and initialization ofthe site at power up. It will also look after the environmental aspects of the site, forexample temperature levels.

� Operations and Maintenance

This process collects any faults or operational problems from within theTranscoder site and report them back to the OMC. It will also report any errors onthe Transcoding boards to the BSC allowing the BSC to inform the MSC of thefaulty circuits. This is because there are no signaling links between the Transcoderand the MSC. These statistics are used to monitor the network elements, includingdetails such as the performance of the radios in maintaining the links to themobiles, to the amount of processing power used.

Synchronizingclock

As all the above processes need specific and accurate timing signals each XCDR will beequipped with a clock to make sure everything is synchronized.

Transcoder StaticSwitch

The switch module used in the XCDR to route call information is known as a TimeslotSwitch (TSW). The TSW is a static device, in that its port connections are fixed. Thisprovides a one to one physical mapping between the traffic channels on the MSC toXCDR interface and traffic channels on the XCDR to BSC interface.

Page 87: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Transcoder (XCDR)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–5

Function of the Transcoder

BSS11_3_2

clock

OMC

TerrestrialInterface

+Transcoding

TerrestrialInterface

+Transcoding

TerrestrialInterface

+Transcoding

TerrestrialInterface

+Transcoding

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

Synchronisingclock

Ops +Maintenance

Sitecontrol

Main ControlProcessor

MSC

Static Switch

Page 88: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Station Controller (BSC) Functionality

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–6

Base Station Controller (BSC) Functionality

Overview

The function of the BSC is to provide the overall control for the BSS. It controls andmanages the associated BTSs, and interfaces with the Operations and MaintenanceCentre (OMC) and the Mobile Switching Services Centre (MSC). The generic entitiesinclude the following:

Dynamic Switch

During the call set-up procedure the MS is instructed to use a particular timeslot on theair interface, to send and receive traffic bursts. This channel allocation is done by theBSC GSM call processing software. However, the call in progress not only requires an airinterface channel, but also a terrestrial circuit to connect it through to the MSC. Thiscircuit allocation is done by the MSC. The function of the switch is to connect each BSCallocated channel to the correct MSC allocated circuit. This is done on a per call basis.Therefore the switching has to be done on a dynamic basis, as there will be calls startingand finishing all the time with each requiring separate connection. The switching matrixalso lets the BSS perform handovers within a single BSS without involving the MSC.

Terrestrial Interface

The terrestrial interface provides the necessary connection to the network via a suitablelink. This interface provides the correct formatting and impedance matching to therelevant physical link. The most common link types are 2.048Mbit/s E1 link or1.544Mbit/s T1 link.

Main Control Processor

This is the main processor of the site and can be split into three main areas:

� Site Control

This section is in control of the main processes and hardware to maintain the siteintegrity. The main functions include internal data bus control and initialization ofthe site at power up. It also maintains the environmental aspects of the site, forexample temperature levels.

� Operations and Maintenance

As well as collecting details of any faults or operational problems from within thewhole BSS the Operations and Maintenance area collects performance statisticsand reports them to the controlling entity further up in the network (the OMC).These statistics are used to monitor the network elements, everything from theperformance of the radios in maintaining the links to the MS, to the amount ofprocessing power used.

� Switch Manager

The switch manager will connect a mobile terrestrial circuit, allocated by the MSCfor a particular call, to the air interface channel allocated by the BSS. In thisrespect it is in control of the dynamic switch ensuring that all calls and signalingare put through to the correct place be it a control processor or ultimately the MS.Information about which connections are made is received from the GSM callprocessing software resident on the Link Control Processors (LCP).

Page 89: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Station Controller (BSC) Functionality

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–7

Functions of a BSC

BSS11_3_3

Synchronizingclock

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

Dynamic Switch

Ops +Maint.

SiteControl

Switchmanager

Main ControlProcessor

Link ControlProcessor

Link ControlProcessor

MSC LinkProcessing

MSC LinkProcessing

GSM CallProcessing

GSM CallProcessing

Page 90: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Station Controller (BSC)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–8

Base Station Controller (BSC)

Link Control Processor (LCP)

The LCP maintains communications to each of the BTSs within the BSS and/or the MSC.In addition to this it provides the overall call management within the BSS, i.e. makingsure calls are routed correctly and the calls are being processed by the best BTS/cellavailable to the MS. It is made up of two main functional areas:

GSM Call Processing

The BSC’s GSM call processing is responsible for Layer 3 call management operations.These include the connection signaling (e.g. messaging to a particular MS) andconnectionless signaling (e.g. messaging relating to global resets, load limiting, blocking).This messaging, via the Radio Signaling Link (RSL) connects the BSC call processing tothe relevant GSM call processes on the BTSs within that BSS. Together both GSM callprocessing sections maintain the call for its duration ensuring the best link to the MS isavailable. Note: This process controls the RSL.

MSC Link Processing

The MSC link process, as the name suggests, controls the link back to the MSC from theBSC, the Message Transfer Link (MTL). This process deals with the Layer 2 and Layer 3messaging protocols required to interface with the MSC. The MTL carries messagesrelating to call processing and operation status.

Note: Generally at the link processor only one of the processes are active at any onetime, either GSM call processing or MSC link processing.

Synchronizing clock

As all the above processes need specific and accurate timing signals each BSC will beequipped with a clock to ensure they are synchronized.

Page 91: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Station Controller (BSC)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–9

Function of a BSC

BSS11_3_3

Synchronizingclock

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

TerrestrialInterface

Dynamic Switch

Ops +Maint.

SiteControl

Switchmanager

Main ControlProcessor

Link ControlProcessor

Link ControlProcessor

MSC LinkProcessing

MSC LinkProcessing

GSM CallProcessing

GSM CallProcessing

Page 92: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Signalling Interface Interconnections (RXCDR/BSC/BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–10

Signalling Interface Interconnections (RXCDR/BSC/BTS)To enable each of the network entities to function correctly they must be able to passcontrol and status messages to each other. This is done by using several signaling links.Each of the signaling interfaces normally uses a single 64 kbit/s timeslot on the common2 Mbit/s link carrier. Some interfaces support multiple timeslot configurations, i.e. morethan one timeslot may be configured to support the signal flow.

MessageTransfer Link(MTL)

This link exists between the BSC and MSC. The MTL uses the C7 signalling systemincluding the BSS Application Part (BSSAP). This link provides all control informationbetween the BSC–MSC, MSC–MS including:

� Requests for initial connection.

� Any change in the attributes in call connection.

� Handling handovers.

Radio SignallingLink (RSL)

This link exists between the BSC and the BTS. The RSL uses LAPD formatted signallingand requires 1 x 64kbit/s timeslot or 1 x 16kbit/s channel. Each BTS site will require aminimum of 1 LAPD signalling channel.

The link provides support for the call processing software at the BTS, allowing the BSCto send and receive control information. Statistic collection and fault reporting are alsosupported.

Transcoder BaseSite Link (XBL)

This is an optional link for control and communications between the RXCDR and BSC.The XBL provides two-way communication between the master processor in the BSCand the master processor in the RXCDR. A dedicated 64 kbit/s timeslot is used on theE1/T1 line between the RXCDR and the BSC. The XBL enables the RXCDR to reportfailed traffic circuits at the RXCDR to the BSC. The BSC performs different functionsdepending on the type of fault the RXCDR reports:

If RXCDR traffic circuits fail, the BSC disables the circuits by sending blocking messagesto the MSC.

If there are internal RXCDR circuit faults, or faults that do not cause the loss of the serialcommunications link, the BSC blocks the affected traffic circuits. For example, if a XCDRboard fails, the BSC blocks the 30 traffic channels associated with that XCDR board.

Page 93: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Signalling Interface Interconnections (RXCDR/BSC/BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–11

Transcoder/BSC/BTS Interconnectivity

1

2

CBC

OMC

Sync1x TFC 64 kbps1x TFC 64 kbps

MTL BSC 1

SyncOML 1XBL

MTL BSC 1

4x TFC 16 kbps4x TFC 16 kbps

SyncOML 2

XBL

MTL BSC 2

4x TFC 16 kbps4x TFC 16 kbps

BTS

MSCSync

1x TFC 64 kbps1x TFC 64 kbps

MTL BSC 2

OM

L

OM

C R

XC

DR

Syn

c

OM

LS

ync

012

16

3031

31 2 1 0(X.25)

31 30 1 0(X.25)

012

16 3031

012

16

3031

01

2

16

3031

(C7)

(C7)

(C7)

BSC1

BSC2

BSS11_3_4

SyncRSL

RTF 1

01

28

3031

29 RTF 1RTF 0RTF 0

(LAPD)

Page 94: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Signalling Interface Interconnections (RXCDR/BSC/BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–12

Operations andMaintenanceLink (OML)

This link is for control and communications between the BSS and OMC. OML links fromBSCs are normally nailed through the RXCDR, and OML links from the RXCDR aredirect to the OMC. The OML uses the X.25 protocol. The OMC uses the OML to:

� Load software.

� Load configuration parameters.

� Send messages to, and receive messages from the BSS.

� Collect statistics from BSS

� Fault / event management

Cell BroadcastLink (CBL)

This link exists between the BSC and the Cell Broadcast Centre (CBC). The CBL usesthe LAPB/X25 protocol. The link is used to pass Short Message Service (SMS) cellbroadcast information from outside the GSM network to the BSC.

Page 95: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Signalling Interface Interconnections (RXCDR/BSC/BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–13

Transcoder/BSC/BTS Interconnectivity

1

2

CBC

OMC

Sync1x TFC 64 kbps1x TFC 64 kbps

MTL BSC 1

SyncOML 1XBL

MTL BSC 1

4x TFC 16 kbps4x TFC 16 kbps

SyncOML 2

XBL

MTL BSC 2

4x TFC 16 kbps4x TFC 16 kbps

BTS

MSCSync

1x TFC 64 kbps1x TFC 64 kbps

MTL BSC 2

OM

L

OM

C R

XC

DR

Syn

c

OM

LS

ync

012

16

3031

31 2 1 0(X.25)

31 30 1 0(X.25)

012

16 3031

012

16

3031

01

2

16

3031

(C7)

(C7)

(C7)

BSC1

BSC2

BSS11_3_4

SyncRSL

RTF 1

01

28

3031

29 RTF 1RTF 0RTF 0

(LAPD)

Page 96: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Station System Control (BSSC) Cabinet Overview

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–14

Base Station System Control (BSSC) Cabinet Overview

Introduction

This chapter is a mechanical and electrical description of the base station system control(BSSC) cabinet.

A BSSC cabinet can be configured as:

� A Base Station Controller (BSC) containing digital hardware modules configured tocontrol the radio subsystem.

� A Remote Transcoder (RXCDR) containing digital hardware modules configured toprovide an interface between the BSC and Mobile Switching Centre (MSC).

� A combination of the BSC and RXCDR functions.

The difference between the BSC and RXCDR configurations is in the complement ofdigital modules on the backplane.

The information in this chapter applies to all three of the above configurations and, unlessotherwise indicated, to GSM, extended GSM (EGSM), DCS1800 and PCS1900 systems.

The BSSC and BSSC2 cabinet are similar, the BSSC2 cabinet is described.Where there are differences these are described in the text.

NOTE

Cabinet types

The earlier BSSC cabinet is the same as the BSSC2 except in its handling of powerdistribution and alarms.

The BSSC and BSSC2 cabinets can be powered by a positive earth (–48 V or –60 V) ornegative earth (+27 V) supply (this is requested by the customer and configured duringinitial installation). The only difference in the cabinets is the inclusion of fan powerconverters in the –48/–60 V versions of the BSSC to derive +27 V power for the coolingfans.

Page 97: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Station System Control (BSSC) Cabinet Overview

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–15

BSSC2 Cabinet – External View

BSS11_Ch3_05

Interconnect Panel

Intake Air Vents

Exhaust Air V ents

Intake Air Vents

Exhaust Air V ents

Door Hinges

Page 98: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Station System Control (BSSC) Cabinet Overview

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–16

Configurationoptions

BSC configuration

The BSSC2 cabinet configured as a BSC contains at least one base station unit (BSU)shelf assembly. This assembly is in the lower portion of the cabinet; the upper portion ofthe cabinet can contain a second BSU configured either as a separate BSC or as anexpansion of the BSU on the lower shelf.

Transcoding can be performed at the BSC. In this case, the upper portion of the cabinetcontains a separate transcoder unit (RXU) shelf assembly instead of a second BSU.

The top shelf contains the power distribution unit (PDU) which consists of a distributionalarm board and a dc circuit breaker panel.

RXCDR configuration

The BSSC2 cabinet configured as an RXCDR contains at least one RXU shelf assembly,located in the lower portion of the cabinet. A second RXU can be located in the upperportion of the cabinet. The top shelf contains the PDU, which consists of a distributionalarm board and a dc circuit breaker panel.

BSU and RXU shelves

Each shelf in a cabinet can be configured as a separate network element.

The BSU and RXU shelf assemblies consist of:

� A backplane.

� Two vertical slot module shelves.

� A three compartment shelf.

The lower portion of the two vertical slot shelves holds 26 full size digital modules in slotsnumbered L0 to L28. The upper portion of the shelf holds 28 half size digital modules inslots numbered U0 to U28.

There are three compartments at the bottom of the BSU/RXU shelf assembly, withslide-in mountings for power supply modules. The left compartment is for an optionalredundant power supply module.

External features

The cabinet door is hinged on the left side of the cabinet, and has four air vents withgrilles:

� Intake vents have air filters.

� Exhaust vents have exhaust fans fitted behind the vents.

All connections to the cabinet are at the interconnect panel, which is on top of thecabinet. This panel also has feed-through tubes for routing fibre optic inter-cabinetcables in and out of the cabinet. All cabinets are RF/EMI shielded.

Page 99: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Station System Control (BSSC) Cabinet Overview

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–17

BSSC Cabinet – External View

BSS11_Ch3_05

Interconnect Panel

Intake Air Vents

Exhaust Air V ents

Intake Air Vents

Exhaust Air V ents

Door Hinges

Page 100: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSSC Cabinet Internal Components

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–18

BSSC Cabinet Internal ComponentsThe internal components of the BSSC cabinet include the following:

BSU / RXU Shelf(up to two percabinet)

The function of these shelves is to house the main processing section of the BSC /RXCDR. It is made up from several different sections:

� Half size modules

These cards are generally used for the shelf expansion / extension interfaces,including interfaces for the LAN, data bus, synchronising clock.

� Full size cards

These cards run the main BSC / RXCDR software. These software processesinclude the GSM call processing software, site control, operations andmaintenance etc. Also included amongst the full size cards are the switchingmatrix and synchronising clock.

� Power Supply Modules

The PSMs convert the input voltage to the correct voltage for the shelf’s cards.

� Cooling Fans

These re-circulate the air across the processing cards and PSMs to maintain acool working temperature.

PowerDistributionBoard

This board provides protection in the form of circuit breakers for the shelves againstsurges in the input voltage.

DistributionAlarm Board

This board provides a method of the monitoring and reporting any alarms generated fromthe BSSC cabinet

Page 101: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSSC Cabinet Internal Components

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–19

BSSC2 Internal View

BSS11_3_6

Power Distribution Unit (PDU)

Half–size Digital Board Shelf

Full–size Digital Board Shelf

Power Supply Modules

Half–Size Digital Board Shelf

Full–Size Digital Board Shelf

Power Supply Modules

Exterior Door Removed to Show Detail

Fans

Distribution Alarm Board (DAB)

Page 102: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Interconnect panel

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–20

Interconnect panel

Location

The interconnect panel is on top of the cabinet.

Purpose

This panel provides connections for:

� DC input power.

� 2.048 Mbit/s line interconnect modules.

� Customer defined alarm equipment input and output.

� +27 V battery backup input for DRAM.

� +27 V power/alarm for external receiver multicoupler and external remotelytuneable combiner (BTS only).

The interconnect panel has feed-through tubes for routing fibre optic intercabinet cablesinto and out of the cabinet. Feed–through tubes do not compromise the cabinet’s EMCscreening, as the frequencies used are outside the waveguide cut off parameters.

The 2.048 Mbit/s line interconnection modules are:

� Type 43 interconnect boards (T43), used for unbalanced lines.

� Balanced-line interconnect boards (BIB), used for balanced lines.

Connectors

The table details the interconnect panel connectors for the BSSC2:

Connector Function Internal destination External destination

+27 V batterybackup

DRAM backupbattery

DAB connector PC4 andBBBX connector PC2

+27 V backup battery

MS0 to MS3 Multiple serialinterface ports (up tosix E1/T1 circuits at

MS0 to MS3 connectors onlower BSU/RXU backplane

E1/T1 circuits sourceor terminationequipment (via a T43

MS4 to MS7six E1/T1 circuits ateach connector; sixTx and six Rxcircuits)

MS4 to MS7 connectors onupper BSU/RXU backplane

equi ment (via a T43or BIB)

PIX0 and PIX1 Customer alarminput and outputports

Front edge connector of PIXmodules

Customer alarmequipment

Page 103: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Interconnect panel

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–21

Interconnect Panel for BSSC2

BSS11_Ch3_07

MS0 MS1 MS2 MS3

MS4

T43orBIB

MS5 MS6 MS7

T43or

BIB

T43or

BIB

T43or

BIB

T43or

BIB

T43or

BIB

T43or

BIB

T43or

BIB

Fibre optic cablesfeed–through tube

Earth stud

+27 V batterybackup

VIN

OV

+27 V DC(+20 V to +30V)

Fibre optic cablesfeed–through tube

PIX1

PIX0

Page 104: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–22

Distribution Alarm Board (DAB)

Purpose

The distribution alarm board (DAB):

� Distributes +27 V dc to units within the cabinet via 25 fuses.

� Monitors alarm lines.

� Passes individual alarms to the GPROC/GPROC2.

The DAB processes operational failure signals from:

� Ruptured fuses.

� The fan stall sense line from each cooling fan.

Two bi-coloured LEDs (D43 and D8) are mounted on the DAB to indicate both DAB andcabinet-based faults. The other LEDs indicate fuse failures according to the tables in thissection. The DAB can be used in a BSSC2 cabinet.

Requirements

The DAB is fitted in the PDU shelf.

Switch settings(BSSC2)

DAB switches S1 and S2 set the following configurations in the BSSC2:

Function Switch Position Setting

VSWR1 (Sector 1) S1 1 OFF

VSWR2 (Sector 2) S1 2 OFF

VSWR3 (Sector 3) S1 3 OFF

Spare S1 4 OFF

Battery backup O/P 2 S1 5 ON (OFF if fitted)

Battery backup O/P 1 S1 6 ON (OFF if fitted)

Battery backup I/P 2 S1 7 ON (OFF if fitted)

Battery backup I/P 1 S1 8 ON (OFF if fitted)

DRCU5 S2 1 OFF

DRCU2 S2 2 OFF

DRCU4 S2 3 OFF

DRCU1 S2 4 OFF

DRCU3 S2 5 OFF

DRCU0 S2 6 OFF

Spare S2 7 OFF

BBB ID S2 8 ON (if battery backup selected)

Page 105: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–23

DAB diagram

BSS11_3_8.

PC3

PC4

PC2S1

U4S2

PC7

OV

+27 V

LEDD43

LEDD8

F8 F9 F7 F4 F5 F6 F26 F21 F25 F22 F24 F23

LED LED LED LED LED LED LED LED LED LED LED LEDD21 D23 D24 D27 D29 D31 D32 D33 D35 D37 D38 D41

LED LED LED LED LED LED LED LED LED LEDD22 D25 D26 D28 D30 D34 D36 D39 D40 D42

F10 F11 F13 F12 F15 F14 F30 F29 F27 F28 F20 F18

PC5 PC6

BBBR forGPROC1

To backplaneof cages (serial bus)

Power to fans Power to externalequipment

To backplane ofcages (serial bus)

Circuit breakermonitor lines

F19

Page 106: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–24

Alarm functions

The DAB produces alarms for several different devices and modules:

� 25 fuses.

� Battery backup input and output alarms.

� Multicoupler.

� Six circuit breakers.

� Six fan alarms.

Each signal from the fuse alarms is at a nominal +27 V level and is brought to a TTL highlevel. Under no-fault conditions, the TTL output is held at a high level. If one or morefuses fail on the multicoupler fuse panel the TTL level is low.

The addressable asynchronous receiver/transmitter (AART) has eight status inputs,which are multiplexed to obtain the required alarm functionality.

Visual warnings

Each +27 V (nominal) fuse protected branch circuit that powers cabinet equipment has acorresponding LED indicator on the DAB. The LED lights if the fuse is ruptured by a faultcondition, and the associated alarm line goes low.

The DAB also provides visual warnings for alarms via two bi-coloured LEDs:

� D43 indicates any internal cabinet or multicoupler and combiner failure.

� D8 indicates a fuse failure on the DAB only.

Both LEDs are driven by the master GPROC/GPROC2 in response to alarms generatedby the DAB; red indicates an alarm, otherwise the LEDs remain green. If the masterGPROC/GPROC2 is not running then both LEDs default to red.

Communications

The DAB communicates with the master GPROC/GPROC2 via the serial bus link. Themaster GPROC/GPROC2 always initiates connections, in which all modules respondwith status reports on the serial bus.

The DAB processes operational failure reports from the following:

� Ruptured fuses.

� Protected side of circuit breakers (except DPS circuit breakers, which aremonitored by the master GPROC/GPROC2 directly).

� Fan stall sense line from each cooling fan.

� Hardware failures reported directly to the DAB are individually sent to the masterGPROC/GPROC2 via the serial bus.

The serial bus circuitry is powered by the same +5 V that powers each digital card shelf.The power supplies that provide this +5 V (as well as � 12 V) deliver isolated outputs.Thus all devices in the serial bus circuit have a return that is floating (digital) earthrelative to the cabinet (main) earth. However, many of the signals being alarmed arereferenced to cabinet earth.

Page 107: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–25

Fuses and LEDs(BSSC2)

The table details the functions of the DAB fuses and LEDs used in the BSSC2:

Fuse Rating Power to LED

F4 0.5 A Not used D27

F5 0.5 A Not used D29

F6 0.5 A Not used D31

F7 0.5 A Not used D24

F8 0.5 A Not used D21

F9 0.5 A Not used D23

F10 0.5 A Not used D22

F11 0.5 A Not used D25

F12 4 A Not used D28

F13 4 A Not used D26

F14, F15 4 A Not used D30

F18 2 A Not used D42

F19 0.5 A DAB supply

F20 2 A Not used D40

F21 2 A Upper fan 5 D33

F22 2 A Upper fan 4 D37

F23 2 A Upper fan 3 D41

F24 2 A Lower fan 2 D38

F25 2 A Lower fan 1 D35

F26 2 A Lower fan 0 D32

F27 2 A Not used D36

F28 2 A Not used D39

F29, F30 4 A Not used D34

Page 108: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power Distribution Unit (PDU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–26

Power Distribution Unit (PDU)

Overview

The power distribution unit (PDU) is located on the top shelf of the cabinet and:

� Distributes dc power throughout the cabinet.

� Provides an alarm interface.

It consists of a circuit breaker panel and one of the following:

� A distribution alarm board (DAB).

� A power alarm board (PAB).

� A power distribution board (PDB) with an alarm interface board (AIB).

Input power

DC input power is applied at the interconnection panel on top of the cabinet and is routedto:

� The VIN bus bar.

� The earth (GND) bus bar in the PDU.

A second bus bar obtains +27 V power from:

� The power supply modules (PSMs) in the lower BSU or RXU in positive earth(–48/–60 V) cabinets.

� The VIN and GND busbars via busbar links in negative earth (+27 V) cabinets.

Seven circuit breakers distribute power to units within the BSSC2 cabinet.

� CB1, at 30 A, provides +27 V power to the DAB.

� CB5 to CB10, at 60 A, provide power to the PSMs:

– In a positive earth cabinet, the circuit breakers supply –48/–60 V power tothe IPSMs.

– In a negative earth cabinet, the circuit breakers supply +27 V power to theEPSMs.

Page 109: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power Distribution Unit (PDU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–27

Page 110: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSSC2 Cabinet Cabling

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–28

BSSC2 Cabinet Cabling

Overview

This section contains the following cabinet cabling diagrams for a BSSC2 with a DABtype PDU:

Diagram 1

BSSC2 cabinet (–48/–60 V) dc power and alarm cabling diagram (upper half).

Diagram 2

BSSC2 cabinet (–48/–60 V) dc power and alarm cabling diagram (lower half).

Diagram 3

BSSC2 cabinet (+27 V) dc power and alarm cabling diagram (upper half).

Diagram 4

BSSC2 cabinet (+27 V) dc power and alarm cabling diagram (lower half).

Page 111: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSSC2 Cabinet Cabling

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–29

Diagram 1 – BSSC2 cabinet (–48/–60 V) dc power andalarm cabling (upper half)

INTERCONNECT PANEL(TOP OF CABINET)

PC6

CIRCUITBREAKER

CB

2C

B1

CB

3

PC3

PC4

PC7

PC5 GNDBUSBAR(GBB)

DAB

PS

28P

S18

PS

8

PC2

CB

5C

B4

CB

6C

B7

CB

8

CB

10C

B9

VIN BUS BAR

0V

+27V

PANEL

1 2 3 4 5FAN 3FAN 4FAN 5

+27 V

OPT

BACKUPBATT

PX

1

PX

0

MS4 MS5 FBR0OPTFBR1

VIN

0V

ELCAP PANEL

6

GBB

PDU FRAME

BUSBAR

AI0

AI1

AI2 MS0 MS1 MS2 MS3

PS28 PS29 PS18 PS19PS32 PS8 PS9

CHASSISGND

IPSM 0 –48/–60VIPSM 1 –48/–60VIPSM 2 –48/–60V

UPPER

BBBX

PC1

PC2

MS0 MS1 MS2 MS3

MS6 MS7

PS

8

PS

28P

S18

6

BSU/RXU BACKPLANE

BSS11_Ch3_09

Page 112: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSSC2 Cabinet Cabling

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–30

Diagram 2 (opposite)

BSSC2 cabinet (–48/–60 V) dc power and alarm cabling diagram (lower half).

Page 113: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSSC2 Cabinet Cabling

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–31

Diagram 2 – BSSC2 cabinet (–48/–60 V) dc power andalarm cabling (lower half)

AI0

AI1

AI2 MS4 MS5 MS6 MS7

PS28PS29 PS18PS19PS32 PS8PS9

CHASSISGND

FAN 1 FAN 0

IPSM0 –48/–60V

LOWER

1 2 3 4 5

FAN 2

6

BBBX

PC1

PC2

PS50PS51

BSU/RXU BACKPLANE

27 V OUTIPSM2 –48/–60 IPSM1 –48/–60

IPSM0 –48/–60

BSS11_Ch3_10

Page 114: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSSC2 Cabinet Cabling

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–32

Diagram 3 (opposite)

BSSC2 cabinet (+27 V) dc power and alarm cabling diagram (upper half).

Page 115: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSSC2 Cabinet Cabling

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–33

Diagram 3 – BSSC2 cabinet (+27 V) dc power and alarmcabling (upper half)

INTERCONNECT PANEL(TOP OF CABINET)

PC6CIRCUITBREAKER

CB

2C

B1

CB

3

PC3

PC4

PC7

PC5 GNDBUSBAR(GBB)

DAB

PS

28P

S18

PS

8

PC2

CB

5C

B4

CB

6C

B7

CB

8

CB

10C

B9

VIN BUS BAR

0V

+27VPANEL

1 2 3 4 5FAN 3FAN 4FAN 5

+27 V

OPT

BACKUPBATT

PX

1

PX

0

MS4 MS5 FBR0OPTFBR1

VIN

0V

ELCAP PANEL

6

GBB

PDU FRAME

BUSBAR

AI0

AI1

AI2 MS0 MS1 MS2 MS3

PS28 PS29 PS18 PS19PS32 PS8 PS9

CHASSISGND

EPSM0 +27VEPSM1 +27VEPSM2 +27V

BSU BACKPLANE

BBBX

PC1

PC2

MS0 MS1 MS2 MS3

MS6 MS7

PS

8

PS

28P

S18

BSS11_Ch3_11

Page 116: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSSC2 Cabinet Cabling

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–34

Diagram 4

BSSC2 cabinet (+27 V) dc power and alarm cabling diagram (lower half).

Page 117: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSSC2 Cabinet Cabling

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–35

Diagram 4 – BSSC2 cabinet (+27 V) dc power and alarmcabling (lower half)

���

���

��� ��� ��� ��� ���

��� ��� ��� ������� �� ��

�������

��

����� �����

������������������������������

�����������

� � � � �

�����

BBBX

PC1

PC2

BSS11_Ch3_12

Page 118: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power supply modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–36

Power supply modules

Introduction

Ensure that the correct power supply module is fitted for the input used.CAUTION

There are three compartments at the base of the BSU/RXU shelf assembly with slide-inmountings for plug-in power supply modules (PSMs):

These cabinets ... Use this type of power supply ...

BSSC Digital power supply modules (DPSMs)

Positive earth BSSC2 Integrated power supply modules (IPSMs)

Negative earth BSSC2 Enhanced power supply modules (EPSMs)

The left compartment is for an optional redundant PSM. If the configuration of a particularcabinet does not require a redundant PSM, a blanking plate is fitted over thecompartment. The redundant PSM must be compatible with the other cabinet powerunits.

Cabinet powerrequirements

The table shows the power requirements of the cabinet:

Supply Cabinet type

Earth Voltage BSSC2

Negative +27 V 90 A

Positive –48 V 50 A

–60 V 40 A

Page 119: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power supply modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–37

Page 120: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Integrated Power Supply Module (IPSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–38

Integrated Power Supply Module (IPSM)

Overview

The Integrated Power Supply (IPS) system for each BSU or RXU in a positive earth(–48 V/–60 V) system consists of up to three plug-in Integrated Power Supply Modules(IPSMs). The IPSM can only be used in positive earth cabinets.

The IPSM is a switching type dc – dc power converter that converts the cabinet dc inputpower to the following dc outputs:

� +27.5 V � 5 % at 45 A (full-load current).

� +5 V � 2 % at 87.5 A (full-load current).

� +12 V � 5 % at 2.5 A (full-load current).

� –12 V � 5 % at 2.5 A (full-load current).

The BSU or RXU backplane connects the outputs of each IPSM in parallel.

When three IPSMs are fitted in the IPS system, they load-share as follows:

� Two IPSMs provide sufficient power for a fully equipped BSU or RXU.

� The third IPSM provides n + 1 redundancy.

An IPSM in an alarm condition sends an alarm message to the GPROC/GPROC2 via theserial bus.

Functionaldescription

Normal operation

During normal operation, the IPSMs equally share load current demand of the BSU orRXU shelf modules:

� Half of the load current supplied by each IPSM in a two-IPSM system.

� One third of the load current supplied by each IPSM in a three-IPSM system.

Redundancy

Two IPSMs can provide adequate operating power for all modules in a BSU or RXUshelf. A third IPSM can be added for redundancy.

When plugged into the backplane, all IPSM power outputs are connected in parallel, sothat the IPS system current capacity is twice that of the individual IPSM; any third IPSMis redundant (n+1).

Power supply shutdown

During a shutdown condition caused by a faulty PSM, the output circuits of themalfunctioning PSM are isolated from the backplane output line and the PSM alarm LEDis on. The malfunctioning PSM informs the GPROC/GPROC2 of the shutdown condition.

Page 121: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Integrated Power Supply Module (IPSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–39

View of the Integrated Power Supply Module (IPSM)

BSS11_Ch3_15

ACTIVE LED (GREEN) – ON WHENALL OUTPUT VOLTAGES AREPRESENT AND WITHIN TOLERANCE

ALARM LED (RED) – ON WHEN ONEOR MORE ALARM CONDITIONSEXIST. OFF WHEN NO ALARMCONDITION EXISTS.

+5 V+5 VRTN (GROUND FOR +5 V OUTPUT)RTN (GROUND FOR +5 V OUTPUT)

C GND (CHASSIS GROUND)V RTN (0 V INPUT)V IN (–48 V/–60 V INPUT)

25–PIN D–TYPECONNECTOR(FEMALE) (REAR VIEW)

+27.5 V R TN+27.5 V (OUTPUT)

(� 12V OUTPUT)

Page 122: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Integrated Power Supply Module (IPSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–40

Monitoring circuits

Parallel output connections allow each IPSM to sense its own output lines for:

� Output voltage regulation.

� Over-voltage protection to shut the IPSM down if the output voltage exceeds 1.2 to1.3 times the rated output.

� Over-current protection to latch the power supply off (after a short delay for largeoverloads) if the output current exceeds:

– 1.05 to 1.3 times the full-load rating of the +5 V output.

– 1.05 to 2 times the full-load rating of the +12 V and –12 V outputs.

The BSU or RXU shelf’s GPROC/GPROC2 monitors the status of each IPSM via a serialalarm link on the backplane for:

� Loss of dc input voltage.

� Loss of output voltage.

� Overtemperature.

� Loss of serial link.

Circuit protection

Additional internal IPSM circuit protection includes:

� Input dc reverse polarity protection to prevent IPSM damage using an input seriesdiode that blocks reverse voltages.

� Thermal protection to send an alarm message to the GPROC/GPROC2 via theserial port, then shut the IPSM down, if the IPSM ambient temperature exceeds asafe level.

After an alarm condition has ceased, normal IPSM operation is automatically restored.

Serial link

The serial link carries the following information and flags an alarm if an unexpected stateor failure occurs:

Address Device location

Slot 0 – 2

Revision IPSM Alarms

I/P FailO/P FailOvertemp

LED display

Two LEDs are mounted on the front of the IPSM to indicate the following:

� Active (Green): on when all output voltages are present and within specified limits.

� Alarm (Red): on when one or more alarm conditions exist.

Page 123: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Integrated Power Supply Module (IPSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–41

Functional Block Diagram of the IPSM

SERIAL LINK

VOUT (+27.5 V)

VOUT (–12 V)

BACKPLANE CONNECTOR

REDLED

GREENLED

VIN (–48 V/–60 V)

POWERCONVERTER

ANDSYSTEMMONITOR

VOUT (+12 V)

VOUT (+5 V)

INPUT FAILOUTPUT FAILOVERTEMPERATURE

BSS11_Ch3_16

Page 124: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Enhanced Power Supply Module (EPSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–42

Enhanced Power Supply Module (EPSM)

Overview

The Enhanced Power Supply (EPS) system for each BSU in a negative earth (+27 V)system consists of up to three plug-in Enhanced Power Supply Modules (EPSMs). TheEPSM can only be used in a negative earth cabinet.

The EPSM is a switching type dc - dc power converter that converts the cabinet dc inputpower to the following dc outputs:

� +5 V (� 2% at 85.5 A).

� �12 V (� 5% at 2.5 A).

The BSU or RXU backplane connects the outputs of each EPSM in parallel.

When three EPSMs are fitted in the EPS system, they load-share as follows:

� Two EPSMs provide sufficient power for a fully equipped BSU or RXU.

� The third EPSM (if fitted) provides n+1 redundancy.

An EPSM in an alarm condition sends an alarm message to the GPROC/GPROC2 viathe serial bus.

Functionaldescription

Normal operation

During normal operation, the EPSMs share the load current demand of the BSU or RXUshelf modules:

� Half of the load current supplied by each EPSM in a two-EPSM system.

� One third of the load current supplied by each EPSM in a three-EPSM system.

Regulated dc power is applied to the backplane to power the BSU or RXU shelf modules.

Redundancy

Two Enhanced Power Supply Modules (EPSMs) can provide adequate operating powerfor all modules in a BSU or RXU shelf. A third EPSM can be added for redundancy.

When plugged into the backplane, all EPSM power outputs are connected in parallel, sothat the EPS system current capacity is twice that of the individual EPSM; any thirdEPSM is redundant (n+1).

Power supply shutdown

During a shutdown condition caused by a faulty EPSM, the output circuits of themalfunctioning EPSM are isolated from the backplane output line, and the EPSM alarmLED is switched on. The malfunctioning EPSM informs the GPROC/GPROC2 of theshutdown condition.

Page 125: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Enhanced Power Supply Module (EPSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–43

View of the Enhanced Power Supply Module (EPSM)

BSS11_Ch3_17

ACTIVE LED (GREEN) – ON WHEN ALL OUTPUT VOLTAGES ARE PRESENTAND WITHIN TOLERANCE.

+5 V+5 VRTN (GROUND FOR +5 V OUTPUT)RTN (GROUND FOR +5 V OUTPUT)

C GND (CHAS SIS GROUND)V RTN (0 V INPUT)V IN (+27 V INPUT)

25-PIN D-TYPECONNECTOR(FEMALE)

(REAR VIEW)

ALARM LED (RED) – ONWHEN 1 OR MORE ALARMCONDITIONS EXIST. OFFWHEN NO ALARM CONDITIONEXISTS.

(� 12V OUTPUT)

Page 126: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Enhanced Power Supply Module (EPSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–44

Monitoring circuits

Parallel output connections allow each EPSM to sense its own output lines for:

� Output voltage regulation.

� Over-voltage protection to shut the EPSM down if the output voltage exceeds 1.2to 1.3 times the rated output.

� Over-current protection to latch the power supply off (after a short delay for largeoverloads) if the output current exceeds:

– 1.15 to 1.5 times the full-load rating of the +5 V output.

– 1.15 to 2 times the full-load rating of the +12 V and –12 V outputs.

The BSU or RXU shelf’s GPROC/GPROC2 also monitors the status of each EPSM, via aserial alarm link on the backplane, for:

� Loss of dc input voltage.

� Loss of output voltage.

� Overtemperature.

� Loss of serial link.

Circuit protection

Additional internal EPSM circuit protection includes:

� Input dc reverse polarity protection to prevent EPSM damage using an input seriesdiode to block reverse voltages.

� Thermal protection to send an alarm message to the GPROC/GPROC2 via theserial port, and shut the EPSM down, if the EPSM ambient temperature exceeds asafe level.

After an alarm condition has ceased, normal EPSM operation is automatically restored.

Serial link

The serial link carries the following information and flags an alarm if an unexpected stateor failure occurs:

Address Device location

Slot 0 – 2

Revision EPSM Alarms

I/P FailO/P FailOvertemp

LED display

Two LEDs are mounted on the front of the EPSM to indicate the following:

� Active (Green): on when all output voltages are present and within specified limits.

� Alarm (Red): on when one or more alarm conditions exist.

Page 127: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Enhanced Power Supply Module (EPSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–45

Functional Block Diagram of the EPSM

SERIAL LINK

VOUT (–12 V)

BACKPLANE CONNECTOR

REDLED

GREENLED

VIN (+27 V)

POWERCONVERTER

ANDSYSTEMMONITOR

VOUT (+12 V)

VOUT (+5 V)

INPUT FAILOUTPUT FAILOVERTEMPERATURE

BSS11_Ch3_18

Page 128: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Shelf Internal Connections Overview

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–46

Shelf Internal Connections OverviewTo process all the data required to make and maintain the call, each software processand therefore digital card must be able to communicate which each other and to anyexternal entities such as the MSC or BTS. Each card has one or more connections toone or more data buses to co-ordinate this data transfer. Each bus has differing functionsand can be summarised below:

Time DivisionMultiplexed(TDM) highway

This bus is used to pass call and signalling data from the BTS to the MSC and viceversa. The TDM highway is split into two separate sections :

� Switchbound highway – Handles data routed towards the switch. Data is eitherfrom an external source (via the E1/T1 interfaces) or is generated by the GPROCsinternally.

� Outbound highway – This is data that has been switched and is now beingrouted out of the BSC/RXCDR (via the E1/T1 interfaces) or towards the internalGPROCs.

The cards connected to the TDM highways are:

� GPROCs – Send and receive control data to/from external entities such as theMSC (MTL) , BTS (RSL) , RXCDR (XBL), OMC (OML) and CBC (CBL).

� E1/T1 interfaces – MSI / XCDR / GDP boards. These cards interface the E1/T1links to the TDM highway to make sure the data incoming an out going is in thecorrect format.

� KSW – This board takes the data in from the Switchbound highway and switches itto the correct section on the Outbound highway.

� Bus Terminator Card (BTC) – The Bus Terminator Card (BTC) provides theterminations necessary for all of the signals on the BSU backplane and is requireddue to the high speed buses contained in the backplanes. Two BTC cards arerequired in each cage, one at each end, in order to guarantee the propertermination characteristics. The maximum/minimum BTC in the BSU/RXU is two.

Motorola CellularAdvancedProcessor(MCAP) bus

The MCAP bus provides the GPROCs within the shelf to monitor and control all the otherfull size cards, except other GPROCs.

Local AreaNetwork (LAN)

The LAN allows all GPROCs to communicate to each other via a dedicated high-speedbus.

Serial bus

Interfaces the DAB, PSMs and the Half size cards to the GPROCs for control andmonitoring purposes.

Page 129: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Shelf Internal Connections Overview

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–47

Shelf Interconnections Overview

����

����

��

���

��

����

��

��������

����

�������)

��#��)!/����(�)

��(!�#��+)

���

���

���

��

�&��%������

�&(��-'�%)!&%

&�� ��

�&��%��������&(

-*�%)!&%����

�!� ,�.

���������

�!%")�*&�����&(����

�����,!*� �&+%�

�!� ,�.

�����+*�&+%�

�!� ,�.

���

-*�(%�#��#�($)

�� �

�&�&* �(�����)

�*�* ��)!*�

���

��$&*�

��$&*�

BSS11_Ch3_20

Page 130: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Station Unit (BSU) Shelf

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–48

Base Station Unit (BSU) Shelf

Base Station UnitShelf Assembly

A Base Station Unit (BSU) shelf assembly consists of:

� A backplane.

� Two vertical-slot module shelves containing the required digital modules:

– The upper shelf holds half size digital modules.

– The lower shelf holds full size digital modules.

� A three-compartment shelf for the power supply modules.

Every cabinet must be fitted with the following digital cards:

� Two Bus Termination Cards (BTC).

� One Local Area Network Extender (LANX) module.

All other digital modules are optional, and their inclusion depends upon the cabinetconfiguration.

Base Station Unit(BSU)

Max number of full size boards – contained within in BSU.

2 x Kiloport Switch (KSW)

12 x Multiport Serial Interface (MSI)

2 x Generic Clock (GCLK)

8 x Generic Processor (GPROC)

6 x Full–Rate Transcoder (XCDR)

6 x Generic DSP Processor (GDP)

2 x Bus Terminator Card (BTC)

Max number of half size boards – contained within in BSU.

18 x Kiloport Switch Extender (KSWX)

6 x Clock Extender (CLKX)

2 x Local Area Network Extender (LANX)

2 x Parallel Interface Extender (PIX)

3 x Battery Backup Board (BBBX)

Page 131: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Station Unit (BSU) Shelf

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–49

BSU shelf diagrams

BSU shelf

The diagram shows the BSU shelf slot assignment and backplane connectors:

������

������

�����������

�������

��������

��������

��������

��������

��� ���

��� ���

��� ���

��� ���

���������

��������

�������

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

�� ���

��������

��� ���

���������

�������

�����������

���

��� ����

���

��� ����

���

��� ����

���

��� ����

���

��� ����

��� ����

��� ����

��� ����

� �

� �

� �

��� ���

��� ��� ��� ����

��� ����

� �

� �

��� ����

� �

������ ����

������ ����

������ ����

%#!$"

��������

��������

��������

��������

��������

������

������

������

������

�����������

�����������

������

�����������

�����

����������

�����

����������

������

�����������

������

�����������

�����

����������

��������

�������

������������

�������

������������

��� ����

��� ����

��� ����

��� ����

��� ����

��� ����

������ ����

������ ����

��� ���

��� ���

���

���

��U1U2U3U4U5U6U7U8U9U10U11U12U13U14U15U16U17U18U19U20U21U22U23U24U25U26U27U28

L0L1L3L5L6L7L8L9L10L11L12L13L14L15L16L17L18L19L20L21L22L23L24L25L26L27L28

KS0 KS1AI0

AI1

AI2MS0 GK0

DR5 DR4 DR3 DR2 DR1 DR0

MS1 MS2 MS3

�� ���

ÏÏÏÏÏÏÏÏÏÏÏÏ

�����

ÏÏÏÏÏÏÏÏÏÏÏÏ

�����

BSU backplane connectors� AI0 and AI1 are 10-pin headers.

� AI2 is a 4-pin power connector to the backup supply (BBBX).

� KS0 and KS1 are 20-pin headers and provide TTY access to serial ports forKSW/TSW boards.

� DR0 to DR5 are 20-pin headers and provide TTY access to serial ports forDRI/MSI boards.

� GK0 is a 9-pin D-type and provides a GCLK synchronization input.

� MS0 to MS3 are 37-pin D-types for connecting E1/T1 circuits.

Page 132: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Remote Transcoder Unit (RXU) Shelf

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–50

Remote Transcoder Unit (RXU) Shelf

RemoteTranscoder UnitShelf Assembly

A Remote Transcoder Unit (RXU) shelf assembly consists of:

� A backplane.

� Two vertical-slot module shelves containing the required digital modules:

– The upper shelf holds half size digital modules.

– The lower shelf holds full size digital modules.

� A three-compartment shelf for the power supply modules.

Every cabinet must be fitted with:

� Two Bus Termination Cards (BTC).

� One Local Area Network eXtender (LANX) module.

All other digital modules are optional, and their inclusion depends upon the cabinetconfiguration.

RemoteTranscoder Unit(RXU)

Max number of full-size boards – contained within the RXU.

2 x Kiloport Switch (KSW)

6 x Multiport Serial Interface (MSI)

2 x Generic Clock (GCLK)

2 x Generic Processor (GPROC)

16 x Full–rate Transcoder (XCDR)

16 x Generic DSP Processor (GDP)

2 x Bus Terminator Card (BTC)

Max number of half–size boards – contained within the RXU.

18 x Kiloport Switch Extender (KSWX)

6 x Clock Extender (CLKX)

2 x Local Area Network Extender (LANX)

2 x Parallel Interface Extender (PIX)

3 x Battery Backup Board (BBBX)

Page 133: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Remote Transcoder Unit (RXU) Shelf

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–51

RXU Shelf �����

�����

������

������

�������������

�������

�������

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

������

���� �������

������

������

���

��������

���

��������

���

��������

���

��������

���

��������

��������

��������

��������

���

���

���

�������

������ ������ �

������ �

���

���

������ �

���

���

������ �

���

������ �

���

������ �

��������

��������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

�����

������

�����

������

������

������

�������

������

�������

������ �

������ �

��������

��������

��������

������ �

���

������ �

���

������ �

�������

������

���

���

��U1U2U3U4U5U6U7U8U9U10U11U12U13U14U15U16U17U18U19U20U21U22U23U24U25U26U27U28

L0L1L3L5L6L7L8L9L10L11L12L13L14L15L16L17L18L19L20L21L22L23L24L25L26L27L28

KS0AI0

AI1 MS0 MS1 MS2 MS3

������

AI2

ÏÏÏÏÏÏÏÏÏÏÏÏ

�����

������

������

������

�������

������

�������

������

�������

������

�������

������

������

������

������

KS1

ÏÏÏÏÏÏÏÏÏÏÏÏ

�����

� AI0 and AI1 are 10-pin headers.

� AI2 is a 4-pin power connector to the backup supply (BBBX).

� KS0 and KS1 provide TTY access to serial ports for KSWs/TSWs.

� MS0 to MS3 are 37-pin D-types for connecting E1/T1 lines.

Page 134: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Bus Termination Card (BTC)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–52

Bus Termination Card (BTC)

Purpose

The Bus Termination Card (BTC) terminates the backplane to keep signals on a BSU orRXU shelf at the proper TTL level.

The BTC terminates:

� Both MCAP buses.

� Both BSS serial buses.

� Both reference clocks.

� All TDM buses (Expansion, Remote and Local).

Requirements

Two BTC modules must be fitted in each BSU or RXU shelf, in slot L0 and slot L28, at alltimes.

While a faulty BTC is being replaced, another BTC must be fitted in a KSW slot tomaintain the above requirement.

Page 135: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Bus Termination Card (BTC)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–53

The Bus Termination Card (BTC) Module

BSS11_Ch3_23

BACKPLANECONNECTOR

Page 136: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC) Board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–54

The Generic Processor (GPROC) BoardThe Generic Processor (GPROC) module provides the processing power to control aBSC, RXCDR or BTS.

GPROCs in a BSU or RXU exchange control signalling via several links:

� A token ring Local Area Network (LAN). The LAN can link processors in severalshelves via fibre optic cable.

� A Motorola Cellular Advanced Processor (MCAP) bus, which extends theprocessor’s address, data and control buses to peripheral modules in the sameshelf.

� A serial bus, which communicates alarm information between GPROCs andhalf-size modules. This serial bus extends to the PDU.

� The active Time Division Multiplex (TDM) highway.

The GPROC module fits into:

� Slots L18 to L25 in a BSU shelf assembly.

� Slot L25 and slot L26 in an RXU shelf assembly.

Each BSU/RXU requires at least one GPROC.

A GPROC must be fitted in slot L20 of BSU 0, and slot L24 of RXU 0, for use ininitialization.

Page 137: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC) Board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–55

The Generic Processor (GPROC) Module

BSS11_Ch3_24

Alarm (red) LED(normally off)

active (Green) LED(normally on)

Green LED on, red LED off =processer running, no failures

Green LED off, red LED on =processor halted, or in reset

Both LEDS on = processorrunning, module is disabled orother alarm

Reset/disable switch up(momentary) = resetMiddle = normal operatonDown = disable

Backplane connector

TTY Connector

(This optically isolated test portallows control of troubleshootingand diagnostics.)

Page 138: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC) Board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–56

GPROC module

The GPROC module contains:

� A Motorola MC68030 16-bit processor operating at 25 MHz.

� The LAN processor, which is the interface between the GPROC and the token ringLAN.

� The LAPD processor which, in conjunction with the TDM interface controller, is theinterface between the GPROC and the TDM highway.

The GPROC communicates with other full-size modules via the MCAP bus, and withhalf-size modules (and modules not on the module shelf) via the BSS serial bus. Thereare two other serial ports which are not currently used.

The LAPD processor and the TDM interface controller communicate via a high-speedprivate bus. The private bus arbiter is the interface between the MC68030 address/databus and the high-speed private bus.

The parallel port controls output signals to the front panel LEDs, and receives inputsignals (via the register ports) from the backplane. These contain:

� Shelf ID.

� Slot ID.

� Backplane type.

� Backplane revision level.

The GPROC module is equipped with 16 Mbytes of DRAM. There is also 512 kbytes ofEPROM (expandable to 1 Mbyte). The EPROM contains the bootstrap code.

A fully buffered TTY maintenance port is available on the front panel, to which a PersonalComputer (PC) can be connected. The TTY can be used for monitoring and controllingsoftware when performing maintenance or troubleshooting.

The maintenance port meets the requirements of the EIA RS232C and CCITT V.24specifications.

The GPROC runs on-board self-diagnostics during initial power-up and on commandfrom the maintenance TTY.

Every GPROC is identical in terms of hardware; its function depends upon the softwareloaded into it.

The processor functions for BTS and BSC applications are different from those for anRXCDR application and are described separately in the following sections.

Page 139: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC) Board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–57

Functional Block Diagram of the GPROC

PROCESSORMC68030

MEMORY ARRAY

WATCHDOGTIMER

EPROM (512 KBYTE TO 1 MBYTE)(BOOTSTRAP CODE STORAGE)ORFLASH EPROM (256 KBYTE TO 1 MBYTE)REPROGRAMMABLE BOOTSTRAP CODESTORAGE)

DRAM (16M BYTE )

DRAM WITH BATTERY BACKUP LOGIC

NVRAM NON–VOLATILE RAM (32k bytes)

MCAP BUS A

MCAP Bus B

OUTBOUND TDM HWY A

OUTBOUND TDM HWY B

TOKEN RING LAN A

TOKEN RING LAN B

SERIAL LINE 1

SERIAL A/B SELECT

BSS SERIAL BUS A

SERIAL LINE 2

MCAP BUSINTERFACE

LOGIC

TDMINTERFACE

CONTROLLER

LAPDPROCESSOR

PRIVATE BUSARBITER

TOKEN RINGLAN

INTERFACE

SYSTEM TIMINGCONTROLLER(STC)

RED LED

GREEN LED

BUFFEREDTEST PORT

SERIALINTERFACE

SERIALINTERFACE

ADDRESS/DATA BUS

RESET/DISABLESWITCH

BACKPLANE CONNECTOR

PARALLELPORT

52

52

SWITCHBOUND TDM HWY A

SWITCHBOUND TDM HWY B

9

9

9

9

RS232DRIVER

TOKEN RING CONTROL

SERIALBUS

CONTROL

BSS SERIAL BUS B

4

1

4

2

2

2

1

2

}

}

}

2 FOR REDUNDANCY

2 FOR REDUNDANCY

}

+5 V

+5 V BATTERYTO DRAM

BOARD DISTRIBUTION

OPTO–ISOLATOR

NOT CURRENTLYUSED

} 2 FOR REDUNDANCY

GND

LANPROCESSOR

PRIVATE BUS

PRIVATE BUS

REFERENCE CLKS (125 us, 60 ms, 6.12 s AND 16.384 MHz A & B)

REGISTERPORTS

BACKPLANE INFORMATION

COUNTER/TIMERs

25 PIN “D”CONNECTOR

BSS11_Ch3_25

Page 140: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC) Board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–58

BTS and BSCGPROCfunctions

The GPROC performs the following processor functions:

� Fault Manager (FM).

� Configuration Manager (CM).

� Message Transfer Protocol (MTP).

� Signalling Connection Control Part (SCCP) State Machine (SSM).

� Radio Resource State Machine (RRSM).

� Cell Resource Machine (CRM).

� Switch Manager (SM).

� Connectionless Manager (CLM).

� Radio Subsystem (RSS).

� Operations and Maintenance System (OMS).

� Maintains a copy of the application code for collocated peripheral modules.

Page 141: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC) Board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–59

GPROC Device Table

BSS11_Ch3_26

GPROC device BSCtask groups

BTStask groups

BSC/BTSinterface

Type 0 Base Site ControlProcessor (BSP)

Base TransceiverProcessor (BTP)

Motorolaproprietary

Type1 Base Site ControlProcessor (BSP)

Link ControlFunction (LCF)

Base TransceiverProcessor (BTP)

Digital Radio HostProcessor (DHP)

Motorolaproprietary

Type 2 Base Site ControlProcessor (BSP)

Link ControlFunction (LCF)

Operations andMaintenanceProcessor (OMP)

Base TransceiverProcessor (BTP)

Digital Radio HostProcessor (DHP)

Radio System LinkProcessor (RSLP)

Motorolaproprietary

NOTEA code storage facility processor (CSFP) can also be equipped.

Page 142: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC) Board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–60

RXCDR GPROCfunctions

The RXCDR GPROC processor functions are similar to the BSC and BTS GPROCs andcomprise:

� Fault Manager (FM).

� Switch Manager (SM).

� Configuration Manager (CM).

These processor functions:

� Maintain the switch database for the KSWs and TSWs.

� Maintain a copy of the application code for collocated peripheral modules.

� Initialise the RXCDR network element.

� Maintain the configuration database.

� Communicate with other network elements via a 64 kbit/s LAPD serial data link.

� Communicate with the OMC via an X.25 link.

� Communicate with the local monitor via a man-machine interface (MMI).

� Communicate with collocated digital modules.

� Handle redundancy between duplicated modules.

� Control operational software downloads to digital highway modules such as MSIs,KSWs, and XCDRs.

Fault manager

The RXCDR FM communicates with the BSS FM function via the optional TranscoderBSC Link (XBL), a dedicated 64 kbit/s channel.

Switch manager

The SM:

� Makes connections between the terrestrial links on the A interface (MSC to BSS)and the radio (traffic) channels on the air interface.

� Interacts with the call processing and fault management functions.

� Provides switching functionality for the BSS distributed within the BSC and BTS.

Configuration manager

The CM maintains and updates a configuration database which contains all parametersand operational software currently in use.

Changes to the database are restricted to the highest level password protection, due tothe potential for down time caused by incorrect changes to the configuration database.

Page 143: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC) Board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–61

Page 144: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–62

The Generic Processor (GPROC2)

Purpose

The Generic Processor (GPROC2) module provides the processing power to control aBSC, RXCDR or BTS. The GPROC2 cannot be used with software version less then1500.

GPROC2s in a BSU or RXU exchange control signalling in several ways:

� A token ring Local Area Network (LAN). The LAN can link processors in severalshelves via fibre optic cable.

� A Motorola Cellular Advanced Processor (MCAP) bus, which extends theprocessor address, data and control buses to peripheral modules in the sameshelf.

� A serial bus, which communicates alarm information between GPROC2s andhalf-size modules. This serial bus extends to the power distribution unit.

� The active Time Division Multiplex (TDM) highway.

Requirements

The GPROC2 module fits into:

� Slots L18 to L25 in a BSU shelf assembly.

� Slot L25 and slot L26 in an RXU shelf assembly.

Each BSU/RXU requires at least one GPROC2.

A GPROC must be fitted in slot L20 or L24 in a BSC.

Brief description

The GPROC2 module contains:

� A Motorola MC68040 32-bit processor operating at 33 MHz.

� The LAN processors, which are the interface between the GPROC2 and the tokenring LAN.

� The COMM processor which, in conjunction with the TDM interface controller, isthe interface between the GPROC2 and the TDM highway.

Page 145: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–63

The GPROC2 Module

BSS11_Ch3_27

ALARM (RED) LED(NORMALLY OFF)

TTY CONNECTORRESET/DISABLE SWITCHUP (MOMENTARY) = RESETMIDDLE = NORMAL OPERATIONDOWN = DISABLE

GREEN LED ON, RED LED OFF =PROCESSOR RUNNING, NO FAILURESGREEN LED OFF, RED LIGHT ON =PROCESSOR HALTED, OR IN RESET

BOTH LEDS ON = PROCESSORRUNNING, MODULE IS DISABLEDOR OTHER ALARM

(THIS OPTICALLY ISOLATED TESTPORT ALLOWS CONTROL OFTROUBLESHOOTING ANDDIAGNOSTICS).

BACKPLANE CONNECTOR

ACTIVE (GREEN) LED(NORMALLY ON)

Page 146: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–64

Communication

The GPROC2 communicates with other full-size modules via the MCAP bus, and withhalf-size modules (and modules not on the module shelf) via the BSS serial bus.

The LAPD processor and the TDM interface controller communicate via a high-speedprivate bus. The private bus arbiter is the interface between the MC68040 address/databus and the high-speed private bus.

The parallel port controls output signals to the front panel LEDs, and receives inputsignals (via the register ports) from the backplane. These contain:

� Shelf ID.

� Slot ID.

� Backplane type.

� Backplane revision level.

Memory

The GPROC2 module is equipped with 32 Mbytes of DRAM. There is also 1Mbyte ofEPROM. The EPROM contains the bootstrap code.

Troubleshootingand diagnostics

A fully buffered TTY maintenance port is available on the front panel, to which a PersonalComputer (PC) can be connected. The TTY can be used for monitoring and controllingsoftware when performing maintenance or troubleshooting.

The maintenance port meets the requirements of the EIA RS232C and ITU–TSS V.24specifications.

The GPROC2 runs on-board self-diagnostics during initial power-up and on commandfrom the maintenance TTY connection.

Software

Every GPROC2 is identical in terms of hardware; its function depends upon the softwareloaded into it.

The processor functions for BTS and BSC applications are different from those for anRXCDR application and are described separately in the following sections.

Page 147: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–65

Block Diagram of the GPROC2

RESET/DISABLESWITCH

BACKPLANE CONNECTOR

WATCHDOGTIMERS

TIMINGCONTROL

PROCESSORMC6804033 MHz

DATA/ADDRESSBUS

LAN ADRAM

LAN APROC

LAN BPROC

LAN BDRAM

LANINTERFACE

LAN A

LAN B

LAPDPROC

EXT CACHE128 K

MAIN DRAM(16 – 64 Mb)

EEPROMNVRAM

BUSSIZER

TDMINTERFACE

MCAPINTERFACE

SERIAL BUSCONTROLLER

PERIPHERALBUS

TDM A

TDM B

MCAP A

MCAP A

SERIAL BUS A

SERIAL BUS BTTY TESTCONNECTOR

LANBUS

Page 148: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–66

BTS and BSCGPROC2functions

The GPROC2 performs the following processor functions:

� Fault Manager (FM).

� Configuration Manager (CM).

� Message Transfer Protocol (MTP).

� Signalling Connection Control Part (SCCP) State Machine (SSM).

� Radio Resource State Machine (RRSM).

� Cell Resource Machine (CRM).

� Switch Manager (SM).

� Connectionless Manager (CLM).

� Radio Subsystem (RSS).

� Operations and Maintenance System (OMS).

� Maintains a copy of the application code for collocated peripheral modules.

GPROC2 taskgroups anddevice types

The processor functions can be grouped into six task groups depending on the softwareloaded into a given GPROC2.

When a group of tasks is assigned to a GPROC2, it is considered to be a uniqueGPROC2 device type. The exception to this is the Code Storage Facility Processor(CSFP), which is not considered to be a unique device type.

The table shows the device types and task groups:

Page 149: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–67

GPROC2 Device Types and Task Groups

BSS11_Ch3_29

GPROC device BSCtask groups

BTStask groups

BSC/BTSinterface

Type 0 Base Site ControlProcessor (BSP)

Base TransceiverProcessor (BTP)

Motorolaproprietary

Type1 Base Site ControlProcessor (BSP)

Link ControlFunction (LCF)

Base TransceiverProcessor (BTP)

Digital Radio HostProcessor (DHP)

Motorolaproprietary

Type 2 Base Site ControlProcessor (BSP)

Link ControlFunction (LCF)Operations andMaintenanceProcessor (OMP)

Base TransceiverProcessor (BTP)

Digital Radio HostProcessor (DHP)

Radio System LinkProcessor (RSLP)

Motorolaproprietary

NOTEA Code Storage Facility Processor (CSFP) can also be equipped.

Page 150: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–68

RXCDR GPROC2functions

The RXCDR GPROC2 processor functions are similar to the BSC and BTS GPROC2sand comprise:

� Fault Manager (FM).

� Switch Manager (SM).

� Configuration Manager (CM).

These processor functions:

� Maintain the switch database for the KSWs and TSWs.

� Maintain a copy of the application code for collocated peripheral modules.

� Initialize the RXCDR network element.

� Maintain the configuration database.

� Communicate with other network elements via a 64 kbit/s LAPD serial data link.

� Communicate with the OMC via an X.25 link.

� Communicate with the local monitor via a man-machine interface (MMI).

� Communicate with collocated digital modules.

� Handle redundancy between duplicated modules.

� Control operational software downloads to digital highway modules such as MSIs,KSWs, and XCDRs.

Fault manager

The RXCDR FM communicates with the BSS FM function via the optional TranscoderBSC Link (XBL), a dedicated 64 kbit/s channel.

Switch manager

The SM:

� Makes connections between the terrestrial links on the A interface (MSC to BSS)and the radio (traffic) channels on the air interface.

� Interacts with the call processing and fault management functions.

� Provides switching functionality for the BSS distributed within the BSC and BTS.

Configuration manager

The CM maintains and updates a configuration database which contains all parametersand operational software currently in use.

Changes to the database are restricted to the highest level password protection, due tothe potential for down time caused by incorrect changes to the configuration database.

Page 151: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–69

Page 152: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Type 43 interconnect board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–70

Type 43 interconnect board

Location

Plugs into the interconnect panel via a 37-pin D-type connector.

Purpose

The T43 interconnect board matches the impedance between the Pulse Code Modulation(PCM) circuit lines and the BSU/RXU backplanes. The board interfaces up to six inputand six output unbalanced coaxial 75 ohm 2.048 Mbit/s lines to the external PCM circuitlines through twelve type 43 coaxial connectors.

The T43 uses 12 transformers to provide impedance matching between the PCM circuitlines and the Multiple Serial Interface (MSI) modules. Each transformer has a 1:1.25turns ratio to match the external 75 ohm and backplane 120 ohm connections. Eachinput and output is isolated from the backplane by up to 1500 V.

Use the T43 for unbalanced lines.NOTE

Page 153: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Type 43 interconnect board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–71

The T43 Interconnect Board

BSS11_Ch3_30

J0

J1

J2

J5

J4

J7

J8

J10

J13 J11

J14

J16

J17

Page 154: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Type 43 interconnect board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–72

T43 connectors

The table details the T43 connectors:

D–Type Function Coaxial D–Type Function CoaxialypPin no. Pin no.

ypPin no. Pin no.

J0-1 MSI_MEGA_Tx1+ J1 Centre J0-20 MSI_MEGA_Tx1–(AC coupled to ground)

J1 Shield

J0-2 MSI_MEGA_Rx1+ J2 Centre J0-21 MSI_MEGA_Rx1–(Ground)

J2 Shield

J0-4 MSI_MEGA_Tx4+ J4 Centre J0-23 MSI_MEGA_Tx4–(AC coupled to ground)

J4 Shield

J0-5 MSI_MEGA_Rx4+ J5 Centre J0-24 MSI_MEGA_Rx4–(Ground)

J5 Shield

J0-7 MSI_MEGA_Tx2+ J7 Centre J0-26 MSI_MEGA_Tx2–(AC coupled to ground)

J7 Shield

J0-8 MSI_MEGA_Rx2+ J8 Centre J0-27 MSI_MEGA_Rx2–(Ground)

J8 Shield

J0-10 MSI_MEGA_Tx5+ J10 Centre J0-29 MSI_MEGA_Tx5–(AC coupled to ground)

J10 Shield

J0-11 MSI_MEGA_Rx5+ J11 Centre J0-30 MSI_MEGA_Rx5–(Ground)

J11 Shield

J0-13 MSI_MEGA_Tx3+ J13 Centre J0-32 MSI_MEGA_Tx3–(AC coupled to ground)

J13 Shield

J0-14 MSI_MEGA_Rx3+ J14 Centre J0-33 MSI_MEGA_Rx3–(Ground)

J14 Shield

J0-16 MSI_MEGA_Tx6+ J16 Centre J0-35 MSI_MEGA_Tx6–(AC coupled to ground)

J16 Shield

J0-17 MSI_MEGA_Rx6+ J17 Centre J0-36 MSI_MEGA_Rx6–(Ground)

J17 Shield

Connector J0 pins 3, 6, 9, 12, 15, 18, 19, 22, 25, 28, 31, 34, and 37 are not used

Page 155: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Type 43 interconnect board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–73

Page 156: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Balanced-line Interconnect Board (BIB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–74

Balanced-line Interconnect Board (BIB)

Location

Plugs into the interconnect board via two 37-pin D-type connectors.

Purpose

The Balanced-line Interconnect Board (BIB) matches the impedance between the PulseCode Modulation (PCM) circuit lines and the BSU backplanes. The board providesinterfaces for six input and six output balanced 120 ohm E1/T1 lines.

The board uses 12 transformers to match the impedance between the PCM circuit linesand the Multiple Serial Interface (MSI) modules. Each transformer has a 1:1 turns ratio tomatch the external and backplane 120 ohm connections.

Use the BIB for balanced lines.NOTE

Page 157: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Balanced-line Interconnect Board (BIB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–75

The Balanced-line Interconnect Board (BIB)

BSS11_Ch3_31

J0

J1

Page 158: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Balanced-line Interconnect Board (BIB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–76

BIB connectors

The table details the BIB connectors:

Pin no. Function Pin no. Pin no. Function Pin no.

J0–1 MSI_MEGA/EXT_MEGA_Tx1+

J1–1 J0–20 MSI_MEGA/EXT_MEGA_Tx1–

J1–20

J0–2 MSI_MEGA/EXT_MEGA_Rx1+

J1–2 J0–21 MSI_MEGA/EXT_MEGA_Rx1–

J1–21

J0–3 Ground J1–3 J0–22 Ground J1–22

J0–4 MSI_MEGA/EXT_MEGA_Tx4+

J1–4 J0–23 MSI_MEGA/EXT_MEGA_Tx4–

J1–23

J0–5 MSI_MEGA/EXT_MEGA_Rx4+

J1–5 J0–24 MSI_MEGA/EXT_MEGA_Rx4–

J1–24

J0–6 Ground J1–6 J0–25 Ground J1–25

J0–7 MSI_MEGA/EXT_MEGA_Tx2+

J1–7 J0–26 MSI_MEGA/EXT_MEGA_Tx2–

J1–26

J0–8 MSI_MEGA/EXT_MEGA_Rx2+

J1–8 J0–27 MSI_MEGA/EXT_MEGA_Rx2–

J1–27

J0–9 Ground J1–9 J0–28 Ground J1–28

J0–10 MSI_MEGA/EXT_MEGA_Tx5+

J1–10 J0–29 MSI_MEGA/EXT_MEGA_Tx5–

J1–29

J0–11 MSI_MEGA/EXT_MEGA_Rx5+

J1–11 J0–30 MSI_MEGA/EXT_MEGA_Rx5–

J1–30

J0–12 Ground J1–12 J0–31 Ground J1–31

J0–13 MSI_MEGA/EXT_MEGA_Tx3+

J1–13 J0–32 MSI_MEGA/EXT_MEGA_Tx3–

J1–32

J0–14 MSI_MEGA/EXT_MEGA_Rx3+

J1–14 J0–33 MSI_MEGA/EXT_MEGA_Rx3–

J1–33

J0–15 Ground J1–15 J0–34 Ground J1–34

J0–16 MSI_MEGA/EXT_MEGA_Tx6+

J1–16 J0–35 MSI_MEGA/EXT_MEGA_Tx6–

J1–35

J0–17 MSI_MEGA/EXT_MEGA_Rx6+

J1–17 J0–36 MSI_MEGA/EXT_MEGA_Rx6–

J1–36

J0–18 Ground J1–18 J0–37 Ground J1–37

J0–19 Ground J1–19

Page 159: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Balanced-line Interconnect Board (BIB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–77

Diagram of the 6T43/BIB ConnectionExample of BSU and RXU module to T43 or BIB connections.

INTERCONNECT PANEL(TOP OF CABINET)

XCDR0SLOT L24

BSU Backplane RXU Backplane

XCDR2SLOT L22

XCDR3SLOT L21

XCDR4SLOT L20

XCDR5SLOT L19

XCDR6SLOT L18

XCDR7SLOT L17

XCDR8SLOT L16

XCDR9SLOT L15

XCDR10SLOT L14

XCDR11SLOT L13

XCDR12SLOT L12

XCDR13SLOT L11

MSI0SLOT L10

MSI1SLOT L9

MSI2SLOT L8

MSI3SLOT L7

MSI4SLOT L6

LOWER SHELF UPPER SHELF

1MS1

MSI4SLOT L13

XCDR1SLOT L23

MSI2SLOT L15

MSI0SLOT L17

MSI5SLOT L12

MSI3SLOT L14

MSI1SLOT L16

MSI10SLOT L7

MSI8SLOT L9

MSI6SLOT L11

MSI11SLOT L6

MSI9SLOT L8

MSI7SLOT L10

T43or

BIB

0MS0

T43or

BIB

0MS4

T43or

BIB

1MS5

T43or

BIB

2MS2

T43or

BIB

2MS6

T43or

BIB

3MS3

T43or

BIB

3MS7

T43or

BIB

Page 160: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–78

Multiple Serial Interface (MSI/MSI2)

Purpose

The Multiple Serial Interface (MSI/MSI2) module is the interface between the inter–sitecommunication lines and the TDM highway.

MSI/MSI2 module

The MSI module can drive two European 2.048 Mbit/s (E1) data lines.

The MSI2 module is a software configured board and has the following drive capability:

� North American 1.544 Mbit/s (T1).

� European 2.048 Mbit/s (E1).

� Japanese 1.544 Mbit/s (JT1).

One of the E1/T1/JT1 lines is referred to as group A, the other E1/T1/JT1 line is knownas group B.

The E1/T1/JT1 lines are connected at the interconnect panel via either:

� A Balanced-line Interconnect Board (BIB).

� Type 43 (T43) interconnect board.

The MSI/MSI2 can also extract the clock synchronization data from the E1/T1/JT1 linedata stream in order to phase lock the GCLK to the line.

An RS232 maintenance port, to which a Personal Computer (PC) can be connected fortesting and debugging, is provided at the top of the BSU or RXU shelf.

Terminology

One wire pair (balanced or unbalanced) equals one E1/T1/JT1 serial data stream.

Two E1/T1/JT1 serial data streams (transmit and receive) equal one E1/T1/JT1 line.

Requirements

The MSI/MSI2 module is fitted in:

� Slots L6 to L17 of the BSU shelf assembly.

� Slots L6 to L10 of the RXU shelf assembly.

An MSI, MSI2, XCDR or GDP must be located in at least one of the BSU locations belowfor BSC initialization purposes.

� Shelf 0 slot 16 (Software communicates via either group A or group B)

� Shelf 0 slot 14 (Software communicates via group A)

� Shelf 1 (if second BSU in BSC) slot 16 (Software communicates via group A)

An RXU initialization uses slot 10 instead of slot 16, and slot 8 instead of slot 14.

Page 161: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–79

The MSI2 Module

BSS11_Ch3_33

Backplane connector

Alarm (red) LED off

Active (green) LED(normally on)

Reset/disable switchup (momentary) = resetmiddle = normaldown = disable

Page 162: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–80

General features

The MSI converts signals from the E1 lines from serial format to the parallel format thatthe TDM highway requires, and converts signals transmitted to the E1 lines from parallelto serial. The MSI2 can carry out this function for T1 & JT1 lines in addition to E1 lines.

E1 Data

Each serial line can carry the following to and from the active TDM highway in the BSU:

� One 64 kbit/s timeslot for synchronization.

� One 64 kbit/s timeslot for control signalling.

� Thirty 64 kbit/s timeslots that can each be used as follows:

Traffic (four 16 kbit/s compressed voice/data channels each).

Additional control timeslots.

If all 30 timeslots are allocated to traffic, 120 traffic channels are possible.

T1 Data

Each serial line can carry the following to and from the active TDM highway in the BSU:

� Twenty-four 64 kbit/s timeslots that can each be used as follows:

Traffic (four 16 kbit/s compressed voice/data channels each).

Additional control timeslots.

If all 24 timeslots are allocated to traffic, 96 traffic channels are possible.

Page 163: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–81

Transcodedenvironment (E1)

The MSI/MSI2 can support 240 x 16 kbit/s traffic timeslots in a transcoded environment,as defined by GSM. To accomplish this, four 16 kbit/s timeslots are multiplexed into one64 kbit/s timeslot, as shown in the following example:

30 64 kbit/s timeslots of a serial data stream

x 4 Submultiplexed 16 kbit/s traffic timeslots

x 2 E1 lines

= 240 16 kbit/s traffic timeslots

Transcodedenvironment (T1)

The MSI2 can support 192 x 16 kbit/s traffic timeslots in a transcoded environment, asdefined by GSM. To accomplish this, four 16 kbit/s timeslots are multiplexed into one 64kbit/s timeslot, as shown in the following example:

24 64 kbit/s timeslots of a serial data stream

x 4 Submultiplexed 16 kbit/s traffic timeslots

x 2 T1/JT1 lines

= 192 16 kbit/s traffic timeslots

Page 164: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–82

Functionaldescription

Refer to the MSI block diagram at the end of this section.

MC68000processor

A Motorola MC68000 processor, operating at 8 MHz, controls:

� The E1 line to TDM interface function.

� A multiplexer that selects the extracted clock to be routed to the GCLK.

The processor reports the following to the controlling GPROC on the MCAP bus:

� Extracted clock failures.

� Frame alignment errors.

� Multiframe alignment errors.

� Bipolar violations.

� CRC4 errors.

� Transmit or receive failures.

EPROM

The EPROM contains 128 kbytes of bootstrap program code. At power–up the bootstrapprogram sends a request message to the GPROC to download the MSI’s operatingprogram into the SRAM. The SRAM also stores program variables, and can bepermanently saved in EEPROM.

Clock extraction

The clock extraction section extracts the E1 clocks, to which the entire site (either BTS orBSC) can be synchronized. The two extracted clocks are routed to a multiplexer thatselects which clock signal (if any) is routed to the GCLK.

Frame decoding

The HDB3 and CRC4 decoding section performs frame decoding according to CCITTrecommendation G.704 for digital multiplex equipment.

Page 165: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–83

Block Diagram of the Multiple Serial Interface (MSI)

TDMINTERFACE

LEVEL CONVERTER& E1/T1/JT1 LINETRANSMITTER

MC6800 PROCESSOR

MCAP INTERFACE

LEVELCONVERTER

MCAP BUS A

BACKPLANE CONNECTOR

WATCHDOGTIMER

REDLED

GREENLED

TDM SWITCHBOUND HIGHWAY A

TDM OUTBOUND HIGHWAY A

TDM SWITCHBOUND HIGHWAY B

TDM OUTBOUND HIGHWAY B

TTY TEST PORTRS232

DRIVERS

RECEIVE

TRANSMIT

RECEIVEDCLOCK

EXTRACTOR

EXTRACTED CLOCK REF

HDB3DECODER

CRC4DECODER

HDB3ENCODER

CRC4ENCODER

TDMINTERFACE

TDMINTERFACE

LEVELCONVERTER

TDM SWITCHBOUND HIGHWAY A

TDM OUTBOUND HIGHWAY A

TDM SWITCHBOUND HIGHWAY B

TDM OUTBOUND HIGHWAY B

RECEIVE

TRANSMIT

RECEIVEDCLOCK

EXTRACTOR

HDB3DECODER

CRC4DECODER

HDB3ENCODER

CRC4ENCODER

TDMINTERFACE

MUX

EPROM SRAM EEPROM

CO

NT

RO

L

2

2

2

2

RESET/DISABLESWITCH

IMPEDANCEMATCHING

IMPEDANCEMATCHING

IMPEDANCEMATCHING

IMPEDANCEMATCHING

MCAP BUS B

E1 LINE A

LEVEL CONVERTER& E1/T1/JT1 LINETRANSMITTER

E1 LINE B

BSS11_Ch3_34

Page 166: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–84

Functionaldescription

Refer to the MSI2 block diagram at the end of this section.

MC68302 processor

A Motorola MC68302 processor, operating at 16.384 MHz, controls:

� The E1/T1/JT1 line to TDM interface function.

� A multiplexer that selects the extracted clock signal to be routed to the GCLK.

The processor reports the following to the controlling GPROC/GPROC2 on the MCAPbus:

� Extracted clock failures.

� Frame alignment errors.

� Multiframe alignment errors.

� Bit errors.

� Transmit or receive failures.

EPROM

The EPROM contains 64 kbytes of bootstrap program code memory, 256 kbytes ofnonvolatile operational code memory (Flash EPROM) and 128 kbytes of volatile programand data memory (SRAM). At power-up the bootstrap program sends a request messageto the GPROC/GPROC2 to download the MSI2’s operating program into the SRAM.

Clock extraction

The clock extraction section extracts the E1/T1/JT1 clocks, to which the entire site (eitherBTS or BSC) can be synchronized. In the case of T1/JT1, the extracted clock is fedthrough a clock adaptor to convert the 1.544 MHz signal to a 2.048 MHz signal. The twoextracted clocks are routed to a multiplexer that selects which clock signal (if any) isrouted to the GCLK.

Frame decoding

The HDB3 (E1) and B8ZS (T1) decoding section performs frame decoding according toCCITT recommendation G.704 for digital multiplex equipment.

Page 167: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–85

Block Diagram of the Multiple Serial Interface 2 (MSI2)

BACKPLANE CONNECTOR

LEDS

+5 V, +12 VAND –12 V

RESETSWITCH

LINE INTERFACE A

T1, E1, OR JT1LOCAL AND REMOTE LOOPBACK2M OR 1.5M EXTRACTED CLOCK

DATA

LINE INTERFACE B

T1, E1, OR JT1LOCAL AND REMOTE LOOPBACK2M OR 1.5M EXTRACTED CLOCK

DATA

RXA

TXA

COMMONINTERFACEFUNCTIONS

DISTANCEMEASURINGSWITCHING

EXTRACTED CLOCKDATA TO GCLK

RXB

TXB

CONTROLPROCESSOR

68302BOOTSTRAP EPROM

SRAMWATCHDOG TIMER

POWER/RESETCIRCUIT

TTY PORTFLASH EPROMPARALLEL I/O

SERIAL EEPROM

TDMSTATUS

ANDCONTROL

TDM INTERFACE

TSA RAM

BACKPLANEDRIVERS

RECEIVERS

MCAP INTERFACE

MCAPREGISTERS

CLOCK ANDREFERENCEGENERATION

DATA

ADDRESS

CONTROL

16.384 MHZREF 125REF 60REF 6.12

TTY PORT

SWITCHBOUNDTDM HIGHWAY

OUTBOUNDTDM HIGHWAY

INTERFACESTATUS

CONTROL

INBOUND/OUTBOUNDDATA

EXTRACTEDCLOCK AND

DISTANCEMEASURING

CONTROL

LINE INTERFACESTATUS/CONTROL

DATA

DATA

DATA

EXTRACTEDCLOCK/DISTANCEMEASURING

MESSAGEDPRAM BUS

Page 168: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–86

E1/T1/JT1 line toTDM interfacecircuits

There are two identical E1 line to TDM interface circuits on the MSI module and twoidentical E1/T1/JT1 line to TDM interface circuits on the MSI2 module. This functionaldescription applies to both.

The TDM interface section converts incoming data from E1/T1/JT1 line from serial toTDM parallel.

E1 lines are interleaved onto the TDM bus in groups of two and are spaced out by 32timeslots. The sequence is as follows:

� Group A timeslot 0, group B timeslot 0.

� Group A timeslot 1, group B timeslot 1.

..........

� Group A timeslot 30, group B timeslot 30.

� Group A timeslot 31, group B timeslot 31.

T1/JT1 lines are interleaved onto the TDM bus in groups of two and are spaced out by 24timeslots. The sequence is as follows:

� Group A timeslot 0, group B timeslot 0.

� Group A timeslot 1, group B timeslot 1.

..........

� Group A timeslot 22, group B timeslot 22.

� Group A timeslot 23, group B timeslot 23.

Outgoing traffic data is converted from parallel to serial. The serial data is then sent tothe E1/T1/JT1 line transmitter which converts it to standard E1/T1/JT1 line levels.

E1/T1/JT1 data uses Alternate Mark Inversion (AMI) format and line encoding/errorchecking can be used as given below:–

Line format Line Encoding Error Checking

E1 HDB3 CRC4

T1/JT1 B8ZS CRC6

After encoding, the data is routed to the loopback multiplexer and to a level converter.The level converter converts from split-phase, TTL level unipolar to bipolar.

The table illustrates the E1/T1/JT1 line to TDM Interface circuit actions:

Stage Action

1 The system matches impedance and isolates the signal

2 The E1/T1/JT1 line receive signal is applied to a level converter

3 The level converter converts the signal from bipolar to split-phase TTL levelunipolar

4 The signal passes to the HDB3 decoder (E1) or B8ZS decoder (T1) and clockextraction circuit

5 The signal goes through a crosspoint switch for:

� Diagnostic purposes.

� Distance measurements.

� Drop and insert feature utilization.

The “drop and insert” feature allows a timeslot coming in on group A, which is meant foranother BTS, to be routed back out on group B.

Page 169: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Multiple Serial Interface (MSI/MSI2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–87

Page 170: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Clock (GCLK)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–88

The Generic Clock (GCLK)

Purpose

The Generic Clock (GCLK) module generates all the timing reference signals that theBSU or RXU requires. The master TDM clock is normally synthesized from a 16.384MHz � �.05 ppm stable reference (temperature stabilized crystal oscillator) and a2.048 MHz or 1.544 MHz clock recovered from one of the E1 or T1 lines.

Requirements

The GCLK module fits in slots L3 and L5 in the BSU and RXU shelf assemblies. Themodule is two slots wide and covers L2/L3 and L4/L5.

There must be a GCLK module in slot L3 of all BSU and RXU shelf assemblies.

A second GCLK module in slot L5 provides n + 1 redundancy.

Mutually redundant GCLKs must reside in the same BSU or RXU.

Clockcontrol/alarmlogic

The clock control/alarm logic determines the GCLK’s master/slave status based onmodule faults and GPROC commands, and reports the operational status to theGPROC.

Buffered testports

Buffered test ports are supplied on the front of the GCLK module for test andmeasurement of the input reference signal and output clock and reference signals. Thetest jacks are recessed.

Page 171: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Clock (GCLK)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–89

The Generic Clock (GCLK) Module

BSS11_Ch3_36

E1/T1 In

16.384 MHz OUT

6.12 S OUT

ALARM (RED) LED(NORMALLY OFF)

ACTIVE (GREEN) LED(MASTER ON)

125uS OUT

GROUND

FREQUENCY ADJUST

60mS OUTTESTPORTS

RESET/DISABLE SWITCHUP (MOMENTARY) = RESETMIDDLE = NORMAL OPERATIONDOWN = DISABLE

BACKPLANE CONNECTOR

LATER VERSIONS OF THE GCLK DO NOT HAVE THE 6.12 mSAND 125 uS OUTPUTS ON THE FRONT PANEL.

Page 172: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Clock (GCLK)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–90

Brief descriptionRefer to the functional block diagram at the end of this section.

The GCLK module generates all timing reference signals required by the BSS:

� 16.384 MHz TDM clock.

� 125 �s frame reference.

� 60 ms synchronization reference.

� 6.12 s superframe reference.

The GCLK is phase-locked to the recovered clock of a selected E1/T1 line from an MSIor XCDR module. If the recovered clock signal is lost, and no long term average (LTA) isavailable upon which to synchronise, then the GCLK free-runs, providing referencestability better than 0.05 ppm. The module incorporates self-diagnostics to detect andisolate board faults and to select a redundant board in the event of module failure.

When a redundant GCLK is present, the GCLKs operate in a master/slave configurationwith the slaved outputs synchronized to the master. If an error is detected, the clockcontrol circuit reverses the master/slave status of the two GCLKs. Fault status isreported to the main processor via the MCAP bus.

Referenceoscillator

The reference oscillator uses a Phase Lock Loop (PLL) and a frequency multiplier tosynthesize 16.384 MHz from a E1/T1 line. The PLL consists of:

� A digital phase detector.

� A loop filter.

� A Voltage Controlled Crystal Oscillator (VCXO).

� A divide by eight loop divider.

If a fault is detected on the signal from both E1/T1 lines, the oscillator either uses the LTA(if available) or free runs with stability being maintained by the VCXO.

Referencedividers

The 125 �s, 60 ms, and 6.12 s reference dividers consist of cascaded programmablebinary counters to divide the input signal to the correct output frequency. The referencedividers are synchronized to the master clock. The output of each reference counter isrouted to a multiplexer, which is used to switch the reference output from the master orthe slave GCLK. The output of each reference counter is also routed to the referenceencoder.

Referenceencoders

The reference encoder encodes the reference signals together while maintaining phaserelationships. The encoded clock signals are routed via the backplane to a CLKX to betransmitted to other shelves at the site, via fibre optic cables.

Reference faildetect

The reference fail detect circuit monitors the signal on the two E1/T1 lines. Failures arereported to the clock control/alarm logic. In the event of a reference failure, the GCLKeither uses the LTA (if available) or selects the secondary E1/T1 line reference. In eithercase an alarm is reported to the controlling GPROC via the MCAP bus.

Page 173: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Clock (GCLK)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–91

Block Diagram of the Generic Clock (GCLK)

MUX

MUX

MUX

MUX

MUX

ENCODED CLK IN

6.12 s REF FROM MATE GCLK60 ms REF FROM MATE GCLK

125 us REF FROM MATE GCLK

16.384 MHz CLK FROM MATE GCLK

ENCODED CLK TO CLKX

ENCODED CLK TO MATE GCLK

REFERENCEOSCILLATOR

REFERENCEENCODER

125 usREFERENCE

COUNTER

60 msREFERENCE

COUNTER

6.12 sREFERENCE

COUNTER

BACKPLANE CONNECTOR

MUX

MASTER/SLAVE

OUTPUT ENABLECLOCK CONTROL /

ALARM LOGIC

REFERENCEFAIL

DETECT

6.12 s REF TO BACKPLANE

6.12 s REF TO MATE GCLK

60 ms REF TO BACKPLANE

60 ms REF TO MATE GCLK

125 us REF TO BACKPLANE

125 us REF TO MATE GCLK

16.384 MHz CLK TO BACKPLANE

16.384 MHz TO MATE GCLK

RED LED

GREEN LED

E1/T1 CLOCK REF A

RESET/DISABLESWITCH

TEST CONNECTOR

TEST CONNECTOR

TEST CONNECTOR

TEST CONNECTOR

MCAPINTERFACE

MCAP BUS A

MCAP BUS B

TEST CONNECTOR

125 us OUT

60 ms OUT

6.12 s OUT

16.384 MHz OUT

E1/T1 IN

E1/T1 CLOCK REF B

MASTER/SLAVE

CONTROL

CLOCKFAILUREDETECT

LATER VERSIONS OF THE GCLK DONOT HAVE THE 6.12 S, 60mS AND4.24uS OUTPUTS ON THE FRONTPANEL

BSS11_Ch3_37

Page 174: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2GCLK Operating Modes

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–92

GCLK Operating Modes

Introduction

There are four modes that the GCLK board can operate in, these are: free run, holdfrequency, set frequency and closed loop. Each mode is explained below referring to thediagram opposite.

Free Run

When a GCLK is inserted into the digital cage (or on power up) a 30 minute warm upperiod is required for the Ovenised Crystal Oscillator (OCXO) to reach the correctoperating temperature, during this time the GCLK is in free run mode and the input to theDigital to Analogue Converter (DAC) is set to 80(hex). The value 80(hex) cannot bechanged. The OCXO in free run mode will produce a clock output accurate to 0.05ppm.

Note:

The 30 minute warm up period is set by Motorola and cannot be changed.

Hold Frequency

The hold frequency mode is used to maintain a specific clock frequency in the event thatthe 2.048MHz reference should fail. This mode uses the last 8 bit word output from theAnalogue to Digital Converter (ADC) to set the Digital to Analogue Converter (DAC). Thehold frequency mode is a transitional mode (typically 10 secs) until the set frequencymode is activated by the software.

Set Frequency

The set frequency mode allows a GPROC to set the DAC to control the output of theOCXO during loss of the El/T1reference signal (this is after the transitional holdfrequency mode).

One GPROC in the master cage will be responsible for the GCLK operation and willmonitor the input to the DAC during closed loop operation. In the event of referencesignal failure the GPROC will calculate a best value to set the DAC to maintain theaccuracy of the OCXO. This value is called the long term average and is calculated fromsamples read from the GCLK via the MCAP interface. A sample is taken every 30minutes, up to a total of 48 samples representing the previous 24 hours. When the 49thsample is read it over-writes the 1st sample to maintain a total of 48.

Page 175: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 GCLK Operating Modes

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–93

GCLK Operating Modes

BSS11_Ch3_38

80 (Hex)BufferOEl

Read freqlatchOE

Set freqlatchOE

Control

8

EN

Highprioritycell

FOS.IN

DET

inV

Conv.CSin

16.384MHz

OCXO

GPROC (MCP data bus)Reference fail detect

256 kHz

2.048 MHz

Input signal

Feedbackoutputsignal

Phasedetector

LPF

ADC DAC

Calibrationadjust Vref

16.384 MHz

OS.IN

To/From Master GPROC

Page 176: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2GCLK Operating Modes

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–94

Closed loop

The closed loop mode is provided to eliminate frame slips due to reference clock failureand/or OCXO ageing. In this mode the 16.384MHz clock frequency will be exactly eighttimes the mean frequency of the incoming reference clock. The reference clock sourcemust be accurate to +/–0.01 ppm.

When the GCLK is frequency locked the calibration and ageing of the OCXO can bemonitored using the Long Term Average (LTA). If the LTA is outside a databasepredefined limit then an alarm will be raised, typically this alarm will allow the GCLK tooperate for another 30 days before re-calibration is required (10% upper/lower values ofLTA, as defined in the database). When in closed loop mode the loop is immune to linebreaks of less than 80 microseconds.

Due to this GCLK calibration will take place every 3–7 years.

Within the closed loop mode there are two sub modes or states:

� Acquiring frequency lock state

� Frequency lock state

The acquiring frequency lock state is the operating condition where the GCLK PLL outputis converging towards the long-term frequency of the El/T1 line. The time spent in thisstate is dependant on the hardware revision level of the GCLK board, current buildboards will be in this state a maximum of 2 minutes, typically much less. Once this stateis reached (i.e. the output is within GSM specifications) the second sub state, frequencylock state is activated.

This mode is again dependent on the GCLK hardware revision level (either 2 or 10minutes), and is used to confirm that the GCLK output is stable within the GSMspecification for the set period (2/10 minutes).

GCLKSynchronizationConfiguration

To enable the use of an E1 link as a synchronisation reference it must be allocated apriority. Priority allocation is from 1 to 255, with 255 being the highest. If the extractedreference is given 0 it will not be used.

To ensure the extracted reference is only taken from higher order components in thenetwork, the E1 links providing connectivity to lower order components are given thepriority 0.

Page 177: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 GCLK Operating Modes

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–95

GCLK Synchronization Configuration

BSS11_Ch3_39.

Dynamic Switch

MSC

RXCDR

BSC

BTS BTS

MSIPriority

250

MSIPriority

251

MSIPriority

253

MSIPriority

0

MSIPriority

0

MSIPriority

0

To use the E1 as a reference it must have a priority

between 1 (low) and 255 (high). 0 the extracted clock is not used

GCLK

Main controlprocessor

GPROC

Ops +Maint.

Site control

Switch manager

Link controlprocessor

GPROC

MSC linkprocessingGSM call

processing

E1 Links

E1 Links

All entities must besynchronised with a

higher level

BSC

Page 178: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Transcoder Board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–96

Transcoder Board

PurposeThe Transcoder (XCDR) module:� Interfaces an E1/T1 serial line to the internal cabinet TDM highway, which is in a

parallel format.� Transcodes thirty 64 kbit/s channels into 120 compressed voice/data channels, in

accordance with the GSM recommendations:– Channel zero of each E1/T1 line is reserved for synchronization.– Channel sixteen is reserved for link control signalling.

If the BSC performs the transcoding function, XCDRs interface the BSU or RXU to theMSC in place of MSI modules.The XCDR transcodes the remaining 30 channels into 120 x 16 kbit/s compressedchannels. The synchronization and signalling channels and the 120 compressedvoice/data channels are applied to the active TDM highway in the BSU or RXU.These channels can be placed in any of the 1024 channels on the TDM highway undercontrol of the GPROC/GPROC2.TerminologyOne wire pair (balanced or unbalanced) equals one E1/T1 serial data stream.

Two E1/T1 serial data streams (transmit and receive) equal one E1/T1 line.

RequirementsThe XCDR module is fitted in:� Slots L6 to L17 (but maximum 6 modules in total) in the BSU shelf assembly.� Slots L6 to L24 (maximum 19 modules) in the RXU shelf assembly.An MSI, MSI2, XCDR or GDP must be located in at least one of the BSU locations belowfor BSC initialization purposes.� Shelf 0 slot 16 (Software communicates via either group A or group B)� Shelf 0 slot 14 (Software communicates via group A)� Shelf 1 (if second BSU in BSC) slot 16 (Software communicates via group A)

An RXU initialization uses slot 10 instead of slot 16, and slot 8 instead of slot 14.

Brief descriptionRefer to the XCDR block diagram at the end of this section.The XCDR module contains a digital signal processor (DSP) unit that performs:� GSM-defined speech encoding.� GSM-defined speech decoding.� Submultiplexing functions.The speech transcoder bi-directionally interfaces the 64 kbit/s E1/T1 line in the landnetwork to the 13 kbit/s vocoder format used on the air interface.Signalling channels are passed straight through the transcoder.

ArchitectureThe XCDR module contains the following major systems:

� Processor system.

� DSP system.

� Line interface system.

� Switching system.

� MCAP interface system.

� TDM interface system.

Page 179: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Transcoder Board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–97

The Transcoder (XCDR) Module

BSS11_Ch_40

ALARM (RED) LED

ACTIVE (GREEN) LED

RESET/DISABLE SWITCH

(NORMALLY OFF)

(NORMALLY ON)

UP (MOMENTARY) = RESETMIDDLE = NORMAL OPERATIONDOWN = DISABLE

BACKPLANE CONNECTOR

Page 180: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Transcoder Board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–98

ProcessorThe main component of the processor system is the Microcontroller Unit (MCU), which:

� Controls and interfaces the five major systems (listed below) on the XCDRmodule.

� Performs self-diagnostics and error monitoring.

Other components of the processor system are:

� A watchdog timer.

� 16 kbytes of RAM.

� 64 kbytes of EEPROM.

� 1 kbyte of dual port RAM.

� A power monitor circuit.

The watchdog timer is periodically strobed by the MCU; an alarm is generated if it is notstrobed before a pre-set timeout.

The DigitalSignal Processor(DSP)

The DSP system consists of:

� 30 mask programmed DSP units.

� A subrate multiplexer.

� A serial port timing generator.

� A parallel host interface.

Each DSP unit has its own internal memory (2 kbytes of RAM and 12 kbytes of ROM)and serial interface. The DSP units are arranged into four banks (three banks of eightand one bank of six).

The serial port timing generator keeps all DSPs synchronized. The parallel host interfaceis used to transfer status and control data between the MCU and DSP units.

Subratemultiplexermodes

The subrate multiplexer can operate in three modes. The following table lists the modesand resulting functions:

Mode Functions

DSP loop backThe DSP output is logically connected to its input, enabling a selftest function.

16 kbytesmultiplexed

Each DSP receives 16 bits of data:

The first 8 bits are from a 16 kbytes/s subrate channel from theTDM highway. Two bits at a time are expanded into PCM.The last eight bits are from the E1/T1 line data stream. The PCMis processed into 16 kbit/s TRAU frames.

64 kbytesnon-multiplexed

Each DSP receives 16 bits of data:

The first eight bits are from the TDM bus, and are passed to theE1/T1 line.The second eight bits are from the E1/T1 line, and are passed tothe TDM bus.

Page 181: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Transcoder Board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–99

Block Diagram of the Transcoder (XCDR)

TDMINTERFACE

SUBRATEMULTIPLEXER

SERIAL PORTING GENERATOR

SWITCHINGSYSTEM

MCUMC68HC811E2

MCAP BUSINTERFACERED

LED

MCAP BUS A

BACKPLANE CONNECTOR

DSP UNIT 1

MCAP BUS B

TTY TEST PORT

DSP UNIT 2

DSP UNIT 3

DSP UNIT 4

DSP UNIT 29

DSP UNIT 30

WATCHDOGTIMER

POWERMONITOR

RESET/DISABLESWITCH

EXTRACTED CLOCK REF

LEVELCONVERTER

CS61574

TDM SWITCHBOUND HIGHWAY A

TDM OUTBOUND HIGHWAY A

TDM SWITCHBOUND HIGHWAY B

TDM OUTBOUND HIGHWAY B

LEVELCONVERTER

E1/T1TRANSMITTER

E1/T1 LINE A RECEIVE

E1/T1 LINE A TRANSMIT

RECEIVEDCLOCK

EXTRACTOR

FRAMER MT8979AP

CRC4/HDB3DECODER

CRC4/HDB3ENCODER

2

2

IMPEDANCEMATCHING

IMPEDANCEMATCHING

CONTROL

CO

NT

RO

L

CO

NT

RO

LFRAMER

MT8979AP

GREENLED

BSS11_Ch3_41

Page 182: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Transcoder Board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–100

Line interface

The line interface system performs:

� Impedance matching.

� Secondary surge protection from high voltage transients (such as lightning strikes),which may be transmitted along the E1/T1 lines.

The impedance matching circuit consists of isolation transformers and Zener diodes.

After impedance matching and isolation the E1/T1 line receive signal is applied to a levelconverter that converts the signal from bipolar to split-phase TTL level unipolar.

After level conversion the received E1/T1 line data is sent to the clock extraction circuitand a HDB3 decoder. The clock extraction section extracts the E1/T1 clock to which allBSU/RXU shelves can be synchronized. The HDB3/CRC4 decoding section performsframe decoding law CCITT recommendation G.704 for digital multiplex equipment. Trafficis then routed to the switching system.

Switching

The switching system consist of two separate digital switches, each performing adifferent function.

� The first switch has the E1/T1 line data stream and TDM data streams passingthrough it.

� The second switch is used as an interface between the processor section and theframer of the line interface system.

MCAP interface

The MCAP interface system supports two redundant MCAP buses to the XCDR. TheXCDR communicates with the GPROC in the same manner as all other full-sizemodules.

TDM interface

The TDM interface system takes traffic data from the TDM bus and converts it fromparallel data to serial data. The serial data is then sent to the switching system.

Page 183: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Transcoder Board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–101

Page 184: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic DSP Processor (GDP)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–102

The Generic DSP Processor (GDP)

Purpose

The Generic DSP Processor (GDP) module can be used as an enhanced XCDR, withadditional features, including Enhanced Full Rate (EFR) speech and uplink/downlinkaudio volume control. The GDP DSP firmware is downloadable whereas the XCDRDSP firmware is mask programmed.

The description in the following pages assumes the GDP is being used as an enhancedXCDR.

The GDP module can only be used with systems running GSR 3 or laterreleases, as this contains the neccessary software support to allow operation.In addition, for GRS3, GPROC2 must be fitted to the BSC as the masterprocessor (with redundant master and CSFP).

For a BSC which will operate the EFR speech option, all transcoder boards itconnects to must be GDP, not XCDR.

The GDP has two configured types, one for E1 serial line use and one for T1serial line use. Each GDP type has a different framer/transceiver withaccompanying crystall oscillator, and two associated resistors. This meansthat a GDP used for E1 serial line use cannot be used for T1, and a GDP usedfor T1 serial line use cannot be used for E1.

NOTE

The GDP module:

� Provides the transcoding interface to the MSC. The GDP module is located at theRXCDR, or at a BSC where transcoding is integrated within the BSC.

� Interfaces an E1/T1 serial line to the internal cabinet TDM highway, which is in aparallel format.

� Transcodes thirty E1(twenty-four T1) 64 kbit/s channels, inserting them as part of120 E1 (96 T1) compressed voice/data channels, in accordance with the GSMrecommendations:

– Channel zero of each E1 line is reserved for synchronization.

– Channel sixteen of each E1 line is reserved for link control signalling.

– The 30 remaining E1 channels are transcoded.

Each GDP supports thirty compressed voice and data channels, using 15 DSPs. Thesechannels, and the synchronization and link control signalling channels, can be placed inany of the 1024 channels on the TDM highway under control of the GPROC/GPROC2.

Terminology

One wire pair (balanced or unbalanced) equals one E1/T1 serial data stream.

Two E1/T1 serial data streams (transmit and receive) equal one E1/T1 line.

Page 185: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic DSP Processor (GDP)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–103

Block Diagram of the GDP

TDMINTERFACE

DSP SUBSYSTEM

DIGITALCROSSPOINT

SWITCH

MCUSUBSYSTEM

MCAP BUSINTERFACERED

LED

MCAP BUS A

BACKPLANE CONNECTOR

MCAP BUS B

TTY TEST PORTPOWERMONITOR

RESET/DISABLESWITCH

EXTRACTED CLOCK REF

TDM SWITCHBOUND HIGHWAY A

TDM OUTBOUND HIGHWAY A

TDM SWITCHBOUND HIGHWAY B

TDM OUTBOUND HIGHWAY B

E1/T1 LINE A RECEIVE

E1/T1 LINE A TRANSMIT

RECEIVEDCLOCK

EXTRACTOR

2

2

E1/T1 LINEINTERFACE

GREENLED

SERIAL DATAFORMATTERS

SCI MUX

ESSITESTPORT

BSS11_CH3_42

Page 186: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Parallel Interface Extender (PIX)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–104

The Parallel Interface Extender (PIX)

Overview

Refer to the block diagram on the next page.

The Parallel Interface Extender (PIX) module provides:

� An input/output (I/O) interface for customer site equipment.

� The interface logic between the GPROC and external customer alarm devicessuch as relays and switches.

� Eight optically isolated inputs and four relay outputs.

Requirements

PIX modules can be fitted in the following slots of a BSU or RXU shelf assembly:

� BSSC2 and BTS6: slots U16, U17 and U18.

� BSSC, BTS4 and BTS5: slots U15 and U16.

PIX module

The diagram shows a PIX module:

ALARM (GREEN) LED

CONNECTOR IS CABLED TO TOP OFCABINET FOR INTERCONNECT TOCUSTOMER SITE EQUIPMENT

(ON = NO ALARMS)(OFF = CUSTOMER ALARM DETECTED)

BACKPLANE CONNECTOR

BSS11_Ch3_42a

Page 187: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Parallel Interface Extender (PIX)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–105

Block Diagram of the PIX

DC to DCCONVERTEROPTO–

COUPLERSURGEPROTECTION

SENSE S1SENSE D1

SERIAL BUSTRANSCEIVER

OPTO–COUPLER

SURGEPROTECTION

SENSE S2SENSE D2

OPTO–COUPLER

SURGEPROTECTION

SENSE S3SENSE D3

OPTO–COUPLER

SURGEPROTECTION

SENSE S4SENSE D4

OPTO–COUPLER

SURGEPROTECTION

SENSE S5SENSE D5

OPTO–COUPLER

SURGEPROTECTION

SENSE S6SENSE D6

OPTO–COUPLER

SURGEPROTECTION

SENSE S7SENSE D7

OPTO–COUPLER

SURGEPROTECTION

SENSE S8SENSE D8

RELAYDRIVERRELAY

N. O. 1N. C. 1

RELAYDRIVER

RELAY

COM 1

RELAYDRIVER

RELAY

RELAYDRIVER

RELAY

N. O. 2N. C. 2COM 2

N. O. 3N. C. 3COM 3

N. O. 4N. C. 4COM 4

TOCUSTOMEREQUIPMENT

EARTH

+12 V

+12 V–12 V

BSS SERIAL BUS A

BACKPLANE CONNECTOR

BSS SERIAL BUS B

62 PIN “D”CONNECTOR

FROMCUSTOMEREQUIPMENT

GREENLED

+5 V

BSS11_Ch3_43

Page 188: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Battery Backup Board (BBBX)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–106

The Battery Backup Board (BBBX)

Purpose

If the external supply fails, the Battery Backup Board (BBBX) provides a backup supplyof +5 V at 8 A. The BBBX can only be fitted in a BTS6 cabinet.

The +5 V DRAM battery backup supply maintains power to the:

� Optical circuit on the LANX module.

� DRAM memory located on the GPROC.

Normally, the PSMs supply +5 V DRAM voltage to the BSU or RXU backplane. If thePSMs fail to deliver this due to cabinet input power failure or PSM failure, the BBBXconverts an external backup supply to a fused +5 V DRAM supply.

Requirements

The BBBX module is normally positioned in slots U16, U17 or U18 of the BSU or RXUshelf assembly, but can be fitted in any spare half-size card slot.

All connections are made at the front of the module.

BBBX module

The following shows a BBBX module:

CONNECTOR PC2 IS CABLED TO TOPOF CABINET FOR CONNECTION TOPC4 ON THE DAB AND BATT BACKUP

CONNECTOR PC1 IS CABLED TO AI2 ON THEDIGITAL CAGE BACKPLANE

BSS11_Ch3_43a

Page 189: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Battery Backup Board (BBBX)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–107

Block Diagram of the BBBX

BSS11_Ch3_44

DC to DCCONVERTER

BRIDGERECTIFIER

SURGEPROTECTION

OUTPUT VOLTAGE(+5 V @ 8 A)

ALARMSIGNALS

INPUT VOLTAGE(20 to 75 V @ 3.2 to 0.85 A)

OUTPUT GOOD

INPUT GOOD

4 PIN “AMP”CONNECTOR

9 PIN “D”CONNECTOR

OVER VOLTAGE

OVER TEMPERATURE

Page 190: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Local Area Network (LAN)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–108

Local Area Network (LAN)

Purpose

Possible laser radiation when fibre optic cables are disconnected.Do not look directly into beams with or without the use of any opticalaids. Radiation can come from either the data in/out connectors orunterminated fibre optic cables connected to data in/out connectors.

WARNING

The Local Area Network Extender (LANX) module is required for each BSU or RXUshelf. The LANX:

� Connects one of the LAN interfaces of each GPROC/GPROC2 in a BSU or RXUshelf to the local shelf token ring LAN via the shelf backplane.

� Allows optical LAN extension from one BSU or RXU to another.

� Switches empty module slots or faulty GPROC/GPROC2s out of the LAN.

� Sets the cage (BSU or RXU shelf) ID.

� Performs on-board MCAP bus arbitration.

� Provides shelf active/standby redundant LAN control.

Shelf to shelf extension is via a LANX module in each shelf, interconnected with fibreoptic cabling.

The LANX supports up to eight GPROC/GPROC2s on the local LAN in one BSU or RXUshelf.

Requirements

LANX modules must be fitted in slots U19 and U20 of the BSU or RXU shelf assembly atall times.

A sixteen position (0 to F hex) rotary switch on the LANX module sets the BSU or RXULAN address (shelf ID number).

LANX module

The diagram shows a LANX module:

ROTARY SWITCHFOR SETTING SHELF ID NUMBER

FIBRE OPTIC INPUT FROM ANOTHER LANXIN ANOTHER SHELF AT THE SITE

FIBRE OPTIC OUTPUT TO ANOTHER LANXIN ANOTHER SHELF AT THE SITE

BACKPLANE CONNECTOR

BSS11_Ch3_44a

Page 191: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Local Area Network (LAN)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–109

BSS Local Area Network (LAN)

BSS11_Ch3_45

LANX

TX RXGPROC0

GPROC1

GPROC2

GPROC3

GPROC4

GPROC5

GPROC6

GPROC7

TOKEN

Loop (fibre optic)

Page 192: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Local Area Network (LAN)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–110

Brief description

Refer to the block diagram at the end of this section.

Each LANX receives LAN data from another shelf via optical fibre cables and:

1. Routes the LAN data to the first GPROC/GPROC2.

2. Receives the LAN data back from the first GPROC/GPROC2.

3. Routes the LAN data to the second GPROC/GPROC2.

4. Receives the LAN data back from the second GPROC/GPROC2.

And so on until all GPROC/GPROC2s in the shelf have received the LAN data.

The LAN data received back from the last GPROC/GPROC2 in the shelf is sent via fibreoptics to the next shelf (if LAN extension is used). If a GPROC/GPROC2 is not present inthe shelf or has failed, the LANX bypasses it and passes the LAN data to the nextGPROC/GPROC2.

Local LAN dataswitching

Each GPROC/GPROC2 using the LANX uses the following signals to route LAN data:

� LAN DATA IN.

� LAN DATA OUT.

� INSERT.

GPROC/GPROC2 present

When the GPROC/GPROC2 is present and operating with no faults, the INSERT line islogic 1, causing LANX multiplexers to switch the GPROC/GPROC2 signals as follows:

� LAN DATA OUT signal of this GPROC/GPROC2 is switched to the LAN DATA INsignal of the next GPROC/GPROC2 slot. In the case of shelf extension, the LANDATA OUT signal of GPROC/GPROC2 7 is switched to the fibre optic transmitterstage.

� LAN DATA OUT signal from the previous GPROC/GPROC2 slot is switched to theLAN DATA IN signal of this GPROC/GPROC2. In the case of shelf extension, thesignal from the fibre optic receiver stage is switched to the LAN DATA IN signal ofGPROC/GPROC2 0.

GPROC/GPROC2 not present

If the GPROC/GPROC2 is not present or operating with faults, the INSERT line is logic 0causing LANX multiplexers to switch the GPROC/GPROC2 signals as follows:

� LAN DATA OUT signal of this GPROC/GPROC2 is switched (looped back) to theLAN DATA IN signal of the same GPROC/GPROC2.

� LAN DATA OUT signal of the previous GPROC/GPROC2 is switched to the LANDATA IN signal of the next GPROC/GPROC2.

This removes the GPROC/GPROC2 from the LAN ring, and subsequent LAN databypasses the GPROC/GPROC2.

Page 193: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Local Area Network (LAN)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–111

LANX Requirements

BSS11_Ch3_46

BSSC BSSC

CAGE 2

CAGE 3

LANX A LANX B LANX A LANX B

LANX A LANX B LANX A LANX B

CAGE 0

CAGE 1

01

234

56

789ab

cde

f

Rx Tx Rx TxRx TxRx Tx

LANX Cage 0 LANX Cage 3LANX Cage 2LANX Cage 1

Fibre Optic

Page 194: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Local Area Network (LAN)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–112

Extended LANdata switching

In configurations of more than one shelf, the LANX allows the local LAN data to beextended to another shelf via optical fibre connected to a LANX in the other shelf.

Any of the GPROC/GPROC2s in the shelf controls local LAN data switching betweenshelves. Control is via the serial bus connected to the LANX signal, LANLOCAL/EXTERNAL.

Logic 1

A logic 1 on the LAN LOCAL/EXTERNAL line causes multiplexers on the LANX to switchsignals as follows:

� LAN DATA IN signal of GPROC/GPROC2 7 is switched to the fibre optictransmitter stage. The optical transmitter provides a Tx data signal, consisting ofthe local LAN data of this shelf, which is transmitted via fibre optic to a LANX inanother shelf.

� Rx data signal from the fibre optic receiver stage is switched to the LAN DATAOUT signal of GPROC/GPROC2 0.

Logic 0

A logic 0 on the LAN LOCAL/EXTERNAL line causes multiplexers on the LANX to switchsignals from LAN DATA IN signal of GPROC/GPROC2 7 is switched to the LAN DATAOUT signal of GPROC/GPROC2 0.

This bypasses the LANX fibre optic transmitter and receiver stages consequentlydisabling local LAN extension to another shelf.

Power loss

If the local LANX loses dc power, the Rx data signal from the fibre optic receiver stage isswitched (looped back) to the optical transmitter, providing a Tx data signal via fibre opticto the LANX in another shelf.

Bus arbiter

The LANX bus arbiter decides which GPROC/GPROC2 is allowed to write data to theMCAP bus via the LAN DATA IN line. Each GPROC/GPROC2, 0 to 7, can assert itsrespective BUS REQUEST line. The bus arbiter starts by monitoring GPROC/GPROC20 slot.

If GPROC/GPROC2 0 has an active BUS REQUEST line, the bus arbiter asserts theGPROC/GPROC2 0 BUS GRANT line. GPROC/GPROC2 0 seizes the MCAP bus andwrites data to the bus. When GPROC/GPROC2 0 has finished writing data to the MCAPbus, it deactivates the BUS REQUEST line. This frees the bus and the bus arbiteractivates the BUS GRANT line of the next higher numbered GPROC/GPROC2 with anactive BUS REQUEST line.

Page 195: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Local Area Network (LAN)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–113

LANX Extension (4 cages)

BSS11_Ch3_47

Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx

CAGE 0 BSU

CAGE 1 BSU

CAGE 2 BSU

CAGE 3 BSU

SLOTU20

LANXA

SLOTU20

LANXA

SLOTU20

LANXA

SLOTU20

LANXA

Fibre Optic Cable

Page 196: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Local Area Network (LAN)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–114

Redundant LAN

If the redundant GPROC/GPROC2 LAN interface is used, a redundant LANX is required.Each LANX has two serial bus interfaces for communications with theGPROC/GPROC2. The selection of which LAN interface is to be used is determined bythe GPROC/GPROC2.

Shelf ID

The shelf ID is a unique hexadecimal number assigned to each BSU or RXU shelf. TheLANX is fitted with a 16-position (hexadecimal encoded) rotary switch, which defines theshelf ID number of the shelf containing the LANX. The shelf ID is read by theGPROC/GPROC2 via the serial bus interface. The ID number is used by the BSSsoftware when configuring the BSU or RXU.

No two shelves at a site can have the same shelf ID. When a redundant LANX is presentin a shelf, it must have the same ID number as the primary LANX.

The following rules apply:

� A BSU shelf in a BSC is numbered 0 to D (hexadecimal).

� A BSU shelf in a BTS is numbered F to 2 (hexadecimal).

Front panel

The front panel of the LANX incorporates:

� Rx fibre optic input connector. This connects to the Tx fibre optic output of a LANXin another shelf.

� Tx fibre optic output connector. This connects to the Rx fibre optic input of a LANXin another shelf.

� Rotary switch for setting the BSU/RXU shelf ID number.

Page 197: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Local Area Network (LAN)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–115

Functional Block Diagram of the LANX Module

FIBRE OPTICRECEIVER

FIBRE OPTICTRANSMITTER

MUX

LAN LOCAL/EXTERNAL

MUX

MUX

MUX

BUS GRANT 0

LAN DATA OUT 0

BUS REQUEST 0

LAN DATA IN 0

INSERT 0

BUS GRANT 1

LAN DATA OUT 1

BUS REQUEST 1

LAN DATA IN 1

INSERT 1

BUS GRANT 2

LAN DATA OUT 2

BUS REQUEST 2

LAN DATA IN 2

INSERT 2

GPROCSLOT 0

GPROCSLOT 1

GPROCSLOT 2

GPROCSLOT 7

GPROCSLOTS

3, 4, 5, 6

BUS GRANT 7

LAN DATA OUT 7

BUS REQUEST 7

LAN DATA IN 7

INSERT 7

BUS ARBITER

POWER FAIL DETECT &

LANLOCAL/EXTERNAL

LOGIC

SELECTSHELF ID NUMBER

BSS SERIAL BUS A

BACKPLANE CONNECTOR

BSS SERIAL BUS B

ROTARYSWITCH

SERIALINTERFACE

DC INPUTPOWER

DISTRIBUTION

Rx DATA

Tx DATA

BSS11_Ch3_48

Page 198: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Motorola Cellular Advanced Processor (MCAP)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–116

Motorola Cellular Advanced Processor (MCAP)

Introduction

The MCAP is a parallel communications bus clocked at a rate of 16.384 MHz. It allowsone GPROC in the BSU or RXU cage to communicate with the following peripheralboards:

1. Kiloport Switch (KSW)

2. Multiple Serial Interface (MSI)

3. Generic Clock (GCLK)

4. Transcoder (XCDR)

5. Generic Digital Signal Processor (GDP)

GPROCs communicate with each other via the LAN interface, whilst the MCAP bus isused for comunications between the GPROCs and the peripheral boards.

In order to gain access to the MCAP bus, a GPROC must go through an arbitrationsequence carried out on the LANX. Each MCAP bus (A or B) has its own arbiter locatedon a LANX (A or B) card.

There are effectively two buses on the backplane (A and B). One bus, A or B is activeand the other will be in standby mode, depending on the state of the system. Theoperations of both buses are identical. The only distinction made will be active bus orstandby bus.

Within a BSC or RXCDR each cage will have one GPROC assigned as MCAP master.This GPROC controls all communication to the peripheral boards and so will always begranted use of the MCAP bus by the LANX card.

(In a non-M-Cell BTS there will be GPROCs assigned as DHPs (Digital Host Processor)controlling DRIM (Digital Radio Interface) cards via the MCAP bus. In this case theLANX will provide arbitration between the DHPs and the MCAP master GPROC).

Page 199: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Motorola Cellular Advanced Processor (MCAP)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–117

The Motorola Cellular Advanced Processor (MCAP)

BSS11_Ch3_49

Token Ring LAN between GPROC boards

BSPGPROC

1MCAP

MASTER

GPROC2

GPROC2

PeripheralBoard

PeripheralBoard

PeripheralBoard

Peripheral Boards: GCLK, KSW, MSI, XCDR

Logical Association of GPROC Boards and Peripheral Boards

Page 200: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2MCAP Communications

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–118

MCAP CommunicationsThe GPROC communicates with peripheral boards (i.e. KSW, MSI, XCDR, etc.) via theMotorola Cellular Advanced Processor Bus (MCAP Bus). The process on the GPROCthat controls this interaction is called the MCAP DLSP. The MCAP DLSP providesmultiple services to MCAP bus user processes. These services are:

� A high level interface between application processes on GPROCs and peripheralboards connected to the MCAP bus.

� Managing code loading of the peripheral boards connected to the MCAP bus. Theterm code loading refers to the collected actions of code downloading and codeuploading.

� Maintaining cage configuration with regard to the peripheral boards within thecage. This information is based on the types of peripheral boards contained withinthe cage.

� Overflow protection for MCAP message buffers.

� A routing facility for messages that flow between the application processes (on theGPROCs) and the peripheral board firmware. MCAP DLSP is also responsible forproviding an error free communication path between the peripheral boards andapplication software.

Since the MCAP bus is confined to one cage (not extendable), the MCAP DLSP is onlyresponsible for providing a communicating path between GPROCS and peripheralboards that reside in the same cage. Application processes that need to communicatewith peripheral boards in different cages will have to use different MCAP DLSPs. AnMCAP DLSP may reside on any GPROC but there is only one active MCAP DLSP percage.

Address Area

Individual boards are addressed using a physical location system, where each of theboards are assigned a 5 bit address related to its physical card slot position (ID) in thecage plus 18 bits giving an address range of 256k locations for each board and anadditional bit to control selection of either MCAP A or MCAP B buses.

Data Area

The physical data width of the bus is 16 lines (2 bytes or word). However a separate linefrom the bus master(s) allows the bus to support dynamic sizing i.e. the width of the buschanges to correspond to the width of the data i.e 8 or 16 bits. A parity bit is also addedfor error detection.

Page 201: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 MCAP Communications

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–119

Page 202: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Port Ram (DPR)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–120

Dual Port Ram (DPR)Communication over the MCAP bus, between the GPROC and the peripheral boards, isachieved via a buffer located in the MCAP interface known as the Dual Port Ram (DPR).The 256K DPR is divided into 2 x 128k segments, one for downlink communication(GPROC to peripheral board) and one for uplink communication (peripheral board toGPROC).

The make up of the Dual Port Ram is shown below.

BSS11_Ch3_49a

Host Port

Data

Host Port

Data

128–255k of DPR,used for uplinkcommunication.

Peripheral board toGPROC

0–127k of DPR,used for downlinkcommunication.

GPROC to peripheral boards.

255k

128k

127k

0k

Downlinkcommunication

The initial communication process between GPROC and peripheral board is via the hostport, a location uppermost in the DPR downlink segment. This contains a message forthe receiving peripheral board’s control processor, indicating an area of memory in theDPR containing data, placed there by the GPROC, destined for the peripheral board.(The memory area the data is stored in is dependent upon the destination address.) Amessage placed in the host port will cause an interrupt to be sent to the controlprocessor. Upon receipt of the interrupt the control processor determines the address ofthe data to be read. Once the peripheral board has read the data it sends a messageacknowledgement to the host port. This in turn causes an interrupt to be sent to theGPROC. Upon receipt of this interrupt the GPROC clears the area of the DPR containingthe data.

Uplinkcommunication

Communication in the uplink direction is the reverse of the downlink direction, utilising theuplink segment of the DPR.

Page 203: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Port Ram (DPR)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–121

GPROC to peripheral boards (Downlink) message flowdiagram

BSS11_Ch3_50

1. GPROC places data into buffer areaof DPR and message into host port.

2. Message in host port causesinterrupt to be sent to destinationperipheral board control processor

3. Control processor decodesmessage in host port and reads databuffer area.4. Once read the control proceesorplaces a message acknowledgementinto the host port.

5. Message acknowledgement causesan interrupt to be sent back to theGPROC

6. GPROC releases the buffer areaof the DPR containing the data.

PeripheralBoard

DPRInterface

Control processor

GPROC

Page 204: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Port Ram (DPR)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–122

Page 205: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Port Ram (DPR)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–123

Peripheral board to GPROC (uplink) message flowdiagram

BSS11_Ch3_51

1. Control processor places data intobuffer area of DPR and message intohost port.

2. Message in host port causes interruptto be sent to GPROC.

3. GPROC decodes message inhost port and reads data buffer area.

4. Once read the GPROC places amessage acknowledgement intothe host port.

5. Message acknowledgement causes aninterrupt to be sent back to the Controlprocessor.

6. Control processor releasesthe buffer area of the DPR containingthe data.

PeripheralBoard

DPRInterface

Control processor

GPROC

Page 206: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Time Division Multiplexed (TDM) Bus

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–124

Time Division Multiplexed (TDM) BusThe Time Division Multiplexed (TDM) bus is an 8 bit parallel highway used to switchtraffic and signalling data within a site. The TDM highway allows GPROCs and peripheralcards to interface to the 2.048Mbit/s E1 links connecting the network together.

A Kiloport Switch (KSW) board is in control of the TDM highways known as theswitch-bound and out-bound highways. Switch-bound identifies the highway going intothe KSW and out–bound, the highway going away from the KSW.

TDM FrameStructure

The TDM frame consists of 1024 timeslots each of 122ns giving an overall frameduration of 125 �sec.

The TDM bus has a 8-bit wide data field and uses a 1-bit parity check enabling a datarate of 64 kbit/s on each TDM timeslot.

The bus has 480 frames per TDM multiframe over 60 ms duration. The 60 ms TDMmultiframe is used for synchronisation of the TDM Highway and the air interface.

TDM BusIntegrity

The TDM bus structure uses parity to check the bus integrity. The outbound TDM bus(outbound with respect to the switch) uses even parity. Even parity causes a floatingbus with pull-up resistors to generate a parity alarm on the receiving expansion Interfacecards. Thus, if the switch or KSWX is removed from the shelf, a bus parity alarm isgenerated on the expansion Interface cards. This parity alarm is one factor indetermining which TDM bus is active on any given expansion Interface card.

The switchbound TDM bus is also at even parity. The reason is the same; namely, afloating bus (expansion Interface card pulled or not present) generates a parity alarm.

The KSW has the ability to change the expected parity sense to odd in order to induceTDM bus parity alarms. This feature provides a means of checking the parity logic.

Page 207: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Time Division Multiplexed (TDM) Bus

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–125

The Time Division Multiplexed (TDM) Bus

MSC

XCDR

KSW

MSI

KSW

MSI

MSI

BTSBTS

2 Mbit/sE1 link

2 Mbit/sE1 link

Outbound

highway

Outbound

highway

Switchbound

highway

Switchbound

highway

BSS11_Ch3_53

RXCDR

BSC

Page 208: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–126

The Kiloport Switch (KSW)

Purpose

The Kiloport Switch (KSW) module is a time division digital switch, and:

� Performs timeslot interchange for the active TDM highway.

� Communicates with the controlling GPROC via the MCAP bus.

� At a BSC, routes the logical channels dynamically on a per-call basis.

See also the TSW section of this chapter, in which the timeslot switch (a sub equippedversion of the KSW) is described.

Requirements

The KSW module fits in the following slots in a BSU or RXU shelf assembly:

� L1 for TDM highway B.

� L27 for TDM highway A.

Page 209: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–127

The Kiloport Switch (KSW) Module

BSS11_Ch3_52

BACKPLANECONNECTOR

ALARM (RED) LED(NORMALLY OFF)

ACTIVE (GREEN) LED(NORMALLY ON)

RESET/DISABLE SWITCHUP (MOMENTARY) = RESETMIDDLE = NORMAL OPERATIONDOWN = DISABLE

Page 210: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–128

Architecture

Refer to the KSW block diagram on page 3–129.

A Motorola MC56001 digital signal processor (DSP) controls the KSW internally. TheDSP:

� Executes port connects between the switchbound TDM highway and the outboundTDM highway.

� Controls the Timeslot Interchange (TSI) section via the connection RAM controlsection.

� Performs on-line and off-line self diagnostics, including:

– Internal (KSW-related) tests.

– External (TDM bus-related) tests.

� Controls inbound and outbound multiplexers.

� Processes alarms.

� Updates the dynamic pattern registers.

The DSP communicates via the MCAP bus interface logic, the DSP data/address bus,and the serial interface logic.

Timing reference

The timing reference section generates various clock signals, timeslot counts, and framecounts required by other sections of the KSW.

The TDM counters section is an offset counter that adds a fixed offset to the master TDMtimeslot counter.

The GSM counters section contains four separate counters:

� GSM sub-timeslot counter.

� GSM sequence counter.

� GSM timeslot counter.

� GSM frame counter.

SwitchboundTDM interfacestructure

The switchbound TDM highway interface consists of a series of multiplexers that areused to select one of four switchbound highways (numbered 0 to 3). The DSP controlsthe switchbound multiplexers via highway control logic.

Switchbound highway 0 and the outbound highway are split into local and remote parts.

Local

The local switchbound highway 0 and local outbound highways are active when the KSWis communicating with highway interface modules in the same shelf.

Page 211: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–129

Block Diagram of the Kiloport Switch (KSW) Module

TIMINGREFERENCE

LOGIC

MCAP BUS A

MCAP BUS B

MCAP BUSINTERFACE

LOGIC

52

52 } 2 FOR REDUNDANCY

MC5600127 MHz A CLOCK & REFERENCE

CLKS (16.384 MHz, 125 us, 60 ms, AND 6.12 s)

B CLOCK & REFERENCE CLKS (16.384 MHz, 125 us,

60 ms, AND 6.12 s)

TDMCOUNTERS

GSMCOUNTERS

DS

P D

ATA

/AD

DR

ES

SERIALINTERFACE

LOGIC

WATCHDOGTIMER

TTY INTERFACE

MUX LOCAL SWITCHBOUND HWY 0

REMOTE SWITCHBOUNDHWY 0

MUX

MUX

HIGHWAYCONTROL

MUX

MUX

TIME SLOTINTERCHANGE

(TSI)

REMOTE KSWX HWYINTERFACE CONTROL

EXPANSION SWITCHBOUNDHWY 1

EXPANSION SWITCHBOUNDHWY 2

EXPANSION SWITCHBOUNDHWY 3

DELAY

TIME SLOTINTERCHANGE

(TSI)

TIME SLOTINTERCHANGE

(TSI)

TIME SLOTINTERCHANGE

(TSI)

CONNECTIONRAM CONTROL

HIGHWAYMONITOR

DS

P D

ATA

/AD

DR

ES

TSI MODE MUX

THIRDPARTY

CONFERENCEMEMORY

FIXED/DYNAMICPATTERN

REGISTERS

SU

B–R

AT

E

FU

LL–R

AT

E

SO

UR

CE

0

SO

UR

CE

1

OU

TB

OU

ND

SE

LEC

T M

UX

OUTBOUNDCONTROL

RAM

REMOTE OUTBOUND HWY

HIGHWAYMONITOR

PARITYGENERATOR

MUX

DELAY

DELAY LOCAL OUTBOUND HWY

PARITYGENERATOR EXPANSION OUTBOUND HWY

INTERRUPTLOGIC

RED LED

GREENLED

+12 V

–12 V

+5 V

GND

DIS

TR

IBU

TIO

N T

O

LOO

P

BA

CK

LOO

P

BA

CK

OT

HE

R K

SW

CIR

CU

ITR

Y

DSP

RESET/DISABLESWITCH

BACKPLANECONNECTOR

BSS11_Ch3_54

Page 212: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–130

Remote

The remote switchbound highway 0 and remote outbound highways are active when theKSW is communicating with highway interface modules in remote shelves. Thiseffectively extends the TDM bus to multiple shelves. In the remote case, the KSWsends and receives TDM data to and from a remote KSW Extender (KSWXR) in thesame shelf as the KSW.

The remote KSWXR communicates via fibre optic links with a local type KSWXL in theremote shelf. Local switchbound highway 0 has a delay circuit which adds a fixed 12timeslot delay. This delay is equal to the delay associated with the KSWX extensionoperation, and keeps the local and remote switchbound highways in phase.

The modules on the TDM bus are:

� DRIM.

� MSI.

� XCDR.

� GPROC/GPROC2.

Expansionswitchboundhighways

Expansion switchbound highway 1, 2 and 3 data originates from highway interfacemodules associated with other KSWs. These remote highway interface modules sendand receive data between their respective KSWs. Each KSW re-transmits data receivedon its switchbound highway 0 (local or remote) to other KSWs via dedicated KSWXE fibreoptic links.

Data is received on switchbound highways 1, 2 and 3 of remote KSWs. This architectureresults in each KSW receiving data from all 1024 timeslots of all expansion highwaysconnected to the KSW and retransmitting that data on the 1024 timeslots associated withits own highway interface modules to the other KSWs.

The DSP can write data to any of the four switchbound highways. This allows knownstatic data patterns to be inserted into any switchbound timeslot, and data can be loopedback to switchbound highway 0 from the TSI section, enabling self diagnostics. When theKSW is performing self diagnostics, data is compared at two highway monitors, onebefore the TSI section and one after the TSI section.

TimeslotInterchange (TSI)

The TSI section is the main section of the KSW. It switches data from a given timeslot onone of the four switchbound TDM highways to a given timeslot on the outbound TDMhighway. The TSI section consists of four independent TSI blocks operating in parallel tosupport sub-rate switching. Each TSI block switches 16 kbit/s of data.

Page 213: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–131

Block Diagram of 3 Interconnected KSWs

BSS11_Ch3_54a

SWITCHBOUND LOCAL (1024PORTS)

OUTBOUND HIGHWAY (1024 PORTS)

KSWX E

TSI

KSWX E

EACH KSW ROUTES SWITCHBOUND DATA TO BOTHTHE TSI SECTION AND THE EXPANSION OUTBOUNDHIGHWAY.

FIBRE OPTIC CABLES

BSU/RXU SHELF

KSW

SWITCHBOUND LOCAL (1024 PORTS) OUTBOUND HIGHWAY (1024 PORTS)

KSWX E

TSI

KSWX E

KSW

SWITCHBOUND LOCAL (1024 PORTS) OUTBOUND HIGHWAY (1024 PORTS)

KSWX E

TSI

KSWX E

KSW

EXPANSION OUTBOUNDHIGHWAY IS SENT TO

EACH KSWX E

DATA FROM OTHER KSWsIS SENT TO THE TSI

SECTION (1024 EACH)

ALL EXPANSION SWITCHBOUND DATAIS SENT (ALONG WITH THE SWITCHBOUND

LOCAL) TO THE TSI FOR SWITCHINGTO THE OUTBOUND HIGHWAY

BSU/RXU SHELF

BSU/RXU SHELF

TDM DATA IS SENTTO/FROMKSW TO KSWXE E

Page 214: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–132

Three-PartyConference(TPC) memory

After traffic data leaves the TSIs, it is sent to either the TSI mode multiplexer, whichselects full-rate or sub-rate switching as required, or to the three party conference (TPC)memory section. The TPC memory operates in real time allowing the KSW to supportany number of three party conference calls.

Fixed/dynamicpattern registers

The fixed/dynamic pattern registers can generate fixed patterns and a variety of dynamicpatterns that generate tones, data sequences, or dynamic test patterns.

Outboundselection MUX

The outbound selection multiplexer selects the correct source data to be sent to theoutbound highway. Although referred to as a multiplexer, this section does not contain aphysical multiplexer. Instead, multiplexing is implemented by connecting the outputs of allthe possible data sources together and selectively enabling one of these sources duringeach timeslot.

After data is sent from the outbound selection multiplexer, a parity bit is added to the databefore it is placed on the outbound TDM highway. Output from the outbound multiplexeris sent directly to the remote outbound highway, but data for the local outbound highwayis sent through a delay circuit to keep the remote and local outbound highways in phase.This delay is 12 timeslots.

Highway monitor

The KSW has two highway monitor sections:

� The switchbound monitor logic which selectively monitors one of the fourswitchbound TDM highways at the inputs of the TSI section.

� The outbound monitor logic which monitors the output of the outbound selectionmux.

The DSP uses these monitors for monitoring inbound and outbound data on any timeslot.When used in conjunction with the various DSP controlled data sources andfixed/dynamic pattern selection, these monitors allow the KSW to perform extensive selfdiagnostics on the TSI section.

Watchdog timer

The watchdog timer ensures that the DSP is functioning normally. The DSP writes to amemory address that resets the watchdog timer, ensuring that it does not time out. If theDSP stops running, the watchdog timer times out and causes the red LED on the frontpanel to illuminate. An interrupt is also generated and sent to the GPROC via the MCAPbus. If a DSP fails, the TSI section of the KSW still switches data, but no new pathconnections are implemented. This results in existing calls being held while the system isreconfigured around the failed KSW.

Page 215: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–133

Dynamic Switching

BSS11_Ch3_55

MM

S0

KSWM

MS

1

MM

S1

MM

S0

MMS0

TSW

MM

S1

MM

S0

DRCU

DRCU

TSW

MSI

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

D B C

A E

X D X XB C X X

FAW 0123456

31

FAW 0123456

31

X X X XA X E X

FAW 0123456

31

B

CE

DA

2Mbit/s link

2Mbit/s link2Mbit/s link

Air interface

Air interface

BTS1

BSC BTS2

Note: This example showsE1 links only

DR

IM

DR

IM

MMS1

Page 216: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–134

Interrupt logic

The interrupt logic generates two interrupts to the DSP:

� Interrupt-A prompts the DSP to perform certain periodic tasks such as updatingthe watchdog timer and the dynamic pattern registers.

� Interrupt-B, processes alarms such as clock and reference alarms, and parityalarms.

Serial interfacelogic

The serial interface logic supports the TTY interface. This interface is connected to adedicated backplane connector port. This port is a buffered RS232 type. The TTY can beused to control the KSW, monitor KSW operation status, and support KSW diagnostics.

KSW switching

The usable switching capacity of each KSW depends on site hardware and softwareconfigurations because certain modules require a number of ports for their own use. TheKSW is controlled by the local GPROC via the MCAP bus.

Each KSW can switch connections between 1024 inputs and 1024 outputs. However,total switching capacity can be expanded by interconnecting up to three additional KSWsvia KSWXs.

In this configuration, each KSW has the ability to switch data between 2048 (2 x 1024),3072 (3 x 1024) or 4096 (4 x 1024) 64 kbit/s input ports and its 1024 outbound ports.Each KSW has access to all 2, 3 or 4 switchbound highways, although each KSW onlydrives its own 1024 port outbound TDM highway.

KSW in a BSC

KSW switching at the BSC is variable. Physical channel mapping on the A interface isperformed for each call, and at every handover.

KSW in a RXCDR

KSW switching in an RXU shelf is fixed. It provides one to one physical mappingbetween the traffic to and from the BSC and the traffic to and from the MSC.

Page 217: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–135

Page 218: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSSC Cabinet Extension and Expansion

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–136

BSSC Cabinet Extension and Expansion

Purpose

Possible laser radiation when fibre optic cables are disconnected.Do not look directly into beams with or without the use of any opticalaids. Radiation can come from either the data in/out connectors orunterminated fibre optic cables connected to data in/out connectors.

WARNING

The Kiloport Switch Extender (KSWX) module extends the 1024 ports of a KSW in oneBSU or RXU to the TDM highways in another BSU or RXU. It is used when the numberof required peripherals exceeds the capacity of a BSU or RXU shelf.

� A KSWX in expansion mode (KSWXE) connects the KSW to the KSW in a remoteBSU or RXU.

� A KSWX in remote transmit mode (KSWXR) accepts the highway data from aKSW and sends it to a local receiver.

� A KSWX in local receive mode (KSWXL) accepts the highway data and drives theTDM bus in the local BSU or RXU, and also provides a clock reference inmultishelf configurations.

Although a KSW is located in a particular BSU/RXU, it is logically connected to the TDMbus in that BSU/RXU and to the TDM buses in up to 16 other shelves it may be driving.For each BSU or RXU that a KSW/TSW is driving, two KSWXs are required; one actingas a remote transmitter attached to the KSW/TSW, the other as a local receiver attachedto the TDM highway in the remote shelf.

This description details how KSWX modules work with KSW modules.However the description is also valid when a TSW is used (normally at aBTS).

NOTE

Requirements

The KSWX is fitted in slots U0 to U9 and slots U21 to U28 of the BSU or RXU shelfassembly, with the following limitations:

� KSWXR must be fitted in slots U2 to U6 and U24 to U28.

� KSWXL must be fitted in slots U0 and U1.

� KSWXE must be fitted in slots U7 to U9 and U21 to U23.

Page 219: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSSC Cabinet Extension and Expansion

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–137

Blcok Diagram of the Kiloport Switch Extender (KSWX)Module

8 MHz CLOCK

SERIAL INTERFACE

FIBRE OPTICRECEIVER

INCOMINGFIBRE OPTIC

CABLE

REFERENCESTATE

DECODER

BSS SERIAL BUS A

16.384 MHz TO BACKPLANE

16.384 MHz FROM MATE KSWX

125 us REF TO BACKPLANE

60 ms REF TO BACKPLANE

6.12 s REF TO BACKPLANE

ENCODED CLK FROM MATE

ENCODED CLK TO MATE

BACKPLANE CONNECTOR

FIBRE OPTICTRANSMITTER

FIBRE OPTICRECEIVER

MUX

MUX

MUX

DECODER

EDGEDETECTOR

DELAYLINE

MASTER/SLAVE

CONTROLLOGIC

CLOCK FAIL

DETECT

MUX

TAXIRECEIVER

TAXITRANSMITTER

TDMINTERFACE CAGE

SYNCHRONIZER

CLKDISTRIBUTION

FRAME COUNTER

R/W CONTROL

BSS SERIAL BUS B

INCOMINGFIBRE OPTIC

CABLE(CLKX)

OUTGOINGFIBRE OPTIC

CABLE

CLOCKSELECT

RE

AD

WR

ITE

16.384 MHz CLOCK A

16.384 MHz CLOCK B

125 us REF A

125 us REF B

60 ms REF A60 ms REF B

6.12 s REF A

6.12 s REF B

TDM BUS OUTBOUND (LCL)

MASTER REQUEST FROM MATE

TDMINTERFACE

MASTER REQUEST TO MATE

TDM BUS SWITCHBOUND (RMT, EXP)

TDM BUS OUTBOUND (RMT, EXP)

TDM BUS SWITCHBOUND (LCL)

OR

OR

GREENLED

RESET/DISABLESWITCH

MODULE CONTROL

MODULE ALARMS& STATUS

BSS11_Ch3_56

Page 220: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSSC Cabinet Extension and Expansion

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–138

Remote (KSWX R)

Extends the TDM bus to a shelf with no KSW/TSW. This allows a KSW/TSW to switchdata to and from highway interface modules (MSIs and DRIMs) in a shelf with noKSW/TSW. KSWXR modules are optically connected to KSWXL modules.

Local (KSWX L)

The KSWXL distributes the TDM bus within a shelf and this is received optically from aKSWXR in another shelf, and distributes clock and reference signals received from aCLKX. KSWXL modules are optically connected to CLKX modules and can also beconnected to KSWXR modules.

Page 221: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSSC Cabinet Extension and Expansion

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–139

Highway Extension (Remote)

BSS11_CH3_57

Local Switchbound

KSWX

4

KSWX

3

KSWX

2

KSWX

1

KSWX

0

KSWX

0

Cage 0 Cage 1

KSW

Fibre opticcables

Remote switchbound

Remote KSWX

Remote outbound

To/from extension cage 5

Local Switchbound

Local Outbound

To/from extension cage 4To/from extension cage 3

To/from extension cage 2

Local Outbound

Page 222: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSSC Cabinet Extension and Expansion

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–140

Expansion(KSWXE)

Expands the TDM bus by up to four KSW/TSWs to expand switching capacity. KSWXEmodules are optically connected to other KSWXE modules.

Page 223: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSSC Cabinet Extension and Expansion

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–141

Highway Expansion

BSS11_Ch3_58

Local Switchbound

Local Outbound

KSWX

2

KSWX

1

KSWX

0

Cage 0

KSW

EXPHWY 1

Local Switchbound

Local Outbound

KSWX

2

KSWX

1

KSWX

0

KSW

Expansion KSWX

EXPHWY 1

Cage 1

ExpansionOutbound

ExpansionOutbound

To/from expansion cage 3

To/from expansion cage 2

ExpansionKSWX

Page 224: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Clock Extender (CLKX)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–142

The Clock Extender (CLKX)

Purpose

Laser radiation could be emitted when fibre optic cables aredisconnected. Do not look directly into beams with or without theuse of any optical aids. Radiation can come from either the datain/out connectors or unterminated fibre optic cables connected todata in/out connectors.

WARNING

The Clock Extender (CLKX) module optically distributes the clock and reference signalsgenerated by the GCLK in the parent shelf to all other shelves at a site.

The extended clock signals are received by a KSWXL in the remote BSU/RXU.

Requirements

The CLKX module is fitted in slots U2 to U7 of the BSU or RXU shelf assembly.

A maximum of six remote shelves can be supported.

CLKX module

The following shows a CLKX module:

FIBRE OPTIC CLOCKOUTPUTS TO LOCALKSWXs

BACKPLANE CONNECTOR

BSS11_Ch3_58a

Page 225: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Clock Extender (CLKX)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–143

The Clock Extender (CLKX)

BSS11_Ch3_59

Backplane connector

TRANSMITTERFIBRE OPTIC

TRANSMITTERFIBRE OPTIC

TRANSMITTERFIBRE OPTIC

TRANSMITTERFIBRE OPTIC

TRANSMITTERFIBRE OPTIC

TRANSMITTERFIBRE OPTIC

CIRCUIT

CIRCUIT

CIRCUIT

CIRCUIT

CIRCUIT

CIRCUIT

Registers1. Revision level2. Board type3. Slot ID

BSS Serial Interface

Encoded ClockReferences(from GCLK)

BSS SerialBus A

DRIVER

DRIVER

DRIVER

DRIVER

DRIVER

DRIVER

BSS SerialBus B

Page 226: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Generic Clock (GCLK) Distribution

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–144

Generic Clock (GCLK) DistributionIn a multishelf site the encoded clock signals from the GCLK, in addition to beingdistributed to the other shelves at the site via a CLKX and KSWX, must also be sentback to the main shelf containing the GCLK. This is necessary to maintain sitesynchronization integrity.

The fibre optic cables used to extend the encoded clock signals between shelves mustbe of the same length in order to maintain synchronization at the site.

Page 227: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Generic Clock (GCLK) Distribution

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–145

Generic Clock (GCLK) Distribution

BSS11_Ch3_60.

GCLK CLKX

BackplaneBackplane

BackplaneBackplane

KSWX L

KSWX L KSWX L

KSWX LEncoded clock

16 MHz6.12 S125 mS60 mS

16 MHz6.12 S125 mS60 mS

16 MHz6.12 S125 mS60 mS

16 MHz6.12 S125 mS60 mS

Shelf 1

Shelf 3

Shelf 2

Shelf 4

L = KSWX in the local mode Fibre optic cable

Page 228: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Generic Clock (GCLK) Distribution

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

3–146

Page 229: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Appendix A

Student Exercise, Cabinet

Inter-Connection

Page 230: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 231: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Appendix AStudent Exercise, Cabinet Inter-Connection i. . . . . . . . . . . . . . . . . . . . . . . . . .

Pre-requisites AppA–3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interconnection Exercise AppA–3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment AppA–3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site Configuration AppA–3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PART A – KSW and GCLK Expansion/Extension AppA–3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PART B – Board Requirement and LAN Extension AppA–3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LANX Extender AppA–3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 232: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Page 233: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Pre-requisites

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–1

Pre-requisitesBefore commencing the exercise in this section the student should have anunderstanding of:

� All the BSS extension cards and their relevant positions.

� The requirements for both KSW expansion and extension.

� The requirements for GCLK extension.

� The requirements for LAN extension.

Page 234: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Interconnection Exercise

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–2

Interconnection ExerciseThe objective of the exercise is to give students practice in the planning of inter-cabinetconnections.

A. GCLK Extension

B. KSW Extension

C. KSW Expansion

D. LAN Extension

Equipment

A. 1 x BSSC cabinet equipped with 2 x BSU’s each with a single KSW in Slot L27.The bottom BSU is equipped with a GCLK in Slot L5.

B. 1 x BSSC cabinet, equipped with 2 BSUs, no KSWs or GCLKs are fitted.

SiteConfiguration

All the cabinets are to be located at one site, connected on the same Local Area Network(LAN). The site will therefore be a 4 x BSU Base Station Controller (BSC).

Page 235: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Interconnection Exercise

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–3

Page 236: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2PART A – KSW and GCLK Expansion/Extension

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–4

PART A – KSW and GCLK Expansion/ExtensionUsing the diagrams and tables provided, complete the following:

A. Draw all the inter-connecting fibre optic cables between the shelves to satisfy thefollowing conditions:

1. Extend the GCLK to all BSUs.

2. Expand the KSW within the first BSSC cabinet.

3. Extend the KSW function to the BSUs in the second BSSC cabinet from BSU 0.

4. Extend the LAN to all BSUs.

B. Fill in all the shelf tables with the board type, slot position number and the mode ofoperation of the KSWX card.

Note:–

BSU 0 is equipped : 1 x KSW Slot L271 x GCLK Slot L5

BSU 1 is equipped : 1 x KSW Slot L27

Page 237: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 PART A – KSW and GCLK Expansion/Extension

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–5

KSW and GCLK Expansion/Extension Cable Layout

BSS11_Ch3_AppA_01

RM

TR

MT

RM

TR

MT

RM

TE

XP

EX

PE

XP

LAN

XLA

NX

PIX

/B

BB

XR

MT

DR

IXD

RIX

DR

IXD

RIX

DR

IXE

XP

EX

PE

XP

RM

TR

MT

RM

TR

MT

LCL

LCL

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

AB

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

A4

A3

A2

A1

A0

A2

A1

A0

B0

B1

B2

B0

B1

B2

B3

B4

AB

CLK

XC

LKX

CLK

XC

LKX

CLK

XC

LKX

A0

A1

A2

B0

B1

B2

U28

U27

U26

U25

U24

U23

U22

U21

U20

U19

U18

U17

U16

U15

U14

U13

U12

U11

U10

U9

U8

U7

U6

U5

U4

U3

U2

U1

U0

U28

U27

U26

U25

U24

U23

U22

U21

U20

U19

U18

U17

U16

U15

U14

U13

U12

U11

U10 U9

U8

U7

U6

U5

U4

U3

U2

U1

U0

BS

SC

Cab

inet

1

U28

U27

U26

U25

U24

U23

U22

U21

U20

U19

U18

U17

U16

U15

U14

U13

U12

U11

U10 U9

U8

U7

U6

U5

U4

U3

U2

U1

U0

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS

U 2

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS

U 3

BS

U U

pper

She

lf La

yout

KE

Y:

KS

WX

CLK

X

Rx

Rx

Clo

ck Tx

PIX

/B

BB

XP

IX/

BB

BX

DR

IX

BS

U 1

BS

U 0

Not

e: O

nly

uppe

r cag

e sl

ots

show

n he

re.

Fill

in c

ard

type

s an

d fib

re o

ptic

con

nect

ions

. Low

er s

lot

posi

tions

are

ass

umed

as

stat

ed in

the

exer

cise

info

rmat

ion.

54

32

1

Page 238: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2PART A – KSW and GCLK Expansion/Extension

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–6

Page 239: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 PART A – KSW and GCLK Expansion/Extension

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–7

KSW/GCLK Expansion/Extension

����

����

����

������ � ������� ����

������ � ������� ����

������ � ������� ����

���������

����

������ � ������� ����

��������������������� ����

Page 240: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2PART B – Board Requirement and LAN Extension

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–8

PART B – Board Requirement and LAN Extension

Answer the following questions.

1. What is the minimum number of KSWX cards required for this configuration?

Answer........................................................

2. What is the minimum number of CLKX cards required?

Answer.......................................................

3. What is the required number of LANX cards when extending with FULL redundancy?

Answer.....................................................

Page 241: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 PART B – Board Requirement and LAN Extension

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–9

Page 242: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2LANX Extender

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–10

LANX ExtenderUsing the diagrams and tables provided, complete the following:

A. Fill in the Rotary switch setting table indicating the LANX ID number.

Note:

The rotary switch settings are the same for the redundancy LANX.

B. Draw the inter-connection fibre optic cables showing Tx and Rx connections.

Note:

Only the working LAN is to be shown.

Page 243: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 LANX Extender

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–11

LANX – Rotary Switch Setting

���������������������������������� ������������� �����

����

����

��

�� ��������

����

����

��

�� ��������

Page 244: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2LANX Extender

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–12

Page 245: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 LANX Extender

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–13

LANX Extension

� ���

���

� ���

���

� ���������

����� ��� ������������������� ��������

� ���

���

� ���

���

� ���������

Page 246: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2LANX Extender

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppA–3–14

Page 247: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Appendix B

Cabinet Inter-Connection Answers

Page 248: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 249: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Appendix BCabinet Inter-Connection Answers i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Board Requirement and LAN Extension AppB–3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Part B AppB–3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 250: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Page 251: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppB–3–1

KSW and GCLK Expansion/Extension Cable Layout

BSS11_Ch3_AppB_01

RM

TR

MT

RM

TR

MT

RM

TE

XP

EX

PE

XP

LAN

XLA

NX

PIX

/B

BB

XR

MT

DR

IXD

RIX

DR

IXD

RIX

DR

IXE

XP

EX

PE

XP

RM

TR

MT

RM

TR

MT

LCL

LCL

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

KS

WX

AB

5432

10K

SW

XK

SW

XK

SW

XK

SW

XK

SW

XK

SW

XK

SW

XK

SW

XK

SW

XK

SW

XA

4A

3A

2A

1A

0A

2A

1A

0B

0B

1B

2B

0B

1B

2B

3B

4A

B

CLK

XC

LKX

CLK

XC

LKX

CLK

XC

LKX

A0

A1

A2

B0

B1

B2

U28

U27

U26

U25

U24

U23

U22

U21

U20

U19

U18

U17

U16

U15

U14

U13

U12

U11

U10

U9

U8

U7

U6

U5

U4

U3

U2

U1

U0

U28

U27

U26

U25

U24

U23

U22

U21

U20

U19

U18

U17

U16

U15

U14

U13

U12

U11

U10 U9

U8

U7

U6

U5

U4

U3

U2

U1

U0

BS

SC

Cab

inet

1

U28

U27

U26

U25

U24

U23

U22

U21

U20

U19

U18

U17

U16

U15

U14

U13

U12

U11

U10 U9

U8

U7

U6

U5

U4

U3

U2

U1

U0

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS

U 2

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS

U 3

BS

U U

pper

She

lf La

yout

KE

Y:

KS

WX

CLK

X

Rx

Rx

Clo

ck Tx

PIX

/B

BB

XP

IX/

BB

BX

DR

IX

BS

U 1

BS

U 0

KS

WX

LCL

A

KS

WX

EX

P A

0

KS

WX

RM

T A

2

KS

WX

RM

T A

1

KS

WX

RM

T A

0

CLK

X A

0

KS

WX

LCL

AK

SW

XLC

L A

KS

WX

LCL

A

Page 252: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppB–3–2

Page 253: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppB–3–3

KSW/GCLK Expansion/Extension

BSU 0

BSU 1

BSU 2

BOARD TYPE SLOT No MODE

BOARD TYPE SLOT No MODE

BOARD TYPE SLOT No MODE

BSU Layout

BSU 3

BOARD TYPE SLOT No MODE

Upper-Shelf Equipage Tables:

����

����

����

����

����

���

���

��

��

��

��

��

��

��

� �

� �

� �

����

����

���

��

��

��

��

����

���

��

��

����

���

��

��

��� �� �

� ��

Page 254: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Board Requirement and LAN Extension

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppB–3–4

Board Requirement and LAN Extension

Part B

Answer the following questions.

1. What is the minimum number of KSWX cards required for this configuration?

Answer.........9..........................................

2. What is the minimum number of CLKX cards required?

Answer.........1..........................................

3. What is the required number of LANX cards when extending with FULL redundancy?

Answer.........8..........................................

Page 255: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Board Requirement and LAN Extension

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppB–3–5

LANX – Rotary Switch SettingEnter the setting in the relevant box in each cabinet.

����

����

����

�� ��������

����

����

����

�� ��������

Page 256: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Board Requirement and LAN Extension

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppB–3–6

Page 257: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Board Requirement and LAN Extension

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppB–3–7

LANX Extension

BSU 0

��

BSU 1

��

��������������

���� ���������� ��������������������

BSU 2

��

BSU 3

��

��������������

Page 258: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Board Requirement and LAN Extension

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppB–3–8

Page 259: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 4

Horizon macro Operational Theory

Page 260: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 261: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 4Horizonmacro Operational Theory i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter Objectives 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Transceiver Station (BTS) 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSC–BTS Interconnection Requirements 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSC–BTS Interconnection Configuration 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro Indoor Introduction and Manual Definition 4–10. . . . . . . . . . . . . . . . . . . . . . . . . Overview of Horizonmacro Indoor and external view 4–10. . . . . . . . . . . . . . . . . . . . . . .

Overview of Horizonmacro Outdoor 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overview of Horizonmacro 12 Carrier Outdoor 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cabinet Structure of the Horizonmacro Indoor 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Empty cabinet and SURF harness 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SURF harness and cabinet attachment 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Top panel 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Top panel description 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cage Backplane Interface panel harness Assembly (CBIA) 4–24. . . . . . . . . . . . . . . . . . . . . . . CBIA overview 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CBIA cage function 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CBIA backplane function 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CBIA harness function 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interface panel function 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cabinet Door and Hood 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Door function 4–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hood function 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Securing pins and removal 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stacking Bracket Function 4–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indoor temperature control system 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of indoor temperature control system 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature shutdown sensors 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet restart after shutdown 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indoor fan overview 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fan operation and restart 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filter sheet option and effect on fans 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Supply Modules (PSMs) 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Types of PSM and overview 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSM location and redundancy 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Circuit Breaker Module (CBM) 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit Break Module (CBM) overview 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of CBM 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Outdoor cabinet structure 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of structure description 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Backplane 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SURF harness 4–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SURF harness detail 4–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 262: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Top section 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Top section description 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Krone blocks 4–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Earth plates 4–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blank and expansion plates 4–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power supply enclosure 4–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply enclosure overview 4–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply unit 4–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarms interface board 4–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarms interface board connectors 4–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS test switches 4–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Customer equipment racking 4–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Outdoor cabinet doors and lid 4–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Door function 4–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lid function 4–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro outdoor temperature control 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature control overview 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet over temperature control 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature sensors 4–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cabinet restart after shutdown 4–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thermal Management System (TMS) 4–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS overview 4–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat exchanger components 4–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TMS functional description 4–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro outdoor power supplies 4–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply overview 4–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power distribution overview 4–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC distribution description 4–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC power distribution 4–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC distribution overview 4–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC distribution description 4–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Customer equipment power supplies 4–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal battery backup 4–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External battery backup connection 4–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Control and Alarm Board (CAB) 4–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to the CAB 4–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB indicators and controls 4–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB front panel fuses 4–85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB control functions 4–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB alarm functions 4–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAB additional functions 4–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Outdoor Power Supply Module (TOPSM) 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TOPSM overview 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TOPSM functional description 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LED display 4–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monitoring 4–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection circuits 4–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal protection 4–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control and alarm signals 4–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 263: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

v

Power Supply Module (PSM) 4–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MicroBCU Power Supply Module (BPSM) 4–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auxiliary equipment housing overview 4–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to the auxiliary equipment housing 4–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary equipment housing mechanical design 4–102. . . . . . . . . . . . . . . . . . . . . . . . . . .

Temperature control within the auxiliary equipment housing 4–104. . . . . . . . . . . . . . . . . . . . . . . Temperature control equipment 4–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the temperature control equipment 4–104. . . . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary equipment housing as a battery box 4–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

External alarms interface board 4–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function of the external alarms interface board 4–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarms interface board connections 4–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro 12 carrier outdoor enclosure structure 4–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to the enclosure 4–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enclosure description 4–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarm Interface Module (AIM) 4–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of the AIM 4–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AIM connectors and switches 4–112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Primary ac terminal box 4–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Primary ac terminal box location and function 4–114. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fan tray 4–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to the fan tray 4–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fan tray description 4–116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the smoke detector 4–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enclosure lighting description 4–118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Doors and hood 4–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Door function 4–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the door locks 4–120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hood function 4–122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hood operation 4–122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cable entry to the enclosure 4–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cable entry overview 4–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low level cable entry 4–124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional high level cable entry 4–126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional cable shroud and termination bracket 4–128. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overview of the power distribution equipment 4–130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the power distribution equipment 4–130. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AC power distribution 4–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC distribution description 4–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC circuit breakers 4–132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC power distribution 4–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC distribution description 4–136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC circuit breakers 4–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC fuses 4–138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The power control module 4–140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of the power control module 4–140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front panel controls and indicators 4–142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm management 4–144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm inputs 4–144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm output signals 4–145. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 264: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vi

The rectifier module 4–146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The dc connector panel 4–148. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of the dc connector panel 4–148. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Internal battery backup 4–150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of the internal battery backup system 4–150. . . . . . . . . . . . . . . . . . . . . . . . . . . Battery thermal charge compensation 4–152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro digital modules 4–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCUF and NIU redundancy 4–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full size and half size modules 4–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview locations and redundancy 4–154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital module and CTU connections 4–156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Main Control Unit with dual FMUX (MCUF) 4–158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCUF overview 4–158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capability to replace MCU of M-Cell6 and M-Cell2 4–158. . . . . . . . . . . . . . . . . . . . . . . . . GPROC KSW and GLCK functions 4–158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front panel interfaces 4–160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front panel switches and indicators 4–162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIX and GPS interfaces 4–162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRAM, flash EPROM and code loading functions 4–164. . . . . . . . . . . . . . . . . . . . . . . . . . ASIC functionality 4–166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sync block functionality 4–168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Link to redundant MCUF 4–170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Network Interface Unit (NIU) 4–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of NIU 4–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU functionality 4–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU locations 4–172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU command identity number 4–174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control processor 4–176. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU/MCUF framing and clocks 4–176. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distance measurement 4–178. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio Signalling Links (RSL) 4–178. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T1 NIU need to set link type 4–178. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type 43 interconnect board 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of T43/BIB-NIU connection 4–180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIU to T43 mapping and command ID 4–181. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fibre Optic Mulitplexer (FMUX) module and FMUX function 4–184. . . . . . . . . . . . . . . . . . . . . . Overview of FMUX module and internal MCUF FMUX 4–184. . . . . . . . . . . . . . . . . . . . . FMUX Functional explanation 4–186. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarm module 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm module overview 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm module functionality 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm module replacement – effect on alarms 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm collection from extension cabinets 4–188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm module display presentation 4–190. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 265: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vii

Horizonmacro RF Modules 4–192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF overview 4–192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive RF hardware 4–194. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit (Tx) RF hardware 4–194. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rx/Tx single antenna duplexing 4–194. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF main component explanation 4–196. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF loopback purpose 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF loopback hardware 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF loopback software operation 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of RF test modes 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Compact Transceiver Unit (CTU) 4–200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of CTU 4–200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU internal boards 4–200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU connectors and reset 4–202. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm reporting 4–202. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU Tx function 4–204. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU Rx function 4–206. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU digital processing and control functions 4–208. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CTU uplink/downlink 4–212. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frequency hopping 4–214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of frequency hopping 4–214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesizer Frequency Hopping (SFH) 4–214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SFH example not through BCCH 4–216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SFH example hopping through BCCH carrier 4–216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Band frequency hopping 4–218. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Sectorized Universal Receiver Front end (SURF) module 4–222. . . . . . . . . . . . . . . . . . . . SURF module overview 4–222. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of 1800 SURF 4–224. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of 900 SURF 4–226. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transmit (Tx) blocks overview 4–228. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tx block overview 4–228. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit block connectors 4–228. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Blanking plate 4–230. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of blanking plate 4–230. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of feedthrough plate 4–230. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Hybrid Combining Unit (HCU) plate 4–232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HCU overview 4–232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HCU connectors 4–232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Twin Duplexed Filter (TDF) 4–234. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of TDF 4–234. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDF connectors 4–234. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dual band TDF 4–236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of Dual band TDF 4–236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dual band TDF connectors 4–236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Duplexed Combining bandpass Filter (DCF) 4–238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DCF connectors 4–238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DCF overview 4–238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Dual-stage Duplexed combining Filter (DDF) 4–240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of DDF 4–240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDF connectors 4–240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 266: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

viii

The Cavity Combining Block (CCB) 4–242. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB overview 4–242. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB Control Board (TCB) and set switch 4–242. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCB and link redundancy 4–242. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB configuration 4–244. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB functional description and diagram 4–244. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 267: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Chapter Objectives

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–1

Chapter ObjectivesOn completion of this chapter the student should be able to:

� Describe the generic functions of a Base Transceiver Station (BTS) and state theBSC to BTS connectivity.

� Identify and state the purpose of the Horizonmacro indoor cabinet.

� Describe the functions and simplified operation of the Horizonmacro indoorcabinet.

� Describe the functions and simplified operation of the Horizonmacro outdoorcabinet.

� Describe the functions and simplified operation of the Horizonmacro outdoorauxiliary equipment housing and cable shroud.

� Describe the functions and simplified operation of the Horizonmacro 12 carrieroutdoor cabinet.

� Identify and describe the simplified operation of the Horizonmacro RF modules.

Page 268: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–2

Base Transceiver Station (BTS)

Overview

The function of the BTS is to provide the radio link to the MS, to enable the user of theMS to initiate or receive and to maintain a telephone call. Each BTS can contain up to sixcells, which define the area of the BTS’s radio coverage. There are several hardware /software entities which form together within the BTS to perform these tasks. Theseentities, considered generically, include the following:

RX/TX Modules

These provide the modulation/demodulation and the amplification of the downlink to theMS and uplink from the MS. It also provides the raw data to measure the signal strengthand quality of the two-way link.

Radio Control Software

This software controls the RX/TX module functionality. This includes setting theamplification, frequency and instructing the radio when to transmit. It also controlsfunctions such as receive equalization, which improves signal quality and the formattingof the signal strength and quality information to be passed onto further entities.

GSM Control software

As the link between the BTS and MS needs to follow the GSM specifications it needs tobe controlled by a dedicated software section. This software controls the Layer 1physical formatting of the air interface. This process includes configuring of the airinterface links for the GSM Time Division Multiple Access (TDMA) format, formatting thedata in each timeslot on that link, and also helps in controlling the paging and accessgrant messages. It processes the signal strength and quality information from the radiocontrol software, passing it to the BSC. This information is used to make sure theBTS-MS link is maintained at a good quality level or the MS is handed over to anothercell/BTS.

Static Switch

This section switches the channels containing traffic from the radio sections of the BTSto the terrestrial connections section, thus connecting the air interface channel with therest of the network and eventually to another party. The static switch also routes anycontrol information sent from entities further up in the network to the correct controllingsoftware, usually the resident on the control processor. The static switch means thatonce it has been initialized it will keep the switching matrix the same all the time, thuskeeping the same connections routed through.

Terrestrial Interface

The terrestrial interface provides the necessary connection to the network via a suitablelink. This interface provides the correct formatting and impedance matching to therelevant physical link. The most common link types are 2.048Mbit/s E1 link or1.544Mbit/s T1 link.

Page 269: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–3

Functions of a BTS

�������������

�����

����������

���������

�������������

��������������������

�� �������������������

����� ����

��������������������

�� �������������������

����� ����

�������

���������

����

�������

��������

����������

���

�������

����������

����������

���������

BSS11_Ch4_01

Page 270: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–4

Control Processor

The control processor is the main processor of the site and can be split into three mainareas:

� Site Control

This section is in control of the main processes and hardware to maintain the siteintegrity. The main functions include internal data bus control and initialization ofthe site at power up as well as reporting any faults or operational problems back tothe controlling BSC further up in the network.

� GSM Call Processing

Although the GSM control software looks after the link to MS from a very basiclevel (i.e. Layer 1 process implementing the physical air interface link). The GSMcall processing’s role is that of call management. This process is used to interfaceGSM control messaging from the BSC to the GSM control software and to activatethe allocated timeslot ready for the call to take place.

� GSM Timeslot Monitoring

The GSM timeslot monitoring process manages the air interface timeslot usage,keeping a database of which timeslots are being used and for what purpose,recording the interference levels on each idle timeslot, prioritizing them for futureuse. Upon a request for a call, this process allocates the best available timeslot,dependant on interference level.

Synchronizing clock

As all the above processes need specific and accurate timing signals, each BTS will beequipped with a clock to make sure everything is synchronized.

Page 271: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–5

Page 272: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSC–BTS Interconnection Requirements

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–6

BSC–BTS Interconnection Requirements

Overview

The BSC–BTS interconnection is provided by 64kbit/s timeslots on 2 Mbit/s links. These2 Mbit/s links are interfaced at the BSC by using the terrestrial interface boards.Terrestrial interface boards can interface two independent 2 Mbit/s links with each 2Mbit/s link, providing 31 usable 64 kbit/s timeslots. The first timeslot being used by theinterfaces to synchronize the link as well as provide basic error detection.

To calculate the required number of 64 kbit/s timeslots required between a BSC and BTSsite, the site must be viewed as consisting of its own equipment and also the equipmentat any sites that are connected to it. However, the amount of 64 kbit/s timeslots to a BTSsite must always be calculated so the interconnection feature can be planned.

In the GSM transmission system, the speech data between the BSC and BTS is encodedinto 16 kbit/s channels using the GSM defined format. As the E1 link utilizes 64 kbit/stimeslots, using sub-rate multiplexing can be allocated up to 4 X 16 kbit/s channels pertimeslot. Each active radio will have, at a BTS site, an associated Receive / TransmitFunction (RTF) to send the speech data back to the BSC and the rest of the network.Each RTF has data from 8 timeslots on the air interface. Therefore, it requires 2 x 64kbit/s timeslots on the E1 link to support its traffic data.

The E1 link must also carry control informaton to and from a BTS site using a RadioSignalling Link (RSL), as described in section 3. Each BTS site will require a minimum of1 LAPD signalling link, utilising 1 x 64kbit/s timeslot or 1 x 16kbit/s channel.

Page 273: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSC–BTS Interconnection Requirements

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–7

BSC-BTS Interconnection Requirements

BSS11_Ch4_02

RTF0

RTF0

RTF1

RTF1

RSL

SYNC

28

29

30

31

0

1

2

3

To synchronise linkand provide error protection

To provide a signallinglink from BSC to BTS

Traffic from/to theBSC link. TCH is 16 kbit/s4 x TCH per timeslot.2 per radio to give 8 tchfrom the air interface

E1 = 32 x 64 kbit/s

Page 274: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSC–BTS Interconnection Configuration

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–8

BSC–BTS Interconnection ConfigurationIn GSM each BTS connected to a BSC requires a minimum of 1 RSL and sufficient RTFsfor the radios located at the site. This remains a requirement even if the BTS is notdirectly connected to the BSC; in the case of daisy chained BTSs for example. The totalnumber of E1 link timeslots containing information required by any BTS site must equaltimeslots containing information for that site, plus timeslots containing information for allother sites connected to it.

Page 275: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSC–BTS Interconnection Configuration

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–9

BSC–BTS interconnection configuration

BSS11_Ch4_03

RTF1

RTF1

RSL2

RTF2

RTF2

RSL3

RTF3

RTF3

RSL1

SYNC0

1

24

25

26

27

28

29

30

31 RTF2

RTF2

RSL3

RTF3

RTF3

RSL2

SYNC

27

28

29

30

31

0

1

RTF3

RTF3

RSL3

SYNC0

1

30

31

BSC BTS1 BTS2 BTS3

Page 276: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro Indoor Introduction and Manual Definition

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–10

Horizon macro Indoor Introduction and Manual Definition

Overview ofHorizon macroIndoor andexternal view

The Horizonmacro Indoor is a six carrier Base Transceiver Station (BTS) cabinet,operating in GSM standard frequencies (GSM/EGSM900 and DCS1800).

This manual is for the indoor version of the equipment.

Indoor cabinets operate from either an isolated positive earth (–48 V dc), negative earth(+27 V dc), or nominal 230 V ac single phase. Cooling is provided by circulation fanslocated in the bottom of the unit.

This section is designed to give the reader a basic understanding of how componentsinterconnect.

Page 277: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro Indoor Introduction and Manual Definition

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–11

External view of a standard cabinet with hood cover

BSS11_Ch4_04

Page 278: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Overview of Horizonmacro Outdoor

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–12

Overview of Horizon macro OutdoorThe Horizonmacro outdoor is a six carrier Base Transceiver Station (BTS) cabinet,operating in GSM standard frequencies (GSM/EGSM900 and DCS1800).

This manual is for the outdoor version of the equipment only.

Outdoor cabinets operate from nominal 110 V single phase or nominal 230 V, single orthree phase, ac supply. Cabinet temperature control is provided by a ThermalManagement System (TMS) located in the bottom of the unit.

This section is designed to give the reader a basic understanding of the equipment.

Page 279: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Overview of Horizonmacro Outdoor

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–13

External view of Horizon macro outdoor cabinet

BSS11_Ch4_05

Page 280: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Overview of Horizonmacro 12 Carrier Outdoor

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–14

Overview of Horizon macro 12 Carrier OutdoorThis section is designed to give the reader a basic understanding of the Horizonmacro 12carrier outdoor equipment.

The Horizonmacro 12 carrier outdoor is a one to twelve carrier Base Transceiver Station(BTS), operating at GSM standard frequencies (GSM/EGSM900 and DCS1800). Theenclosure can contain either one (for six carrier) or two (for twelve carrier) Horizonmacroindoor BTS cabinets.

The enclosure operates from a nominal 230 V, single phase or three phase ac supply.Temperature control within the enclosure is provided by two Heat Management Systems(HMS), one located on the inside of each enclosure door.

Page 281: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Overview of Horizonmacro 12 Carrier Outdoor

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–15

External view of the Horizon macro 12 carrier outdoorenclosure

BSS11_Ch4_06

Page 282: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cabinet Structure of the Horizonmacro Indoor

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–16

Cabinet Structure of the Horizon macro IndoorThe BTS cabinet consists of a main cage and a top panel .

The main cage contains the following equipment:

� A micro Base Control Unit (�BCU), located in the lower right portion of thecabinet. This contains master and optional redundant digital modules:

Fibre Optic Multiplexer (FMUX).

Main Control Unit with dual FMUX (MCUF).

Network Interface Units (NIUs), four in total.

An alarm board (no redundancy option).

One or two (for redundancy) �BCU Power Supply Modules (BPSMs ).

� Up to three Power Supply Modules (PSMs) and one circuit breaker module(CBM) in the upper right portion of the cabinet. The PSMs are load sharing, withthe third PSM providing optional redundancy.

� Up to six Compact Transceiver Units (CTUs), located in the left portion of thecabinet.

� Fan modules placed in the bottom of the cabinet, two 2-Fan modules andone 4-Fan module .

The top panel contains the following equipment:

� RF modules, comprising transmit (Tx) blocks, and a receive (Rx) module, theSectorized Universal Receiver Front-end (SURF).

� Interface panel for customer power and communications connectors.

Page 283: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cabinet Structure of the Horizonmacro Indoor

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–17

Filled cabinet view with maximum number of modulesinstalled

CIRCUITBREAKER

MODULE (CBM)

RF MODULES POWER SUPPLY ANDCIRCUIT BREAKER

TEMPERATURECONTROL SYSTEM

DIGITALMODULES

T43/BIB

MCUF

ALARM BOARD

FMUX/NIU/BPSM

TWO 2-FANS.

ONE 4-FAN.

SIX TRANSCEIVERS(CTUs)

THREE Tx BLOCKS(DCFs SHOWN AS

EXAMPLE)

ONE SURF(Rx)

THREE PSMs

DC POWER IN

AC POWER IN

INTERFACEPANEL

CONNECTORS

CABINET STRUCTURE

Further information is detailed in the later technical description chapters.

Page 284: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Empty cabinet and SURF harness

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–18

Empty cabinet and SURF harness

SURF harnessand cabinetattachment

The SURF harness is fitted on the back wall of the cabinet, as shown in the diagramopposite. The chassis of the SURF harness supports the SURF module.

The SURF harness provides:

� Three connectors to the SURF, for RF and power.

� One RF connector to each CTU, consisting of three inputs, one each for Rx1, Rx2and RF loopback test. The RF connectors are free floating to ensure fitting of CTUmodules.

� One connector to the backplane, for power from the PSMs.

Page 285: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Empty cabinet and SURF harness

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–19

Empty Horizonmacri Indoor cabinet view with installedSURF harness

SURF HARNESS

EARTH CABLE FOR MAIN CAGE

For clarity, the SURF harness cables are not shown BSS11_Ch4_08

Page 286: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Empty cabinet and SURF harness

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–20

Page 287: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Empty cabinet and SURF harness

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–21

SURF harness view with connectors indicated

CONNECTORS TO EACHCTU

POWER CONNECTOR TOBACKPLANE

THREE CONNECTORSTO SURF

SLOT FOR SURFMODULE

LOCATING PINS

Rx1

RF LOOPBACKTEST PORT

Rx2

Rx1 X 6

Rx2 X 6

RF LOOPBACK X 6

CTU0

CTU5

BSS11_Ch4_09

Page 288: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Top panel

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–22

Top panel

Top paneldescription

The top panel provides:

� A basket to hold up to three Tx blocks. This includes three holes to enableconnection of CTU Tx cables to the underside of each Tx block. The holes alsoallow cooling of the Tx blocks from underneath.

� A slot for insertion of the SURF module.

� A location hole for the interface panel.

� An area for ventilation purposes above the PSMs.

� A hole for fibre optic extension cables from the MCUF FMUX to an FMUX ofanother cabinet.

Page 289: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Top panel

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–23

Top panel view with major features labelled

SLOT FOR SURF MODULE

LOCATION HOLEFOR INTERFACE

PANEL

VENTILATION PANEL(LOCATED ABOVE PSMs)

BASKET TO HOLDTHREE Tx BLOCKS

HOLE FOR ONE Tx BLOCKCTU CONNECTIONS CABLE HOLE FOR FIBRE

OPTIC EXTENSION CABLES

BSS11_Ch4_10

Page 290: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cage Backplane Interface panel harness Assembly (CBIA)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–24

Cage Backplane Interface panel harness Assembly (CBIA)

CBIA overview

The CBIA provides a platform for module installation and power and digital signalinterconnection to cabinet modules. The CBIA consists of:

� The main cage - providing compartments for fans, CTUs, digital modules, BPSMs,PSMs and CBM. The digital modules and BPSMs are housed in an area calledthe µBCU, which is physically part of the main cage.

� The backplane - which routes power and signals for all cage modules and power tothe SURF.

� The harness - which links the backplane to the interface panel.

� The interface panel - which contains T43/BIB and the required power andcommunication connectors.

CBIA cagefunction

The main cage holds modules and supports the backplane. Each compartment hasappropriate sliders for insertion of the modules. The diagram opposite shows the modulecompartments of the cage.

Page 291: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cage Backplane Interface panel harness Assembly (CBIA)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–25

CBIA cage function and diagram

CIRCUIT BREAKER MODULE

MAIN CAGE

TRANSCEIVERS (CTUs)

HOLES IN BACK PANEL OF CAGE FORBACKPLANE FAN CONNECTORS

FULL SIZEDIGITAL

MODULES(MCUFs

ANDALARM)

HALF SIZE DIGITALMODULES (FMUX,NIUs AND BPSM)

POWER SUPPLY MODULES(PSMs)

HALF SIZE DIGITALMODULES (FMUX,NIUs AND BPSM)

2-FAN 2-FAN 4-FAN

BSS11_Ch4_11

Page 292: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cage Backplane Interface panel harness Assembly (CBIA)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–26

CBIA backplanefunction

The backplane is a multilayered printed circuit board with attached connectors on frontand back. The backplane:

� Routes power and digital signals throughout the cabinet.

� Provides connectors for the harness cables linking to the interface panel.

� Provides connectors for plug in modules.

� Provides power to the SURF harness, when the main cage is inserted into thecabinet.

� Provides a connector for the door switch cable.

� Provides connectors for three heat sensors in the main cage above the CTUs.

The figure opposite shows the CBIA harness linking the interface panel and thebackplane at the rear of the main cage. Each backplane harness connector is identified.

Page 293: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cage Backplane Interface panel harness Assembly (CBIA)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–27

Backplane and harness view including door switch andheat sensors

ICS J26

DOOR SWITCH

THREE HEATSENSORS

DOOR SWITCHCONNECTOR J55

SIX CTUCONNECTORHOLES FOR

SURFHARNESS

POWERCONNECTOR

FOR SURFHARNESS

NIU to T43/BIBJ21

INTERFACEPANEL

EXTERNALALARMS J23

GPS J22

RTC J32

PIX J25

BSS11_Ch4_12

Page 294: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cage Backplane Interface panel harness Assembly (CBIA)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–28

CBIA harnessfunction

The harness provides cables to link connectors on the backplane with connectors on theunderside of the interface panel.

Interface panelfunction

The interface panel provides all connection points to the required power sources andtelecommunications links. All connectors are linked to the backplane via the CBIAharness. Plastic connector covers, supplied by Motorola, keep unused connectorsprotected from damage by static or foreign matter, and should be retained.

Page 295: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cage Backplane Interface panel harness Assembly (CBIA)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–29

Locations of the interface panel connectors

T43/BIB

AC POWERSOCKET INPUT

DC POWERINPUT

GPS

CCB

PIX 0

EXTERNAL ALARMS

PIX 1ICS

VENTILATIONGRID

BSS11_Ch4_13

Page 296: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cabinet Door and Hood

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–30

Cabinet Door and Hood

Door function

The cabinet is fitted with a door and a hood. The hood can be replaced by an optionalstacking bracket.

The door has the following functions:

� Protects modules from damage.

� Ensures correct air ventilation.

� Provides EMC shielding.

The door has a ventilation grid with internal honeycomb grid, a vertical aluminium airbaffle, and a horizontal door stop bracket. The door stop bracket enables the door toopen to 95 or 130 degrees.

The lock is a trigger latch, opened (if unlocked) by pressing the middle button. There isalso a door alarm bracket, to depress the cabinet door switch.

Page 297: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cabinet Door and Hood

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–31

External and internal view of the cabinet door

VENTILATIONGRID

EXTERNAL VIEW

TRIGGERLATCH

INTERNAL VIEW

VERTICAL AIRBAFFLE

DOOR ALARMBRACKET

HONEYCOMBVENTILATION

DOOR STOPBRACKET

Both sides of the cabinet door BSS11_Ch4_14

Page 298: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cabinet Door and Hood

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–32

Hood function

The hood has the following functions:

� Protects cables and cabinet top.

� Allows easy transition to stacking bracket.

Securing pinsand removal

The hood is secured by four pins located on the cabinet. The pins are removed if thehood is to be replaced by a stacking bracket.

The hood can be easily lifted off the cabinet by pulling on the top back lifting edge, asshown in the diagram opposite.

Page 299: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cabinet Door and Hood

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–33

Top view of hood as seen from the front of the cabinet

TOP BACKLIFTING EDGE

Page 300: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Stacking Bracket Function

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–34

Stacking Bracket FunctionThe stacking bracket has two prime functions:

� To enable a second cabinet to be stacked on top of the first cabinet.

� To contain CCBs in a dedicated optional CCB basket.

The stacking bracket is fixed to the top of the cabinet by eight M8 screws. If the stackingbracket is replacing a hood, then the four hood securing pins must first be removed toaccommodate four of the stacking bracket screws. A second cabinet may be attached ontop of the stacking bracket by four M10 screws.

The CCB basket is fitted only if CCBs are required. The CCB basket is removable, toenable access for SURF module replacement.

Page 301: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Stacking Bracket Function

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–35

Stacking bracket with CCB basket installed

M8 HOLES (8) FORBOTTOM CABINET

ATTACHMENT.

M10 HOLES (4) FOR TOP CABINETATTACHMENT (IF REQUIRED)

CCB BASKET(IF REQUIRED)

DETACHABLECCB BASKET BAR

REAR OFBRACKET

BSS11_Ch4_16

Page 302: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Stacking Bracket Function

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–36

Page 303: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Stacking Bracket Function

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–37

Two stacked Horizon macro indoor cabinets with frontcovers attached to the two stacking brackets

Stacking bracketfront cover

Stacking bracketfront cover

BSS11_Ch4_17

Page 304: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Indoor temperature control system

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–38

Indoor temperature control system

Overview ofindoortemperaturecontrol system

The cabinet temperature is kept within normal operational limits by fans. The fans drawair from underneath the cabinet, and expel it through the door and top cabinet vents.The speed of each fan is controlled by a heat sensor mounted on the fan hub.

If the cabinet overheats, a temperature sensor provides a warning. Dual sensors set at ahigher threshold temperature activate the cabinet PSMs shutdown. The cabinet isrestarted when the sensors are reset by a substantial fall in temperature.

CTUs also have:

� An internal 4 dB power reduction response to overheating.

� An internal total shutdown response to overheating.

Both the CTU responses provide a second layer of cabinet protection independent of thecabinet heat sensors.

Temperatureshutdownsensors

The three cabinet temperature sensors are located above the CTU compartment andconsist of the following:

� One 70 �C sensor provides a cabinet overtemperature alarm when the cabinettemperature exceeds planned level. The alarm is processed by the alarm boardand MCUF, and sent to the OMC via the BSC.

� Two 85 �C sensors shut down the PSMs to protect the cabinet equipment fromheat damage. Both sensors must detect excess temperature for the shutdown totake place; this reduces the risk of an unnecessary shutdown. No prior notificationof shutdown is given to the OMC, except for the original 70 �C sensor alarm. Thisis because the MCUF and CTUs immediately lose power and functionality.

Cabinet restartafter shutdown

The cabinet is restarted when the two 85 �C temperature sensors reset at 55��C. Thisre-establishes an earth point for the PSM internal detectors connected to the cabinetheat sensors, which then reactivate the PSM outputs. The MCUF then reboots as anormal power up.

Page 305: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Indoor temperature control system

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–39

The two types of indoor fan units

RESTART BUTTONS(ONE PER FAN)

2-FAN

4-FAN

SLIDE LATCH FORMODULE REMOVAL

The 2 types of fan unit BSS11_Ch4_18

Page 306: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Indoor temperature control system

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–40

Indoor fanoverview

The indoor cabinet operating temperature is maintained by three sets of fans:

� One 4-fan unit (referred to as FAN0), located in front and beneath the digitalmodules.

� Two identical 2-fan units, (referred to as FAN1 and FAN2), located beneath theCTUs.

Fan operationand restart

The fans run continuously, and respond to temperature changes to ensure adequate flow.

Each fan has a restart button, for use if a fan has stopped or cannot start. Each restartbutton is marked FRONT or REAR to identify the appropriate fan.

Filter sheetoption and effecton fans

Filters are an option and not essential in a clean environment. The single filter ismounted under all the fan units. If clogged, fan airflow may be reduced, straining fanmotors and increasing fan noise.

Page 307: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Indoor temperature control system

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–41

Page 308: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power Supply Modules (PSMs)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–42

Power Supply Modules (PSMs)

Types of PSMand overview

There are two types of dc Power Supply Modules (PSMs):

� Nominal +27 V (negative earth input).

� Nominal –48 V (positive earth input).

There is one type of ac PSM:

� Nominal 230 V.

All PSMs have the same external appearance and are located in the same positions.Different types are identified only by front panel labels.

The PSMs are fed from a backplane connector, and use pulse width modulation togenerate output supply. A front panel switch disables the output, reducing the inputcurrent as shown in Table 4-1.

Table 4-1 Input currents for Power Supply Module

Type of PSM Output voltagefull load

Input currentfull load

Input load whenoutput switch off

+27 V nominal dc +27 V 32 A 1 A

–48 V nominal dc +27 V 18 A 0.5 A

230 V nominal ac +27 V 3.75 A 0.1 A

There are several manufacturers of the PSMs. Each is fully compatible withthe same type of PSM of a different manufacturer.

NOTE

PSM location andredundancy

The PSMs are located above the digital cage and circuit breaker module. There arethree slots, two for maximum cabinet configuration, one for redundancy. Supply capabilityis shown in Table 4-2. Note that only two CTUs are powered by the first PSM, becauseof power required by the rest of the cabinet.

Table 4-2 Power Supply Module options

Number ofmodules fitted

Capability of supply

1 Complete operation of cabinet for up to two CTUs.

2 Complete operation of cabinet for up to six CTUs.

3 Redundancy and power load sharing (further enhancingreliability by reducing temperature of operation).

Page 309: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power Supply Modules (PSMs)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–43

Power Supply Module (PSM) view with LEDs identified

PSM FRONT PANEL

AIR VENTS ONENTIRE TOP ANDBOTTOM PANELS

GREEN LEDACTIVE

RED LEDALARM

OUTPUT DISABLESWITCH

M4 MODULE ATTACHMENTSCREWS

BSS11_Ch4_19

Power Supply Module (PSM) LEDs function

BSS11_Ch4_19a

Table 4–3 Power supply module LEDs function.

Green LEDACTIVE

Red LEDALARM

Indication

OFF OFF 1. Cabinet power supply off, or

2. Output disable switch off, or

3. Module not connected.

ON OFF Normal operation.

OFF ON Alarm condition with module unable to supply power .

ON ON Internal problem (such as over temperature), but stillable to maintain supply.

Page 310: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power Supply Modules (PSMs)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–44

� ��������

���������

The �BCU Power Supply Module (BPSM) provides regulated dc power to the backplanefor �BCU modules. Each BPSM can provide power for:

� One MCUF.

� One FMUX.

� Two NIUs.

� The alarm board (which also uses the redundant BPSM).

A second BPSM must be installed in the �BCU, if additional redundant boards (MCUF,two NIUs, and FMUX) are required.

Internal BPSM circuits monitor the +3.3 V, +5 V, +12 V and –12 V outputs for thefollowing purposes:

� Output voltage regulation.

� Over-voltage protection - provides shutdown if output voltage exceeds 1.1 to 1.2times the rated output.

� Over-current protection - maximum output current has the following limits:

– 1.1 to 1.8 times full load rating of +3.3 V output.

– 1.1 to 1.8 times full load rating of +5 V output.

– 1.25 to 2 times full load rating of +12 V and –12 V outputs.

Circuit protection

Additional internal circuitry protects the BPSM:

� Input dc reverse polarity protection, achieved by an input series diode.

� Thermal protection by automatic BPSM shutdown. Normal BPSM operationresumes after BPSM temperature returns to a safe level.

� A 10 Amp fuse is located near the backplane connector.

LED display

An active (Green) LED mounted on the front of the BPSM is on when all output voltagesare present and within specified limits. A functional diagram is shown in NO TAG.

Page 311: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power Supply Modules (PSMs)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–45

�BCU Power Supply Module (BPSM) view

BACKPLANE CONNECTOR

GREEN LED

BSS11_Ch4_20

Functional block diagram of BPSM

VOUT (3.3 V)

VOUT (–12 V)

BACKPLANE CONNECTOR

GREENLED

VIN (+27 V)

VOUT (+12 V)

VOUT (+5 V)

POWERCONVERTER ANDSYSTEM MONITOR

BSS11_Ch4_20a

Page 312: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Circuit Breaker Module (CBM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–46

Circuit Breaker Module (CBM)

Circuit BreakModule (CBM)overview

The CBM provides circuit protection and manual isolation for all parts of the cabinet,except the PSMs. The CBM is located above the �BCU and below the PSMs. Thehoneycomb casing permits cabinet ventilation through the module.

The CBM is connected to the backplane, providing isolator switches and overloadprotection for the equipment indicated in the diagram opposite.

Operation ofCBM

Power for each module is supplied via the appropriate circuit breaker switch. Overload ofany circuit results in appropriate front panel circuit breaker button tripping to the off (out)position. The button can be pressed to the on (in) position when overload problem hasbeen corrected.

CTUs, BPSMs, CCBs, SURF and fans can be isolated by pressing and releasing theappropriate button to the off (out) position. Power is restored by pushing the appropriatebutton to the on (in) position.

Page 313: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Circuit Breaker Module (CBM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–47

CBM view with circuit breaker buttons identified

6 CTUs (0 TO 5)

FRONT VIEW

12 A

2 A4 A

7 A

BACKPLANE CONNECTOR

M4 MODULE ATTACHMENTSCREWS

CCB (0 AND 1) SURF

FANS

BPSMs (A AND B)

7 A

HANDLE-BAFFLE

BSS11_Ch4_21

Page 314: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Outdoor cabinet structure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–48

Outdoor cabinet structure

Overview ofstructuredescription

The outdoor cabinet is shown on page 4-49. The cabinet is designed for minimummaintenance and maximum ease of module replacement and has access only from thefront and top.

This chapter describes the cabinet structure and the inner connections to assistunderstanding the cabinet functions. There should be no need to dismantle the cabinetbeyond Field Replaceable Unit (FRU) level.

The cabinet structure components are explained in the following sections:

SURF harness

The SURF harness shows connections between the SURF and the backplane andtransceivers. These are not normally visible in a fully equipped cabinet.

Top section

The top section holds the Tx blocks, the interface panel, the SURF module, the number 1ac distribution box and an ac outlet socket.

Cage Backplane Interface panel harness Assembly (CBIA)

The CBIA describes the main cage backplane connections between modules, theinterface panel and the harness from the backplane to the Interface panel connectors.These are not normally accessible in a fully equipped cabinet.

Power supply enclosure

This section shows the location of the Power Supply Unit (PSU) and the racking forcustomer equipment.

Doors, lid and cable shrouds

These provide security and environmental protection. The doors and lid also assists incorrect thermal management.

Backplane

The cabinet is designed to enable all possible RF and digital module combinations to beserved by the same backplane. This removes need for any module-to-module cabling,apart from the Tx cables from the transceivers to the Tx blocks, and externalattachments.

Page 315: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Outdoor cabinet structure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–49

Front view of the cabinet with maximum number ofmodules installed

No2 ACDISTRIBUTION

BOX

CTUs DIGITALMODULES TOPSMs TMSINTERNAL

BATTERYTRAY

PSMs

DC CIRCUITBREAKERS

The main components visible from the front are identified.The doors and TMS front cover have been omitted for clarity. BSS11_Ch4_22a

Page 316: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2SURF harness

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–50

SURF harness

SURF harnessdetail

The SURF harness is fitted on the back wall of the cabinet. The chassis of the harnesssupports the SURF module.

The SURF harness provides:

� Three connectors to the SURF, for RF and power.

� One RF connector to each CTU, consisting of three inputs, one each for Rx1, Rx2and RF loopback test, as shown opposite. The RF connectors are free floating toensure fitting of CTU modules.

� One connector to the backplane, for power from the PSMs.

Page 317: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 SURF harness

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–51

Empty cabinet view with installed SURF harness

SURF HARNESS

BSS11_Ch4_23The SURF harness cables have been removed for clarity.

Page 318: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Top section

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–52

Top section

Top sectiondescription

The top section provides:

� A basket to hold up to three Tx blocks. This includes six holes to enableconnection of CTU Tx cables to the underside of each Tx block. The holes alsoallow cooling of the Tx blocks from underneath.

� A slot for insertion of the SURF module.

� A location hole for the interface panel. The interface panel is positioned into the topsection from underneath and fixed from the top.

� Cable holes for fibre optic extension cables (from the MCUF FMUX to an FMUX ofanother cabinet), and alarm cables.

� Earth plates fitted to the ends of the top wrap. The earth plate contains the RFcabling, which allows the connection of external antennas to internal RF cabling, atthe cable entry side . A blank plate or expansion plate is fitted at the opposite endof the top wrap.

� A panel for the power supply unit dc output and external battery cables.

� A location hole for the number 1 ac distribution box (the power supply inputconnection and switching). The number 1 ac distribution box slots into the topsection from underneath.

� The top section also houses krone blocks and an ac outlet socket.

Krone blocks

Two krone blocks are mounted on the top panel as an interface for:

� Customer alarms.

� Customer communications.

Page 319: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Top section

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–53

Top section of the cabinet with the major features labelled

BSS11_Ch4_24

BLANK PLATE (RIGHTEARTH PLATE OR

EXPANSION PLATE OPTIONAL)

THREE TxBLOCKS

INTERFACE PANEL

KRONE BLOCKS

PANEL FOR DC OUTPUTAND EXTERNAL

BATTERY CABLES

LEFT EARTH PLATE(RF CABLE OMITTED

FOR CLARITY)SURF MODULE

AC OUTLETSOCKET

NUMBER 1 ACDISTRIBUTION BOX

CABLE GUIDE

CABLE GUIDE

CABLE HOLE FOR FIBREOPTIC EXTENSION CABLES

Page 320: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Top section

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–54

Earth plates

An earth/connector plate is fitted to the cable entry side of the cabinet. The earth plate issupplied with:

� Three N-type to 7/16 bulkhead cables, (for connection between earth plate andSURF module).

� Three 7/16 to 7/16 bulkhead cables, (for connection between earth plate and Txblock ANT connector).

The cabinet earth plate has the following functions:

� Provision of the main cabinet earth connection.

� Provision of a connection point for customer antennas.

� Weatherproof pass-through for: ac power, external battery and customercommunications cables.

Blank andexpansion plates

A blank or expansion plate is fitted to the opposite end of the cabinet. The expansionplate provides:

� Weatherproof pass-through for: ac power, external battery and customercommunications cables.

� RF cable pass-through for multiple cabinet sites.

The expansion plate is supplied with the cable pass-throughs sealed by blanking plugs.The plug must be removed from each pass-through before the it can be used.

Page 321: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Top section

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–55

Cable entry side earth plate

TX 0

AC IN

DC INRX 1B

RX 0BRX 2A

RX 1A

RX 0A

TX 1TX 2

RX 2B

EARTH STUD

COMMSBSS11_Ch4_25

Layout of the left earth/connector plate viewed from inside the top section(the layout for the right plate is a mirror image of this). The six permanentlyconnected RF cables are omitted for clarity.

Right side expansion plate

RF PASS-THROUGHFIVE CABLE GLAND

BATTERY BACKUP CABLEPASS-THROUGH

EARTH CABLEPASS-THROUGH

AC CABLEPASS-THROUGH

FIBRE OPTICEXTENSION CABLE

PASS-THROUGH(not visible)

RUBBERGLAND HOUSING

Left side expansion plate is a mirror image of right side plate. BSS11_Ch4_25a

Page 322: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power supply enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–56

Power supply enclosure

Power supplyenclosureoverview

The power supply enclosure contains:

� The Power Supply Unit (PSU), complete with up to three TOPSMs.

� An alarm interface board to connect PSU and TMS alarms.

� The door open alarm microswitch, located in the upper left corner.

� Six U height of standard 19 inch rack space for customer equipment.

Power supplyunit

The PSU contains:

� Up to three TOPSMs for input power conversion.

� Minimal battery backup.

� Circuit isolation and protection devices.

� A control and alarm board.

Page 323: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power supply enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–57

Isometric and front view of the power supply enclosure

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ALARMSINTERFACE

BOARD

DOOR OPEN ALARMMICROSWITCH

CUSTOMEREQUIPMENT

RACKING

TOPSMs INPSU

SPACE FORCUSTOMEREQUIPMENT

BSS11_Ch4_26

Page 324: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power supply enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–58

Alarms interfaceboard

The alarms interface board provides a connection point for alarms generated by theauxiliary equipment housing, PSU and TMS. The alarms are then routed to the externalalarm connector of the interface panel, with the exception of the TMS fan fail, which isrouted through the main cage backplane (fan 0 connector) to the alarm module.

The alarms interface board also houses the TMS test switches.

Alarms interfaceboardconnectors

The function of each alarms interface board connector is described below:

PL 1 Connects to the auxiliary equipment housing alarm outputs.

PL 2 Connects to the interface panel PIX 0 connector, to enableremote initiation of battery tests.

PL 3 Connects to the interface panel external alarms connector.

PL 4 Connects to the PSU control interface board.

PL 5 Connects TMS test inputs and alarm outputs.

PL 6 Connects TMS fan alarm outputs to main cage backplane.

PL 7 Connector for smoke alarms (not in use).

PL 8 Connector for door microswitches.

Page 325: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power supply enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–59

Layout of the alarms interface board

PL1 PL3

INTERNAL FANS(SW3)

TEST OVERRIDE(SW1)

HEATER ON(SW2)

EXTERNAL FANS(SW4) PL4

PL5

PL2

PL8

PL6PL7 BSS11_Ch4_27

Page 326: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power supply enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–60

TMS testswitches

Four TMS test switches are mounted on the alarms interface board. Operation of theoverride switch causes the TMS control board to set the fans to minimum speed and theheaters to off, regardless of environmental conditions. The override switch must be heldto enable further test steps. Subsequent operation of the individual fan switches will setthe corresponding fans to maximum speed.

Operation of the heater switch sets the heaters to on, indicated by the illumination of anLED in the recirculation air return aperture of the power supply enclosure.

Customerequipmentracking

Provision is made within the power supply enclosure for the fitting of customer specificequipment, in 6 U of standard 19 inch equipment racking. Adjacent to the racking arefour 125W power outlets (– 55 V dc and earth), labelled COMMS 1 to COMMS 4. Theseare supplied from individual 5 A dc circuit breakers on the outdoor PSU.

Page 327: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power supply enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–61

Interconnection diagram of the TMS push button testswitches

HEATERON

N/ON/ON/O

N/O

TESTOVERRIDE

Pole

SW4SW3SW2

Pole PolePole

SW1

11 13 15 10 12 14

PL5

9

INTERNALFANS

EXTERNALFANS

BSS11_Ch4_28

Page 328: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Outdoor cabinet doors and lid

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–62

Outdoor cabinet doors and lid

Door function

The doors have the following functions:

� Provide physical security and environmental protection.

� Assist in correct thermal management by ducting return airflow.

� Provide EMC shielding.

The door wind stops enable the doors to to be latched open at the 90° or 120° position.The power supply enclosure door, when closed, overlaps the radio enclosure door. Thedoors also overlap the TMS front cover and the latches of the lid. The power supplyenclosure door therefore provides the single locking point for the cabinet and has thestriker for the door open alarm microswitch.

When the Horizonmacro outdoor is delivered, the keys for the door arecontained in a plastic bag, fastened to the front grill of the TMS.

NOTE

Lid function

The lid has the following functions:

� Provides physical security.

� Provides environmental protection.

The lid has a gas strut to assist in opening and a mechanical stay to limit movementwhen open in windy conditions. The securing latches can only be accessed when thecabinet doors are open.

Page 329: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Outdoor cabinet doors and lid

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–63

Cabinet door views with major features labelled

LOCKING LATCHHANDLE

RADIO ENCLOSUREDOOR

POWER SUPPLYENCLOSURE DOOR

WIND STOPS

AIR DUCTBRUSH SEALS

A5 DOCUMENTPOCKET

ENVIRONMENTALSEAL

AIR DUCTS

BSS11_Ch4_29

View of cabinet lid

ENVIRONMENTALSEAL

TOPSECTION

MECHANICALSTAY

LID GAS STRUT

INSULATIONFOAM

SECURINGLATCH

SECURINGLATCH

CABINETTOP WRAP

BSS11_Ch4_30

Page 330: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro outdoor temperature control

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–64

Horizon macro outdoor temperature control

Temperaturecontrol overview

The Horizonmacro outdoor cabinet contains equipment that has to be maintained withinthe operational temperature range, to ensure correct operation of the equipment and toguard against premature failure of the individual components.

Cabinet overtemperaturecontrol

Under overheat conditions, as the temperature rises above preset levels, temperaturesensors located in various areas within the cabinet provide alarms. A further increase intemperature causes sensors, set at higher temperature thresholds, to initiate PSM orcabinet shutdown. The cabinet is restarted when the sensors are reset by a substantialfall in temperature.

TOPSMs and CTUs have their own internal total shutdown responses to overheating.CTUs shutdown at 92 �C.

900 MHz CTUs also have an internal 4 dB power reduction shutdown response tooverheating, at 85 �C. 1800 MHz CTUs have a 0.6 dB cut back at 70 �C in addition tothe 4 dB power reduction at 85 �C.

Both the CTU and TOPSM shutdowns provide a second layer of cabinet protection,independent of the cabinet heat sensors.

Temperaturesensors

Radio enclosure temperature sensorsTemperature sensors are located above the transceiver compartment (see Cagebackplane interface panel harness assembly ) and consist of the following:

� One 70 �C sensor, providing sensing for a cabinet overtemperature alarm whenthe EMC enclosure temperature exceeds the preset level. The alarm is processedby the alarm module and the MCUF, and sent on to the OMC, via the BSC.

� Two 85 �C sensors initiate shutdown of the PSMs to protect the cabinet equipmentfrom heat damage. Both sensors must detect excess temperature for theshutdown to take place; this reduces the risk of an unnecessary shutdown due tosensor failure. If a shutdown occurs, there is no prior notification to the OMC.

Power supply enclosure temperature sensorsThe power supply enclosure temperature sensors are located on the control and alarmboard (see Outdoor PSU Control and Alarm Board (CAB) ) and consist of thefollowing:

� One 70 �C sensor, providing sensing for a cabinet overtemperature alarm whenthe non EMC enclosure temperature exceeds the planned level. The alarm isgenerated by the control and alarm board, and passed as an external alarm to thealarm module, where it is sent on to the OMC via the BSC. Operation of thissensor will also reduce the TOPSM output voltage as described in Outdoor PSUControl and Alarm Board (CAB) .

� One 78 �C sensor, which initiates disconnection of the battery contactor, thecomms contactor and shutdown of the TOPSMs. This will shut down the BTS. If ashutdown occurs, there is no prior notification to the OMC.

Page 331: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro outdoor temperature control

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–65

TMS temperature sensors

The two TMS temperature sensors are located within the TMS unit (see ThermalManagement System (TMS) ), in the returned recirculation airflow from the EMC andnon EMC enclosures. They have the following functions:

� Either sensor provides sensing for the TMS overtemperature alarm when the TMSreturned recirculation air temperature exceeds 68�C. The alarm is generated bythe TMS control board, processed by the control and alarm board, and passed asan external alarm to the alarm module, where it is sent on to the OMC via theBSC.

� The TMS temperature sensors also provide the TMS control board with thermaldata used in controlling fan speed and heater operation.

Cabinet restartafter shutdown

The cabinet is restarted when the overtemperature condition initiating shutdown hasreset.

� The CAB re-enables the TOPSMs when the 78 �C temperature sensor has resetat 60 �C.

� The two 85 �C temperature sensors reset at 55 �C. This re-establishes an earthpoint for the PSM internal detectors connected to the cabinet heat sensors, whichthen reactivate the PSM outputs.

The cabinet then restarts as a normal power up.

Page 332: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Thermal Management System (TMS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–66

Thermal Management System (TMS)

TMS overview

The equipment installed in the cabinet emits heat, which must be removed in order tomaintain the correct working temperature.

The Thermal Management System (TMS) unit maintains the cabinet internal temperaturewithin the operational range of the installed equipment, provided the external ambienttemperature is within the range of –40 °C to +50 °C.

An alarm is generated if the return air temperature from the BTS enclosures exceeds68 °C.

The TMS unit contains:

� Two recuperators.

� Two ambient air fans (external fans).

� Two recirculation air fans (internal fans).

� Two ac electric heater elements.

� One TMS control board.

� Two temperature sensors.

Page 333: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Thermal Management System (TMS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–67

Thermal Management System (TMS) unit view withairflows indicated

BSS11_4_31

Access panels and air ducts omitted for clarity

RECIRCULATIONAIR FANS

AMBIENTAIR INLET

AMBIENTAIR OUTLETS

AMBIENTAIR FAN

RECIRCULATIONAIRFLOW

AMBIENTAIRFLOW

KEYLOCATION OF

THE TMSCONTROL BOARD

RECUPERATORS

Page 334: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Thermal Management System (TMS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–68

Heat exchangercomponents

The heat exchanger consists of the following items:

Recuperators

The recuperators are manufactured from a series of epoxy resin coated aluminiumsheets, sealed at alternate edges to form two sets of narrow air passages, one set for theambient air and one set for the recirculated air, but not allowing the air streams to mix.

Ambient air fans (external fans)

The two ambient air fans are located one on each side of the unit. The fans are of theradial type with backward curved blades for maximum efficiency. The fan impeller isdirect driven by a –48 V dc motor with a solid state commutator. The fan contains its ownpulse width modulation (PWM) speed control circuitry.

Recirculation air fans (internal fans)

The recirculation air fans are located at the rear of the unit. The fans are of the sametype and operate the same way as the ambient air fans.

AC heater elements

The ac heater elements are located in the recirculation air inlet to the cabinet enclosures,at the top of the unit. There are two individual heaters, each with its own high limitthermostat attached.

TMS control board

The control board is located in the top right side of the TMS unit behind the cable well.The control board has the following functions:

� Interpretation of thermal data from the TMS temperature sensors.

� Control of the speed of ambient and recirculation fans.

� Control of the operation of ac heater elements.

� Generation of TMS alarm signals.

� Configuration of heater elements for 230 V ac or 110 V ac input voltages.

Temperature sensors

The temperature sensors are located at the top of the TMS unit in the recirculation airreturn aperture. The functions of the TMS temperature sensors are described inHorizon macro outdoor temperature control in this chapter.

Page 335: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Thermal Management System (TMS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–69

Heat exchanger functional diagram

RECUPERATORS

Horizonmacrooutdoor

BTS CABINET CABINETEQUIPMENT

TMS UNIT

RECIRCULATIONAIRFLOW

AMBIENTAIRFLOW

RECIRCULATIONFAN

AMBIENT FAN

HEATERELEMENT

HEATERELEMENTS

SIDE ELEVATION VIEW OFRECIRCULATION AIRFLOW

THROUGH CABINET

PLAN VIEW OF AIRFLOW THROUGH TMS UNIT

KEY

HEATERFUNCTION LED

TMSTEMPERATURE

SENSOR

HEATERFUNCTION LED

BSS11_Ch4_32

Representation of the airflow paths through the Horizon macro Outdoor cabinet

Page 336: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Thermal Management System (TMS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–70

TMS functionaldescription

The TMS unit provides either cooling or heating to maintain the internal temperature ofthe Horizonmacro outdoor BTS cabinet within the operational range of the installedequipment. The TMS temperature sensors measure the temperature of the returnedrecirculation air from the cabinet equipment enclosures.

Cooling

The TMS employs an indirect cooling system to protect the radio equipment againstatmospheric contaminants. Cooling is provided by recirculating air through two air to airheat exchangers. Two separate airflow paths are driven through the two recuperators byfans; the warmer air stream gives off heat to the colder air stream.

The TMS control board manages the speed of both sets of fans. The control boardinitiates an increase in fan speed when either TMS temperature sensor detects anincrease in temperature, above a control threshold. A reduction in fan speed is onlyachieved when both sensors detect a decrease in temperature below the controlthreshold.

The recirculation air fans run continuously. As the temperature rises, the ambient air fansstart. A further temperature rise causes both fans ramp up to full speed.

The recirculation air fans run at 60% of full speed at all temperatures, up to 55 °C. Fanspeed increases linearly as the temperature rises, until it reaches full speed at 60 °C.

The ambient air fans are inhibited at temperatures below 40 °C and run at 60% of fullspeed between 40 °C and 55 °C. Fan speed then increases linearly as the temperaturerises, until it reaches full speed at 60 °C.

Heating

At low temperatures and in cold start conditions, ac electric heaters are used to maintainthe cabinet internal temperature at operational levels. Only the recirculation air fansoperate when the TMS is heating the cabinet.

Heater element operation is managed by the TMS control board. The control boardswitches the heaters on when either TMS temperature sensor detects a decrease intemperature to below 10 °C, but only switches the heaters off when both TMStemperature sensors detect a corresponding rise in temperature to above 20 °C.

Heater function is indicated by the illumination of an LED, mounted on the rear vericalwall at the top right of the recirculation air outlet aperture, below and in front of the powersupply enclosure.

Page 337: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Thermal Management System (TMS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–71

Page 338: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro outdoor power supplies

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–72

Horizon macro outdoor power supplies

Power supplyoverview

The Horizonmacro outdoor power supplies consist of the following elements:

� The Power Supply Unit (PSU) containing:

– AC distribution and input ac supply connection.

– DC distribution and internal battery back-up.

– The power supply unit PSU Control and Alarm Board (CAB).

� The Outdoor Power Supply Modules (TOPSMs).

� The main cage Power Supply Modules (PSMs).

� The Circuit Breaker Module (CBM).

� The �BCU Power Supply Module (BPSM).

� Optional external battery back-up, housed in an AEH.

Powerdistributionoverview

The power supply unit cage is the main power distribution assembly within theHorizonmacro outdoor BTS cabinet.

The power distribution system consists of two main functional elements:

� Two ac distribution boxes and their associated cables.

� Six dc circuit breakers, two contactors, the multilayer busbar and dc cables.

Page 339: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro outdoor power supplies

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–73

Power Supply Unit (PSU) cage and its associateddistribution boxes and cables

BSS11_4_33Cabinet structure omitted for clarity

Page 340: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro outdoor power supplies

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–74

AC distributiondescription

There are two ac distribution boxes and an ac power outlet socket associated with theHorizonmacro outdoor PSU.

Number 1 ac distribution box

The number 1 ac distribution box is located in the top panel of the cabinet. It containscircuit protective devices and a terminal block, and provides:

� The termination point for the incoming mains supply.

� A four pole 32 A main circuit breaker (also used as a switched disconnect forexternal ac power supplies).

� A double pole 6 amp (30 mA) residual current circuit breaker with overcurrentprotection (RCBO) to supply the ac power outlet socket.

� The means of configuring the BTS to accept the following incoming ac supplyvoltages:

– 230 V ac 50 Hz single phase and neutral.

– 230 V ac 50 Hz three phase and neutral (star configuration).

– 230 V ac 50 Hz three phase (delta configuration).

– 110 V ac 60 Hz single phase and neutral.

When the Horizonmacro is supplied by 110 V single phase, the 4 pole maincircuit breaker is configured as two parallel pairs – one pair breaking the livephase and one pair breaking the neutral. This provides circuit protection at atotal of 64 amps.

NOTE

Number 2 ac distribution box

The number 2 ac distribution box is located in the upper right of the PSU and containscircuit protective devices as follows:

� Three 20 amp double pole circuit breakers to supply The Outdoor Power SupplyModules (TOPSMs).

� One 10 amp double pole circuit breaker to supply the Thermal ManagementSystem (TMS) heaters.

Each double pole circuit breaker also acts as a switched disconnect for its respectivecircuit, breaking both feed and return lines. The output of each circuit breaker is fed to itsload by discrete cables.

Page 341: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro outdoor power supplies

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–75

Number 1 ac distribution box

MAINS DISCONNECT4 POLE 32 A TYPE C

AC SOCKET6 A 30mA

1 3 5 7 9 11

2 4 6 8 10 12

BSS11_Ch4_34

Number 2 ac distribution box

TMS10 A TYPE B

PSU 120 A TYPE B

PSU 020 A TYPE B

PSU 220 A TYPE B

BSS11_Ch4_34a

Page 342: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro outdoor power supplies

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–76

Page 343: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro outdoor power supplies

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–77

AC distribution block diagram within the Horizon macroBTS cabinet

BSS11_4_35

TOPSM 1

TOPSM 0

TOPSM 2

HORIZONMACRO MAIN CAGE

INCOMINGAC SUPPLY

BOX

NUMBER 2 DISTRIBUTION

BOX

TMS TMS HEATERS

PLUG/SOCKET

OUTLET SOCKET (ac)

Page 344: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DC power distribution

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–78

DC power distribution

DC distributionoverview

The regulated dc output of the TOPSM is distributed through the multilayer busbar to:

� The main cage PSMs.

� TMS fans.

� Customer specific equipment racking power outlets (COMMS 1 to 4).

� Internal battery backup.

� The connectors for optional external battery backup (located on the dc interfacepanel, within the top panel enclosure).

Page 345: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DC power distribution

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–79

The –55 V dc distribution block diagram

TMS FANS CTU

CTU

CTU

CTU

CTU

CTU

COMMS EQUIPMENT

EXTERNAL BATTERYCABINET

COMMSCONTACTOR

PSM(DC/DC conv)

TOPSM

INTERNAL BATTERIES

TOPSM

TOPSM

BATTCONTACTOR

0 V dc

–55 V dc

BSS11_Ch4_36

Page 346: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DC power distribution

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–80

DC distributiondescription

The main cage dc supply is routed from the left side of the multilayer busbar through thedc interface panel to the main cage interface panel. Circuit protection for the main cage isprovided by the CBM and internal fusing in the PSMs.

The other circuits supplied from the multilayer busbar are protected by individual circuitbreakers. Six of the circuit breakers are mounted on the dc circuit breaker panel of theoutdoor PSU. The internal batteries have a separate 80 A circuit breaker, housed withinthe battery mounting tray. The circuit breakers also function as switched disconnects fortheir respective loads.

The PSU cage has two contactors as part of the dc distribution system. During periods ofbattery back-up, the contactors will progressively disconnect battery loads as batteryvoltage decreases, to prevent deep discharge of backup batteries. The operation ofthese contactors is controlled by the control and alarm board.

Customerequipment powersupplies

The four power outlets mounted adjacent to the customer equipment racks are suppliedfrom the multilayer busbar by individual 5 A circuit breakers.

Internal batterybackup

The internal battery tray, located at the lower right side of the PSU, holds four 12 Vbatteries connected in series to provide a total output of 48 V dc, with a capacity of15 Ah.

The internal batteries are protected by an 80 A circuit breaker, mounted on the batterytray front panel. The circuit breaker also functions as a disconnect switch for the internalbatteries.

Battery voltage sensing leads are fed from the negative terminal of each battery to a fourway connector on the battery tray. This is connected to the Control and Alarm Board(CAB). The sensed voltages are used by the battery capacity test and battery selectorswitch functions of the CAB.

External batterybackupconnection

The external battery connection cables are routed from the left side of the multilayerbusbar to connectors on the dc interface panel. Circuit protection and disconnectswitching are provided by an 80 A circuit breaker mounted on the dc circuit breakerpanel.

Page 347: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DC power distribution

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–81

Front view of the dc circuit breaker panel

EXTBATT

TMSFANS

COMMS1

80 A 10 A 5 A 5 A 5 A 5 A

COMMS2

COMMS3

COMMS4

BSS11_Ch4_37

View of the dc interface panel

DC OUTPUT CABLES

EXTERNAL BATTERYCONNECTORS

BSS11_Ch4_37a

Page 348: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–82

Control and Alarm Board (CAB)

Introduction tothe CAB

The CAB is located in the outdoor PSU between the dc circuit breaker panel and thenumber 2 ac distribution box. It provides the following functions:

� Control of TOPSM output voltage (voltage trim).

� TOPSM disable relay control.

� Control of battery and comms contactors:

– during cabinet power up.

– during Low Voltage Disconnect (LVD).

� Monitoring of battery voltage and temperature.

� Monitoring of TOPSM input and output failure signals.

� Monitoring of non EMC enclosure temperature.

� Monitoring of alarms from the cabinet, the TMS, and the auxiliary equipmenthousing.

� Performing a battery charge capacity test on the internal batteries.

The CAB sources dc power from all of the following:

� The distributed dc regulated output of the TOPSMs.

� The TOPSM auxiliary output.

� The comms equipment side of the outdoor PSU comms contactor.

Page 349: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–83

View of the Control and Alarm Board (CAB) and its frontpanel

BSS11_4_38

DIP SWITCHESSW2 AND SW4(see text)

There are two manufacturers of the CAB. Each is fully compatible with thePSU, although circuit board layout may differ.

NOTE

Page 350: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–84

CAB indicatorsand controls

Front panel indicators

� BATTERY CAPACITY (green).

– >15 mins.

– >10 mins.

– >5 mins.

One LED is lit, displaying result of last battery capacity test. The three LEDs flashduring the test and one illuminates to indicate test result.

� RADIO (green).

Normally illuminated, this LED indicates that the battery contactor is closed andthat radio loads are connected to the backup batteries, (where fitted).

� COMMS (green).

Normally illuminated, this LED indicates that the comms contactor is closed andthat customer comms loads are being supplied.

� CAB OT (red).

Normally unlit, this LED indicates a cabinet over temperature alarm state.

� EXT CAB OT (red).

Normally unlit, this LED indicates an auxiliary equipment housing over temperaturealarm state.

� SMOKE (red).

Normally unlit, this LED indicates a cabinet (optional) smoke detector alarm state.

The smoke detector alarm functions are only activated by optional customersupplied smoke detectors.No provision has been made for the fixing of a smoke detector within the maincabinet or the auxiliary equipment housing.

NOTE

� EXT SMOKE ALM (red).

Normally unlit, this LED indicates an auxiliary equipment housing (optional) smokedetector alarm state.

� STATUS (green).

Normally illuminated, this LED indicates that the cabinet is within normal operatingconditions, and will flash on and off when any alarm signal is present. The statusindicator will flash if either the battery or comms contactor is open.

Opening the door triggers the door open alarm, causing the status LED toflash. To check the true status, press the door microswitch to simulate closingthe door.

NOTE

Page 351: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–85

Front panel switches and buttons

Front panel switches and buttons are provided for the following:

� BATTERY TEST.

Initiates battery charge capacity test of internal batteries.

� Battery selector switch.

Connects two 4 mm sockets on front panel to internal batteries to allow monitoringof battery condition.

� OVERRIDE.

Overrides disconnected enable signals to the TOPSMs for fault diagnosis.

� RESET.

Resets the CAB after an auxiliary equipment housing over temperature trip.

CAB front panelfuses

The CAB front panel has three cartridge fuses, providing circuit protection for:

� Battery contactor (F1).

� Comms contactor (F2).

� Control and alarm board (F3).

Page 352: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–86

CAB controlfunctions

The CAB has the following control functions:

� Voltage trim.

� TOPSM disable relay control.

� Control of contactors during power up.

� Low Voltage Disconnect (LVD).

� Over temperature trip.

� Smoke trip.

Voltage trim

The CAB generates the control signal voltage (V trim) used to regulate TOPSM output toproduce a temperature compensated battery charging voltage. The temperature sensoris mounted on the CAB for internal batteries, and mounted in the auxiliary equipmenthousing for external batteries. A dip switch on the CAB (SW2–8) is used to select eitherinternal or external battery temperature sensing.

TOPSM disable relay control

On detection of an over temperature trip alarm or a smoke alarm from the BTS cabinet,the CAB energises the coil of the TOPSM disable relay, interrupting the enable in signaland shutting down the TOPSM –55 V outputs. The TOPSM disable relay will remainenergized until the alarm condition has cleared and, in the case of a smoke alarm longerthan 30 seconds, the cabinet ac supply has been cycled or the CAB front panel resetswitch has been operated. Operation of the CAB front panel override switch will interruptthis function, for a 30 second period, to allow fault diagnosis to be performed.

Control of contactors during power up

The CAB monitors the following signals during power up of the Horizonmacro cabinet:

� TOPSM auxiliary voltage within 9 to 15 V dc range

� Cabinet over temperature alarm.

� Cabinet smoke alarm.

If the alarm signals are inactive, the CAB will close the battery and comms contactors, tosupply customer communications equipment and charge the backup batteries.

If the CAB detects a cabinet over temperature or cabinet smoke alarm during power up,then the TOPSM disable relay operates, as described in TOPSM disable relay controlin this section.

Page 353: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–87

Low Voltage Disconnect (LVD)

The CAB constantly monitors battery voltage. During periods of back-up batteryoperation, the CAB will progressively reduce the load to prevent deep discharge of thebatteries.

The CAB generates a low voltage disconnect imminent alarm when the battery terminalvoltage reaches –44 V. As the battery voltage level drops further, the CAB de-energizesthe battery contactor at –41�V, disconnecting the radios from the battery power. At39.5�V, the comms contactor is de-energized to prevent extreme deep discharge of theback up batteries.

The LVD threshold for the comms contactor is lower than that of the battery contactor, toensure customer communications equipment remains powered for as long as possibleafter radio power has been lost.

Once the comms contactor has opened the CAB will lose all power inputconnections. CAB functions are only re-established when the ac supply isrestored to the cabinet. The cabinet then restarts as a normal power up.

NOTE

Over temperature trip

The CAB generates a cabinet over temperature trip signal when both the 78 �C sensorand the 70 �C sensor are active (see Horizon macro outdoor temperature control ).

The cabinet over temperature trip signal disconnects the battery contactor, the commscontactor, and disables the TOPSMs. This will shut down the BTS, and if a shutdownoccurs, there is no prior notification to the OMC other than the over temperature alarm.

The CAB re-enables the TOPSMs when both temperature sensors have reset at 60 �C.The cabinet then restarts as a normal power up.

Smoke trip

The following smoke trip functions have not been implemented in the maincabinet or the auxiliary equipment housing.

NOTE

The CAB generates smoke trip control signals after it has been in receipt of a smokealarm for 30 seconds.

� The Horizonmacro outdoor cabinet smoke trip signal disconnects the batterycontactor, the comms contactor and disables of the TOPSMs. The BTS will shutdown without prior notification to the OMC, other than the smoke alarm.

� A smoke trip signal from the auxiliary equipment housing initiates a remotedisconnection of the external batteries.

Once generated, the smoke trip control signals remain active until the input mains ac iscycled, or the CAB front panel reset button is operated.

Page 354: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–88

CAB alarmfunctions

The CAB generates or processes the following alarms:

� Over temperature alarms:

– Power supply enclosure over temperature.

– TMS over temperature.

– TMS 2 over temperature (not used).

– Auxiliary equipment housing over temperature.

� Power supply alarms:

– TOPSM dc output fail.

– Mains input fail.

– Low voltage disconnect imminent.

� TMS fail alarms:

– TMS fail.

– TMS 2 fail (not used).

� Smoke alarms:

– Optional smoke detector.

– Optional auxiliary equipment housing smoke detector.

� Door open alarms:

– BTS cabinet door open.

– Auxiliary equipment housing door open.

Except for TOPSM dc output fail, the alarms originate at sensors which use voltage-freecontacts to indicate an alarm by going open contact.

The CAB sends the alarms through the alarms interface board and the interface panel asexternal alarms to the digital alarm module. All alarms to this module indicate an alarm bygoing open-circuit. The alarms are processed by the alarm module and MCUF, and senton to the OMC via the BSC.

Auxiliary equipment housing alarms can be inhibited using the SW 2 dip switchesmounted on the CAB pcb.

Over temperature alarms

The operation of the over temperature alarms associated with the CAB is described inHorizon macro outdoor temperature control .

Power supply alarms

The TOPSM dc output fail and mains input fail alarm signals are generated by a singlechangeover relay within each TOPSM.

� A single TOPSM alarm signal is interpreted by the CAB as a TOPSM dc outputfail.

� A fail signal from all installed TOPSMs is interpreted by the CAB as an ac supplyinput fail.

Page 355: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–89

TMS fail alarm

A TMS fail alarm is generated by the TMS control board when any fan or heater fails.The alarm signal is routed to the CAB through the alarms interface panel. It is thenprocessed by the CAB and sent to the digital alarm module.

A separate fan fail signal, generated by the TMS control board, is fed to the digital alarmmodule without processing by the CAB.

Smoke alarms

Smoke alarms originate at optional (customer supplied and fitted) smoke detectors. Thealarm is then processed by the CAB and sent to the digital alarm module. Dip switchesmounted on the CAB printed circuit board are used to inhibit the alarm signals whensmoke detectors are not fitted.

Door open alarms

The BTS cabinet door open alarm is generated by the CAB when the microswitchmounted in the top left corner of the power supply enclosure is open circuit.

The auxiliary equipment housing door open alarm signal originates at a door mountedmicroswitch, and is generated by the CAB when the microswitch mounted in the auxiliaryequipment housing is open circuit.

Page 356: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–90

CAB additionalfunctions

The CAB also provides the following functions:

� Internal battery capacity test.

� Battery selector.

� Debug.

Internal battery capacity test

The CAB performs an internal battery capacity test when:

� CAB front panel BATTERY TEST push button switch is operated.

� Automated self-test carried out periodically.

� Initiated remotely from the OMC.

During the battery capacity test, the CAB sets the TOPSM outputs to –43 V by adjustingthe voltage trim signal so that the internal batteries supply the cabinet loads. The CABthen monitors the time taken for the battery terminal voltage to drop to –44 V or times outafter 15 minutes. The CAB front panel battery capacity LEDs indicate the discharge time,and a relay-generated signal is sent to the OMC. The LEDs and relays remain activedisplaying the result of the last test conducted.

Remote initiation and reporting of the internal battery capacity test uses the site outputrelay 1 contacts of PIX 0, to initiate the test, and site alarm inputs 1 to 3 to report theresults of the test.

> 5 mins PIX 0 site alarm input 3 short circuit.

>10 mins PIX 0 site alarm inputs 2 and 3 short circuit.

>15 mins PIX 0 site alarm inputs 1, 2 and 3 short circuit.

Internal battery capacity test cannot be initiated if there are system alarms active, thedoor microswitch must be pressed to override the door open alarm. If an alarm occursduring the test, the TOPSM is reset to its normal temperature compensated operatingvoltage and the battery discharge test is interrupted. The CAB then responds to thealarm signal as normal.

The dip switches SW 4 inhibit or set periodicity (between 1 and 30 days) of automatedinternal battery capacity test, (default setting is inhibited).

Pix 0 site alarms are connected to the CAB through PL2 of the alarmsinterface board. PL2 is disconnected and tied back when supplied, if thisfunctionality is required PL2 must be connected to the alarms interface board.The battery capacity test discharges the internal batteries to –44 Vdc. If anexternal power supply failure occurrs immediately after the test, the batteryback up duration is reduced to approximately 3 minutes. The internal batteriesrecharge to approximately 80 % capacity in less than one hour.

NOTE

Page 357: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–91

Battery selector test circuit

5K1

5K1

5K1

5K1

5K1

5K1

1

+I

–I

C28

B28

f

a

a

b

c

d

e

b

c

d

e

DMSOCKETS

BLUE

BLACK

0 V

–12 V

–24 V

–36 V

–48 V

f

CONTROL BOARD

2

A32

B31

A31

A23,24,25

B32

BSS11_Ch4_39

Page 358: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–92

Battery selector

The battery selector switch connects two 4 mm DM sockets on the CAB front panel tothe internal batteries, to allow measurement of:

� Total battery voltage.

� Individual battery voltage.

� Battery current.

Debug

The CAB front panel LEDs can be remapped to indicate alarm status to assist in faultfinding, particularly before connection of the Horizonmacro site to the network. Operationof a dip switch (SW 4–5) and resetting the CAB causes the front panel LEDs to illuminatewhen the alarm is clear.

Page 359: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Control and Alarm Board (CAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–93

The expected DMM values for each position of the testswitch

Table 4-3 Battery selector switch test values

Test switch setting Reading Cell under test

a – 48 V dc All

b –12 V dc Cell 1

c –12 V dc Cell 2

d –12 V dc Cell 3

e –12 V dc Cell 4

f Battery chargecurrent

All

The CAB front panel LEDs are remapped as shown

Table 4-4 Remapping of CAB front panel LEDs

Front panel LED Colour Debug function

15 mins Green Mains fail

10 mins Green TOPSM output

5 mins Green TOPSM auxiliary voltage

RADIO Green Not used

COMMS Green Not used

CAB OT Red Cabinet over temperature

EXT CAB OT Red External cabinet over temperature

SMOKE Red Smoke alarm

EXT SMOKE ALM Red External smoke alarm

STATUS Green Status

Page 360: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Outdoor Power Supply Module (TOPSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–94

The Outdoor Power Supply Module (TOPSM)

TOPSM overview

This section describes the TOPSM used in the Horizonmacro outdoor cabinets.

Three TOPSMs provide adequate operating power for all the modules within the basestation and full battery charging (including external extended battery backup). Undernormal operating conditions, two TOPSMs provide sufficient power to operate all BTSmodules and trickle charge the batteries and the third TOPSM then provides redundancy.

TOPSMfunctionaldescription

The TOPSM system is a power factor-corrected, wide input, ac power supply module.Each TOPSM is a switching type ac/dc power converter with the following regulated dcoutput:

� –55 V at 23.5 A (maximum output current).

� 1200 W (nominal).

The outputs of each TOPSM are connected in parallel by the power supply cage. TheTOPSMs in the system actively share the load.

The regulated dc output is fed through the multilayer busbar to the interface panel andthe dc circuit breaker panel to power the base station.

LED display

There are four LEDs mounted on the front of the TOPSM, which indicate the following:

� I/P HEALTHY (yellow) - lit when the input voltage is present and within specifiedlimits (88 to 264 V ac).

� OVERVOLTAGE (red) - lit when the TOPSM has shut down due to an outputvoltage in excess of –59.9 V dc.

� OVERCURRENT (red) - lit when the TOPSM is in current limit and delivering acurrent in the range 22 A to 24 A. The LED is normally unlit, but when lit does notnecessarily indicate the existence of a fault as this may be due to recharging of thebatteries after an ac supply interruption.

� O/P HEALTHY (green) - lit when output voltage is present and within specifiedlimits (–39 to –59.9 V dc).

Page 361: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Outdoor Power Supply Module (TOPSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–95

View of The Outdoor Power Supply Module (TOPSM)

BSS11_4_42

Page 362: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Outdoor Power Supply Module (TOPSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–96

Monitoring

Internal

Internal TOPSM circuits monitor for the following:

� –55 V output voltage regulation.

� The –55 V output is also regulated to provide temperature compensation for thefloat charging of the internal batteries (battery backup) in the range –52.88 V at40 �C to –56.72 V at 0 �C.

� Over-voltage protection – provides shutdown if the output voltage exceeds–59.9 V.

� Over-current protection – provides constant current limiting at 22 to 24 A, unlessoutput voltage drops below 39.6 V, when the output current will fold back tobetween 3 and 8 A.

� Enable control of TOPSM from the control and alarm board.

External

The control and alarm board monitors common alarm signals generated by thechangeover relays fitted within the TOPSMs. The possible alarms are:

� Mains input fail - This alarm is active if all the fitted TOPSMs lose their input supplyor the input drops below their operating minimum value.

� DC output fail - This alarm is active if the output from one or more fitted TOPSMsfails, or goes outside the preset tolerance level.

Alarm conditions generated by the TOPSM may be detected by one of the red LEDsbeing lit, or by the dc output fail and mains input healthy LEDs being unlit.

Protectioncircuits

Activation of the protection circuits causes the TOPSM to shut down. During a shutdown,the output circuits of the malfunctioning TOPSM are isolated and its output healthy LEDis switched off. The malfunctioning TOPSM informs the control and alarm board of theshutdown condition. An alarm signal is also activated and sent to the control and alarmboard if all TOPSMs detect loss of ac input voltage. After an alarm condition has ceased,normal TOPSM operation is automatically restored.

Thermalprotection

The TOPSM is provided with additional internal thermal protection. If the ambienttemperature of the TOPSM exceeds a safe level then it shuts down, causing an alarmmessage to be sent to the control and alarm board. Normal TOPSM operation resumesafter the temperature returns to a safe level.

Page 363: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Outdoor Power Supply Module (TOPSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–97

Functional diagram of TOPSM

BSS11_4_43

I/P HEALTHYOUTPUT FAIL

INPUT FAIL

BACKPLANE CONNECTOR

REDLED

YELLOWLED

VIN (88 V to 264 V)

POWERCONVERTER

ANDSYSTEMMONITOR

VOLTAGE TRIM

VOUT ( 55 V)

ENABLE IN

O/P HEALTHY

OVERVOLTAGE

I/LIMITREDLED

GREENLED

CONTROLAND

ALARM

CURRENT SHARE OTHERTOPSMs

AUXILIARY SUPPL Y (12V)

CONTROLAND

ALARM

ENABLE OUT

RELAY 1 ONRECTIFIER

PCB

Page 364: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Outdoor Power Supply Module (TOPSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–98

Control andalarm signals

The following signals are associated with TOPSM control and alarms:

� Enable out.

An independent –55 V output from each TOPSM commoned together andconnected to the normally closed contacts of the disable relay (relay 1), on thebackplane of the power supply unit cage.

� Enable in.

This signal, fed from the normally closed contacts of the disable relay (relay 1) onthe backplane of the power supply unit cage, enables the TOPSM output (the relayis operated by the the control and alarm board under fault conditions).

� Voltage trim.

A variable voltage signal, generated by the control and alarm board, used toregulate the TOPSM output in order to produce a temperature compensatedbattery charging voltage, to ensure that the internal or external batteries are notovercharged.

� Current share

A signal representing the average current for the total system. Each TOPSMcompares its output current with the average current and adjusts its output voltageso as to equalize its output current with the average system current.

� Auxiliary supply

A 12 V supply independent of the TOPSM output, but referenced to it, used topower the control and alarm board circuitry when the TOPSM output is inhibited.

� Input healthy

The normally open contact of the isolated changeover relay used to indicate thatthe input is within specification.

� Output healthy

The normally closed contact of the isolated changeover relay used to indicate thatthe output is within specification.

Page 365: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Outdoor Power Supply Module (TOPSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–99

Page 366: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power Supply Module (PSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–100

Power Supply Module (PSM)The Power Supply Module (PSM) used in the Horizonmacro outdoor is the –48V (positiveearth) module. Details on this PSM are laid down inthe Horizonmacro indoor cabinetsection of the course manual.

MicroBCU PowerSupply Module(BPSM)

The BPSM specifications are detailed inthe Horizonmacro indoor cabinet section of thiscourse manual.

Page 367: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power Supply Module (PSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–101

Page 368: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Auxiliary equipment housing overview

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–102

Auxiliary equipment housing overview

Introduction tothe auxiliaryequipmenthousing

The auxiliary equipment housing is an optional multi-purpose secure enclosure for usewith the Horizonmacro outdoor cabinet. It provides space for the installation of additionalequipment at the BTS site.

Auxiliaryequipmenthousingmechanicaldesign

The external design of the auxiliary equipment housing is based on that of theHorizonmacro outdoor cabinet – the procedure for opening/closing the door and lid areidentical (except that there is only one lid catch on the auxiliary equipment housing).

The auxiliary equipment housing contains 23 U of standard equipment racking, withshelving fitted as standard.

Additional equipment can include:

� External battery backup system.

� Customer supplied equipment.

Cable entry to the auxiliary equipment housing is through either side, dependant on siteconfiguration. The cables pass through the earth plates, fitted on both sides of thehousing. Internal connections are made through a power distribution box containingcircuit breakers, mounted on the inside of the lid.

This box also contains an external alarms interface board, which sends alarm signals tothe main cabinet.

Two pairs of Anderson connectors are fitted to the underside of the power distributionbox. The rear pair is for the dc power connection to the main cabinet. The front pair is foran extension connection, either to another main cabinet, or to an additional auxiliaryequipment housing.

Page 369: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Auxiliary equipment housing overview

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–103

External view of unequipped auxiliary equipment housingwith the lid open

EARTH STUDS

ACCESS TO PL1,PL2 AND PL3

POWER DISTRIBUTIONBOX

FRONT PANEL, CONTAININGFAN ASSEMBLY

CIRCUIT BREAKERSEXTERNAL ALARMSINTERFACE BOARD

(MOUNTED INSIDE POWERDISTRIBUTION BOX)

DC POWER CONNECTORS

BATTERY CABLES

EARTH PLATE

BSS11_Ch4_44

Page 370: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Temperature control within the auxiliary equipment housing

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–104

Temperature control within the auxiliary equipment housing

Temperaturecontrolequipment

The temperature within the auxiliary equipment housing is regulated by the followingequipment:

A fan, mounted in the lower front panel, to provide cooling.

Heater mats, fitted to the back panel and lower side panels, to provide heating.

Operation of thetemperaturecontrolequipment

The fan operates from a –48 V dc supply, connected through PL7 on the external alarmsinterface board and protected by a 500 mA anti-surge fuse. The heater mats eachrequire –48 V dc, connected through PL8, PL9, PL10 and PL11 for heater mats 1 to 4respectively on the external alarms interface board. The supply voltage to each mat isprotected by a 5 A fuse.

The fan operates at all temperatures. The heater mats operate the ambient temperatureis less than 12 °C (+/–3 °C).

The auxiliary equipment housing contains two temperature sensors, providing sensing foran over temperature alarm and an over temperature trip control signal.

If the over temperature alarm sensor is triggered (cabinet temperature reaches 55 to60 °C), this causes an alarm signal to be sent to the OMC via the CAB in the maincabinet. If the over temperature trip sensor is triggered (cabinet temperature reaches65 °C, +/–3 °C), the external alarms interface board disconnects the remote operationcircuit breakers, thus removing the supply to the main cabinet. When the temperaturedrops to 5°C below the trip level, the external alarms interface board causes the circuitbreakers to close, thus restoring the supply to the main cabinet.

Auxiliaryequipmenthousing as abattery box

The most common application for the auxiliary equipment housing is to use it for batterybackup for the Horizonmacro outdoor cabinet, by fitting optional batteries.

Up to 16 x 6 V batteries can be mounted on four shelves. Each bank of eight batteriesmust be wired in series to provide –48 V dc, and the two banks are normally wired inparallel to provide increased backup duration. Alternatively, each of the two banks ofbatteries can be independently connected to separate BTS cabinets.

Page 371: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Temperature control within the auxiliary equipment housing

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–105

Auxiliary equipment housing with batteries installed

BSS11_4_45a

Page 372: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2External alarms interface board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–106

External alarms interface board

Function of theexternal alarmsinterface board

The external alarms interface board is mounted in the power distribution box, in the lid ofthe auxiliary equipment housing. It has the following functions:

� Provides power to the temperature control equipment in the auxiliary equipmenthousing.

� Relays alarm signals from the auxiliary equipment housing through the alarmsinterface board in the Horizonmacro outdoor BTS cabinet to the CAB.

� Provides facilities to extend control and alarm functions to a second BTS cabinetor auxiliary equipment housing.

External alarmsinterface boardconnections

Power, control and alarm signals are relayed through the external alarms interface boardas described below.

Cables for connecting the heater mats, fan and control/alarm signals areextended to the outside of the power distribution box.

NOTE

Power connections

External power (–48 V dc) is connected to PL12, pins 1 and 2 on the interface board viathe rear pair of Anderson connectors on the bottom left side of the power distribution box.If a second BTS cabinet is connected, the supply voltage is connected to PL12 pins 3and 4 via the front pair of Anderson connectors. The fan is powered from PL7. The fourheater mats are individually connected to PL8, PL9, PL10 and PL11.

Control connections

Control signals to trip the circuit breakers in the event of an over temperature alarmsignal (temperature reaches 65 °C, +/–3 °C) or a low voltage supply signal (supplyvoltage drops below 38 V dc).

Alarm connections

The following alarm signals are routed through the interface board to the CAB:

� Over temperature alarm signal (PL1, pins 5 and 6).

� Door open signal (PL4).

Page 373: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 External alarms interface board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–107

Auxiliary equipment housing lid

BSS11_4_45c

External alarms interface board(Mounted inside power distribution box)

Page 374: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro 12 carrier outdoor enclosure structure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–108

Horizon macro 12 carrier outdoor enclosure structure

Introduction tothe enclosure

This chapter provides information about the enclosure structure and its components. Allcomponents, except the power distribution equipment, Heat Management System (HMS)and indoor cabinet, are described here.

Enclosuredescription

The Horizonmacro 12 carrier outdoor enclosure is essentially a metal box, with frontopening doors and hood for access. This provides a controlled environment for one ortwo Horizonmacro indoor BTS cabinets in an outdoor location, through the use of a HeatManagement System (HMS).

Additional cooling for the power system is provided by two fan trays. One tray is mountedat the base of each side of the enclosure, below the rectifier modules. These providecooling by blowing air directly over the chassis of each rectifier.

Cable entry to the enclosure is low level, through the left or right side of the base or frombeneath. An optional high level cable entry kit is available if high level cable entry isrequired.

Internally, the enclosure can be conveniently divided into six functional areas for:

� AC supply and interface cabling.

� Battery backup.

� AC and dc power distribution (PDU B).

� Power distribution and customer equipment (PDU A).

� Horizonmacro cabinet (BTS 0).

� Horizonmacro cabinet (BTS 1).

Page 375: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro 12 carrier outdoor enclosure structure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–109

Functional areas within the enclosure

HORIZONMACROINDOOR CABINET

(BTS 1)

HORIZONMACROMASTER INDOOR

CABINET(BTS 0)

BATTERYBACKUP

AC SUPPLYAND

INTERFACECABLING

AC AND DC POWERDISTRIBUTION

(PDU B)

POWER DISTRIBUTION ANDCUSTOMER EQUIPMENT

(PDU A)

BSS11_Ch4_46

Page 376: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro 12 carrier outdoor enclosure structure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–110

Page 377: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro 12 carrier outdoor enclosure structure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–111

Internal view of the Horizon macro 12 carrier outdoorenclosure, showing components

Only items in bold text, plus the doors (not shown in this figure), arediscussed in this chapter.

NOTE

PRIMARY ACTERMINAL BOX

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

SPACE FORCUSTOMEREQUIPMENT

HORIZONMACROINDOOR CABINET

(BTS 1)

HORIZONMACROMASTER INDOOR

CABINET(BTS 0)

ALARMINTERFACE

MODULE

BACKUPBATTERIES

RECTIFIERSPOWER

CONTROLMODULE

AC POWERDISTRIBUTION

UNIT

DC POWERDISTRIBUTION

UNIT

RECTIFIERS

HEATER

–48 V DC CONNECTORPANEL (FOR CUSTOMER

EQUIPMENT)

SMOKEDETECTOR

ANDTHERMOSTATS

LIGHTS

HOOD

FAN TRAY(NOT VISIBLE)

FAN TRAY(NOT VISIBLE)

BSS11_Ch4_47

Page 378: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarm Interface Module (AIM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–112

Alarm Interface Module (AIM)

Functionaldescription ofthe AIM

The AIM provides the interface between alarms for equipment fitted as part of theenclosure and the Horizonmacro master indoor cabinet. Alarm signals are relayed fromthe BTS 0 ALARM connector on the AIM to the EXTERNAL ALARMS connector on theinterface panel on the top of the BTS. PIX0 and PIX1 connectors on the AIM connect tothe corresponding PIX connectors on the BTS interface panel.

The AIM also provides termination and line overvoltage protection for six 2 Mbit 120 ohmtwisted pair lines.

In addition to the above, the AIM provides the interface for alarm signals from theoptional ancillary cabinet.

AIM connectorsand switches

Detailed descriptions of the Alarm Interface Module connector pin-outs and dip-switchsettings can be found in chapter 2 of the Horizonmacro 12 carrier outdoor servicemanual.

Page 379: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarm Interface Module (AIM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–113

Interconnection block diagram for the Alarm InterfaceModule (AIM)

BTS 1SLAVE

BTS 0MASTER

LINETERMINATION

UNIT(OPTIONAL)

HMS 0

HMS 1

POWERSYSTEM

ENCLOSURETHERMOSTATS

SMOKEDETECTOR

HOODCONTACT

J1

BTS 0 BIB

SW 1

DOOR 1CONTACT

DOOR 2CONTACT

J2 J3 J4J5 J6

ALARM INTERFACEMODULE (AIM)

J7J8

J9J1

0J1

1J1

2J1

3

J14J15J16J17J18J19J20J21J22J23J24

J25

J26

J27

J28

SW 2

INTERFACE

BTS 0ALARM 0

BTS 0 PIX1

BTS 0 PIX0

TH

ER

MA

L S

EN

SO

RS

SM

OK

E A

LAR

M

HO

OD

SW

ITC

H

BT

S 0

RE

LAY

4

BT

S 0

RE

LAY

3

BT

S 0

RE

LAY

2

BT

S 0

RE

LAY

1

BT

S 0

EX

T. A

LAR

MS

4

BT

S 0

EX

T. A

LAR

MS

3

BT

S 0

EX

T. A

LAR

MS

2

BT

S 0

EX

T. A

LAR

MS

1

ANC. CAB.OVERRIDE

ALARMOVERRIDE

HM

S 0

BT

S 0

HM

S 1

BT

S 0

PO

WE

R

AN

CIL

LAR

YC

AB

INE

T

INT

ER

NA

LB

AT

TE

RY

SE

NS

OR

EA

RT

H

EARTHBAR

SY

ST

EM

2 M

BIT

LIN

E 1

2 M

BIT

LIN

E2

2 M

BIT

LIN

E 3

2 M

BIT

LIN

E 4

2 M

BIT

LIN

E 5

2 M

BIT

LIN

E 6

2 M

BIT

EA

RT

HJ41

EX

TE

RN

AL

BA

TT

ER

Y A

LAR

M

J40

INT

ER

NA

LB

AT

TE

RY

ALA

RM

ANCILLARYCABINET

BSS11_Ch4_48

Page 380: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Primary ac terminal box

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–114

Primary ac terminal box

Primary acterminal boxlocation andfunction

The primary ac terminal box is mounted vertically on the rear wall of the enclosure, onthe left side. It provides the connection point for the incoming ac supply to the equipmentcontained in the enclosure.

From left to right, the terminals are designated as follows: earth connection to PrincipalGround Bar (PGB); earth (PE), linked to PGB terminal; neutral (N); phase 1 (L1); phase2 (L2); phase 3 (L3).

If required, single phase operation is achieved by linking together the inputs to terminalsL1, L2 and L3 (the links are supplied).

Page 381: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Primary ac terminal box

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–115

View of the primary ac terminal box housing six terminalconnectors

AC SUPPLY CABLEINPUT

TO PGB

BSS11_Ch4_49

Page 382: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Fan tray

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–116

Fan tray

Introduction tothe fan tray

Two fan trays are mounted in the base of the Horizonmacro 12 carrier outdoor enclosure,one on the left side (for PDU B), and one on the right side (for PDU A). The purpose ofthe fan trays is to provide cooling for the rectifiers, which are mounted above them.

Fan traydescription

The left fan tray comprises two rows of three fans, and a control board. The right fan traycomprises two rows of two fans. The fan trays are powered by –48 V dc and areindependently fused at the dc power distribution unit.

Each fan tray is linked to the “rectifier fail” alarm circuits on the power control module, soa failure of one or more fans will be signalled to the AIM through the power controlmodule.

Page 383: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Fan tray

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–117

View of the right fan tray used in the Horizon macro 12carrier outdoor enclosure

CONTROL BOARD

FAN

POWERCONNECTOR

The left fan tray is similar but wider, to accommodate three fans in each row

BSS11_Ch4_50

Page 384: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Fan tray

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–118

Operation of thesmoke detector

A smoke detector is mounted vertically in the enclosure, behind the vertical supportbracing. Its function is to shut down the equipment in the event of smoke being detectedwithin the enclosure. It provides an alarm via the BTS approximately 30 seconds beforethe system is shut down.

The smoke detector is powered by 24 V dc from the power control module. Once analarm condition is detected, the smoke detector sends a smoke alarm trip signal to theAIM. The AIM forwards the signal to both BTS 0 and the power control module. Onreceiving the signal, the power control module inhibits the operation of the rectifiers anddisables LVD A and LVD B, thus isolating the BTS cabinet(s) and the backup batteries.

The smoke alarm trip signal can only be cleared by removing and reapplying ac power, orpressing the RESET button on the front of the power control module.

Enclosurelightingdescription

The Horizonmacro 12 carrier outdoor enclosure has two internal fluorescent tube lightsmounted in the roof panel, one on each side. The lights are powered by 230 V ac fromthe AUXILIARIES circuit breaker on the ac power distribution unit, and each lightincludes a 230 V Euro-type service outlet socket built into the left side of the tube holder.

Additionally, each light is activated by a proximity switch, so movement within the left orright side of the enclosure causes the left or right light to switch on automatically.

A 3-position slider switch is mounted on the underside of each light fitting. This allowseach light to be manually switched on or off, or left in the automatic (proximity switchcontrolled) position.

Under normal operating conditions, the AUXILIARIES circuit breaker should be leftswitched on and the enclosure light switches should be in the automatic position.

Page 385: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Fan tray

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–119

Page 386: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Doors and hood

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–120

Doors and hood

Door function

The doors have the following functions:

� Provide physical security and environmental protection.

� Assist in heat management due to a Heat Management System (HMS) beingmounted on the inside of each door.

� Provide EMC shielding.

The door stays enable the doors to to be latched open at the 90° or 120° position. Eachdoor is fitted with a striker for individual door open alarm microswitches.

Both doors overlap the lip of the hood. This means that the hood cannot be lifted unlessboth doors are open.

Operation of thedoor locks

The left and right door handles operate in a similar manner. Both doors have a springloaded locking handle and operate as follows:

1. Slide open the two lock protective covers.

2. Insert the key into the left lock and turn clockwise until the spring loaded handlereleases.

3. Turn the handle a quarter turn to the left to open the door.

4. Insert the key into the right lock and turn anticlockwise until the spring loadedhandle releases.

5. Turn the handle a quarter turn to the right to open the door.

6. Open both doors to the 90� locking position.

A door open alarm is generated if the equipment is active. This means that thegreen STATUS OK LED on the front of the power control module will NOT beilluminated when the doors are opened. The alarm can be cancelled by tapingdown the door microswitches. The STATUS OK LED will then illuminate,provided there are no other alarm conditions present.

NOTE

7. To open the doors to 120�, lift up the middle of the door stays and open the doorsuntil they reach the limit of travel.

8. To close the doors, lift up the middle of the door stays, close doors firmly and turnthe handles a quarter turn to the right (for the left door) or left (for the right door)and push until the handles are flush with the doors. The doors lock automatically.

The key is not required to lock the enclosure. Turning the left handle back tothe vertical position when both doors are closed causes the doors to lockautomatically.

NOTE

Page 387: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Doors and hood

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–121

Location of components in the Horizon macro 12 carrieroutdoor

BACKUPBATTERIES

RECTIFIERS

HMS 1

HORIZONMACROINDOOR CABINET

(BTS 1)

AC AND DCPOWER

DISTRIBUTIONUNITS

POWERCONTROLMODULE

HEATER

6 U SPACE FORCUSTOMEREQUIPMENT

ALARM INTERFACEMODULE

PRIMARY ACTERMINAL BOX

HORIZONMACROINDOOR CABINET

(BTS 0)

RECTIFIERS(HIDDEN)

DC CONNECTORPANEL

(HIDDEN)

FANTRAY

FANTRAY

(HIDDEN)

BSS11_Ch4_51

Page 388: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Doors and hood

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–122

Hood function

The hood has the following functions:

� Provides physical security.

� Provides environmental protection.

Hood operation

The hood can only be opened and closed when the doors are open. A lip on the frontedge of the hood is overlapped by the top edge of the doors, thus preventing the hoodfrom being lifted while the doors are closed. Also, the hood is secured in the closedposition by four screws, which must be removed before the hood can be opened. Thesescrews must be refitted when the hood is closed.

A gas strut is fitted to either side of the hood to assist in opening and closing. A pull strapis provided on the underside of the hood to assist in closing. Once the hood starts toclose, the gas struts ensure that the hood lowers gently to the closed position

A microswitch is fitted to the top lip of the enclosure, and is in contact with the hood whenthe hood is in the closed position. This generates an alarm signal when the hood israised

Page 389: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Doors and hood

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–123

View of the hood of the Horizon macro 12 carrier outdoor

ENVIRONMENTALSEAL

GAS STRUT

HOOD

PULL STRAP

GAS STRUT

BSS11_Ch4_52

Page 390: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cable entry to the enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–124

Cable entry to the enclosure

Cable entryoverview

Cable entry to the enclosure is normally low level or from beneath the enclosure,depending on customer requirements. High level cable entry (on the left side only) ispossible using an optional high level cable entry kit. Each type of cable entry is cateredfor in the enclosure design.

Low level cableentry

Low level cable entry to the enclosure can be from either the left or right side of the baseof the enclosure.

Two blanking plates are fitted on each side of the base of the enclosure. Separatepower/comms and RF cable plates are supplied for fixing in position when the blankingplates are removed. Only one power/comms plate is supplied, whereas four RF plates(each split into two) are supplied. Two of the RF plates have a hole radius of 14.5 mmand two have a radius of 20 mm, so that the most common RF cable sizes can beaccommodated.

For certain installation types (on a rooftop, for example), it may be possible to route thecables into the enclosure from beneath. This diagram opposite shows an example ofhow this might be achieved.

Page 391: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cable entry to the enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–125

Low level cable entry plates (right side shown)

BSS11_Ch4_53

How the low level cableentry plates can be fitted

POWER/COMMSPLATE

RF PLATE(2 HALVES)

POWER CABLEHOLE

COMMS CABLEHOLES (x 4)

ENCLOSUREEARTH STUD

Cable entry from beneath the enclosure

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

CABLES FED TOENCLOSURE

FROM BENEATH

ENCLOSUREMOUNTED ON

SUITABLESUPPORT

FRAME

ACCESS PANELSIN BATTERY

COMPARTMENT

ROOF BSS11_Ch4_54

Page 392: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cable entry to the enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–126

Optional highlevel cable entry

High level cable entry is from the left side of the enclosure only. Three blanking plates arefitted to the enclosure as standard. These are removed to enable the three cable entryplates supplied in the optional high level hardware kit to be installed.

Use of this kit also requires the optional high level feeder cable kits.

NOTE

One power/comms plate and two RF cable plates are supplied in the kit, and each ofthese may be installed in any of the three positions to suit the required configuration.

Each cable hole in the cable entry plate has a plug fitted. These plugs are removed asrequired when the cables are installed.

Page 393: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cable entry to the enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–127

Typical high level cable entry plate arrangement

POWER/COMMSPLATE

RF PLATES

BSS11_Ch4_55

Page 394: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cable entry to the enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–128

Optional cableshroud andterminationbracket

An optional cable shroud is available for use with the high level cable entry kit. Thepurpose of the shroud is to provide additional environmental protection for the cables atthe point of entry to the enclosure.

An optional termination bracket is also available for use in conjunction with the shroud.

Page 395: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cable entry to the enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–129

Optional cable shroud and termination bracket

SHROUD

TERMINATIONBRACKET

BSS11_Ch4_56

The cable shroud and termination bracket are future options and are notavailable for use with the equipment covered by this release of the manual.

NOTE

Page 396: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Overview of the power distribution equipment

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–130

Overview of the power distribution equipment

Operation of thepowerdistributionequipment

Power distribution within the enclosure is handled by the equipment identified inTable 4-5.

Table 4-5 Power distribution equipment within the enclosure

Rackdesignation

Equipment

PDU A Rectifier module (x 2)

DC connector panel (for customer equipment)

PDU B AC power distribution unit (2 panels)

DC power distribution unit

Power control module

Rectifier module (x 3 max.) – two plus one for systemredundancy

AC power distribution

Three phase or single phase ac input power is supplied through the primary ac terminalbox to the 4-pole circuit breaker (AC ISOLATION SWITCH) on the upper panel of the acPower Distribution Unit (PDU). This circuit breaker is the primary isolator for all theequipment contained in the enclosure.

When the circuit breaker is closed, ac power is fed from the breaker to a mains filter andthen through MCBs or an RCBO to the following equipment:

� The rectifier modules in PDU A and PDU B.

� The enclosure heater (mounted in the base of PDU A), via a thermostat switch.

� The cabinet lights and built-in 230 V ac service outlet sockets.

� The 230 V service power outlets (AUX 1, AUX 2 and HEATER AUX) on the lowerac power distribution panel.

DC power distribution

DC power is derived from the rectifier modules and is fed through MCBs in the dc powerdistribution unit to the following equipment:

� Horizonmacro indoor BTS 0.

� Horizonmacro indoor BTS 1.

� HMS 0.

� HMS 1.

� COMMS 0 to COMMS 3 (on the dc connector panel in PDU B).

DC power from the rectifiers is fed to the Low Voltage Disconnect (LVD) contactors, thefan trays in PDU A and PDU B, and the power control module.

Page 397: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Overview of the power distribution equipment

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–131

View of the power distribution equipment in PDU A andPDU B

RECTIFIERS

AC POWERDISTRIBUTION

UNIT

DC POWERDISTRIBUTION

UNITRECTIFIERS

–48 V DC CONNECTORPANEL (FOR CUSTOMER

EQUIPMENT)

PDU APDU B

POWERCONTROLMODULE

BSS11_Ch4_57

Page 398: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2AC power distribution

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–132

AC power distribution

AC distributiondescription

The ac supply to the Horizonmacro 12 carrier outdoor may be either 230 V nominal threephase (star configuration) or single phase. The ac power is supplied to the ac powerdistribution unit from the primary ac distribution box (see Chapter 2) through a fixed5-core three phase power cable (3P + N + E). For single phase operation, the threephases are linked at their inputs to the primary ac distribution box (links are supplied).

The ac power distribution unit filters the incoming ac supply and provides the primarypower isolation, in the form of a 4-pole circuit breaker (labelled AC ISOLATIONSWITCH). The status of each phase of the ac supply is indicated by LEDs on the frontpanel.

For single phase operation, all LEDs will be lit when the ac supply is connectedor unlit when the ac supply is disconnected.

NOTE

The ac supply power distribution unit supplies ac power directly to each rectifier module,the heater, the lights and the 230 V service outlet sockets through single pole circuitbreakers on the front panel.

AC circuitbreakers

Table 4-6 shows details of the ac power distribution circuit breakers.

Table 4-6 AC circuit breakers

Phase Reference Function Rating Trip type

1 CB 1/1 Rectifier 0 16 A C

CB 1/2 Rectifier 1 16 A C

2 CB 2/1 Rectifier 2 16 A C

CB 2/2 Heater Int 10 A C

CB 2/3 Heater Aux 10 A C

CB 2/4 Enclosure and service auxiliaries 10 A RCBO

3 CB 3/1 Rectifier 3 16 A C

CB 3/2 Rectifier 4 16 A C

Page 399: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 AC power distribution

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–133

Detailed view of the ac power distribution unit front panel

HEATER AUX

AC ISOLATION SWITCHCB1

HEATERINT

HEATERAUX

CB2/2 CB2/3CB2/4

RECT 0CB1/1

RECT 1CB1/2

RECT 2CB2/1

RECT 3CB3/1

RECT 4CB3/2

BSS11_Ch4_58

Page 400: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2AC power distribution

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–134

Page 401: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 AC power distribution

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–135

Simplified circuit diagram for the ac power distribution

RCBO

CB 11

2

3

N

EX1 X2 X3 XN

1 2 3 N E

1 2 3 N E

CB 1/1

CB 1/2

CB 2/4

CB 2/1

CB 3/1

CB 3/2

CB 2/2

CB 2/3

THERMOSTAT

RECTIFIER0

RECTIFIER1

RECTIFIER2

RECTIFIER3

RECTIFIER4

HEATERINT

HEATERAUX

AUX 1

AUX 2

CABINETAUX

LINE FILTER

BSS11_Ch4_59

Page 402: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DC power distribution

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–136

DC power distribution

DC distributiondescription

The –48 V dc output from the rectifiers is fed to the dc power distribution unit. Thisprovides circuit breaker or fuse protected –48 V dc power outlets to the two BTScabinets, the two HMS units, the dc connector panel in PDU A, the power controlmodule, and the fan trays. The dc power for the smoke detector (–24 V) is derived fromthe power control module.

The dc supply to the BTS cabinets is fed through a low voltage disconnect contactor(LVD A). The backup batteries are float charged through a second low voltage disconnectcontactor (LVD B).

The dc supply to the BTS cabinets is monitored through the power control module. LVDA monitors the dc supply from the backup batteries to the BTSs and disconnects the dcsupply if the voltage level drops to 41 V (+/–0.25 V), thus preventing deep discharge ofthe batteries. LVD B disconnects the batteries from the system if the voltage level dropsfurther to 39.5 V (+/–0.25 V). The control circuitry ensures that the contactors are onlyreset when the ac supply is restored and the batteries have recharged to a safe level.

The status of the LVD contactors is displayed on the power control module front panel.The front panel also contains switches which allow manual control of the contactors (seeThe power control module section in this chapter for further information).

Page 403: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DC power distribution

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–137

Detailed view of the dc power distribution unit front panel

CB B0CB B1CB B2CB B3CB B4CB B5CB A0

ALM SUPPLY ALM SENSE

LVD A LVD B

FAN 1 FAN 2

FS1 T2AH FS2 T2AH

FS3 T2AH FS4 T2AH

FS5 T2AH FS6 T2AHCB A1

BSS11_Ch4_60

Page 404: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DC power distribution

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–138

DC circuitbreakers

This table shows details of the dc power distribution circuit breakers.

Table 4-7 DC circuit breakers

Breaker bank /DC bus

Reference Function Rating Trip type

A CB A0 BTS 0 63 A Long delay

A CB A1 BTS 1 63 A Long delay

B CB B0 Comms 0 4 A Long delay

B CB B1 Comms 1 4 A Long delay

B CB B2 Comms 2 4 A Long delay

B CB B3 Comms 3 4 A Long delay

B CB B4 HMS 0 10 A Motor start

B CB B5 HMS 1 10 A Motor start

DC fuses

A fuse panel is mounted on the dc power distribution unit front panel. The fuses protectthe circuits shown in Table 4-8.

Table 4-8 DC fuses

Fuse no. Circuit protected Rating / Type

FS 1 Power control module supply 2 A / HRC

FS 2 Power control module negative sense 2 A / HRC

FS3 LVD A supply 2 A / HRC

FS 4 LVD B supply 2 A / HRC

FS 5 Fan tray in PDU A 2 A / HRC

FS 6 Fan tray in PDU B 2 A / HRC

Page 405: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DC power distribution

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–139

Simplified circuit diagram for the dc power distribution

CB A0BTS 0

LVD ACONTROL

CB A1BTS 1

CB B4HMS 0

CB B5HMS 1

CB B0Comms 0

CB B1

CB B2

CB B3

THERMAL CHARGECOMPENSATION

BATTERYRETURN

REFERENCE

(M8 stud for connectionto principal ground bar)

LVD BCONTROL

Comms 1

Comms 2

Comms 3

LVD A

LVD B

–48 V DC

0 V DC

RECTIFIERV TRIM

BATTERYTHERMALSENSOR

BATTERY

BSS11_Ch4_61

Page 406: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The power control module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–140

The power control module

Overview of thepower controlmodule

The power control module provides the following functions for the power distributionsystem:

� Monitoring.

� Control.

� Alarms interface

The power control module monitors the ac and dc supply and takes appropriate actionshould a fault condition occur. Faults are indicated on the module front panel by theassociated LED being unlit and alarm conditions are signalled to the alarm interfacemodule (see Chapter 2). A reset button is provided to reset the system and clear alarmconditions.

The module automatically controls the operation of the LVD contactors, although thesecan be controlled manually using the BYPASS switch. It also automatically controls thebattery float charge voltage (54.5 V at 20 °C), although this can also be adjustedmanually using the VOLT ADJ potentiometer.

In addition to the above, the power control module provides a 24 V dc supply required topower the enclosure smoke alarm.

Page 407: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The power control module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–141

Detailed view of the power control module front panel

BSS11_Ch4_62

Page 408: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The power control module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–142

Front panelcontrols andindicators

Table 4-9 describes the controls and indicators on the power control module.

Table 4-9 Power control module front panel control and indicator functions

Legend Type Normal/Alarmstate

Function

O.T. OK LED Green/Off Indicates whether the overtemperaturealarm is functioning correctly.

SMOKE OK LED Green/Off Indicates whether the smoke alarm isfunctioning correctly.

LVD OK LED Green/Off Indicates whether both LVD units areoperational and the contactors are beingdriven at the correct levels.

REC ATT LED Off/Red Indicates whether the REC ATT buttonhas been pressed and the equipment is inthe receiving attention state.

CONT OFF LED Off/Red Indicates whether the BATT ON/OFFbutton has been pressed and the batterycontactor (LVD B) is off.

AC OK LED Green/Off Indicates whether ac power is present onat least one phase.

STATUS OK LED Green/Off Indicates whether the equipment status isok, no alarms are present and theequipment is not in the receiving attentionstate.

BATTON/OFF

Button – / – Toggles LVD B on or off.

REC ATT Button – / – Puts the equipment in the receivingattention state. Any alarms present aremasked for maintenance purposes.

RESET Button – / – Resets the power control module.

VOLT ADJ. Pot. – / – This is used to adjust the nominal floatvoltage level.

BYPASSED LED Off/Red Indicates whether the bypass switch hasbeen set to ON.

BCA ON LED Green/Off Indicates whether the BTS contactor (LVDA) is on.

BCB ON LED Green/Off Indicates whether LVD B is on.

BYPASS ON

BYPASS OFF Switch – / –If set to ON, automatic control of thecontactors is overridden and both are heldBYPASS OFF Switch / contactors is overridden and both are heldin the on position to enable the powercontrol module to be “hot swapped”.

Page 409: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The power control module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–143

Page 410: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The power control module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–144

Alarmmanagement

The power control module provides the connection between the power system alarmsand the alarm interface module (AIM) through a 25-way D-type connector. The alarmsignal cable connects between J1 on the power control module and J3 on the AIM.

The pinouts on J1 are shown inTable 4-10.

Table 4-10 J1: Power system alarms

Pin Signal description Pin Signal description

1 AC 1 fail 14 AC 1 fail return

2 Smoke alarm 15 Smoke alarm return

3 O/T shutdown 16 O/T shutdown return

4 ANC smoke alarm trip 17 ANC smoke alarm trip return

5 – 18 –

6 Low voltage alarm 19 Low voltage alarm return

7 Rectifier 1 fail 20 Rectifier 1 fail return

8 Rectifier 2 fail 21 Rectifier 2 fail return

9 BTS smoke alarm 22 BTS smoke alarm return

10 Temperature sensor 23 Temperature sensor return

11 – 24 Aux supply 0 V

12 – 25 –

13 Aux supply 24 V

Alarm inputs

The alarm input signals accepted by the power control module are described here.

Overtemperature shutdown

The overtemperature shutdown signal causes the power control module to inhibit therectifiers and disable both LVD contactors, thus removing all dc power to the BTScabinets and communications equipment. The signal causes the power control module togenerate an ANC smoke alarm trip signal.

The overtemperature alarm signal is generated if the temperature reaches 70 °C andshutdown of the equipment occurs if the temperature rises further to 80 °C.

The overtemperature shutdown alarm can only be reset by removing and re-applying acpower or pressing the recessed reset button on the front of the power control module.

Page 411: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The power control module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–145

Smoke alarm shutdown

The smoke alarm shutdown signal operates in a similar manner to the overtemperatureshutdown signal, except that there is a 30 second delay before dc power is removed.This signal also causes the power control module to generate an ANC smoke alarm tripsignal.

Like the overtemperature shutdown alarm, the smoke alarm shutdown alarm can only bereset by removing and re-applying ac power or pressing the recessed reset button on thefront of the power control module.

BTS disable

If the dc supply to the BTS has been disabled due to an ac power failure and low voltagedisconnect condition, the BTS will not restart if the temperature within the enclosure isbelow the minimum specified for BTS operation.

The dc supply is restored automatically when the temperature reaches an acceptablelevel.

Alarm outputsignals

The alarm output signals generated by the power control module are described here.

AC 1 fail alarm

The power control module combines the ac status monitor signal from each rectifier andprovides a single “AC 1 fail” alarm signal if the ac supply fails.

Rectifier 1 fail alarm

The power control module provides a non critical “Rectifier 1 fail” alarm signal if onerectifier or rectifier cooling fan fails.

Rectifier 2 fail alarm

The power control module provides a critical “Rectifier 2 fail” alarm signal if more thanone rectifier or rectifier cooling fan fails.

Low voltage alarm

The power control module provides a “Low voltage” alarm signal if the backup batterieshave discharged to a voltage level where low voltage disconnect of the BTS cabinet(s) isimminent (voltage < 43.0 V, +/–0.25 V). This initiates a controlled shutdown of theequipment. The BTS cabinet(s) are disconnected if the voltage falls to 41 V (+/–0.25 V),and the batteries are disconnected at a voltage level of 39.5 V (+/–0.25 V).

ANC smoke alarm trip

The power control module provides a control signal to trip the circuit breakers in anexternal equipment cabinet when an overtemperature shutdown or smoke alarmshutdown signal has been received.

Page 412: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The rectifier module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–146

The rectifier moduleThe specifications and functional description on the rectifier modules, used in the 12carrier outdoor Horizonmacro, are detailed in the Horizonmacro outdoor section underthe title “The Outdoor Power Supply Module (TOPSM)”.

Page 413: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The rectifier module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–147

View of the rectifier module

BSS11_Ch4_63

Page 414: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The dc connector panel

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–148

The dc connector panel

Description ofthe dc connectorpanel

The dc connector panel is mounted in PDU A, to the right of the rectifiers. It provides four–48 V dc sockets for customer communications equipment, which can be mounted in the6 U of rack space available in PDU A.

Power for the dc connector panel is supplied from the dc power distribution unit. Power toeach connector on the panel is controlled via a separate MCB on the front of the dcpower distribution unit (COM 0 to COM 3).

Page 415: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The dc connector panel

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–149

View of the dc connector panel

ESP BONDING POINT

COMMS 0

ESP

COMMS 1

COMMS 2

COMMS 3

GND0V–48V

GND0V–48V

GND0V–48V

GND0V–48V

BSS11_Ch4_64

Page 416: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Internal battery backup

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–150

Internal battery backup

Overview of theinternal batterybackup system

The left side of the Horizonmacro 12 carrier outdoor enclosure is fitted with a closed twoshelf compartment for backup batteries. Four 12 V monoblocs are installed in thecompartment and connected in series to provide a –48 V dc supply in the event of afailure of the ac supply. The backup batteries can power 12 carriers under full loadconditions for up to 40 minutes.

The batteries are connected to the enclosure dc supply through an isolator switchmounted on the top of the battery compartment and the LVD B contactor. The circuitbreaker enables the backup batteries to be isolated from the system for maintenancepurposes.

Page 417: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Internal battery backup

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–151

View of the internal battery backup compartment

COMPARTMENTCOVER

BACKUPBATTERIES

BATTERY ISOLATORSWITCH

BSS11_Ch4_65

Page 418: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Internal battery backup

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–152

Battery thermalchargecompensation

A thermal probe is connected to the positive battery terminal on the right battery in theupper shelf, via an M8 copper ring terminal. This provides thermal charge compensationby monitoring the battery temperature and adjusting the rectifier battery charge voltage tothe optimal level, thus maximizing the charge rate and battery life, and minimizing batterygas discharge.

The thermal compensation is set at 4 mV/cell/�C, but is voltage clamped at the values for0 �C and 40 �C to prevent battery overcharge at temperature extremes.

The thermal probe connects to J5 on the AIM and the signal from it then passes to J1 onthe power control module via J3 on the AIM.

Page 419: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Internal battery backup

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–153

Internal battery connections

+VE CONNECTION(BLACK CABLE) TOISOLATOR SWITCH

BATTERY LINK

BATTERY LINK

–VE CONNECTION(BLUE CABLE) TO

ISOLATOR SWITCH

THERMAL PROBECONNECTS HERE

BSS11_Ch4_66

Page 420: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro digital modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–154

Horizon macro digital modules

MCUF and NIUredundancy

The �BCU can:

� Support two MCUFs at a BTS site, one master, one slave (for redundancy).

� Enable Master MCUF failure to result in slave MCUF becoming master after reset.

� Enable OMC operator to initiate master/slave MCUF swap.

� Configure CTUs by the master MCUF.

All four NIUs operate from the master MCUF, but each pair of NIUs depend on a BPSMfor power. All NIUs configure to the master MCUF clock.

When fitting a replacement redundant MCUF, care must be taken to ensurefirmware compatibility with the master MCUF. Firmware incompatibility mayresult in a loss of communication between the two MCUFs so that theredundant MCUF is not in a position to take control in the event of a failure ofthe master MCUF.

NOTE

Full size and halfsize modules

Modules are full size and half size as shown in Table 4-11,

Table 4-11 Full size and half size digital modules

Full size modules Half size modules

Main Control Unit with dual FMUX (MCUF) Network interface unit (NIU)

Alarm module Fibre optic multiplexer (FMUX)

BPSM (µBCU Power SupplyModule)

Overviewlocations andredundancy

Digital modules provide the micro base control unit (µBCU) functionality for the BTS site.They are located in the bottom right side of the cage, and are electronicallyinterconnected through the backplane. Fibre optic connections are at the front of theappropriate modules.

Each digital module is assigned A or B, with one BPSM (µBCU Power Supply Module)for A and one BPSM for B. The alarm module is not assigned to A or B, as it is suppliedby both BPSMs for redundancy.

The master MCUF is assigned to A, and the redundant MCUF to B, each with anassociated FMUX.

The four NIUs are used by the operational MCUF, but two NIUs are powered by BPSM Aand two NIUs by BPSM B.

All slots are annotated with the legend of the appropriate module and located as shownin the diagram opposite.

Page 421: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro digital modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–155

Digital module and BPSM locations

BSS11_4_67

MASTER (A)

REDUNDANT (B)

ALARMMODULE

NIUB0

NIUB1

BPSM

BPSMFMUX

FMUX

MCUF A

MCUF B

NIUA0

NIUA1

µBCU CAGEASSEMBLY

Page 422: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro digital modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–156

Digital moduleand CTUconnections

The MCUF is connected to the CTUs in the same cabinet through the backplane.Optional connection to CTUs in up to three additional cabinets (six CTUs per cabinet) isby fibre optic links. FMUXs, two internal to the MCUF and one half size module, convertthe electronic data stream into a fibre optic signal. An FMUX module in each extensioncabinet converts the fibre optic signal back to electronic data stream, for transmission toCTUs via the backplane.

The NIU modules convert signals for terrestrial E1 or T1 lines.

Page 423: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro digital modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–157

Digital module and CTU connections

BSS11_4_68

MCUF

FMUX

NIUA0

TRANSCEIVER

2

E1/T1

TO EXTENSIONCABINET FOR SIXTRANSCEIVERS

FMUXFMUX

2

2

TO EXTENSIONCABINET FOR SIXTRANSCEIVERS

TO EXTENSIONCABINET FOR SIXTRANSCEIVERS

TRANSCEIVER

TRANSCEIVER

TRANSCEIVER

TRANSCEIVER

TRANSCEIVER2

2

2

2

2

2

(CO

NN

EC

TIO

NS

VIA

BA

CK

PLA

NE

)

E1/T1

NIUA1 NIUB0 NIUB1

Page 424: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–158

Main Control Unit with dual FMUX (MCUF)

MCUF overview

The Main Control Unit with dual FMUX(MCUF) provides the site processing functions,apart from RF functions of the transceiver. The MCUF also provides switching for up tosix network interfaces (via four NIUs) and up to 24 transceivers.

The cabinet may contain up to two MCUF modules, one for redundancy. Each site andmodule has an electronic ID for remote identification.

The MCUF provides the following functions:

� Maintenance and operational/control processing.

� Call processing (for example resource management and switching of basebandhopping data).

� Switching of traffic and control information.

� Timing reference and network/BTS master clock synchronization.

� The functionality of two FMUX (see FMUX module and FMUX function in thischapter).

� Support of up to six transceivers via backplane in first cabinet and up to anadditional 18 transceivers via FMUX connections to other cabinets.

� Support of up to six E1 or T1 circuits, via NIU modules.

� Support of the CSFP function via the PCMCIA flash memory card.

Capability toreplace MCU ofM-Cell 6 andM-Cell 2

The MCUF combines the MCU function of M-Cell6 with two FMUX modules. If theMCUF is installed in an M-Cell6 or M-Cell2 the MCUF automatically reverts to thefunctionality of an MCU. The internal FMUX devices no longer operate. In M-Cell2 thereversion to MCU mode includes ability to directly connect to two transceivers bymodified use of the front panel FMUX fibre optic connections.

This capability to use MCUF in M-Cell6 and M-Cell2 is only possible withGSR4 software release or later.

NOTE

GPROC KSW andGLCK functions

The MCUF/MCU module combines functions of older generation equipment:

� The Code Storage Facility Processor (CSFP) and Base Transceiver Processor(BTP) functions formerly achieved by Generic Processor boards (GPROCs).

� The Kiloport Switch (KSW).

� The Generic Clock (GCLK).

Page 425: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–159

Main Control Unit with dual FMUX (MCUF) functionaldiagram

FAST FLASHEEPROM

SLOW FLASHEEPROM

16/32 MBYTEDRAM

ADDRESS

RESET

RS232

ASIC

V.28

3

CONTROLDATA

PCMCIA

MMIGPS

3

4

SIGNAL CONNECTOR TO BACKPLANE

2

RESET ANDWARM RESET

SWITCHES

TTYINTERFACE

NIU

REDUNDANTMCUF

GPS 1PPS

EXTERNALCLOCK

PCMCIAINTERFACE

6

4

EXTERNALSITE ID

RED LED

GREEN LED

6

PIXOUTPUT

EXTERNALFMUX

MODULE

CTU x 6IN SAMECABINET

MAINPROCESSORS

FMUX

CTU x 6 VIAFMUX INOTHER

CABINETS

FIBRE OPTICCONNECTORS

DEBUG PORT

BDM PORT

2

SYNCBLOCK

6

6FMUX

2

2

6

2

FLASHEPROM

RAM

(OR TCU x 6VIA FMUX IN

M-CELL6CABINETS)

BSS11_Ch4_69

Page 426: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–160

Front panelinterfaces

TTY interface

A standard TTY interface is provided on the front panel, of 9.6 kbit/s (8 bits, No parity, 1stop bit (8 N 1)). A local maintenance terminal can be attached to this port to use theMan Machine Interface (MMI) of the MCUF.

Debug and BDM ports

Two front panel ports are for Motorola factory and development use only:

� The debug port, consists of a TTY connection to the sync processor to accesssync firmware, together with other connections to the ASIC and main processors.

� The Background Debug Mode (BDM) port is used for low level debugging of themain processors.

FMUX fibre optic connections

There are fibre optic connections from the MCUF internal FMUX modules. The fibreoptic connectors enable connection to FMUX modules in other cabinets for additionaltransceivers.

CAL port

The CAL port on the front panel of the MCUF can be used to calibrate the sync blockclock via MMI commands. The 8 kHz reference output is used in GCLK calibrationprocedure (see Installation & Configuration BSS Optimization (GSM-100-423) ).

PCMCIA Interface

The PCMCIA card is located on the front panel of the MCUF, and is used for:

� Code Storage Facility Processor (CSFP) memory.

� Rapid site initialization.

The PCMCIA socket is an industrial standard 68 pin single socket, fitted with an ejector.The PCMCIA interface supports rev 2.1 type I and II cards.

The 20 Mbyte card can be write enabled, for upgrade of site information, or disabled toprotect card use for other sites or secure the site code.

Page 427: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–161

View of the Main Control Unit with dual FMUX (MCUF)module

BSS11_4_70

BACKPLANE CONNECT ORS

(FULL – REMOVES SOFTW ARE FROM MEMOR YCPU – RESETS MCUF CPU)

PCMCIASTATUS LEDS

(RED & GREEN)

CAL POR T

TTY MMI

INTERNALFMUX FIBRE

OPTICCONNECTIONS

PROCESSORS

OSCILLATOR

DEBUG POR T

BDM POR T

RESET BUTT ONSPCMCIAEJECT

BUTTON

Page 428: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–162

Front panelswitches andindicators

The front panel of the MCUF module has two reset switches as shown the previousdiagram:

� FULL is a hard reset (power up - removes software from the memory).

� CPU is a soft reset (this resets the MCUF main processors, but the softwareremains in RAM).

A hard reset results in the software being reloaded to the DRAM in the same way asnormal power up.

During the CPU (soft) reset, pressing CPU reset again will perform a hardreset. Double pressing of the CPU reset thus has the same effect as a hardreset.

NOTE

The MCUF has two front panel LEDs as shown in the previous diagram:, one green andone red, with indications as shown in Table 4-12.

When red and green LEDs are flashing, the boot code is downloading intonon-volatile memory for software upgrade. Power should not be removed, northe cabinet reset, until downloading has been completed, as this will corruptthe non-volatile memory. If bootcode is corrupted, contact Motorola CNRCrequesting the bootcode restoration procedure and the appropriate bootcodefile.

CAUTION

Table 4-12 MCUF front panel LED indication

Red Green Status

Off Off Board not powered up or in rest cycle

Off On Normal operation

On Off Fault condition

Flashing Flashing Non-volatile memory bootcode upgrade

(Do not remove power nor reset – see CAUTION)

PIX and GPSinterfaces

The MCUF provides four PIX outputs, driven at V. 28 levels. The four PIX outputs,routed to the cabinet alarm board, enable relay contact control of external customerequipment.

The GPS interface to the processor section is an RS232 compatible port. The 1PPSsignal is provisioned in the same connector, at V. 28 levels. This signal is fed to the syncblock as a reference. The GPS feature is not currently supported.

Page 429: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–163

Page 430: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–164

DRAM, flashEPROM and codeloading functions

DRAM

The 16 Mbyte DRAM provides operational code and data storage for the mainprocessors. There is also a SIMM socket in the circuit board, enabling the addition of afurther 16 Mbytes if required. After software initialization, the DRAM uses ECCprotection. Memory protection is provided by the main processors.

Fast flash EPROM

The fast flash 1 Mbyte bank (256k x 32) is used for bootcode and executive processcode. It has a fast access time (<75 ns) , enabling direct execution. The bootcode isfactory set, and reprogrammed only in major software upgrades.

Slow flash EPROM

The slow flash 0.5 Mbyte bank (256k x 16) is used for non-volatile data storage ofdiagnostic data and module ID information.

Code loading

The boot and executive code, held in the fast flash EPROM, initiates the MCUF on powerup or reset. If a PCMCIA memory card is fitted, operational code may be obtained andcopied to the DRAM for execution. If no card or code is available, the operational code isobtained from the BSC.

Before execution, the operational code held in DRAM is checked with code held at theBSC. The BSC downloads any changed code objects to the DRAM.

After successful checking of the DRAM operational code, the code is executed, and thePCMCIA memory card updated with any changed objects.

CSFP code loading

If a PCMCIA memory card is available, then a code storage facility processor (CSFP)function can be supported. A new software load can be downloaded in background,without any reduction in service, and stored on the PCMCIA card.

Once the complete load has been transferred to the PCMCIA card, a code swap can beinitiated. The site is reset and the new software brought into service (<10 minutes). As aprecaution, the old version is held on the PCMCIA card to support a roll back to theoriginal version if required.

Page 431: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–165

Page 432: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–166

ASICfunctionality

The Application Specific Integrated Circuit (ASIC) provides central switching capabilitiesfor the MCUF. It is capable of supporting up to 24 transceivers, together with up to sixnetwork interfaces and two links to the on-board processors, one link to the syncprocessor and a link to the redundant MCUF. The link to the sync processor is used forcode loading purposes only. The ASIC supports baseband hopping across the 24transceiver links.

The ASIC provides interface features associated with the transceiver links, these includesynchronization features to allow for delay in the link to the transceivers, and thenecessary framing and encoding to support the link.

All of the serial links into the ASIC are internal lines (I lines), 125 �s framed, with 32eight bit timeslots per frame.

ASIC transceiver link features

The ASIC interfaces to a maximum of 24 transceiver links. The ASIC can switch anytimeslot on any of the transceiver links to any timeslot on other links connected to theASIC; transceiver links, network links, MCUF redundancy link or processor links.

The ASIC provides the following features associated with the transceiver links:

� Link advance/delay compensation.

The ASIC will continually measure the round trip delay on each transceiver link tocalculate a timing advance for each link. The link advance is applied, and can beadjusted, by the main processor via the processor parallel interface.

� BBH data switching.

BBH switching is performed automatically on any timeslot configured as BBH data.A single timeslot from the transceiver is selected for BBH routeing information, anddefines which transceiver link (0-23) should be used for downlink.

� Timing reference insertion.

The ASIC receives timing pulses from the sync block and inserts the appropriatebits into the transceiver downlink synchronization and framing timeslots. The syncblock will provide a version of the 6.12 s and 60 ms signals that is advanced by125 �s for this purpose.

� Manchester coding/decoding.

The transceiver links are all Manchester coded/decoded by the ASIC. Thisfunction can be switched on or off (default on) on a per link basis. The disablefeature is for applications outside of the MCUF module.

ASIC/network and processor link switching

The ASIC supports a maximum of six network links and two main processor links. Thedata to/from these links can be switched to/from any timeslot on other links connected tothe ASIC.

The two links to the main processor allow it to route HDLC and other links to theappropriate place:

� 24 HDLC timeslots for the BCF RSS channel to each transceiver.

� Four timeslots for NIU control channels (two local, two redundant).

� Sync processor code load channel.

� Two channels for RSL links.

� One HDLC channel occupying up to three timeslots to the redundant MCUF.

Page 433: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–167

Page 434: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–168

Sync blockfunctionality

The sync block is controlled via the parallel interface of the main processors. The syncblock is responsible for site synchronization functions. It generates all required localreferences from a high stability local clock source. This clock source may also be lockedto the incoming network clocks.

The sync clock source is in the form of a crystal oscillator (OCXO) which warms up forphase locking in 4 minutes, and achieves frequency stabilization in 15 minutes.

Site frame reference generation and re-timing includes:

� 2.048 MHz - For serial communications.

� 16.384 MHz - For FMUX communications.

� 125 �s - For NIU framing and transceiver framing.

� 60 ms- For transceiver GSM timing.

� 6.12 s - For GSM superframe.

The reference clocks available to the sync block are:

� Six network extracted clocks (E1/T1 source via NIUs). Any of the NIU modulesunder control of the MCUF can extract a reference clock from an E1/T1 link andpass to the Sync block.

� GPS. This feature is not currently available.

� CAL port. The CAL port can be used to calibrate the sync block clock via MMIcommands. The reference output provides a monitoring point.

� Redundant MCUF link.

Phase Lock Loop (PLL) operating modes

The PLL uses the selected reference signal as the loop reference clock. It includes anOCXO accurate to 0.05 ppm, a phase comparator and a loop filter. The PLL has thefollowing operating modes:

� Warm-up

The PLL is open loop and using the calibration frequency, but the OCXO is not yetwarmed up.

� Set frequency

The PLL is open loop and using the calibration frequency, and the OCXO iswarmed up.

� Fast tune

Closed loop with wide filter for coarse locking to the reference (extracted fromnetwork clock/GPS).

� Fine tune

Closed loop with narrow filter for accurate locking to the reference (extracted fromnetwork clock/GPS).

When in fine tune closed loop mode, the accuracy is 0.01 ppm.

Page 435: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–169

Page 436: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–170

Sync block code load

The sync block controller has a dedicated 2.048 Mbit/s serial link into the ASIC enablinga 64 kbit/s HDLC channel to the main processors for code loading.

The sync block includes 256 k of flash EPROM used to store:

� Boot code.

� Operational code.

The boot code, which cannot be altered, queries the main processors on the currentversion of the sync operational code.

If the stored operational code is the correct version, the boot code will move theoperational code to RAM and execute the code.

If the query results in the need for new operational code, the sync processor willdownload the operational code from the main processors via the ASIC to the RAM in thesync block.

After a successful download, the boot code programmes the flash EPROM with the newoperational code and runs the operational code in RAM.

GSM counters

The following counters are provided:

� GSM frame incremented every 4.615 ms, range 0 - 1325.

� GSM superframe incremented every 6.12 s, range 0 - 2047.

Link toredundant MCUF

The link to the redundant MCUF is similar to a transceiver link, but does not have theBBH capability, or the link delay measurement and compensation facility. The 6.12 s,and 60 ms signals, are inserted into timeslots 8 and 16.

When the MCUF is in slave mode, timeslot and E1/T1 clock information is extracted fromthe MCUF link and passed to the sync block.

The main processor HDLC link to the redundant MCUF can be routed in any unusedtimeslot(s) of this link.

The ASIC can switch any timeslot on the redundancy link to any timeslot on any of theother links connected to it such as the transceiver links, network links, redundancy link orprocessor links.

Page 437: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit with dual FMUX (MCUF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–171

Page 438: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Network Interface Unit (NIU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–172

The Network Interface Unit (NIU)

Overview of NIU

The Network Interface Unit (NIU) module provides two E1 or two T1 termination links tothe terrestrial network. The NIU E1/T1 outputs are connected to a T43 or BIB board,depending on the impedance matching requirement of the customer terrestrial circuits.

There are two types of NIU board, one for E1, one for T1. The NIU layout is common toboth E1 and T1, the only differences being in the associated crystal oscillators and linematching resistor values.

An on-board NIU control processor provides network interface configuration andsupervision, controlled by the MCUF.

NIU functionality

The NIU provides two E1/T1 interfaces into the network (link 0 and link 1) as well asLAPD encoding/decoding and clock recovery from a selected E1/T1 link. The secondE1/T1 interface (link 1) is not used for NIUs placed in µBCU positions at NIU A1 and NIUB1.

An NIU control processor provides network interface configuration and supervision,controlled by the MCUF. The NIU control processor maintains two independent controllinks in the redundant configuration (one to each MCUF), each using timeslot 0 of MCUFlink 0.

NIU locations

The cabinet may contain up to four NIU modules in the �BCU, as shown in NO TAG.Two NIUs are located in the master (lower) part of the cage. Two NIUs are in theredundant (upper) part of the cage, though these upper NIUs are also used fornon-redundant purposes.

An NIU in slot A0 of the �BCU supports two E1/T1 links.

An NIU in slot A1 of the �BCU supports one E1/T1 link.

An NIU in slot B0 of the �BCU supports two E1/T1 links.

An NIU in slot B1 of the �BCU supports one E1/T1 link.

Page 439: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Network Interface Unit (NIU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–173

Functional block diagram of the Network Interface Unit(NIU)

BACKPLANE CONNECTORS

CONTROLPROCESSOR

FLASHEEPROM

DRAM

DATA

ADDRESS

RS232

BDMCONNECTION

XTAL

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

FRAMER TIMESLOT

MULTIPLEXER

REF 125 �sREF 6.12 s

MUXDEMUX

REF 2.048 MHz

RESET

NETWORKE1/T1 LINK 0

RESETSWITCH

RED LED

GREEN LED

LIU

CONNECTION

REDUNDANTMCUF LINK 0

EXTRACTEDCLOCK 0

REDUNDANTMCUF LINK 1

MASTER MCUFLINK 0

MASTER MCUFLINK 1

NETWORKE1/T1 LINK 1

LIU

FRAMER

EXTRACTEDCLOCK 1

BSS11_Ch4_71

Page 440: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Network Interface Unit (NIU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–174

NIU commandidentity number

Each NIU is identified in the database by an identity number, from 0 to 3. Table 4-13shows the NIU slots and equivalent identity number.

Table 4-13 NIU slot and equivalent command identity

NIU (MSI) identity numberused in commands

NIU slot

0 A0

1 B0

2 A1

3 B1

The NIU status is indicated by the two front panel LEDs, one green and one red,controlled by the on-board processor, as shown in Table 4-14:

Table 4-14 NIU LED Display

Red LED Green LED Status of NIU board

Off Off NIU not powered up or in reset cycle

Off On Normal operation

Flashing Flashing NIU undergoing system code download

On On NIU self testing following switch on orreboot.Red LED extinguishes after 20 seconds, orafter 50 seconds following a reboot due tocode download.

Page 441: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Network Interface Unit (NIU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–175

View of the Network Interface Unit (NUI) module and LEDs

BSS11_4_72

RESET/DISABLESWITCH

NIU GREENLED

BACKPLANECONNECTOR

NIU REDLED

Page 442: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Network Interface Unit (NIU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–176

Controlprocessor

The control processor interfaces to timeslot 0 of link 0 from each connected MCUF.

The processor uses 512 kbytes of Flash EPROM for boot code. operational code storageand module ID. Code is executed directly from the Flash EPROM. The boot code canbe overwritten under control of the MCUF, if required.

The processor also has an on-chip 1 Mbyte of DRAM.

TTY Ports

The processing section provides two TTY ports for Motorola debugging purposes only.

Resets

The processor is capable of soft resetting itself. The front panel reset causes a hardreset of the entire board. Power-on also resets the processor.

The MCUF is able to reset the NIU via a message on the HDLC link.

NIU/MCUFframing andclocks

The control processor is supplied with a clock from an on-board crystal oscillator, whichhas an output enable pad for test purposes. The framer devices also have their owncrystal oscillators on-board.

The framer devices provide the decoded and jitter attenuated receive data, for passing tothe MCUF.

The framer devices also extract a 2.048 MHz/1.544 MHz clock signal from an E1/T1 link,which is then passed to the MCUF synchronization circuit. At the MCUF, this signal isused to phase lock a local 16.384 MHz clock signal. Once phase locked, three referenceclock signals are provided for NIU use:

� REF 2.048 MHz clock signal.

� REF 6.12 s clock signal.

� REF 125 �s clock signal.

The NIU transmit and receive framing is controlled by this 125 �s reference pulsereceived from the MCUF.

Page 443: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Network Interface Unit (NIU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–177

Page 444: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Network Interface Unit (NIU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–178

Distancemeasurement

The NIU provides the ability to perform network distance delay measurement on either ofthe two network links. Measurement can only be performed on one link at a time.

Three modes of operation are possible:

� Mode 1. A pattern is transmitted in a selected network timeslot and thecorresponding receive timeslot is monitored for its return. The delay is measuredto an accuracy of ± 488 ns. The pattern is transmitted on the 6.12 secondreference signal.

� Mode 2. The receive link is monitored for the pattern. When received the patternis transmitted back in the next frame. The time between receipt and transmissionof the pattern is measured to an accuracy of ± 488 ns.

� Mode 3. The receive link is monitored for the pattern. When it is detected astrobe is generated for the MCUF sync block.

Radio SignallingLinks (RSL)

The Radio Signalling Links (RSL) to the BSC from the main processor on the MCUF are64 kbit/s LAPD links. The LAPD encoding of this RSL data is performed on the NIU bythe NIU control processor.

The RSL links between the MCUF and NIU must be sent as follows:

� RSL link 1 is embedded in the NIU control link; that is, it will be in timeslot 0 of link0 to the NIU. This link is important for initialization.

When the NIU is on a network link to a BSC or another BTS, the RSL can beplaced on either link on any default timeslot other than zero.

NOTE

� RSL link 2 is on a different timeslot from that used for the network connection

The NIU will support a maximum of two RSL links. The RSL links may both be on asingle network link or shared between the two network links.

The NIU hardware supports switching for 64 k and 16 k LAPD channels.

T1 NIU need toset link type

T1 NIUs and E1 NIUs cannot be interchanged. A T1 link line consists of 24 timeslots asopposed to 32 timeslots for an E1 link line. A T1 link generates specific T1 alarms,referred to as Red alarms . A T1 NIU supports the same MSI type of device transitionsas an E1 NIU.

The OMC operator should set the link type or it will default the site to an E1 system. InROM it is set by a ROM-only MMI command. In RAM it is a database parameter set bya chg_element command.

The RSL default timeslots are the same for a T1 NIU and an E1 NIU. The basicmechanism for communicating and configuring is also the same.

Page 445: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Network Interface Unit (NIU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–179

Page 446: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Type 43 interconnect board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–180

Type 43 interconnect board

Location

Plugs into the interconnect panel through via a 37-pin D-type connector.

Purpose

The T43 interconnect board matches the impedance between the pulse code modulation(PCM) circuit lines and the BSU/RXU backplanes. The board interfaces up to six inputand six output unbalanced coaxial 75 ohm 2.048 Mbit/s lines to the external PCM circuitlines through twelve type 43 coaxial connectors.

The T43 uses 12 transformers to provide impedance matching between the PCM circuitlines and the multiple serial interface (MSI) modules. Each transformer has a 1:1.25 turnsratio to match the external 75 ohm and backplane 120 ohm connections. Each input andoutput is isolated from the backplane by up to 1500 V.

Use the T43 for unbalanced lines.NOTE

Purpose

The Balanced-line Interconnect Board (BIB) matches the impedance between the PulseCode Modulation (PCM) circuit lines and the BSU backplanes. The board providesinterfaces for six input and six output balanced 120 ohm E1/T1 lines.

The board uses 12 transformers to match the impedance between the PCM circuit linesand the Multiple Serial Interface (MSI) modules. Each transformer has a 1:1 turns ratio tomatch the external and backplane 120 ohm connections.

Use the BIB for balanced lines.NOTE

Overview ofT43/BIB-NIUconnection

The NIU network interface (E1/T1) links connect to a single CIM (T43) or BIM (BIB)board on top of the cabinet by a single backplane connector and cable.

Page 447: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Type 43 interconnect board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–181

The T43 interconnect board

J0

J1

J2

J5

J4

J7

J8

J10

J13 J11

J14

J16

J17

BSS11_Ch4_73

The Balanced-line Interconnect Board (BIB)

J0

J1

BSS11_Ch4_73a

NIU to T43mapping andcommand ID

One T43 or BIB board is connected to the �BCU. Only six network interfaces are used,three pairs to the Master NIU modules, and three pairs to the Redundant NIU modules.Each NIU is identified in the database by an identity number, from 0 to 3, as shown in thefinal column of Table 4-15.

The Redundant NIU modules are only redundant in the sense of beingsupplied by a different BPSM, and can thus continue to operate if the MasterBPSM fails. All NIUs are available for separate use.

NOTE

Table 4-15 defines the mapping from the T43/BIB connector to NIU boards.

Page 448: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Type 43 interconnect board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–182

Table 4-15 T43/BIB connector to NIU boards

T43 NetworkSide

Connector

V37 way D typeconnections

(BIB)

NIU Location NIU identity(MSI)

used in commands

J1 1,20 NIU A0 - Tx1 MSI(NIU) 0

J2 2,21 NIU A0 - Rx1

J7 7,26 NIU A0 - Tx2 MSI(NIU) 0

J8 8,27 NIU A0 - Rx2

J13 13,32 NIU A1 - Tx1 MSI(NIU) 2

J14 14,33 NIU A1 - Rx1

J4 4,23 NIU B0 - Tx1 MSI(NIU) 1

J5 5,24 NIU B0 - Rx1

J10 10,29 NIU B0 - Tx2 MSI(NIU) 1

J11 11,30 NIU B0 - Rx2

J16 16,35 NIU B1 - Tx1 MSI(NIU) 3

J17 17,36 NIU B1 - Rx1

Page 449: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Type 43 interconnect board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–183

Block diagram of T43/BIB connection to NIUs

NIU A0

12

78

1314

J0

T43/BIB

J

45

10

1617

11

NIU A1

NIU B0

NIU B1

J

BSS11_Ch4_74

Page 450: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Fibre Optic Mulitplexer (FMUX) module and FMUX function

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–184

Fibre Optic Mulitplexer (FMUX) module and FMUX function

Overview ofFMUX moduleand internalMCUF FMUX

The Fibre Optic Multiplexer (FMUX) module is required to multiplex six full duplextransceiver links onto a single fibre link, and demultiplex a single fibre link to six fullduplex transceiver links. This enables six transceivers in a single extension cabinet(either Horizonmacro or M-Cell6) to be linked to the main cabinet MCUF.

The equivalent function of two FMUX modules exists internally in the MCUF, enablingtwo extension cabinets to be connected. An FMUX module is required for a thirdextension cabinet. This enables a total of four cabinets to be joined together as one BTSsite. A single cabinet has no need for an FMUX, because the MCUF connects with thecabinet CTUs through the backplane.

The FMUX has two modes of operation:

� Working in conjunction with the MCUF to multiplex transceiver links to/from anextension cabinet.

� Operating in the extension cabinet to supply the transceivers in that cabinet.

Two FMUX modules may be fitted in the �BCU cage, one to the master MCUF, and oneto the slave MCUF. An extension cabinet only requires one FMUX to connect to sixtransceivers within the cabinet, plus one redundant module.

Each FMUX fibre optic link is full duplex 16.384 Mbit/s. The FMUX optical link is capableof driving up to 1 km.

Page 451: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Fibre Optic Mulitplexer (FMUX) module and FMUX function

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–185

View of the Fibre Optic Multiplexer (FMUX) module

BSS11_4_75

Fibre optic inputfrom another FMUXin another cabinet

at the siteBackplaneconnector

Fibre optic outputto another FMUXin another cabinet

at the site

Page 452: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Fibre Optic Mulitplexer (FMUX) module and FMUX function

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–186

FMUX Functionalexplanation

The MCUF transmits and receives a 2.048 Mbit/s data stream link to each operationaltransceiver. This is achieved by the backplane in the same cabinet, without using anFMUX.

If the transceiver is in an extension cabinet, the FMUX combines the data stream with upto five others, and then converts the electronic signal to fibre optic, for onwardtransmission to the extension cabinet.

At the extension cabinet, another FMUX converts the fibre optic signal back to electronicform, for transmission to the transceivers.

The multiplexer/demultiplexer can support up to six transceiver links. It uses a16.384 Mbit/s Manchester encoded serial data link organized as 256 x eight bit timeslotsin a 125��s frame. Manchester coding is used to detect errors, indicated at timeslot zerofor each transceiver, enabling error correction at the other FMUX.

Page 453: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Fibre Optic Mulitplexer (FMUX) module and FMUX function

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–187

Functional block diagram for the FMUX

FIBRE OPTICRECEIVER

FIBRE OPTICTRANSMITTER

BACKPLANE CONNECTOR

RxDATA

TxDATA

SELECTCONTROL

(FROM MCUF)

6MUX /

DEMUX2:1

SELECTTO MCUF (IF

MAINCABINET)

MANCHESTERENCODED

Tx/Rx

6

TO FMUX INANOTHERCABINET

TO FMUX INANOTHERCABINET

TO CTUs ORTCUs (IF

EXTENSIONCABINET)

BSS11_Ch4_76

Page 454: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarm module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–188

Alarm module

Alarm moduleoverview

The alarm module provides equipment with an external alarm system to reportoperational status. The alarm module:

� Collects all cabinet alarms (received from the backplane).

� Provides current sensing for 16 customer inputs, referred to as site alarms. Theseinputs are provided by the PIX connectors PIX0 and PIX1.

� Controls up to four relay driven outputs linked to customer equipment.(Changeover contacts 30 V 1 A maximum). These outputs are provided by thePIX0 connector.

� Transmits alarm information to all CTUs in the same cabinet.

� Provides power, signal conditioning and multiplexing for GPS signals (8 V to 36 Vdc).

The alarm module is located in the �BCU adjacent to the MCUFs. The alarm module isdesigned to ensure correct location.

Alarm modulefunctionality

The alarm module receives inputs from:

� Cabinet PSMs (identifying type, manufacturer and slot number).

� Environmental control devices.

� Customer defined alarms.

The alarm board receives these inputs, encodes them, and then passes the code word toall CTUs in the cabinet via the backplane.

Alarm modulereplacement –effect on alarms

The alarm module can be replaced while the cabinet system is running (hotreplacement). This will temporarily interrupt alarms, with the OMC receiving an additionalalarm module out of service alarm, which automatically clears upon correctinsertion of the replacement module.

Alarm collectionfrom extensioncabinets

Extension cabinet alarms are sent from the extension cabinet alarm module to theextension cabinet CTUs. The CTUs transmit the alarms to the main cabinet, by usingthe normal FMUX connection, for transmission to the MCUF.

Page 455: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarm module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–189

View of the alarm module

BSS11_4_77

BACKPLANECONNECTOR

5 LED PAIRS

Page 456: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarm module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–190

Alarm moduledisplaypresentation

All alarms indicators are green when equipment is functioning correctly, and red whenequipment is faulty. The locations are shown in Table 4-16.

Only five of the ten front panel LEDs are utilised in the Horizonmacro indoorequipment. Others are utilised in the Horizonmacro outdoor.LEDs marked red in Table 4-16 are on in alarm state, and off in normaloperation.LEDs marked bicolour in Table 4-16 (fans) are green when all fans areoperating correctly, and red if one or more fans are faulty.

NOTE

Table 4-16 Alarm module list

LEDlocation

LightColourstates

Equipment monitored by light(Green = OK, Red = FAULT)

1 (top) red Not used in Horizonmacro indoor

2 red Not used in Horizonmacro indoor

3 red Door 1 – main cabinet door open alarm.

4 red Not used in Horizonmacro indoor

5 red Low voltage disconnect (LVD) alarm (batterybackup option).

6 bicolour Fan Tray 0 fully operational (4-fan tray).

7 bicolour Fan Tray 1 fully operational (2-fan tray).

8 bicolour Fan Tray 2 fully operational (2-fan tray).

9 red Not used in Horizonmacro indoor

10 (bottom) red Not used in Horizonmacro indoor

Page 457: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarm module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–191

Page 458: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro RF Modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–192

Horizon macro RF Modules

RF overview

The RF equipment provides a transmit and receive path between the mobile station andthe cabinet transceiver.

RF modules described

The following equipment is described:

� Compact Transceiver Unit (CTU).

� Sectorized Universal Receiver Front-end (SURF) module (for receive path).

� Several types of transmit block (Tx block) . Tx blocks are used for variousconfigurations of transmit path, depending on number of antennas, CTUs andfunctionality, including potential shared receive path.

� Cavity combining block CCB, used to combine three CTU transmit paths inconditions where Synthesizer Frequency Hopping (SFH) is not required. TwoCCBs can combine up to six CTU transmit paths on to a single Tx antenna.

RF general information and loopback test function

The following additional information is presented in this chapter:

� General definition of transmit and receive functions in this RF equipment detailsection.

� An RF overview and RF test function description in the next section.

� An explanation of frequency hopping in a section immediately after the CTUsection.

These descriptions are intended to assist the reader in understanding the information onthe RF modules.

Page 459: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro RF Modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–193

Page 460: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro RF Modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–194

Receive RFhardware

Receiver RF hardware consists of the SURF module and optional Tx block receive path,and the receive section of the CTU.

The SURF module provides bandpass filtering and low-noise amplification for up to threesectors, with diversity receive antenna signals, together with switching to CTUs.

CTU Rx role

The CTU provides the following receive functions:

� Receiver tuning (on a timeslot basis) to any receive channel frequency.

� Demodulation and equalization of the receive channel signal.

� Measurement of the received signal strength indication (RSSI) and signal quality.

� Recovery of received data from the demodulated radio channel.

� Channel decoding of the received data and processing of the recovered signal.Traffic data is passed on to the MCUF for routing to the MSC.

� Digital interface to the SURF module, which controls selection by the SURF switchof the receive signals from the appropriate antenna.

� Comparison and processing of an additional receive path from a second antennainput to support diversity.

Transmit (Tx) RFhardware

Transmit RF hardware consists of Tx blocks in appropriate combinations to meetrequirements of antenna sharing for the transceivers.

CTU Tx role

The CTU provides the following transmit functions:

� Transmit tuning (on a timeslot basis) for generation of any transmit channel RFfrequency.

� Encoding transmit data output.

� Digital modulation of transmit data onto the transmit radio channel signal.

� Final RF power amplification and output power level control of the transmit radiochannel RF signal.

� When using a CCB, the output of control data to the CCB.

� Channel encoding of the data to be transmitted, interleaving signal and trafficchannel data, as defined by ETSI.

Rx/Tx singleantennaduplexing

Duplexers allow a single antenna to be used for both transmit and receive operations.Duplexers exist within several of the transmit blocks.

Page 461: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro RF Modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–195

Page 462: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro RF Modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–196

RF maincomponentexplanation

The RF equipment consists of three main blocks:

� The CTU.

� The SURF module.

� The Tx block or alternatively CCBs.

CTU

The CTU can receive two inputs, Rx1 and Rx2, from the SURF. These inputs areconverted into digital voice/data. The two Rx signals provide diversity of the Rx functionfrom the MS (uplink).

The CTU also generates a Tx data signal, translated from received digital voice/data,which is transmitted by cable to the Tx block for antenna transmission to the MS(downlink).

The third (middle) port provides an RF loopback test signal capability, for automatictransmission of RF test signals to the SURF.

SURF module

The SURF module accepts up to three pairs of receive antenna inputs, and switches theinputs to the appropriate CTUs under the control of the MCUF. There are two inputs toeach CTU for Rx diversity.

The SURF also contains loopback test circuitry, connecting with a test signal from eachCTU.

Tx block

There are up to three Tx blocks, each block serving two CTUs.

Tx blocks filter the transmit signal for the required Tx band. Tx blocks also use filters toenable the Rx frequency signal to be passed to the SURF, if one antenna is used for bothTx and Rx signals.

CCBs

Cavity combining blocks (CCBs) are an alternative to Tx blocks. CCBs combine up tothree CTU transmit paths. Two CCBs can combine up to six CTU transmit paths. CCBshave no duplexing capability and must be connected to an antenna via an external highpower duplexer (HPD). CCBs cannot be used with SFH (see Frequency Hopping ).

Page 463: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro RF Modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–197

Functional block diagram showing the basic RF andloopback/VSWR test functions

Tx BLOCK (ONE OFUP TO THREE)

ONE CTU Tx INPUTSHOWN

Tx ANTENNA(ALSO Rx IF Rx FILTERCONNECTED TO SURF)

SURF(ONE OF THREE

RECEIVESECTIONSSHOWN)

Rx1 Rx2

Tx

SWITCH (CONTROLLED BY MCUF)

Tx FILTER

Rx FILTER

Rx ANTENNABRANCH 1

Rx ANTENNABRANCH 2

RFLOOPBACK

SPLITTER

COMBINEROF SIX CTU

LOOPBACKS

FINAL STAGE PAOF CTU Tx

SPLITTER

Rx ANTENNA FORBRANCH 1 OR BRANCH 2

(BRANCH 2 SHOWN)

CTU(ONE OF SIX)

RxDOWNCONVERTER

For clarity only one CTU, one TX block and one section of the SURF module areshown. CCBs could be used instead of TX blocks, however these would only beavailable for use with Horizon macro indoor cabinets fitted with a stacking bracket.

BSS11_Ch4_78

Page 464: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmacro RF Modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–198

RF loopbackpurpose

The loopback test function is primarily used to identify faults when the RF system hasfailed. The loopback test function enables a diagnostic capability at the OMC, bycreating a test signal to identify if the fault is either:

� Software (that the OMC can correct).

� Particular hardware (CTU or SURF).

The result is a reduction in site assessment visits, and avoidance of unnecessary visitswhen hardware is functioning correctly.The RF loopback test feature available on theHorizonmacro, is not available on previous generations of equipment. The RF loopbackhardware described requires software availability beyond initial GSR4.

RF loopbackhardware

The RF loopback test function is essentially a hardware capability built into the CTU andthe SURF. Software instructions activate the test hardware, to route test signals throughthe RF system.

RF loopbacksoftwareoperation

When provided with suitable software, beyond initial GSR4, the OMC can operate theloopback test functions, and receive the results of the tests.

Description of RFtest modes

The following description should be read in conjunction with the RF functional diagram.The RF test capability described requires software availability beyond initial GSR4

The loopback test hardware picks up an attenuated signal by coupled link from thenormal CTU transmit signal.

The signal is mixed down to the receive band for testing the Rx functionality of the SURFand CTU. Power to the loopback circuitry is automatically turned off when the radio is innormal operation.

SURF test mode

The loopback signal is injected into the antenna receive path of the SURF by coupledlink. This tests the complete SURF and CTU Rx system path.

Test of CTU Rx circuitry

The loopback signal is injected directly internally into the Rx input of the CTU. This teststhe receive portion of the CTU.

VSWR test mode

The test signal, at Rx frequency, is injected into the antenna port through coupled link onthe SURF. Reflected power is monitored by the receive system to calculate VSWR.Detection of a high VSWR may indicate the presence of a cable or antenna fault.

Page 465: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmacro RF Modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–199

Page 466: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–200

The Compact Transceiver Unit (CTU)

Overview of CTU

This section provides the technical description of the Compact Transceiver Unit (CTU).

The CTU can only be used in the Horizonmacro.

NOTE

The CTU:

� Generates the RF frequencies required to perform the transmit and receivefunctions.

� Contains the digital circuits required for eight timeslots of channel equalization,encoding and decoding, and transceiver control logic.

The CTU provides the air interface between a BSS and MSs, with the following features:

� Capability of diversity reception (input from two antennas) which improves thequality reception in the presence of multipath fading and interference.

� Frequency change on a timeslot basis for frequency hopping and equipmentsharing.

� Transmit power control.

CTU Tx RF output specification

For Tx RF output, see Technical Description: GSM-205-323 Overview andspecifications .

Location and requirements

The CTU shelf assembly is adjacent to the �BCU cage assembly in the base of thecabinet.

The cabinet can contain six CTUs. A minimum of one CTU must be fitted in eachcabinet.

CTU internalboards

The CTU is a single Field Replaceable Unit (FRU), which contains:

� CTU transceiver (XCVR) board.

� Power Amplifier (PA) board.

� Power Supply Unit (PSU).

Page 467: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–201

Functional block diagram showing the CTU input/output

RF TxOUTPUT

POWERAMPLIFIER

BOARD

Rx

Rx SYNTH SEL

LOCK ALARMS

Tx SYNTH SEL

13 MHz REF INSYNTHESIZER

2.048 Mbit/s DATA INPUTAND 2.048 MHz CLOCK INPUT

2.048 Mbit/s DATA OUTPUTAND 2.048 MHz CLOCK OUTPUT

Tx CLK

Tx SYNC

Tx DATA (MODULATOR)

Tx KEY

PWR CONTROL DATA

I2 DATA

Q2 DATA

AGC DATA

CHANNEL 1 RECEIVE RF IN

I1 DATA

Q1 DATA

Tx

(FROM SURF)

POWER SUPPLY UNITFOR ALL BOARDS IN

CTU

DIGITALCONTROL AND

SIGNALPROCESSING

XCVR BOARD

SYNTH DATA

CHANNEL 2 RECEIVE RF IN

27 V

PSU ALARMS

CCB DATA

Tx ALARMS

Rx ALARMS

LOOPBACK RECEIVERF OUT (TO SURF)

RFLOOPBACK

RSSI

(MANCHESTER ENCODED DATA FROM MCUF)

(MANCHESTER ENCODED DATA TO MCUF)

TEMPERATUREAND PA

DETECTOR(ANALOGUE

SIGNAL)

Tx PA DETECTOR AND TEMPERATUREREADING (DIGITAL SIGNAL)

Tx RAMP CONTROL

BSS11_Ch4_79

Page 468: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–202

CTU connectorsand reset

The TTY RS-232 serial port has three serial links onto the 9-way connector:

� Radio Subsystem (RSS).

� Equalizer and Control Processor (EQCP).

� Channel Coder Control Processor (CCCP).

A test interface port on the CTU front panel provides access to critical test points forfactory alignment and maintenance.

Momentary operation of the reset push button generates a hard reset of the processor,which initiates a normal power-up sequence. The CTU is then operational.

Table 5.2 shows the connector functions.

Table 4-17 CTU front panel connectors

Front panel legend Function Connection to

Tx OUT Transmitter RF output Tx Block

TTY INTERFACE Test access to processor Three RS-232s

TEST INTERFACE Factory use Test equipment

Alarm reporting

The CTU status is displayed, as LED indicators, on the front panel as detailed inTable 4-18. Major sub-systems, such as synthesizers and RF amplifiers, are monitored,with alarm signals as necessary.

Table 4-18 CTU front panel status indicators

Indicator LED When the LED is Then CTU

RADIOSTATUS

OFF Module offSTATUS Flashing green Code required or being loaded

Solid green Normal operational mode

Flashing yellow Test mode

Solid yellow Radio inhibited

Solid red Alarm condition

Transmit (Tx)STATUS

OFF Transmitter is offSTATUS Solid yellow Transmitter is keyed on

RADIOSTATUS AND

TRANSMIT(Tx) STATUS

Both LEDs fastflashing

Non-volatile memory bootcodeupgrade

(Do not remove power nor reset)

(see CAUTION)

Page 469: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–203

View of CTU with main features identified

Tx OUTCONNECTOR

Tx STATUS LED

HANDLE

M4 MODULE ATTACHMENTSCREW

M4 MODULE ATTACHMENTSCREW

TTY INTERFACECONTROL

PROCESSOR

TEST INTERFACE

RADIO STATUS LED

MANUAL RESET(RECESSED BUTTON)

Rx1

Rx2

LOOPBACKTEST PORT

BACKPLANE POWER ANDSIGNAL CONNECTOR

BSS11_Ch4_80

Page 470: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–204

CTU Tx function

IQ modulator

The first diagram opposite is a functional diagram of the IQ modulator. IQ modulatordata for eight timeslot channels is applied to the modulator state machine. This data isencoded, serial-to-parallel converted and split into quadrature components. Thequadrature components are D/A converted and applied to a quadrature modulator tocreate a Gaussian Minimum Shift Keyed (GMSK) carrier at an Intermediate Frequency(IF).

IF and exciter stages

The second diagram shows a functional diagram of the IF and exciter stages. The lowlevel modulated carrier is applied to a combination of analogue and digital attenuators forRF power control. The power control data comes from the digital sections of the XCVR.The output of the power control elements is further amplified by an exciter chain to drivethe power amplifier.

The GMSK modulated IF is filtered and applied to the input of a controlled gain amplifierfor transmitter pulse sloping (ramped). The ramped signal is filtered and then mixed withthe main transmitter injection and is upconverted to the final transmit channel frequency.

Power amplifier board

The third diagram opposite shows a functional diagram of the Power Amplifier (PA). ThePA board provides amplification and a forward power detector. The isolator protects thePA board amplifiers. The detected output is used to adjust the final CTU RF poweroutput level by the digital sections of the XCVR.

The PA board consists of six functional blocks:

� RF power amplifier.

� RF forward power directional coupler.

� RF forward power detector.

� Temperature sensor.

� CCB control.

� RF loopback circuit.

The isolator performs two functions:

� Isolates multiple transmitters to reduce intermodulation distortion.

� Protects the RF power amplifier from possible damage resulting from loadmismatches.

Page 471: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–205

CTU Tx function

IQMODULATOR

DATA

MODULATORSTATE

MACHINE

AMPLIFIERDAC

DAC

BSS11_Ch4_81

IQ modulator functional diagram

DISTRIBUTED GAIN ANDPOWER CONTROL

EXCITERMIXER

FILTER RAMPING FILTER

BSS11_Ch4_82

IF and exciter functional diagram

LOAD

RF OUTPUT

ISOLATOR

RF POWERAMPLIFIERS

TEMPERATURESENSOR CCB

DATAINJECT

LOOPBACKRF FORWARDPOWER

DETECTOR

DIRECTIONALCOUPLER

RF LOOPBACKDIRECTIONAL

COUPLER

PA BOARDBSS11_Ch4_82a

Power amplifier board functional diagram

Page 472: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–206

CTU Rx function

The receiver part of the CTU accepts two amplified and filtered receive antenna signalsfrom the SURF module. These two signals are applied to inputs (branch 1 and branch 2)of the CTU transceiver board. The diagram opposite shows a CTU receiver functionaldiagram for one branch.

The input from the SURF module is filtered, amplified and down converted to ensure thesignal level and frequency range are correct for the next stage.

RSSI data (applicable only to GPRS and RACH bursts) is used for automatic gain control(AGC) to ensure signal strength is correct for the intermediate frequency (IF) stage.

The primary function of the IF is to filter and amplify the incoming signal.

The path is demodulated into quadrature signals and filtered by baseband analoguefilters. These signals are then digitized (I1/I2 data and Q1/Q2 data) and made availableto the equalizer for the purposes of receive synchronization and data recovery.

Page 473: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–207

CTU receiver functional diagram for one branch

AGC DATA

ADC I DATA

Q DATA

Rx INPUT

ADC

RSSI

IF

BSS11_Ch4_83

Page 474: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–208

CTU digitalprocessing andcontrol functions

The CTU digital processing and control function provides control and RF processing forthat CTU. These functions include:

� 2.048 Mbit/s links which interface with up to two MCUFs for redundancy.

� A software processing platform for the Radio SubSystem (RSS)

� A Digital Signal Processor (DSP) for radio control and channel equalization(EQCP).

� A DSP for channel coding, data routeing, and baseband hopping (CCCP).

� Control of RF systems: diversity receiver, transmitter, and power amplifier.

� Alarm monitoring of internal devices and external cabinet elements.

� Control of external modules including CCBs, and SURF.

� Maintenance ports for processor TTY, test point sub system, and CTU testconnections.

2 Mbit/s TDM Links

The CTU interfaces to the redundant MCUF are by 2.048 Mbit/s links on the backplane(or FMUX modules in extension cabinets). These links are Manchester encoded, thusproviding both clock and data in a single connection. The recovered clock provides afrequency reference for the CTU. The Rx and Tx circuitry supports FMUX fibre opticlengths of up to 1 km.

The TDM links are formatted into 32 x 64 kbit/s timeslots to provide:

� Downlink and uplink TRAU speech data.

� Downlink baseband hopping data to be routed to/from other CTUs.

� Cell site air interface synchronization.

� HDLC channel for control information between RSS and MCUF.

� Baseband routeing information to indicate source of downlink baseband hoppingdata.

RSS processor

The RSS processor function communicates with:

� The MCUF via dedicated 64 kbit/s timeslots in the TDM link.

� The rest of the digital control functions by the peripheral communications interface(PCI) bus.

� A dual port interface for communication with the CCCP.

A TTY interface is also provided for user support.

The RSS processor memory includes flash EPROM and 8 Mbytes of DRAM. FlashEPROM is used for code storage.

Page 475: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–209

CTU digital functional diagram

TDMINTERFACE CCCP DSP

RSSPROCESSING EQCP DSP

CTU INTERFACEFUNCTION

Rx INTERFACETx INTERFACESYNTHESIZER INTERFACEPA INTERFACE

TPSTRAU DATA

REDUNDANT2.048 Mb LINK

TTY TO ALLPROCESSORS

HDLC LINK PCIBACKBONE

BSS11_Ch4_84

Page 476: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–210

EQCP processor

The EQCP processor handles all radio control functions and the channel equalizerfunction. The EQCP controls the Rx and Tx function via the CTU control function on aper timeslot basis. These EQCP functions include:

� Alarm management.

� Downlink burst building and modulator control.

� Transmitter power control.

� Synthesizer channel control.

� RF frequency hopping.

� Receiver front end and remote tune combiner control.

� Uplink synchronization and equalization.

� Diversity receiver control.

� Receiver Automatic Gain Control (AGC).

� Receive signal strength (RXLEV) calculation.

� Timing advance calculation.

� Support of front panel indicators.

The EQCP communicates with the rest of the digital control functions via the commonPCI bus interface. A TTY interface is provided for radio level calibration, systemmonitoring, and CTU level test.

CCCP processor

The CCCP processor handles all the GSM specified layer 1 channel encoding anddecoding functions for speech and control data associated with the air interface. Inaddition, it manages the routeing of TRAU frames and Baseband Hopping (BBH) data,via the TDM interface, to and from the MCUF. The CCCP functions include:

� Uplink channel decoding.

� Downlink channel encoding.

� GSM specified encryption algorithms.

� Baseband frequency hopping.

� TRAU frame collection and synchronization.

� Alarms management.

The CCCP communicates with the rest of the digital control functions via the commonPCI bus interface. A dual port RAM (DPR) is also used in the downlink direction forcommunications from RSS. In addition to the TDM function, a serial link is provided tosupport uplink and downlink TRAU data.

Page 477: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–211

Page 478: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–212

CTU interface function

The CTU interface function provides the air interface timing and radio control circuitryrequired for Rx (uplink) and Tx (downlink) control functions. A common PCI bus allowsall the processing elements including the RSS processor, EQCP, and CCCP tocommunicate with the various CTU functions. The CTU interface includes:

� Master GSM air interface timing function.

� Independent Rx gain control interface for each diversity receiver branch.

� Baseband Rx data interface for each diversity receiver branch.

� Receiver front end and CCB control.

� Tx data interface including GMSK modulator which provides baseband data to thetransmitter.

� Tx and power amplifier power control interface.

� Rx and Tx frequency synthesizer control which supports RF frequency hopping.

� CTU and cabinet alarm data collection.

� Alarms sampling and multiplexing.

CTUuplink/downlink

Downlink traffic data flow

Downlink TRAU data from the MCUF is received by the TDM function then routed to theCCCP function where it is encoded (cyclic, block, and convolutional), interleaved, andencrypted to GSM recommendations. Signalling messages are also received from theRSS processor and encoded. These traffic and control messages are built into airinterface frames and then routed back to the MCUF via the TDM function for basebandhopping. The CCCP calculates a BBH routeing word, which informs the MCUF of theradio link to be the source of its post hopped data. The post hopped data is then onceagain sent back down to the appropriate CTU where it is received by the TDM functionand passed to the EQCP function. The EQCP inserts midamble and guard bits to thedata bits and forwards the data on to the modulator for transmission. The EQCP alsoprograms the CTU for the correct RF channel and transmit power level for thistransmitted burst.

Uplink traffic data flow

Baseband uplink traffic and control data messages are received by the CTU interfacefunction and sent to the EQCP where they are equalized. The EQCP also calculatestiming advance and RXLEV information, which is forwarded to the RSS process. Therecovered data bits are forwarded into the CCCP process, where it is de-interleaved,decoded, and decrypted into TRAU frames. Control messages are passed to the RSSfunction, while TRAU frames are sent to the MCUF via the TDM interface.

Page 479: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Compact Transceiver Unit (CTU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–213

Page 480: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Frequency hopping

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–214

Frequency hopping

Overview offrequencyhopping

The CTU supports two types of frequency hopping, Synthesizer Frequency Hopping(SFH) and Baseband Frequency Hopping (BBH). This section provides an explanation ofboth types. In both cases, the MS switches channels after every transmit/receive(Tx/Rx) burst pair. The difference between SFH and BBH is in the method by whichchannel switching is achieved at the BTS.

SynthesizerFrequencyHopping (SFH)

SFH uses the frequency agility of the CTU to change Tx/Rx frequency on any Timeslot(TS), without affecting other timeslots.

SFH can only be used with wideband combining.

With SFH, each TS is allocated a number of frequencies (max 64) over which to performthe hopping. When determining the hardware requirement for CTUs using SFH thefollowing rules apply:

� A minimum of two CTUs are required per cell due to BCCH requirements.Timeslot 0 of CTU 0 is used for the BCCH carrier as shown. CTU 0 cannot useSFH. Only CTU 1 and additional CTUs can use SFH.

� Hopping through the BCCH carrier (using the BCCH carrier frequency as one ofthe SFH frequencies) is permitted except for timeslot 0. However, thecorresponding timeslot for the BCCH CTU will be switched off for this period.

Page 481: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Frequency hopping

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–215

Minimum SFH requirement

01234567

1234567

CTU 0 (BCCH) CTU 1(USED FOR SFH)

0 (BCCH)

BSS11_Ch4_85

Page 482: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Frequency hopping

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–216

SFH example notthrough BCCH

CTU 0

In this example of SFH, CTU 0 provides the BCCH and cannot frequency hop. CTU 0has to transmit at maximum cell site power to meet the BCCH requirement. Timeslotsare used as shown below:

� TS 0 = Combined BCCH TS (BCCH/CCCH/DCCH). Transmitted at maximum cellsite power.

� TS 1-7 = Traffic channels, all non-hopping. All traffic channels transmit atmaximum cell site power.

CTU 1 and additional CTUs

CTU 1 and any additional CTUs provide SFH traffic channels as shown below:

� TS 0-7 = Frequency hopping traffic channels. The frequency allocated to theBCCH of CTU 0 cannot be used for frequency hopping purposes.

SFH examplehopping throughBCCH carrier

CTU 0

In this example of SFH, CTU 0 provides the BCCH and cannot frequency hop. CTU 0has to transmit at maximum cell site power to meet the BCCH requirement. Timeslotsare used as shown below:

� TS 0 = Combined BCCH timeslot (BCCH/CCCH/DCCH). Transmitted at maximumcell site power.

� TS 1-7 = Unused timeslots transmitting dummy bursts for BCCH. All channelstransmit at maximum cell site power.

CTU 1 and additional CTUs

CTU 1 and any additional CTUs provide SFH traffic channels as shown below:

� TS 0 = Frequency hopping traffic channel, but prevented from using BCCHfrequency.

� TS 1-7 =Frequency hopping traffic channels, using all available frequencies,including BCCH.

When the SFH selects the BCCH frequency, the CTU transmits at maximum cell sitepower and the corresponding TS on CTU 0 is switched off for this period.

Page 483: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Frequency hopping

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–217

Page 484: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Frequency hopping

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–218

Base Bandfrequencyhopping

Base Band Hopping (BBH) requires all eight timeslots of the CTU Tx (downlink) at thesame frequency. In the Rx (uplink) direction, the frequency agility of the CTU is used tochange timeslot frequencies on a timeslot basis. The BCCH frequency is alwaystransmitted at maximum cell site power.

BBH can use either Tx blocks or CCB Tx combining equipment. The main reason forusing BBH instead of SFH is to enable frequency hopping when using CCBs, becausethe mechanical tuning of CCBs is too slow for SFH.

The number of CTUs required to support BBH is as follows:

� Number of frequencies used = number of CTUs

In the figure opposite MSs A, B and C are using TS 5 of CTUs 0, 1 and 2 respectively.

If the MSs are using cyclic hopping across ARFCNs 10, 20, 30 (an example using EGSM900), each MS must transmit a burst of information each TDMA frame (4.615 ms) on adifferent frequency. The data for the burst is received by each CTU in turn (ARFCN 10,20, 30), as shown in Table 4-19:

Table 4-19 BBH sequence example (EGSM 900)

Burst SequenceSteps

CTU 0

Tx Rx

CTU 1

Tx Rx

CTU 2

Tx Rx

1 A10 A10 B20 B20 C30 C30

2 C10 A20 A20 B30 B30 C10

3 B10 A30 C20 B10 A30 C20

4 (same as 1) A10 A10 B20 B20 C30 C30

5 (same as 2) C10 A20 A20 B30 B30 C10

6 (same as 3) B10 A30 C20 B10 A30 C20

In the uplink direction the controlling CTU tunes TS 5 in accordance with the frequencyexpected from the MS for that particular burst.

Page 485: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Frequency hopping

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–219

BBH example

01234567

01234567

CTU 0 (BCCH)ARFCH=10

01234567

A B C

CTU 1ARFCH=20

CTU 2ARFCH=30

CTU 0AT MAXPOWER

BSS11_Ch4_86

Page 486: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Frequency hopping

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–220

Transmit

The transmit is described by the following, as shown in the diagram opposite:

1. Traffic data from the network is passed through the NIU to the MCUF. Within theMCUF an ASIC switches the data to CTU 0 (the dedicated CTU for this particularMS call example).

2. The CTU, having processed the data (channel coding, interleaving, encryption androuteing information) then passes the data back to the ASIC.

3. The ASIC follows the BBH routeing information to direct the data to the next TxCTU in the sequence of Table 4-19.

BBH differs from normal and SFH CTU Tx procedures, in that the data isdirected to CTUs in a cyclic sequence at stage 3. Without BBH, stage 3always routes data to the original CTU.

NOTE

Receive

Data from the MS is received by one CTU allocated to that MS (in this case CTU 0). TheCTU will synthesize hop to the Rx signal. This ensures that the handover and equalizerswithin only one CTU will be connected to a particular MS.

Page 487: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Frequency hopping

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–221

Schematic of Base Band Hopping (BBH) example

BSS11_Ch4_87

NIU

3

CTU2

MCUF

ASIC

CTU1 CTU0

3

3

1

2

Tx CYCLESTHROUGH CTU

SEQUENCE

Page 488: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Sectorized Universal Receiver Front end (SURF) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–222

The Sectorized Universal Receiver Front end (SURF) module

SURF moduleoverview

The Sectorized Universal Receiver Front end (SURF) module is located in a vertical slotat the rear of the cabinet top panel. Three connectors on the underside of the moduleconnect to the SURF harness which provides connectivity to up to six CompactTransceiver Units (CTUs). Antenna connections are located on the top of the unit.

There are two types of SURF module:

� 1800 SURF

� 900 SURF (dual band)

The 1800 SURF contains three amplifier sections for connection to three pairs of receiveantenna inputs providing 1800 MHz reception. The 900 SURF contains three amplifiersections for connection to three pairs of antennas providing 900 MHz reception and,being dual band, a further amplifier section for connection to a pair of 1800 MHz receiveantennas.

Each amplifier section provides two receive outputs which may be directed to any of thesix CTUs, via the switch section. There are three connections to each CTU; Rx1, Rx2and loopback test.

The two receive outputs from amplifier 0 are split and may be used as extensions toother cabinets if required. These act as extended antenna connections from antenna 0.The extension cables go to the receive antenna connection ports on the SURF of theextension cabinet (which is able to respond to each amplified signal as if it were a normalantenna input).

Page 489: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Sectorized Universal Receiver Front end (SURF) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–223

The Sectorized Universal Receiver Front end (SURF)module

GUIDE RAIL FORINSERTION

SIX N-TYPE RECEIVE ANTENNA CONNECTIONS(2 PER DLNB EQUIVALENT)

EXTENSION PORTS TOOTHER CABINETS

3 CONNECTORS ON UNDERSIDETO SURF HARNESS

HANDLE FORMODULEREMOVALM6 MODULE

ATTACHMENTSCREWS

RX18000A

RX18001A

2ARX1800

RX18000B

RX18001B

RX18002B

1800 SURF

GUIDE RAILFOR INSERTION

EIGHT N-TYPE RECEIVE ANTENNA CONNECTIONS(2 PER DLNB EQUIVALENT)

EXTENSION PORTSTO OTHER CABINETS

3 CONNECTORS ONUNDERSIDE TO SURF

HARNESS

HANDLE FORMODULEREMOVAL

M6 MODULEATTACHMENT SCREWS

RX900 1ARX900 2A

RX900 0A

900 SURF

View of the 1800 SURF and 900 SURF modules with features identified

BSS11_Ch4_88

BSS11_Ch4_89

Page 490: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Sectorized Universal Receiver Front end (SURF) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–224

Functionaldescription of1800 SURF

The 1800 SURF amplifies the antenna Rx signal, and attenuates the out-of-band signalfrequencies.

The six amplifier outputs are then routed by the switch to the appropriate CTUs.Secondary amplifier outputs are used for connection to another cabinet, if required.

The RF loopback test function is described in RF overview and RF test function inthis chapter.

Page 491: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Sectorized Universal Receiver Front end (SURF) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–225

Functional block diagram of the 1800 SURF module

BSS11_4_90

ANTENNA CONNECTIONS

SURF

RF LOOPBACKSPLITTER

RF LOOPBACKCOMBINERRx2Rx1 Rx1 Rx1 Rx1 Rx1 Rx1 Rx2Rx2Rx2 Rx2 Rx2

SWITCH

ANT 0ANT 1ANT 2

LOOPBACK

CONTROL

BR 1BR 2BR 1BR 2BR 1BR 2

TO NEXTCABINETANTENNA

CONNECTIONS

FILTER ANDAMPLIFIER 2

1800

FILTER ANDAMPLIFIER 1

1800

FILTER ANDAMPLIFIER 0

1800

DIGITAL SECTION AND POWER SUPPLY

DC POWER

SURF HARNESSRx1/Rx2/LOOPBACK CONNECTIONS TOSIX CTUs VIA SURF HARNESS

Page 492: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Sectorized Universal Receiver Front end (SURF) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–226

Functionaldescription of900 SURF

The 900 SURF provides front end filtering, amplification, and matrix control of the RFreceive signal between the antenna and the CTU. The 900 SURF is capable of dual bandworking, with three antenna pair connections providing 900 MHz reception, and oneantenna pair providing 1800 MHz reception. The dual band (DB) feature enables 900CTUs to be mixed with 1800 CTUs in any combination, up to the maximum total of sixCTUs per cabinet.

The 900 SURF functional sections consist of loopback, filtering, amplification, splitting,digital processing and power selection.

Each section is duplicated for the second diversity path except for the digital and dcpower section which is shared by the two diversity paths. There are four antenna pairinputs (ANT 0, ANT 1, ANT 2 and ANT DB) for each of the two diversity branches(Branch 1 and Branch 2). There are six outputs to the CTU for each of the two diversitybranches as well as one input from the CTU for the loopback (LPBK) signal. There isalso an output for an expansion cabinet for ANT 0 on each branch.

The software database must be configured at the OMC to accept 1800 CTUs and 900CTUs in the appropriate cabinet locations.

Digital codes are transmitted from the 900 CTUs and 1800 CTUs to the digital section.The digital codes are dissimilar in order that 900 or 1800 CTUs can be recognized andappropriate switching can be made to required antenna for transmission and reception.

The digital and power supply section is also responsible for loopback switch control,manual overrides, alarms and dc voltages.

The RF loopback test function is described in RF overview and RF test function inthis chapter.

Page 493: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Sectorized Universal Receiver Front end (SURF) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–227

Functional block diagram of the 900 SURF module

BSS11_4_91

RF LOOPBACKSPLITTER

RF LOOPBACKCOMBINERRx2Rx1 Rx1 Rx1 Rx1 Rx1 Rx1 Rx2Rx2Rx2 Rx2 Rx2

SWITCH

ANT 0ANT 1ANT 2

LOOPBACK

CONTROL

ANT DB

BR 1BR 2BR 1BR 2BR 1BR 2BR 1BR 2

SURF

ANTENNA CONNECTIONS

TO NEXTCABINETANTENNA

CONNECTIONS

FILTER ANDAMPLIFIER 3

1800

FILTER ANDAMPLIFIER 2

900

FILTER ANDAMPLIFIER 1

900

FILTER ANDAMPLIFIER 0

900

DIGITAL SECTION AND POWER SUPPLY

DC POWER

SURF HARNESSRx1/Rx2/LOOPBACK CONNECTIONS TOSIX CTUs VIA SURF HARNESS

Page 494: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Transmit (Tx) blocks overview

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–228

Transmit (Tx) blocks overview

Tx blockoverview

Transmit (Tx) blocks are located in three positions in the basket above the CTUs. Thereare four types of Transmit (Tx) blocks, three of which are available as 900 or 1800variants, and one as a dual band (900/1800) variant.

Unused Tx block locations must be covered with a blanking plate for correct airflow and EMI shielding.

CAUTION

� 900 (or 1800) TDF = Twin duplexed filter.

� Dual band TDF = Dual band twin duplexed filter.

� 900 (or 1800) DCF = Duplexed combining bandpass filter.

� 900 (or 1800) DDF = Dual-stage duplexed combining filter.

These Tx blocks are cooled by airflow underneath; the DDF has fins, the TDF, dual bandTDF and DCF do not have fins.

Three types of plate can be located in the basket, one as blanking plate and two tointerface CTU Tx cables:

� Blanking plate . This ensures proper air flow and EMI shielding for an unusedbasket Tx Block location.

� Feedthrough plate . This converts two SMA connectors to two N-typeconnectors, used for connecting Tx cables to CCBs or DDFs.

� Hybrid Combining Unit (HCU) . This combines two SMA connectors to oneN-type, enabling two additional CTUs to be connected to a DDF.

One type of Tx unit is installed in the stacking bracket, and is connected to three CTUs:

� Cavity Combining Block (CCB)

Two CCBs are required for the six CTUs of a filled cabinet. The CCB has no duplexingcapability and, if a single Rx/Tx antenna is used, connection must be via an external highpower duplexer.

Transmit blockconnectors

The transmit block connectors are of the following types:

� SMA connectors for cables to transceivers.

� 7/16 connectors to antennas.

� N-type duplex receive connectors, also used by HCU, CCB inputs and feedthroughplate.

The SMA connectors are underneath the unit (for ease of connection to the CTUs), andthe other connectors on top.

All unused SMA inputs to DCF, DDF and HCU modules must be fitted with 50ohm load terminations.

NOTE

Page 495: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Transmit (Tx) blocks overview

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–229

View of the top panel and basket which holds the Txblocks

SLOT FOR SURF MODULE

LOCATION HOLEFOR INTERFACE

PANEL

BASKET TO HOLDTHREE Tx BLOCKS

HOLE FOR ONE Tx BLOCKCTU CONNECTIONS

BSS11_Ch4_92

Page 496: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Blanking plate

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–230

Blanking plate

Purpose ofblanking plate

The blanking plate is fitted in locations where a Tx block is not required. The blankingplate ensures correct air flow through the cabinet.

The plate is attached to the base of the top panel basket using six M4 screws.

Purpose offeedthroughplate

The feedthrough plate converts the normal SMA connector from the CTU to an N-typeconnector. Each feedthrough plate has a pair of these converters, one for each of twoCTUs. The top N-type connectors are used to connect with either a CCB, or at the(optional) third Tx port on the top of a DDF Tx block.

The plate is attached to the base of the top panel basket using six M4 screws.

Page 497: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Blanking plate

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–231

View of the a blanking plate

M4 HOLES FORATTACHMENT

BSS11_Ch4_93

Top view of afeedthrough plate

N-TYPECONNECTORS FOR

CCBs OR DDFs

SMA CONNECTORS BENEATHFROM CTUs

M4 HOLES FORATTACHMENT

BSS11_Ch4_94

Page 498: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Hybrid Combining Unit (HCU) plate

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–232

The Hybrid Combining Unit (HCU) plate

HCU overview

The Hybrid Combining Unit (HCU) combines two CTU Tx.

There are six holes for attachment into the bottom of the Tx block basket.

HCU connectors

Each HCU connects to:

� The Tx outputs of two CTUs, using SMA connectors.

� A Tx input of a DDF, using an N-type connector.

All unused SMA inputs to HCU modules must be fitted with 50 ohm loadterminations.

NOTE

Page 499: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Hybrid Combining Unit (HCU) plate

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–233

View of the Hybrid Combining Unit (HCU) plate withconnectors identified

N-TYPE CONNECTOR TO DDF

SMA TRANSMIT CONNECTORSBENEATH HCU MODULE FROM CTUs

M4 HOLES FORATTACHMENT

BSS11_Ch4_95

HCU functional diagram

LOAD

INPUT TO DDF

SMACONNECTORSTx Tx

3 dB TYPICALLOSS ACROSS

COMBINER

SECOND CTUFIRST CTU

N-TYPECONNECTOR

HCU

BSS11_Ch4_95a

Page 500: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Twin Duplexed Filter (TDF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–234

The Twin Duplexed Filter (TDF)

Overview of TDF

The purpose of the Twin Duplexed Filter (TDF) Tx block is to enable each antenna toserve one CTU for both Tx and Rx.

The TDF has two identical sections, each providing a single path from a CTU to aseparate antenna. There is no combining in the TDF.

The TDF is located in the basket above the CTUs, and attached to the top surface of thetop panel using two M6 screws.

TDF connectors

Each TDF connects to:

� The Tx outputs of two CTUs, using SMA connectors. The two connectors areunderneath the TDF.

� Two antennas, each for both Rx and Tx, using 7/16 connectors. These connectorsare on top of the TDF.

� The SURF, using two N-type connectors. These connectors are on top of the TDF.

Page 501: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Twin Duplexed Filter (TDF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–235

View of the Twin Duplexed Filter (TDF) Tx block withconnectors identified

HOLES FOR TOP PANELBASKET ATTACHMENT

7/16 CONNECTORS TOANTENNAS

TWO SMA Tx CONNECTORSBENEATH TDF (FROM CTU)

N-TYPE CONNECTORS TOSURF

BSS11_Ch4_96

TDF functional diagram

Rx BANDPASSFILTER

Rx TO SURF

N-TYPECONNECTOR

Rx FROMANTENNA

Tx BANDPASSFILTER

Rx BANDPASSFILTER

N-TYPECONNECTOR

Rx FROMANTENNA

Tx BANDPASSFILTER

Rx TO SURF

Tx TOANTENNA

Tx TOANTENNA

TDF

FIRST CTU SECOND CTU

Tx TxSMA

CONNECTORS

7/16CONNECTOR

7/16CONNECTOR

1 dB TYPICALLOSS ACROSS

TDF

BSS11_Ch4_97

Page 502: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual band TDF

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–236

Dual band TDF

Overview of Dualband TDF

The purpose of the dual band twin duplexed filter (dual band TDF) Tx block is to enableone 900 MHz antenna to serve one EGSM 900 CTU for both Tx and Rx, and an 1800MHz antenna to serve one DCS 1800 CTU for both Tx and Rx.

The dual band TDF is essentially a TDF with one section providing a path for 900 MHzsignals and another section providing a path for 1800 MHz signals. There is nocombining in the dual band TDF.

The dual band TDF is located in the basket above the CTUs, and attached to the topsurface of the top panel using two M6 screws.

Dual band TDFconnectors

Each dual band TDF connects to:

� The Tx output of one 900 CTU and one 1800 CTU, using SMA connectors. Thetwo connectors are underneath the dual band TDF.

� One 900 MHz antenna and one 1800 MHz antenna. Each antenna is used for bothRx and Tx, and each is connected to the dual band TDF using 7/16 connectors.These connectors are on top of the dual band TDF.

� A SURF module with dual band capability. Two N-type connectors, located on topof the dual band TDF, connect one receive path to the SURF’s 900 MHz input andone receive path to the SURF’s 1800 MHz input.

Page 503: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual band TDF

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–237

Dual band TDF Tx block with connectors identified

7/16 CONNECTOR TO1800 MHz ANTENNA

(ANT. DCS 1800)

SMA Tx CONNECTORBENEATH DUAL BAND TDF

(FROM 1800 CTU)

N-TYPE CONNECTOR TO1800 MHz SURF CONNECTIONN-TYPE CONNECTOR TO

900 MHz SURF CONNECTION

7/16 CONNECTOR TO900 MHz ANTENNA(ANT. EGSM 900)

SMA Tx CONNECTORBENEATH DUAL BAND TDF

(FROM 900 CTU)BSS11_Ch4_98

Dual band TDF functional diagram

Rx BANDPASSFILTER

Rx TO 900SURF

N-TYPECONNECTOR

Rx FROM900

ANTENNA

Tx BANDPASSFILTER

Rx BANDPASSFILTER

N-TYPECONNECTOR

Rx FROM1800

ANTENNA

Tx BANDPASSFILTER

Rx TO 1800SURF

Tx TO 900ANTENNA

Tx TO 1800ANTENNA

DualbandTDF

900 CTU 1800 CTU

Tx TxSMA

CONNECTORS

7/16CONNECTOR

7/16CONNECTOR

1 dB TYPICALLOSS ACROSS

DUAL BANDTDF

BSS11_Ch4_99

Page 504: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Duplexed Combining bandpass Filter (DCF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–238

The Duplexed Combining bandpass Filter (DCF)

DCF connectors

Each DCF connects to:

� The Tx outputs of two CTUs, using SMA connectors. The two connectors areunderneath the DCF.

� A single antenna for both Rx and Tx, using a 7/16 connector. This connector is ontop of the DCF.

� The SURF, using an N-type connector. This connector is on top of the DCF.

All unused SMA inputs to DCF modules must be fitted with 50 ohm loadterminations.

NOTE

DCF overview

The purpose of the Duplexed Combining bandpass Filter (DCF) Tx block is to enableeach antenna to serve two CTUs for both Tx and Rx.

The DCF combines two Tx inputs, dissipating half the power within an internal load.

The signal then passes through a bandpass filter and out to the antenna.

A receive bandpass filter passes only the Rx signal to the SURF module.

The DCF is located in the basket above the CTUs, and attached to the top surface of thetop panel using two M6 screws.

Page 505: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Duplexed Combining bandpass Filter (DCF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–239

View of the Duplexed Combining bandpass Filter (DCF)with connectors identified

HOLE FOR TOP PANELBASKET ATTACHMENT

N-TYPE CONNECTOR TOSURF

7/16 CONNECTOR TOANTENNA

TWO SMA Tx CONNECTORSBENEATH DCF (FROM CTU)

HOLE FOR TOP PANELBASKET ATTACHMENT

BSS11_Ch4_100

DCF functional diagram

Rx BANDPASSFILTER

LOAD

Tx TOANTENNA Rx TO SURF

N-TYPECONNECTOR

SMACONNECTORS

Rx FROMANTENNA

Tx Tx

Tx BANDPASSFILTER

4 dB TYPICALLOSS ACROSS

DCF

SECOND CTUFIRST CTU

DCF

7/16CONNECTOR

BSS11_Ch4_101

Page 506: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Dual-stage Duplexed combining Filter (DDF)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–240

The Dual-stage Duplexed combining Filter (DDF)

Overview of DDF

The Dual-stage Duplexed combining Filter (DDF) differs from the DCF in having asecond stage of combining to allow a third CTU Tx input. This third CTU Tx input isconnected to either:

� A feedthrough plate connector for a single additional CTU or

� An HCU plate connector for combining two additional CTUs.

The DDF is located in the basket above the CTUs, and attached to the top surface of thetop panel using two M6 screws.

DDF connectors

Each DDF connects to:

� The Tx outputs of three or four CTUs, using:

Two SMA connectors underneath the DDF.

An N-type connector on top of the DDF for connection to a feedthrough plate (for athird CTU) or HCU plate (for combined third/fourth CTUs).

� A single antenna for both Rx and Tx, using a 7/16 connector. This connector is ontop of the DDF.

� The SURF, using an N-type connector. This connector is on top of the DDF.

All unused SMA inputs to DDF modules must be fitted with 50 ohm loadterminations.

NOTE

Page 507: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Dual-stage Duplexed combining Filter (DDF)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–241

DDF Tx block wth connectors identified

HOLE FORTOP PANEL

BASKETATTACHMENT

N-TYPECONNECTOR TO

SURF

TWO SMA TxCONNECTORSBENEATH DDF(FROM CTU)

7/16CONNECTORTO ANTENNA

N-TYPECONNECTORFROM CTU BYFEEDTHROUGH PLATE OR

HCU

HOLE FORTOP PANEL

BASKETATTACHMENT

COOLINGFINS

BSS11_Ch4_102

DDF functional diagram

Rx BANDPASSFILTER

FIRST CTU

LOAD

Tx TOANTENNA Rx TO SURF

N-TYPECONNECTOR

SMACONNECTORS

Rx FROMANTENNA

Tx Tx

Tx BANDPASSFILTER

7 dB TYPICALLOSS

ACROSS DDF

THIRD (OR COMBINEDTHIRD/FOURTH) CTU

LOAD

SECOND CTU

N-TYPECONNECTOR

DDF

7/16CONNECTOR

Tx

BSS11_Ch4_103

Page 508: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Cavity Combining Block (CCB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–242

The Cavity Combining Block (CCB)

CCB overview

The Cavity Combining Block (CCB) has EGSM and DCS1800 variants. A CCB consistsof three independently tuneable cavity resonators, one per CTU.

The CCBs are fitted in the CCB basket in the stacking bracket. The basket can containup to two CCBs, one for three CTUs. The two CCBs cannot be in different cabinetsbecause of the short phasing lead connecting the two.

Configurations where five or more carriers per sector are required could utilize CCBs.

The recommended minimum channel spacing between cavities is 800 kHz.

There are two types of CCB:

� Master CCB with Band Pass Filter (BPF) and control board.

� Extension CCB, identical to the master CCB but without the BPF and only having acontrol board if redundancy is required.

Unlike the Tx blocks, the CCB has no duplexing capability. If a single Rx/Tx antenna isused then connection to the CCB must be via an external high power duplexer.

CCB ControlBoard (TCB) andset switch

The CCB control board is also known as the Transmit Antenna Transceiver Interface(TATI) Control Board (TCB).

The CCB control board controls the interface to the CTU. This allows different vendorCCBs to be installed without requiring amended CTU software.

The address of the control board is set manually using an 8 bit DIL switch, set byMotorola. Data links are automatically set up.

TCB and linkredundancy

The redundant TCB has the ability to maintain the separated CCB, if the inter-CCB linkfails.

Page 509: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Cavity Combining Block (CCB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–243

EGSM900 CCBs with control boards fitted

CCBs may vary slightly, depending on manufacturer and type.

NOTE

BAND PASS FILTER(BPF)

MASTER CCBWITH BPF

CCB CONTROL BOARD(MASTER)

EXTENSION CCBWITHOUT BPF

CCB CONTROL BOARD(REDUNDANT)

ANTENNACONNECTOR ON BPF

BPF INPUTFROM CCB

CCB OUTPUTTO BPF

EXTENSION CCB OUTPUT TOMASTER CCB

3 Tx INPUTS

3 Tx INPUTS

SHORT CIRCUIT STUB

PHASINGLEAD

POWERLEAD TO

BOTH CCBCONTROLBOARDS

BSS11_Ch4_104

DCS1800 with control boards fitted

CCB CONTROL BOARDS

ANTENNA CONNECTOR

BSS11_Ch4_105

Page 510: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Cavity Combining Block (CCB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–244

CCBconfiguration

The master CCB has a second output to enable the extension CCB to be connected.The bandpass filter can then serve both CCBs in parallel. Any unused output isterminated with a short circuit stub. The two configurations are shown the diagrambelow.

SHORT CIRCUIT STUB

SHORT CIRCUIT STUB PHASE LEAD

UP TO 3 RF INPUTS

TO ANTENNA

TO ANTENNA

BANDPASSFILTER

UP TO 6 RF INPUTS

BANDPASSFILTER

MASTERCCB

MASTERCCB

EXTENSIONCCB

CCB functionaldescription anddiagram

The CCB has three independently tuneable cavity resonators, as shown in the diagramopposite. The cavities are narrow band devices which pass transmit signals at the cavitytuned (resonant) frequency. The three cavity outputs are coupled together.

The CCB cavities are tuned by software commands from the CCB control board. Controldata is sent from the CTU, via the coaxial cable, to the CCB. This data is separated fromthe RF signal at the bias tee, and sent to the CCB control board. The CCB control boardthen sends control signals through the control bus to the motor control of the CCB cavityof the same transceiver.

CCB tuning change Time taken

One cavity retuned and verified 8 seconds

Three cavities retuned and verified 19 seconds

Page 511: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Cavity Combining Block (CCB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–245

Functional diagram of CCB1

ÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏ

Tx1 Tx2 Tx3

BIASTEE

MOTORCONTROL

CAVITY

ANTENNA

TRANSMIT BANDPASSFILTER (FITTED TO

MASTER CCB ONLY)

INT

ER

NA

L P

RO

CE

SS

OR

CONTROL BUS

DATA

DATA

DATA

BIASTEE

BIASTEE

CAVITY CAVITY

MOTORCONTROL

MOTORCONTROL

REDUNDANT CCB CONTROL BOARD(TCB) ON OTHER CCB

INPUT FROM EXTENSIONCCB (IF REQUIRED) ORSHORT CIRCUIT STUB

CC

B C

ON

TR

OL

BO

AR

D (T

CB

)

POWERCONNECTOR

BSS11_Ch4_106

Page 512: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Cavity Combining Block (CCB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

4–246

Page 513: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Appendix C

Suggested RF Configurations

Page 514: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 515: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Appendix CSuggested RF Configurations i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suggested RF configurations AppC–4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of configuration diagrams AppC–4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 1 AppC–4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 1 or 2 AppC–4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 3 or 4 AppC–4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 3 AppC–4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 4 AppC–4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for omni 5 or 6 AppC–4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for sector 1/1 or 2/2 AppC–4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for sector 1/1 AppC–4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for single cabinet sector 3/3 AppC–4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 3/3 AppC–4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 4/4 AppC–4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 5/5 or 6/6 AppC–4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for single cabinet sector 1/1/1, 1/1/2, 1/2/2 or 2/2/2 AppC–4–9. . . . . . . . . . . . Configuration for 2 cabinet sector 2/2/2 AppC–4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 3/3/3 or 4/4/4 AppC–4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 2 cabinet sector 4/4/4 AppC–4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for 3 cabinet sector 4/4/4 AppC–4–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for sector 5/5/5 or 6/6/6 AppC–4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for sector 8/8/8 AppC–4–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for dual band 1/1/1-3/3/3 AppC–4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 516: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Page 517: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Suggested RF configurations

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–1

Suggested RF configurations

Overview ofconfigurationdiagrams

The following series of RF configuration diagrams show suggested ways of connectingtogether Horizonmacro SURF and Tx blocks to meet different operational requirements.The series of diagrams is by no means exhaustive, and numerous alternativeconfigurations may be adopted to achieve the same aim.

Each Horizonmacro cabinet is represented by a SURF module and three Tx blocks.Interconnecting cables are identified by a label; N01, 2, 3 or 4. Antenna connectingcables, not supplied as part of the Horizonmacro equipment, are shown in dotted lines.

With the exception of Figure 4-20, each diagram is applicable to either EGSM 900 orDCS 1800 operation though the SURF module illustrated is an 1800 SURF. For EGSM900 operation a 900 SURF (dual band) is required. Connections to the 900 SURF areidentified in the same way as those to the 1800 SURF, with two additional connectorsprovided for dual band 1800 use.

Figure 4-20 shows one way of achieving dual band operation using two Horizonmacrocabinets. An 1800 SURF is installed in one cabinet and a 900 SURF (dual band) in theother.

Configuration foromni 1

Figure 4-1 shows a suggested configuration, using one Horizonmacro cabinet, for omni 1with twin duplexed filter.

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2 0

ANT

RX

TDF

N01

1

RX

BLANKBLANK

ANT

Figure 4-1 Single cabinet omni 1 with TDF

Page 518: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Suggested RF configurations

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–2

Configuration foromni 1 or 2

Figure 4-2 shows a suggested configuration, using a single Horizonmacro cabinet, foromni 1 or omni 2 with duplexed combining bandpass filter.

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

BLANK

0

ANT

RX

DCF

1

N01

BLANK

Figure 4-2 Single cabinet omni 1 or 2 with DCF

Unused SMA connectors must be fitted with 50 ohm terminating loads as shown below.

If configured for... Then 50 ohm load required onunused SMA input to...

omni 1 DCF 0

Page 519: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Suggested RF configurations

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–3

Configuration foromni 3 or 4

Figure 4-3 shows a suggested configuration, using a single Horizonmacro cabinet, foromni 3 or omni 4 with duplexed combining bandpass filter.

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

BLANK

0

ANT

RX

DCF

N01

ANT

RX

DCF

1

N01

Figure 4-3 Single cabinet omni 3 or 4 with DCF

Unused SMA connectors must be fitted with 50 ohm terminating loads as shown below.

If configured for... Then 50 ohm load required onunused SMA input to...

omni 3 DCF 1

Configuration foromni 3

Figure 4-4 shows a suggested configuration, using one Horizonmacro cabinet, for omni 3with dual stage duplexed combining filter.

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

BLANKFEEDTHRU

0

ANT

RX

DDF

N01

1

TXTX

N02

Figure 4-4 Single cabinet omni 3 with DDF

Page 520: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Suggested RF configurations

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–4

Configuration foromni 4

Figure 4-5 shows a suggested configuration, using a single Horizonmacro cabinet, foromni 4 with dual stage duplexed combining filter and hybrid combining unit.

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

BLANK

0

ANT

RX

DDF

N01

TXTX

N02

1

HCU

TX

Figure 4-5 Single cabinet omni 4 with DDF and HCU

Configuration foromni 5 or 6

Figure 4-6 shows a suggested configuration, using one Horizonmacro cabinet, for omni 5or 6 with dual stage duplexed combining filter and air combining.

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N02

2

ANT

RX

DDFFEEDTHRU

0

ANT

RX

DDF

N01

1

TX TXTX

N02

N01

Figure 4-6 Single cabinet omni 5 or 6 with DDF and air combining

Unused SMA connectors must be fitted with 50 ohm terminating loads as shown below.

If configured for... Then 50 ohm load required onunused SMA input to...

omni 5 DDF 2

Page 521: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Suggested RF configurations

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–5

Configuration forsector 1/1 or 2/2

Figure 4-7 shows a suggested configuration, using a single Horizonmacro cabinet, forsector 1/1 or 2/2 with duplexed combining bandpass filter.

SECTOR 2 SECTOR 1

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

ANT

RX

DCF

0

ANT

RX

DCF

N01

1

N01

BLANK

Figure 4-7 Single cabinet sector 1/1 or 2/2 with DCF

Unused SMA connectors must be fitted with 50 ohm terminating loads as shown below.

If configured for... Then 50 ohm load required onunused SMA input to...

sector 1/1 DCF 0 and DCF 2

Page 522: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Suggested RF configurations

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–6

Configuration forsector 1/1

Figure 4-8 shows a suggested configuration, using one Horizonmacro cabinet, for sector1/1 with twin duplexed filter.

SECTOR 2

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2 0

ANT

RX

TDF

N01

1

RX

N01

SECTOR 1

BLANKBLANK

ANT

Figure 4-8 Single cabinet sector 1/1 with TDF

Configuration forsingle cabinetsector 3/3

Figure 4-9 shows a suggested configuration, using one Horizonmacro cabinet, for sector3/3 with dual stage duplexed combining filter.

SECTOR 1

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N02

2

ANT

RX

DDFFEEDTHRU

0

ANT

RX

DDF

N01

1

TX TXTX

N02

N01

SECTOR 2

Figure 4-9 Single cabinet sector 3/3 with DDF

Page 523: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Suggested RF configurations

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–7

Configuration for2 cabinet sector3/3

Figure 4-10 shows a suggested configuration, using two Horizonmacro cabinets, forsector 3/3 with dual stage duplexed combining filter.

SECTOR 1

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

BLANK

0

ANT

RX

DDF

N01

TXTX

N02

FEEDTHRU

1

SECTOR 2

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

BLANK

0

ANT

RX

DDF

N01

TXTX

N02

FEEDTHRU

1

Figure 4-10 Two cabinet sector 3/3 with DDF

Configuration for2 cabinet sector4/4

Figure 4-11 shows a suggested configuration, using two Horizonmacro cabinets, forsector 4/4 with dual stage duplexed combining filter and hybrid combining unit.

SECTOR 1

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

BLANK

0

ANT

RX

DDF

N01

TXTX

N02

1

HCU

TX

SECTOR 2

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

2

BLANK

0

ANT

RX

DDF

N01

TXTX

N02

1

HCU

TX

Figure 4-11 Two cabinet sector 4/4 with DDF and HCU

Page 524: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Suggested RF configurations

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–8

Configuration for2 cabinet sector5/5 or 6/6

Figure 4-12 shows a suggested configuration, using two Horizonmacro cabinets, forsector 5/5 or 6/6 with dual stage duplexed combining filter and air combining.

SECTOR 2

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N02

2

ANT

RX

DDFFEEDTHRU

0

ANT

RX

DDF

N01

1

TX TXTX

N02

N01

SECTOR 1

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N02

2

ANT

RX

DDFFEEDTHRU

0

ANT

RX

DDF

N01

1

TX TXTX

N02

N01

Figure 4-12 Two cabinet sector 5/5 or 6/6 with DDF and air combining

Unused SMA connectors must be fitted with 50 ohm terminating loads as shown below.

If configured for... Then 50 ohm load required onunused SMA input to...

sector 5/5 both DDF 2 modules

Page 525: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Suggested RF configurations

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–9

Configuration forsingle cabinetsector 1/1/1,1/1/2, 1/2/2 or2/2/2

Figure 4-13 shows a suggested configuration, using a single Horizonmacro cabinet, forsector 1/1/1, 1/1/2, 1/2/2 or 2/2/2 with duplexed combining bandpass filter.

SECTOR 1 SECTOR 2 SECTOR 3

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N01

2

ANT

RX

DCF

0

ANT

RX

DCF

N01

ANT

RX

DCF

1

N01

Figure 4-13 Single cabinet sector 1/1/1, 1/1/2, 1/2/2 or 2/2/2 with DCF

Unused SMA connectors must be fitted with 50 ohm terminating loads as shown below.

If configured for... Then 50 ohm load required onunused SMA input to...

Sector 1/1/1 DCF 0, 1 and 2

Sector 1/1/2 DCF 1 and 2

Sector 1/2/2 DCF 2

Page 526: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Suggested RF configurations

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–10

Configuration for2 cabinet sector2/2/2

Figure 4-14 shows a suggested configuration, using two Horizonmacro cabinets, forsector 2/2/2 with duplexed combining bandpass filter.

SECTOR 1 SECTOR 2 SECTOR 3

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N01

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N01

2

ANT

RX

DCF BLANK

1

ANT

RX

DCF

0

BLANK

2

BLANK

0

ANT

RX

DCF

N01

Figure 4-14 Two cabinet sector 2/2/2 with DCF

Page 527: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Suggested RF configurations

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–11

Configuration for2 cabinet sector3/3/3 or 4/4/4

Figure 4-15 shows a suggested configuration, using two Horizonmacro cabinets, forsector 3/3/3 or sector 4/4/4 with duplexed combining bandpass filter and air combining.

SECTOR 2 SECTOR 1 SECTOR 3

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N01

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N01

2

ANT

RX

DCF

N03N03

1

ANT

RX

DCF

1

ANT

RX

DCF

0

ANT

RX

DCF

2

ANT

RX

DCF

0

ANT

RX

DCF

N01 N01 N01 N01

CABINET 2 CABINET 1

Figure 4-15 Two cabinet sector 3/3/3 or sector 4/4/4 with DCF and air combining

Unused SMA connectors must be fitted with 50 ohm terminating loads as shown below.

If configured for... Then 50 ohm load required onunused SMA input to...

sector 3/3/3 cabinet 1, DCF 1

cabinet 2, DCF 0 and DCF 2

Page 528: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Suggested RF configurations

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–12

Configuration for2 cabinet sector4/4/4

Figure 4-16 shows a suggested configuration, using two Horizonmacro cabinets, forsector 4/4/4 with dual stage duplexed combining filter and hybrid combining unit.

SECTOR 2 SECTOR 1 SECTOR 3

B

EXT

0

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

ANT

RX

N01

TX

DDFHCU

N02TX

B

EXT

0

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N01

1212

ANT

RX

TX

DDFHCU

TX

HCU

TX

ANT

RX

TX

DDF

RXN02

N04

N03N03

Figure 4-16 Two cabinet sector 4/4/4 with DDF and HCU

Page 529: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Suggested RF configurations

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–13

Configuration for3 cabinet sector4/4/4

Figure 4-17 shows a suggested configuration, using three Horizonmacro cabinets, forsector 4/4/4 with dual stage duplexed combining filter and hybrid combining unit.

SECTOR 2 SECTOR 1 SECTOR 3

B

EXT

12 0

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

ANT

RX

N01

BLANKTX

DDFHCU

N02TX

B

EXT

0

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

ANT

RX

N01

BLANKTX

DDFHCU

N02TX

B

EXT

0

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

ANT

RX

N01

BLANKTX

DDFHCU

N02TX

1212

Figure 4-17 Three cabinet sector 4/4/4 with DDF and HCU

Page 530: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Suggested RF configurations

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–14

Configuration forsector 5/5/5 or6/6/6

Figure 4-18 shows a suggested configuration, using three Horizonmacro cabinets, forsector 5/5/5 or sector 6/6/6 with dual stage duplexed combining filter and air combining.

B

EXT

12 0

N01 N01

ANT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2BB

EXT

12 0

TX

ANT

DDFTX

ANT

DDFFEEDTHRU

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

RX RXN02 RX

ANT

RX

N01N01

SECTOR 2 SECTOR 1 SECTOR 3

N02TX

DDFTX

DDFFEEDTHRU

N02 N02

B

EXT

12 0

ANT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

RX

ANT

RX

N01N01

TX

DDFTX

DDFFEEDTHRU

N02 N02

Figure 4-18 Sector 5/5/5 or sector 6/6/6 with DDF and air combining

Unused SMA connectors must be fitted with 50 ohm terminating loads as shown below.

If configured for... Then 50 ohm load required onunused SMA input to...

sector 5/5/5 all DDF 2 modules

Page 531: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Suggested RF configurations

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–15

Configuration forsector 8/8/8

Figure 4-19 shows a suggested configuration, using four Horizonmacro cabinets, forsector 8/8/8 with dual stage duplexed combining filter, hybrid combining unit and aircombining.

B

EXT

12 0

N01 N01

TX

ANT

DDF

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

B

EXT

12 0

HCU HCUTX

ANT

DDF

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B B

EXT

12 0

TX

ANT

DDF

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

B

EXT

12 0

TX

ANT

DDFTX

ANT

DDF

TX

HCU

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

RX RXN02

N03N03N04

TXTX RX

N01

N02

HCU

TX RX

HCU

TXN02

N01

N04

N03N03

N03N03N03N03

RX

TX

ANT

DDF

RXTX

HCU

N01

N02

N01

SECTOR 2 SECTOR 1 SECTOR 3

Figure 4-19 Sector 8/8/8 with DDF, HCU and air combining

Page 532: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Suggested RF configurations

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

AppC–4–16

Configuration fordual band1/1/1-3/3/3

Figure 4-20 shows a suggested configuration, using two Horizonmacro cabinets, for dualband sector 1/1/1–3/3/3 operation, where sector 1/1/1 is EGSM 900 and sector 3/3/3 isDCS 1800. This dual band configuration requires one 1800 SURF and one 900 SURF(dual band).

SECTOR 1

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A0B1B2B

N02

2

ANT

RX

1800DDF

FEEDTHRU

0

ANT

RX

1800DDF

N01

1

TX TXTX

N02

N01

SECTOR 2

B

EXT

RX

RX

RX

RX

RX

RX

EXT

A0A1A2A1800OA

0B1B

2 0

ANT

RX

900TDF

N01

1

RX

N01

SECTOR 1

1800DCF

ANT

2B1800OB

RX

RX

ANT

900

RX RX

ANT

1800

RX

ANT

N01

SECTOR 3

900

900

900

1800

1800

1800

N01

N01

SECTOR 3

SECTOR 2

DUALBANDTDF

Figure 4-20 Two cabinet dual band sector 1/1/1-3/3/3

Unused SMA connectors must be fitted with 50 ohm terminating loads.

Page 533: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 5

Horizon micro /Horizon compact

Operational Theory

Page 534: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 535: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 5Horizonmicro/Horizoncompact Operational Theory i. . . . . . . . . . . . . . . . . . . .

Horizonmicro manual definition and introduction 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of equipment 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BTS enclosure 5–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BTS enclosure 5–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Booster 5–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of booster 5–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BTS power supply system 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BTS power supply system 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BTS Power Supply Module (PSM) 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribution board 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of battery backup 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AC-DC Power Supply Module (PSM) 5–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarms, warnings and shutdown 5–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optional Battery Backup 5–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of battery 5–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Booster power supply 5–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of booster power supply 5–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC power connector 5–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Booster Power Supply 5–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC-DC BPSM 5–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Heat management of BTS 5–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BTS heat management 5–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module heaters 5–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Enclosure cooling 5–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of enclosure cooling 5–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Airflow within the enclosure 5–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of enclosure cooling 5–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Heat management of booster 5–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of booster enclosure cooling 5–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Digital modules 5–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of digital modules 5–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Radio Digital Interface System (RDIS) 5–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of RDIS 5–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Main Control Unit, micro (MCU-m) 5–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of MCU-m 5–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processor functionality 5–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68LC060 processor 5–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QUICC32 processor 5–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCMCIA 5–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crosspoint switch 5–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sync block 5–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMI interface 5–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic board ID 5–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic site ID and calibration data 5–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Olympus Radio Architecture Controller (ORAC) function 5–48. . . . . . . . . . . . . . . . . . . . . . . . . Overview of ORAC 5–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 536: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

DINO/RHINO 5–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of DINO/RHINO 5–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of DINO/RHINO 5–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to DINO/RHINO functionality 5–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processing section of DINO/RHINO 5–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset switches 5–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Line interface framers 5–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio signalling links 5–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL interface 5–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

High bit-rate Digital Subscriber Line (HDSL) module 5–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of HDSL 5–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of HDSL 5–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Line termination modules 5–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of line termination modules 5–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminology for Tx and Rx 5–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features of line termination modules 5–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL link options 5–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GPS receiver 5–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of GPS receiver 5–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of GPS receiver 5–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RF modules 5–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dual Transceiver (DTRX) module 5–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of DTRX module 5–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesizer section 5–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver section 5–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter section 5–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature detectors 5–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of combiner isolator 5–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Isolator 5–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of isolator 5–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Booster 5–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of booster 5–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System description 5–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of booster 5–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 537: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–1

Page 538: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmicro manual definition and introduction

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–2

Horizonmicro manual definition and introduction

Overview ofequipment

The Horizonmicro is a two carrier microcellular Base Transceiver Station (BTS) whichoperates in all frequency bands that adopt the GSM standard (GSM900 and DCS1800).

It can be deployed in or out of doors, operated over a wide temperature range, and bewall or pole mounted.

The Horizoncompact is a two carrier microcellular Base Transceiver Station (BTS) andbooster unit which operates in frequency bands that adopt the GSM standard(EGSM900). The Horizoncompact looks identical to the Horizonmicro with covers fitted,but has three RF outputs. The Horizoncompact booster consists of two transmitteramplifiers, which when used with the Horizoncompact, boost a 1.2 Watt (+30.8 dBm) percarrier BTS output (available at the booster input) to 10 Watts (+40 dBm) per carrier.

The Horizoncompact can be deployed in or out of doors, operated over a widetemperature range, and be wall or pole mounted. The Horizonmicro serves as a microBTS, whilst the Horizoncompact with the booster serves to provide macro coverage.

Page 539: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmicro manual definition and introduction

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–3

General view of a Horizon micro

BSS11_Ch5_01

Page 540: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Horizonmicro manual definition and introduction

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–4

Page 541: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Horizonmicro manual definition and introduction

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–5

General view of a Horizon compact in typical configuration

TO ANTENNA 2

RF CABLE

TO ANTENNA 1RF CABLE

BOOSTER

LINK

ALARM

RS232BTS

Horizoncompact

Horizoncompact

RF CABLING

BSS11_Ch5_01a

Page 542: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BTS enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–6

BTS enclosure

Overview of BTSenclosure

The Horizonmicro/Horizoncompact is designed to be wall or pole mounted. A mountingbracket is provided, and once this is in place, the complete Horizoncompact can easily beinstalled onto the bracket. The Horizoncompact is provided with a moulded solar coverwhich, when removed, allows access for maintenance purposes.

All input and output cables (for example, ac power, HDSL and E1/T1 lines) enter theenclosure via the underside. The external RFcables may be routed from top or bottom ofthe enclosure. All cables have specified routes between the enclosure body and eachconnector.

The Horizoncompact has no duplexer or isolator/combiner module in the chassis. Aduplexer is found in the Horizoncompact booster for Tx2/Rx output and input. There aretwo isolators, one in each transmit path from the Dual Transceiver (DTRX) module. Theoutputs go directly to the Horizoncompact booster.

The following diagrams show the location of modules:

Page 543: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BTS enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–7

Location of modules and components

DTRX MODULE(INCORPORATING THE DUPLEXER

AND COMBINER/ISOLATOR MODULE)

AC-DC POWERSUPPLY MODULE

RDIS MODULE

ANTENNACONNECTOR

BSS11_Ch5_02

Page 544: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BTS enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–8

Page 545: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BTS enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–9

Location of modules and components

RX CABLE CONNECTOR

TX2 CABLE CONNECTOR

TX1 CABLE CONNECTOR

MASTERSLAVE

DTRX MODULE

AC-DC POWERSUPPLYMODULE

RDISMODULE

(External ‘N’ type

FRONT VIEW

(INCORPORATING THEISOLATOR MODULES)

RF connector)

(External ‘N’ typeRF connector) (External ‘N’ type

RF connector)

AC POWER SOCKET

BSS11_Ch5_03

Page 546: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BTS enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–10

Page 547: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BTS enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–11

Location of components and components

AC-DC APSM DISTRIBUTION BOARD

BATTERYHDSL MODULESDINO/RHINO CLAMP

(OPTIONAL)

Internal front view

BSS11_Ch5_04

Horizon micro/ Horizon compact underside view (withbattery removed)

LINE TERMINATION MODULE(RHINO SHOWN)ALARMS CONNECTOR

FROM BOOSTER (SEE CHAPTERNO TAG)

MMI INTERFACEBATTERYCONNECTOR

(Horizoncompact only) BSS11_Ch5_05

Page 548: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Booster

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–12

Booster

Overview ofbooster

The Horizoncompact booster is designed to be wall or pole mounted. A mountingbracket is provided, and once this is in place, the complete Horizoncompact booster caneasily be installed onto the bracket. The Horizoncompact booster is provided with amoulded cover which, when removed, allows access for maintenance purposes.

All cables enter via the underside of the unit.

Page 549: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Booster

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–13

Horizon compact booster with cover removed

AC POWER

SOCKET

TX1ANT1

RX

ALARMS

PLUG

TX2

ANT2

BSS11_Ch5_06

Page 550: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BTS power supply system

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–14

BTS power supply system

Overview of BTSpower supplysystem

The power supply system comprises:

� An ac-dc Power Supply Module (ac-dc PSM).

� A distribution board.

� Optional battery backup.

Overview of BTSPower SupplyModule (PSM)

The Horizoncompact ac-dc Power Supply Module (PSM) provides all internal voltagesfrom single phase ac supply in the nominal range 88 V to 264 V, 66 Hz to 45 Hz.

The alarm signals relating to mains fail, low voltage disconnect imminent and powersupply over temperature are generated within the ac-dc PSM and fed to the MCU-msection of RDIS.

Distributionboard

Functional description

The power supplies generated by the ac-dc PSM are distributed, via the distributionboard, and used by the various modules listed below. The power supply levels are allcontrolled by the ac-dc PSM, and there are no adjustable parameters. An optionalbattery provides an auxiliary power source in the event of ac supply failure.

Overview ofbattery backup

The power system incorporates an optional battery backup power system in the event ofan ac supply failure. The battery is able to supply sufficient power (for a minimum of fiveminutes) for the system to perform the necessary tasks prior to complete system powerdown.

Page 551: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BTS power supply system

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–15

Location of the BTS power supply system components

AC-DC PSM DISTRIBUTION BOARD

BATTERYBATTERY

CABLEBSS11_Ch5_07

Page 552: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BTS power supply system

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–16

Connections

The following block diagram shows the power supply interconnections between thedistribution board and the various modules.

Page 553: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BTS power supply system

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–17

Power supply interconnections

OPTIONALHDSL/DINO/RHINO

BATTERY

CONN1 TRX 0

RDIS

+3.3 V, +5 V, +8 V,+12 V, –12 V, +25 V

TRX 1

DTRXDISTRIBUTIONBOARD

+5 V

CONN5

CONN4

CONN3

+5 V, +8 V, +12 V, –12 V, +25 V

+5 V, +8 V, +12 V, –12 V, +25 V

CONN2

+25 V switched

(CONN4on PSM)

BSS11 Ch4 08

Page 554: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2AC-DC Power Supply Module (PSM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–18

AC-DC Power Supply Module (PSM)The ac-dc PSM is directly plugged into the Horizoncompact distribution board, andprovides:

� A total maximum output of 170 W of power.

� Discrete voltages.

� Alarms.

� An ac supply for the enclosure heaters.

The ac-dc PSM consists of:

� An ac-dc converter sub-module using an 88 to 264 V ac single phase input, withpower factor correction, converting it to a high line 360 V dc output.

� A dc-dc converter sub-module which takes the high line 360 V dc output of theprevious sub-module and converts it to a +25 V dc supply which is used as follows:

– Routed to the dc-dc converters.

– Float charges the 25 V battery.

The dc-dc converters each use the +25 V dc input to generate the +3.3 V,+5 V, +8 V,+12 V, –12 V dc and –25 V outputs respectively for driving logic, interface and alarms.

The ac supply for the two equipment heaters is fuse protected and controlled by atemperature dependent switch within the heaters.

The module has a Low Voltage Disconnect (LVD) relay which enables the ac-dc PSM todisconnect the battery, once its terminal voltage has reached a minimum, to protect thebattery from being fully charged.

Page 555: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 AC-DC Power Supply Module (PSM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–19

Functional block diagram of the ac–dc PSM

+3.3 V

+5 V

+8 V

+12 V+12 V

+8 V

+5 V

+3.3 V

CONN4

AC-DC POWER SUPPLY MODULE

ALARMSIGNALS

+25 V

LVDRELAY

–12 V–12 V

360 V DC to +25 V DC

110 V AC/230 V ACSWITCH

EMC FILTERWITH FUSE

ACINPUT

PL1

PL2

PL3

+25 V

POWER FACTORCORRECTED AC

to 360 V DC

BSS11_Ch5_09

Page 556: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarms, warnings and shutdown

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–20

Alarms, warnings and shutdownThe following events are triggered by monitoring of the power supply system. Some ofthe events may trigger alarms at the OMC. Reference should be made to the followingmanual Maintenance Information: Alarm Handling at the OMC (GSM-100-501).

� Mains Fail (MF) alarm

An alarm is generated when the ac-dc converter input falls to within 65 to78 V ac, at which time an MF alarm is generated.

All other power supplies remain active, generated by the battery backup (iffitted).

� Low Voltage Disconnect Imminent (LVDI) warning

After an ac supply failure (ac-dc converter fail) the unit will continue tofunction using the battery backup (if fitted).

During this time the +25 V output will be monitored and, if the output voltagefalls to within +20.5 V ��0.5 V dc, an LVDI warning will be generated.

� Battery Low Voltage Disconnect (Battery LVD) shutdown

If the output voltage continues to fall and reaches the range +18 V �0.5 Vdc, a Battery LVD signal will be generated and the battery will bedisconnected from the load.

� Under Temperature (UT) inhibit

Temp 1 (T1) is the trip level temperature (0 �C, for under temperature).

When power is first applied, if T1 is below 0 �C, the heater mats will comeon, the output of the +3.3 V, +5 V, +8 V, +12 V and –12 V converters will notbe enabled until the temperature has exceeds 0 �C (trip level).

� Over Temperature (OT) alarm

Temp 2 (T2) is the trip level temperature (90 to 100 �C, typically 90 �C forover temperature).

An alarm is generated when the temperature at the ac-dc PSM heatsinkreaches T2 –5 �C, typically 85 �C.

� Over temperature shutdown

If the temperature continues to rise and reaches T2, the ac-dc PSM isshutdown.

After such a shutdown, the ac-dc PSM will only be allowed to reactivatewhen a temperature of Temp 3 (T3) is reached (55 �C to 80 �C, typically 65�C). A Hysterisis (H) of 20 �C is used to prevent oscillation between ac-dcPSM shutdown and reactivation.

Reactivation is automatic, in both systems that have a battery and systemsthat do not have a battery.

Page 557: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarms, warnings and shutdown

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–21

The ac–dc PSM sense signal and interfaces

BSS11_Ch5_10

Connector Remarks

PL1 AC input Single phase input, via EMC filter.

PL2 AC switched output RDIS heater supply.

PL3 AC switched output DTRX heater supply.

CONN4 +25 V switchedoutput

Used to float charge the battery; andprovides battery backup.

+3.3 V

+5 V

+8 V For distribution to the various modules.

+12 V

–12 V

+25 V

MF Fail Mains input failure (ac supply).

LVD Imminent When the +25 V unswitched supplydrops to 20.5 V, an alarm is signalled.

Over temperature(OT) alarm

Monitors the temperature of the ac–dcPSM.

Signal

Page 558: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Optional Battery Backup

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–22

Optional Battery Backup

Description ofbattery

The standard battery pack is made up from eleven lead-acid 2 volt cells, enclosed in aplastic case. The battery is sealed and needs no attention. Expected life of the batteryis approximately five years. The output is fused with a 20 amp blade fuse, accessiblefrom the top of the pack.

The battery is connected to the +25 V dc switched supply line, which under mainshealthy conditions will charge the battery pack.

The ac-dc PSM monitors the +25 V dc switched supply during battery backup conditions.It generates an alarm when it reaches the Low Voltage Disconnect (LVD) imminent level,at 20.5 V, and ultimately de-energizes the battery disconnect relay when the outputreaches 18 V.

Page 559: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Optional Battery Backup

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–23

View of the battery pack

BLADE FUSE (20 AMP)

BSS11_Ch5_11

Page 560: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Booster power supply

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–24

Booster power supply

Overview ofbooster powersupply

The booster power supply comprises:

� An ac-dc Booster Power Supply Module (BPSM) provides all internal voltages fromsingle phase ac supply in the nominal range 88 V to 264 V, 45 Hz to 66 Hz,maximum output of 150 W.

� Two power outputs provide +12 V dc and +28 V dc.

AC powerconnector

The ac power connections are as follows:

� 1 is the neutral cable, coloured blue or black .

� 2 is the live power cable, coloured brown or red .

Local regulations may apply, for different power cable colours.

WARNING

� EARTH (top socket) is the earth cable, coloured green and yellow .

� 3 is not used .

Page 561: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Booster power supply

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–25

Location of the power supply socket connector from thesupply cable

POWER SOCKET

(NOT USED)

AC POWER SOCKET

(NOT USED)

NEUTRAL (BLUE ORBLACK)

LIVE (BROWN OR RED)

AC POWER PLUG ONLIVE (BROWN OR RED)Horizoncompact booster

EARTH (GREEN ANDYELLOW)

BSS11_Ch5_12

The BPSU is located within the booster case and is not accessible.

NOTE

Page 562: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Booster Power Supply

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–26

Booster Power Supply

AC-DC BPSM

The ac-dc BPSM provides:

� A total maximum output of 150 W of power.

� Discrete voltages.

The ac-dc PSM consists of:

� An ac-dc converter sub-module using an 88 to 264 V ac single phase input, withpower correction.

� An ac-dc invertor which generates the +12 V dc, +28V dc for driving the amplifiers.

The ac input is fused for live and neutral lines, then Electro Magnetic Compatibility (EMC)filtered. The next stage consists of a rectifier and input current limiting. This is followedby a power factor corrector stage. Finally, a current mode, Pulse Width Modulation(PWM) controlled invertor stage produces the outputs.

Page 563: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Booster Power Supply

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–27

Functional block diagram of the ac-dc BPSM

INPUTFILTER

RECTIFIERCURRENT

LIMITER

POWERFACTORCORRECTOR

CORRECTORCONTROL

AUXILIARYSUPPLY

PWM

CONTROL

FUSE

FUSE

L (2)

N (1)

E

J301–1J301–2J300–1J300–2

J301–3J301–4J300–3J300–4

0 V

REGULATORAUXILIARY

J300–S

J301–S

+12 V

+12 V

+28 V

0 V

INVERTOR

V100-1

J100-4

TB13

INPUT

OUTPUT

OUTPUT

BSS11_Ch5_13

Page 564: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Heat management of BTS

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–28

Heat management of BTS

Overview of BTSheatmanagement

The heat management of the Horizoncompact is described under the following:

� Equipment heating.

Each of the RDIS and DTRX modules must be at a specified minimumtemperature. Equipment heating is controlled through heater mats. Once theminimum temperature is reached, the ac-dc PSM will then produce the variousvoltages required for the Horizoncompact to function.

� Enclosure cooling.

Natural convection removes the generated heat. Cooling is by ambient airflowthrough the enclosure and across the finned heatsinks of the electronic and powersupply modules

Do not block vents of the enclosure.Do not expose the unit to prolonged sunlight without the solar cover in place.Do not expose the unit to high temperatures created by output vents fromother equipment.

CAUTION

Module heaters

To ensure correct operation of the RDIS and DTRX modules, two heater mats areattached to the heatsink of each module. These heater mats are used in extreme coldoperating environments to bring the modules quickly to the specified workingtemperature.

Each heater mat has two elements configured for either 110 V ac or 230 V ac. Theac-dc PSM selects the appropriate element depending on the ac input.

All heater mats are fused via a current fuse next to the ac input of the ac-dc PSM. Thesefuses cannot be replaced on site as this would invalidate the warrantee, theHorizoncompact must be returned to Motorola for repair.

Each mat also has an over temperature thermal fuse on the mat. When this fuse hasruptured, the appropriate mat must be replaced, by returning the Horizoncompact toMotorola for repair.

Page 565: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Heat management of BTS

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–29

Functional block diagram of the heater circuit

HEATERMATS

EMC FILTERWITH FUSE

AC-DC PSMSELECTING EITHER 110 V OR 230 V

HEATERSAC INPUT

RDIS DTRX

HEATERMATS

BSS11_Ch5_14

Page 566: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Enclosure cooling

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–30

Enclosure cooling

Overview ofenclosurecooling

The modules have finned heatsinks, which are used to remove heat in the temperaturerange of up to 50��� by natural convection.

Page 567: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Enclosure cooling

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–31

View of the finned heatsinks

BSS11_Ch5_15

Page 568: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Airflow within the enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–32

Airflow within the enclosure

Overview ofenclosurecooling

Enclosure cooling is by natural convection only.

The ambient cooling airflow is channelled through the base of the enclosure, across thefront of each of the electronic and power supply modules, and vented through the top ofthe enclosure.

Page 569: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Airflow within the enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–33

Ambient cooling airflow through the enclosure

300 MM MINIMUMDISTANCEBEFORE

OBSTACLE

SOLAR COVER(ESSENTIAL FOR

PROTECTIONAGAINST SOLAR

HEATING)

DTRX MODULE

WALL BRACKET

BUILDINGWALL

RDIS MODULE

POWER SUPPLYMODULE

AIRFLOW

500 MM MINIMUMDISTANCEBEFORE

OBSTACLEBOTTOM ENTRY

BATTERY/BLANK COVER

BSS11_Ch4_16

Page 570: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Heat management of booster

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–34

Heat management of booster

Overview ofboosterenclosurecooling

The heat management of the booster relies on natural convection of the generated heat.Cooling is by ambient airflow across the finned heatsink.

Do not block vents of the enclosure.Do not expose the unit to prolonged sunlight without the solar cover in place.Do not expose the unit to excess temperature created by output vents fromother equipment.

CAUTION

Enclosure cooling

The rear of the booster enclosure has a finned heatsink. It is used to remove heat in thetemperature range of up to 50��� by natural convection.

Page 571: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Heat management of booster

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–35

The Horizon compact booster heatsink

BSS11_Ch5_17

Page 572: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Digital modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–36

Digital modules

Overview ofdigital modules

The digital modules within Horizoncompact consist of the following:

� Radio Digital Interface System (RDIS) module.

� DINO/RHINO module.

� High bit-rate Digital Subscriber Line (HDSL) module.

� Line termination modules.

RDIS

The RDIS is the main digital control module containing the main control unit, micro(MCU-m) and the Olympus Radio Architecture Controller (ORAC). There are twoORACs, each designed to support a single, dual-rate basic GSM RF carrier.

DINO/RHINO

The DINO/RHINO module provides the functionality required to interface with thenetwork. The DINO has both E1 and T1 variants. The RHINO supports E1 only.

High bit-rate Digital Subscriber Line (HDSL) module

The HDSL module enables E1 data rates to be transmitted as payloads shared over twotwisted-pair cables.

Line termination modules

To facilitate the customer options that require connection to an Horizoncompact and toprovide an EMC screen between the internal electronics and the environment, modulesare provided to interface with either the 2.048 Mbits/s (E1) or 1.544 Mbit/s (T1) links andHigh bit-rate Digital Subscriber Line (HDSL) 135 ohm links.

Page 573: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Digital modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–37

Page 574: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Radio Digital Interface System (RDIS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–38

Radio Digital Interface System (RDIS)

Overview of RDIS

The RDIS is the main digital control module in the Horizoncompact and can be split intotwo main functions:

� Main Control Unit, micro (MCU-m).

� Olympus Radio Architecture Controller (ORAC).

The RDIS contains the functionality of one MCU-m and two ORACs.

The main site control functions for an Horizoncompact site are accommodated in theRDIS. It provides a processing platform for the site control software; the main softwarefunctions being:

� Call Processing (CP).

� Cell Resource Manager (CRM).

� Radio Resource State Machine (RRSM).

� Switching.

� Support of DTRX – connection is made to two ORACs.

The maximum number of carriers is limited to two and the RDIS is designed to drive bothcarrier units directly. The MCU-m is customized to drive two ORACs.

Page 575: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Radio Digital Interface System (RDIS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–39

Page 576: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit, micro (MCU-m)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–40

Main Control Unit, micro (MCU-m)

Overview ofMCU-m

The Main Control Unit, micro (MCU-m) module provides the following functions:

� Control processing.

� Crosspoint switch.

� BTS master clock synchronization.

� Timing.

� RSS processing (for both ORACs).

The processing supports the BTS site processing and fault management, together withBTS Call Processing (RRSM and CRM).

The crosspoint switch provides switching for the network interfaces and the two ORACfunctional blocks.

Processorfunctionality

The MCU-m processing section provides a 68LC060 processor in companion mode witha QUICC32. The QUICC32 is used to provide system integration and peripheralfunctions, specifically, a 32 channel HDLC controller for the TCU BCF links.

The main processing section of the MCU-m currently supports 16 Mbytes of RAM.

The DRAM system implements an ECC system for high data integrity.

The boot up code is stored in a 1 Mbyte flash EPROM, a further 0.5 Mbytes of flashEPROM is provided for non volatile data storage.

A Code Storage Facility Processor (CSFP) is supported via a PCMCIA interface. Thisallows flash memory cards of various sizes to be fitted.

68LC060processor

The 68LC060 has a clock operating speed of 50 MHz with a bus speed of 25 MHz (thereduced bus speed is due to the use of the QUICC32 in companion mode).

The on-board Memory Management Unit (MMU) provides write protection of memoryareas, particularly program storage areas.

Page 577: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit, micro (MCU-m)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–41

Page 578: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit, micro (MCU-m)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–42

QUICC32processor

The QUICC32 processor is a pin compatible derivative of the 68360. There are minorhardware changes and microcode changes which permit the Serial CommunicationsChannel (SCCI) to operate as a 32 channel HDLC controller, utilizing the CPM RISCcontroller to perform the processing.

The QUICC32 processor operates at 25 MHz. This also defines the external bus speedof the 68LC060 processor.

The on-board system integration features of the QUICC32 provide peripheral controlfunctions to support the 68LC060 processor.

Page 579: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit, micro (MCU-m)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–43

Functional block diagram of the MCU–m module

FAST FLASH(BOOTCODE &

EXECUTIVE)

SLOW FLASH(SWFM)

16MbDRAM

ECC

DATA

ADDRESS

BERR

PLL

RESETLOGIC

RS232

CROSSPOINTSWITCH

1

CONTROLBTP

(68LC060)

COMMSPROCESSOR

(QUICC32)

XTAL

PCMCIA

MMI1

SIGNAL CONNECTOR

SYSTEMRESET AND

MASTERPROCESSOR

WARMRESET (FROM

DINO/RHINO)

DINO/RHINOLINKS

ORAC � 2LINKS

GPS 1PPS

EXTRACTEDCLOCKS

FROMDINO/RHINO

PCMCIAINTERFACE

SYNC

2

2

SITEID

2

BSS11_Ch5_18

Page 580: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit, micro (MCU-m)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–44

PCMCIA

The loading and storage of software may be done via the PCMCIA interface.

The PCMCIA socket is an industry standard 68 pin single socket, accessible from theunderside of the enclosure, if the MMI cover plate is removed.

The PCMCIA interface is controlled using a Cirrus Logic PC card socket controller. ThePCMCIA interface is provided to support rev 2.1 type I cards.

Crosspointswitch

This Application Specific Integrated Circuit (ASIC) provides central switching capabilitiesfor the MCU-m. It switches TDM links between two ORACs, two network interfaces andtwo links to the processing section, and one link to the sync processor.

The ASIC also provides link interface features associated with the ORAC links, theseinclude synchronization features to allow for delay in the link to the ORAC, and thenecessary framing and encoding to support the link.

All of the serial links into the ASIC are E1, 125 �s frame, 32 eight bit timeslots per frame.

Sync block

The sync block is responsible for site synchronization functions. It generates all requiredlocal references from a high stability local clock source, taking fifteen minutes to stabilizefrom warm-up. This clock source may also be locked to the incoming network clocks.

The sync block provides the following reference pulses and reference clock:

� 16.384 MHz

� 125 �s

� 60 ms

� 6.12 s

The sync function is controlled by the main processing section via a parallel port.

The clock select block receives all of the possible sources of reference signal:

� Extracted clock from the DINO/RHINO.

One of the sources is selected as a reference and up to two others can be monitored andprioritized as backup references, should the primary reference fail.

The sync block can also operate in free-running mode, using the OXCO.

The OXCO requires calibration when the frame-slip alarm threshold isexceeded. This should only occur a few times in the life of the equipment, dueto the slow aging characteristic of the OXCO.

NOTE

The PLL uses the selected reference signal as the loop reference clock. It includes anOCXO accurate to 0.05 ppm, a phase comparator and a loop filter.

Page 581: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit, micro (MCU-m)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–45

Functional block diagram of the serial EEPROM memories

BSS11_Ch5_19

SITEEEPROM

MCU–m

ARBITRATIONLOGIC

ORACEEPROM

RDIS

DTRXEEPROM

ORAC0

ORAC1

Page 582: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Main Control Unit, micro (MCU-m)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–46

MMI interface

The main processing section is provided with a TTY interface to the QUICC32. Thisinterface does not support hardware handshaking. The serial ports support a baud rateof 9.6 kbit/s (no parity, 1 stop bit, 8 bits per character).

Electronic boardID

Electronic board ID is supported by the slow flash memory (non-volatile data memory).This storage contains the following information:

� RDIS module serial number – 16 bytes.

� Kit number – 16 bytes.

� Description – 32 bytes.

Electronic site IDand calibrationdata

A programmable site ID feature is provided using a serial EPROM.

Memory system

The RDIS has on-board memory devices and associated circuitry. This is used to:

� Facilitate initialization of the ORAC and DTRX.

� Store site ID.

Functional description

The memory system consists of three memory blocks and some arbitration logic asshown in the functional diagram below.

The ORAC and DTRX memory contains calibration and information data associated withthe cabinet equipment.

The arbitration logic allows the exchange of the DTRX/ORAC memory informationbetween the two ORACs.

The MCU-m memory contains the site identification number and the kit number of theboard on which it is stored. This information can be read via the MCU-m at the TTYplug.

Page 583: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Main Control Unit, micro (MCU-m)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–47

Page 584: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Olympus Radio Architecture Controller (ORAC) function

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–48

Olympus Radio Architecture Controller (ORAC) function

Overview ofORAC

Each ORAC is part of the RDIS, and is designed to support a single, dual-rate basicGSM RF carrier.

Functional blocks

Each ORAC consists of the following functional blocks:

� ORAC System Controller And Router (OSCAR) processor.

The OSCAR processor performs the control functions for the OSCAR to MCU-minterface, Channel Codec control, TTY link and PA control.

� Equalizer.

The equalizer performs channel equalisation for a single RF carrier.

� Channel Codec.

The channel coders perform:

– Channel coding/decoding

– Interleaving/de-interleaving

– Speech transcoding

� Interface Transceiver Control (ITC).

The ITC performs low level management of the DTRX:

– A/D Conversion

– Modulation/Demodulation Control

– Tx Power Control

– Synthesizer Interface

� Serial Communications Interface (SCI).

Slow serial interface for TTY and control

� Synchronous Serial Interface (SSI).

Fast serial interface for communication between DSPs

The functional blocks above are shown in the following diagram, the lines representingthe interfaces between the main processing sections of the module. The Channel Codecblocks and equalizer block contain multiple processors.

TTY/SCI

Each processor has a TTY port available; for example the OSCAR, Channel Codecs andEqualizer.

Page 585: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Olympus Radio Architecture Controller (ORAC) function

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–49

Functional block diagram of the ORAC module

OSCARPROCESSOR

TDMINTERFACE

ITC ASIC

EQUALIZER

CHANNELCODECS

SCI

TRAFFIC SSI LINK

UPLINKBUS

2 MBit/s TDMDATA

SCI

SCI (MMI)ROUTEINGINTERFACE

SCI

OSCAR TTY

To MCU-mSECTION

DTRXMODULE

PRIVATE BUS

CONTROLBUS

SSI

PARALLEL BUS(HOST INTERFACE)From MCU-m

SECTION

Tx

Rx

BSS11 Ch5 20

Page 586: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DINO/RHINO

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–50

DINO/RHINO

Overview ofDINO/RHINO

The DINO/RHINO module provides the functionality required to interface with thenetwork. This function is separated from the MCU-m section of RDIS due to the widevariety of interfaces that can be provided. The DINO has both E1 and T1 variants. TheRHINO supports E1 only.

The MCU-m controls the DINO/RHINO provision of network interface configuration andsupervision.

Location ofDINO/RHINO

The DINO/RHINO module is fitted between the RDIS and DTRX modules.

Page 587: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DINO/RHINO

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–51

Location of the optional DINO/RHINO module (whichincorporates the LIU) and HDSL modules

DINO/RHINO MODULE

(DRTX OMITTED FOR CLARITY)HDSL

MODULES

BSS11_Ch5_21

Page 588: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DINO/RHINO

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–52

Introduction toDINO/RHINOfunctionality

The DINO/RHINO supports the network termination (interface) of any two links, selectedunder software control, either of these links may be E1 or HDSL, T1 links are alsosupported.

Table 5-1 lists available termination options.

A local microcontroller is provided for network interface configuration and supervision.This is controlled by the MCU-m and communicates with the DINO/RHINOmicrocontroller via a HDLC link.

Table 5-1 Options for network termination

Termination type Linetermination

HDSL option supported(135 ohm twisted pair)

RHINO (E1) 75 ohm Coax E1 Yes

DINO (E1) 120 ohm Twisted pair E1 Yes

DINO (T1) 100 ohm Twisted pair T1 No

The HDSL modules do not have to be fitted to the DINO(E1)/RHINO(E1)boards. The DINO/RHINO board will then function as E1 only.

NOTE

Page 589: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DINO/RHINO

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–53

Functional blocks in the DINO/RHINO

BOARD CONNECTORS

CONTROLPROCESSOR

FLASH EPROM

DRAM

DATA

ADDRESSRS232

BDM

HDSLMODULE

XTAL

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

LIU

DISTANCEMEASURING,

PATTERNINSERT AND

DETECT

MCU-mRESET

SWITCH

LINK 0

LINK 1

REF_125�SREF_6.12S

MUXDEMUX

2.048 MBIT/S

RESET

MAIN

NETWORKLINK 0

SYSTEMRESET (S1)

GREEN LED

COUNTER

FRAMER

STOP

START

STROBE

2.048 MBIT/S

PROCESSOR BUS

J4

J7

J6

J2

GND

J8

HDSLLINK 0

DATA/CLK

DATA/CLK

DUART

LIU

DINO/RHINORXD

DINO/RHINOTXD

GND

HLI

HLI

HDSLMODULE

HDSLLINK 1

FRAMER

J12

J13

J11 (DINO)

BOARD CONNECTORS

NETWORKLINK 1

CONTROL

CONTROLSYSTEMRESET

MASTER PROCESSORWARM RESET (S2)

DINO/RHINORXD

DINO/RHINOTXD

J9

MMICONNECTOR

MMITTY

J14/15/16/17 (RHINO)

BSS11_Ch5_22

Page 590: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DINO/RHINO

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–54

Processingsection ofDINO/RHINO

The processing section comprises a MC68360 microcontroller with 1 Mbytes DRAM and512 kbytes flash EPROM. The processor provides integrated features such that itrequires little peripheral support. It communicates with the MCU-m via a HDLC link.

Flash EPROM

The flash EEPROM stores the following:

� Boot code.

� Operational code.

� Electronic ID.

The Boot code executes on reset performing various board level tests (DRAM test etc)before transferring execution to the operational code.

The operational code will then allow the HDLC link to the MCU-m to be established. TheMCU-m may then request a code load of the DINO/RHINO to be performed.

Electronic ID

The electronic board ID stores the following information:

� Board serial number – 16 bytes.

� Board kit number – 16 bytes.

TTY port

The TTY connector (J2) on the DINO/RHINO is the master processor/MCU-m TTY port.A TTY for debugging the DINO/RHINO is available on the RDIS test connector.

LED status

The system status is indicated by an LED, as follows:

Green LED Status

Off System power off

On System power on

Resets

The processor is capable of soft resetting itself. A local power-on reset circuit isprovided. This provides a local reset based on the power supply tolerance.

The MCU-m is able to reset the DINO/RHINO via a message on the HDLC link only.

Page 591: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DINO/RHINO

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–55

View of a DINO/RHINO module

SYSTEM RESETBUTTON (S1)

HDSLMODULES

GREEN LED

RDISCONNECTOR

TTY CONNECTOR(MMI OF RDIS)

MASTERPROCESSORWARM RESETBUTTON (S2)

LINE TERMINATIONMODULE

NETWORKINTERFACE

MODULE

BSS11_Ch5_23

External view of the TTY connector and switches on theMMI cover plate

BSS11_Ch5_24

MMI COVER PLATE

MASTERPROCESSORWARM RESET

SWITCH

SYSTEMRESET

SWITCH

POWERINDICA TOR MMI

Page 592: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DINO/RHINO

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–56

Reset switches

There are two push button switches mounted on the DINO/RHINO board which providesthe following:

� System reset (S1)

When depressed briefly and then released, on board circuitry provides a timedhard reset of the DINO/RHINO board and RDIS board.

� Master processor warm reset (S2)

When depressed briefly and then released, on board circuitry provides a warmreset to the MCU-m section of the RDIS module.

The reset switches are located on the DINO/RHINO to provide better access to thisfunction when the system is fully configured in the chassis.

Line interfaceframers

The framing devices provide analogue to digital conversions for encode/decode of theE1/T1 interfaces, and for HDSL modules when fitted and selected by software (E1 only).

The framers provide the decoded and jitter attenuated receive data, for passing to theMCU-m, plus a version of the data that has not been through the jitter buffer which canbe used on board the DINO/RHINO for distance measurement.

Although distance measuring can be made operational, it is not a feature ofcurrent software.

NOTE

The framers provide a 2.048 MHz extracted clock, passed to the MCU-m. The transmitand receive framing is controlled by a 125 �s reference pulse received from the MCU-m.

Radio signallinglinks

The Radio Signalling Links (RSL) to the BSC from the main processor on the MCU-m are64 kbit/s or 16 kbit/s LAPD links. The MCU-m does not perform the LAPD encoding ofthe RSL link data. This is performed on the DINO/RHINO by the processor.

The DINO/RHINO supports a maximum of two RSL links. The RSL links may both be ona single network link or shared between the two network links.

When the DINO/RHINO is on a network link to a BSC, the RSL can be placedon either line on any time slot other than zero.

NOTE

The DINO/RHINO supports 64 kbit/s and 16 kbit/s LAPD channels.

Page 593: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DINO/RHINO

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–57

Page 594: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2DINO/RHINO

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–58

HDSL interface

Control

The HDSL modules are controlled from the processor by an asynchronous serial datastream. There are two separate control channels, one per HDSL module. The controlstreams are sourced by a Dual Universal Asynchronous Receiver Transmitter (DUART)device on the processor bus of the DINO/RHINO.

Clock and data

The HDSL module interfaces directly to the framer interface/framer devices. The HDSLsourced data is selected as the input and output data path by the control processor.Both clock and data are used in both transmit and receive directions.

Page 595: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 DINO/RHINO

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–59

Page 596: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2High bit-rate Digital Subscriber Line (HDSL) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–60

High bit-rate Digital Subscriber Line (HDSL) module

Overview ofHDSL

The HDSL module enables E1 data rates to be transmitted as payloads shared over twotwisted-pair cables. These cables are generally unshielded standard telephone cables.

Functionaldescription ofHDSL

The HDSL data operates bi-directionally over each twisted-pair at approximately half theoverall E1 data rate.

The module processor performs such tasks as error monitoring and start-upconfiguration. The processor also communicates with the DINO/RHINO processor via anasynchronous control port.

The raw HDSL signals from the module are routed through the DINO/RHINO and thentranslated at the HLI functional block (see DINO/RHINO functional block diagram inprevious section) into true HDSL level signals.

Page 597: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 High bit-rate Digital Subscriber Line (HDSL) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–61

Functional block diagram of the HDSL module

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

ANALOGUEFRONT

END

ANALOGUEFRONT

END

DSP

DSP

HDSLFRAMER

PROCESSORFLASH

NVRAM

CLOCK

DATA

CLOCK

DATA

CONTROL

BIDIRECTIONALBALANCED LINE

TO HLI

BIDIRECTIONALBALANCED LINE

TO HLI

BSS11_Ch4_25

Page 598: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Line termination modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–62

Line termination modules

Overview of lineterminationmodules

To facilitate the customer options that require connection to an Horizoncompact, and toprovide an EMC screen between the internal electronics and the environment; thefollowing modules terminate (interface with) either the 2.048 Mbit/s (E1) or 1.544 Mbit/s(T1) links and High bit-rate digital subscriber line (HDSL) 135 ohm links:

� DINO termination module - 120 ohm (DINO E1/HDSL module).

� DINO termination module - 100 ohm (DINO T1 module).

� RHINO termination module - 75 ohm (RHINO E1/HDSL module).

Page 599: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Line termination modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–63

View of the DINO/RHINO connectors and location of theline termination module

J15 J16J14J12

J17J13 J13

DINO (E1/HDSL or T1(NO HDSL FUNCTION)) RHINO (E1/HDSL)

J12J11

INTERNALSLAVE

INTERNALMASTER

HDSL OPTIONA B

TXRX

TXRX

PORT PIN1 & 6

2 & 73 & 84 & 9

PORT PINDINO LABEL

ALARM HDSL OPTION

INTERNAL SLAVE

INTERNAL MASTER

TX RX TX RXA A B B

RHINO LABEL

LINE TERMINATION MODULE(RHINO SHOWN)

ALARMS CONNECTOR FROM BOOSTER

ALARM

BSS11_Ch5_26

Page 600: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Line termination modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–64

Terminology forTx and Rx

The use of Tx and Rx as driver/receiver designators refer to the network as perceived bythe Horizoncompact enclosure:

� Tx indicates the Horizoncompact connection is driving into the network.

� Rx indicates the Horizoncompact connection is receiving from the network.

Features of lineterminationmodules

The line termination modules provide:

� The impedance matching between the E1/T1 and HDSL circuit lines and theDINO/RHINO module.

� An interface for:

– Up to two inputs and two outputs (120 ohm balanced (DINO) E1, 100 ohmbalanced (DINO) T1, or 75 ohm unbalanced (RHINO) E1) lines.

– Two HDSL 135 ohm looped pairs.

HDSL linkoptions

If an HDSL equipped version is purchased the links are automatically configured aseither E1 or HDSL via a combination of database settings and auto-detectionmechanisms.

A feature of GSR4 software and later releases, enables the setting of the master/slavedefaults to be changed by database settings for scenarios where the defaults are notappropriate, such as a closed loop daisy chain. In this instance an external modem fromthe Base Station Controller (BSC) cannot be a master but a slave. The slave modem onthe last Horizoncompact must be turned from into a master in order to communicate withthe BSC, see configuration example later in this section.

Earlier software releases cannot access the above feature.

NOTE

Links can be either E1 or HDSL, and can be mixed as appropriate within the network.Conversion to/from E1 and HDSL can be performed either at a Horizoncompact or byuse of External HDSL modems, here are some examples of possible configurations:

Page 601: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Line termination modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–65

Page 602: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Line termination modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–66

E1 link connection to the BSC

In this configuration an E1 link is used from the Base Station Controller (BSC) to the firstHorizoncompact. Here the connection is made to the J11 port in the DINO board or toone of the coaxial cable connectors (J14, J15, J16, or J17) on the RHINO board. Fromthe first Horizoncompact onwards HDSL links are used running from slave port (J13) tomaster port (J12) in each Horizoncompact.

External Modem connection to the BSC

In this configuration a BSC connects to an external modem through an E1 link. Aconnection is then made from the external modem slave port to the J12 master port onthe Horizoncompact DINO/RHINO. The J13 slave port of the Horizoncompact connectsto the next Horizoncompact J12 master port and so on, until the last Horizoncompactport is connected.

External Modem connection to the BSC (Closed Loop)

This closed loop configuration uses external modems through an E1 link in order toconnected to the BSC. A connection is then made from the external modem slave portto the J12 master port on the Horizoncompact DINO/RHINO. The J13 slave port of theHorizoncompact connects to the next Horizoncompact J12 master port and so on, untilthe last Horizoncompact port is connected.

The J13 slave port on the last Horizoncompact is then reconfigured, via software, to be amaster port. The reconfiguration of the J13 port on the last Horizoncompact allows theloop to be closed via the use of an external HDSL modem.

Page 603: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Line termination modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–67

Connections to the BSC

M = MASTER S = SLAVE

M S MS

BSC

E1 LINK HDSLHDSL

Horizoncompact Horizoncompact Horizoncompact

BSS11_Ch5_27

E1 link connection to the BSC

The remaining span on the last Horizoncompact could be used to perform aclosed loop configuration with a E1 link.

NOTE

M = MASTER S = SLAVE

HorizoncompactEXTERNAL

MODEM

HDSLMSLAVE MS MS

BSC

HDSL HDSLE1 LINK

Horizoncompact Horizoncompact

External modem connection to the BSC

BSS11_Ch5_28

Only Motorola approved External HDSL Modems must be used, see salesguide.

NOTE

HDSL HDSL HDSL

SLAVEE1 LINK

E1 LINKSLAVE

EXTERNALMODEMS

HDSL

M M M MSS

Horizoncompact Horizoncompact Horizoncompact

M = MASTER S = SLAVE

BSC

External modem connection to the BSC (Closed Loop)

BSS11_Ch5_29

Earlier software releases than GSR4 cannot access the above closed loopconfiguration.

NOTE

Page 604: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2GPS receiver

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–68

GPS receiver

Overview of GPSreceiver

An optional GPS receiver may be provided for site synchronization functions.

When fitted, the GPS receiver is controlled by the MCU-m module.

Location of GPSreceiver

The GPS receiver module is located above the DINO/RHINO module and between theRDIS and DTRX modules.

Page 605: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 GPS receiver

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–69

Location of the GPS receiver

GPS RECEIVER(OPTIONAL) BSS11 Ch5 30

Page 606: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–70

RF modulesThe RF modules in the Horizonmicro consist of:

� Dual Transceiver Module (DTRX)

� Duplexer

� Combiner/Isolator

The RF modules in the Horizoncompact consist of:

� Dual Transceiver Module (DTRX)

� Isolator modules

Page 607: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–71

Location of the RF modules

DTRX MODULE[INCORPORATING THE

DUPLEXER ANDCOMBINER/ISOLATOR

MODULE]

BSS11_Ch5_31

RX CABLE CONNECTOR

TX2 CABLE CONNECTOR

TX1 CABLE CONNECTOR

MASTERSLAVE

MODULE

AC-DCPOWERSUPPLYMODULE

RDISMODULE

(External ‘N’ type

FRONTVIEW

(INCORPORATINGTHE

ISOLATORMODULES)

RF connector)

(External ‘N’ typeRF connector) (External ‘N’ type

RF connector)

DUALTRANSCEIVER

BSS11_Ch5_32

Page 608: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–72

Dual Transceiver (DTRX) module

Overview ofDTRX module

The DTRX module supports dual RF transceivers and can operate in both the primaryand extended GSM frequency bands.

The DTRX module supports Synthesizer Frequency Hopping (SHF) and dynamic powercontrol (but not for the BCCH carrier). The DTRX module does not support base bandhopping or receive spatial diversity.

Page 609: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–73

Page 610: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–74

Synthesizersection

Introduction

The synthesizer blocks are located with the Rx and Tx circuits and used for the RF andIF frequency synthesis.

There are a total of 13 phase-lock loops required on the DTRX module, eight frequencysynthesizers and five phase-locked oscillators. The phase-locked oscillators are used forthe IF local oscillators. The master 13 MHz reference oscillator, is phase-locked to a16.384 MHz reference supplied from the RDIS digital module; and together with digitaldividers, provides reference frequencies for all other PLLs. The subsystem supportsSynthesizer Frequency Hopping (SFH).

Functional description

The phase-locked loops of the DTRX module are:

� 13 MHz master reference.

� Transmit RF frequency synthesizer (TXRFLO) x4.

� Transmit IF phase-locked oscillator (TXIFLO) x2.

� Receive RF frequency synthesizer (RXRFLO) x4.

� Receive IF phase-locked oscillator (RXIFLO) x2.

13 MHz reference distribution

The purpose of the reference distribution is to generate and distribute reference signals,of the correct frequency and amplitude, to all the synthesizers and oscillators on theDTRX module. A synchronizing 13 MHz clock is returned to the RDIS digital module.

RF synthesizers

The operation of the eight RF synthesizers supplying the Rx and Tx chains are identical.They are combined in pairs to enable SFH. Whilst one of the pair of synthesizers isproviding the local oscillator the other is locking to the next channel in the frequencyhopping sequence.

IF oscillators

The four IF oscillators are basically the same but the transmit and receive synthesizersuse different reference frequencies and phase detector comparison frequencies.

Alarms

Synthesizer alarms are:

� Tx synthesizer lock alarm.

� Rx synthesizer lock alarm.

� 13 MHz synthesizer lock.

Page 611: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–75

Synthesizer functional blocks

RXIFLO(Carrier 0)200 kHz Reference

REFERENCESYNTHESIZER

16.348 MHz CLOCK(from RDIS)

13 MHz Reference(to RDIS)

IFINJECTION

PLO

IFINJECTION

PLO

1 MHz Reference

IFINJECTION

PLO

IFINJECTION

PLO

RXIFLO(Carrier 1)

TXIFLO(Carrier 0)

TXIFLO(Carrier 1)

TXRFLO(Carrier 1)

(A)

RFINJECTION

PLL

RFINJECTION

PLL

RFINJECTION

PLL

RFINJECTION

PLL

TXRFLO(Carrier 1)

(B)

RXRFLO(Carrier 1)

(A)

RXRFLO(Carrier 1)

(B)

TXRFLO(Carrier 0)

(A)13 MHz Reference

RFINJECTION

PLL

RFINJECTION

PLL

13 MHz Reference

RFINJECTION

PLL

RFINJECTION

PLL

TXRFLO(Carrier 0)

(B)

RXRFLO(Carrier 0)

(A)

RXRFLO(Carrier 0)

(B)

DIVIDEby 5

DIVIDEby 13

13 MHz Reference

13 MHz Reference

BSS11_Ch5_33

Page 612: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–76

Receiver section

Introduction to the receiver

The receiver is a double conversion super-heterodyne which can operate in two modes;linear and limiting. When the receiver is looking for call initiation from a mobile station ona RACH it is switched to limiting mode as no estimate of signal strength is available toset the AGC pads. In normal operation on a SDCCH or TCH the receiver operates inlinear mode. This allows the amplitude information to be retained which is required bythe channel equalizers.

Functional description of the receiver

The RF signal passes through a low noise amplifier stage and then through a splitter.One arm feeds Carrier 0 whilst the other feeds Carrier 1. A bandpass filter providesrejection to out-of-band blockers. The mixer down-converts the signal to an IF using alow-side RXRFLO. A duplexer at the output of the mixer provides a wideband match tothe mixer to prevent reflections causing unwanted spurious signals. An AGC pad isavailable at this point to reduce the dynamic range requirement for the IF strip.

Three SAW filters provide some channel filtering, reject the unwanted mixer componentsand ease the 3rd order Intermodulation Products (IP3) requirements of the backend. TheIF signal is then amplified and split into two paths; one is the limited path, the other is thelinear path. The limited signal can be switched back into the main signal path.

During linear operation the magnitude of the baseband output (I+Q) is monitored to feedback to the AGC algorithm, ensuring that the baseband output is maintained at therequired level. However, in limiting operation the magnitude of baseband output (I+Q)does not reflect the incoming signal strength due to the operation of the hard limiter. Thesignal strength can be derived, however, by monitoring the output of the limiters RSSIport.

The dynamic range of the receiver is –104 dBm to –15 dBm. There is a switchable 40dB pad (known as AGC7) at the front of the IF strip which reduces the compression ofthe IF strip to an achievable level. The baseband output to the A/D converters is ideallymaintained at 1/2 full scale (2.5 V pk–pk or 12 dBm) using the AGC pads which arecontrolled by the equalizer algorithm and set by AGC calibration. AGC7 effectivelyreduces the dynamic range for the remainder of the receiver to –104 dBm to –55 dBm.There is hence a remaining 49 dB of AGC requirement to be taken up in AGC0–6. Thisis provided by a voltage variable amplifier which is controlled by a DAC from the AGCword.

The active demodulator provides I & Q channel data at baseband by using RXIFLO fromthe synthesizer at twice the required LO frequency. The baseband processing then filtersthe demodulated signal to reject the adjacent channels and to band limit the noise power.The signal is also amplified to the level required by the A/D converter. Also included is agroup delay equalizer which flattens the variation caused by the baseband filtering.

Page 613: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–77

Functional block diagram showing the CARRIER 0receiver path of the DTRX module

LNA1

CARRIER 1 PATH

RXRFLOTEMPERATURE

DETECTOR

RF FILTER MIXER1

DUPLEXER

AGC7 0/40 dB

SAW

SWITCH

I & QDEMOD

90�

RXIFLO

Rx_TEMP_0

LIMIT/LOGAMP

RSSI_0

CALAGC1b

CALAGC

I_0

Q_0

Rx_IN

SAW SAW

CALAGC1a

AMP1

AGCAMP

AMP2

AMP3

AMP4

50Ohms

BPF

LNA2

LPF

I BRANCH

Q BRANCH

BASEBANDPROCESSING

CARRIER 1 path being identicalBSS11_Ch5_34

Page 614: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–78

Transmittersection

Introduction to the transmitter

The transmitter section of the DTRX module takes in digital information from the RDISmodule, and oscillator and reference signals from the synthesizer section. It generatesthe IF, mixes it with the LO and amplifies the resultant RF signal. The final RF signal isfully modulated, filtered, power ramped and amplified.

In the Horizoncompact, each of the output signals from Tx1 and Tx2 are passed throughtwo separate isolators before being forwarded to the Horizoncompact booster foramplification.

Functional description of the transmitter

The Transmitter (Tx) receives digital baseband information from the RDIS module andconverts it into a GMSK modulated signal. This modulated signal is mixed with theTXIFLO input, up-converted to the first IF, 175 MHz, then passed through:

� An amplification and narrow band filtering stage to remove unwanted sidebands(due to mixing of signals).

� A Voltage Variable Attenuator (VVA) which provides signal level adjustment undercontrol of the RDIS module (to compensate for power level changes).

� A Voltage Controlled Amplifier (VCA) which provides more than 45 dB of powercontrol (to ramp the signal up and down).

� An amplification and wideband filtering stage before being mixed with the TXRFLOinput and being up-converted to the final RF frequency.

After the second mixer, the signal is amplified and filtered before being passed throughthe second VVA. The function of this VVA is the same as the first. It forms part of acontrol loop in conjunction with the power detector. Both VVAs are also used to adjustthe power output of the system, to account for the duplexer and combiner/isolatormodule.

The signal is further amplified and filtered before being passed through a Digital SwitchedAttenuator (DSA). This attenuator provides up to 30 dB of attenuation in discrete 2 dBsteps, and used for static/dynamic power control. It is controlled by signals from theRDIS module. An RF power amplifier (PA) module with two further stages ofamplification boosts the signal level up to approximately +31.5 dBm in theHorizoncompact.

An RF power detector monitors the power output, giving a usable output over 35 dB ofrange. The detector is temperature compensated. A temperature sensor is fitted toallow the RDIS module to determine the temperature of the PA module, for thermalprotection.

Page 615: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–79

Functional block diagram showing the CARRIER 0transmitter path of the DTRX module

GAINBLOCK

VCANARROWBAND

MIXER7 MHz

TXIFLO

PWR_RAMP_0

DIGITAL CONTROL SIGNAL

TXRFLO

TX_KEY

PWR_LEVEL_0

BPF

AMPLIFIER

RF POWERDETECTOR

Tx_OUT_0

Voltage VariableAttenuator

DigitalSwitchedAttenuator

GMSKMDATA

CLOCK

ENABLE

SAWBPF

SAWBPF

VVAPASSIVELPF

DSA

BPFBPF VVA

MIXER

BPF

DIVIDER

RF PAModule

TEMPERATUREDETECTOR Tx_TEMP

FWD_PWR_0

175 MHz

AMPLIFIER

AMPLIFIER

CARRIER 1 transmitter path being identical BSS11_Ch5_35

Page 616: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–80

Temperaturedetectors

The purpose of the temperature detection is to allow the RDIS module to compensate forthe temperature response of the DTRX module.

The DTRX module is equipped with four temperature detectors. Two sensors are placedto detect the ambient temperature of the receivers and two placed to detect thetemperature of the transmitter output stages.

The outputs of the four detectors are then multiplexed onto two analogue detector linesselected by the TEMP_SEL control line (0 selects the transmitter and 1 selects thereceiver). All the temperature sensors are identical and share common switching andsignal connection circuitry.

TEMP_SEL is changed only on timeslot boundaries, and is sent with the AGC datathrough a serial link back to the RDIS.

Page 617: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–81

Functional block diagram of temperature detectors

TRANSMITTERTEMPERATURE

DETECTOR

RECEIVERTEMPERATURE

DETECTOR

CARRIER 1

CARRIER 0 TEMP_SEL_0

CARRIER 0

CARRIER 1

TRANSMITTERTEMPERATURE

DETECTOR

RECEIVERTEMPERATURE

DETECTORTEMP_SEL_1

TEMP_DET_1

TEMP_DET_0

ANALOGUESWITCH

BSS11_Ch5_36

Page 618: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–82

Overview ofcombiner isolator

The duplexer switches Tx and Rx signals between a single antenna and the DTRX.

The Tx combiner/isolator module is used to combine the two Transmit signal outputs ontothe duplexer and hence to one antenna.

Page 619: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–83

Location of the duplexer, combiner/isolator module andDTRX board

COMBINER/ISOLATORMODULE DUPLEXER

DTRX BOARD

BSS11_Ch5_37

Page 620: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–84

Page 621: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Dual Transceiver (DTRX) module

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–85

View of the duplexer and combiner/isolator modules

DUPLEXER

COMBINER/ISOLATORMODULE

BSS11_Ch5_38

The DTRX Rx/Tx interconnections in a dual carrier system

CARRIER 0

CARRIER 1COMBINED Tx

COMBINED Rx

COMBINER/ISOLATORMODULE

Tx

Tx

Tx

DUPLEXER

Tx

Rx

Tx OUT

Rx IN

DTRX

Tx OUT

Ae

Tx/Rx ANTENNA

BSS11_Ch4_39

Page 622: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Isolator

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–86

Isolator

Overview ofisolator

The isolators are high performance single stage directional TX power modules, used inthe Horizoncompact. Due to its electromagnetic properties it enables a low loss forwardpath through to the Horizoncompact booster TX port and isolates in the reverse path.

This module provides isolation of multiple frequencies in the EGSM cellular telephoneBase Transceiver Station (BTS) to reduce intermodulation distortion. The isolatorreduces reverse intermodulation by absorbing the power of an interferer into its internalload.

This module also prevents possible damage to the RF power amplifier resulting from loadmismatches.

Page 623: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Isolator

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–87

Location of the isolators and DTRX board

ISOLATOR MODULESDTRX BOARD

BSS11_Ch5_40

Page 624: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Isolator

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–88

Page 625: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Isolator

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–89

View of the isolator module

BSS11_Ch5_41

The DTRX Rx/Tx interconnections in a dual carrier system

CARRIER 1

CARRIER 0

ISOLATORMODULE

Tx

Tx OUT

Rx IN

DTRX

Tx OUT

ISOLATORMODULE

TxTx/Rx ANTENNA

Tx

DUPLEXER

Tx

Rx

Ae

AeTx ANTENNA

FILTER

Booster

AMP

AMP

BTS

BSS11_Ch5_42

Page 626: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Booster

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–90

Booster

Overview ofbooster

The Horizoncompact booster consists of two transmitter power amplifiers which, whenused with the Horizoncompact BTS, will boost a 1.2 Watt (+30.8 dBm) per carrier outputto 10 Watts (+40 dBm) per carrier. The booster is intended to be mounted close to theHorizoncompact BTS and connected through three two metre RF cables. The boostercan be wall or pole mounted.

Systemdescription

The Horizoncompact booster amplifies two independent RF carriers in the frequencyrange of 925 to 960 MHz. Each TX input to the booster is a pulsed RF carrier. One ofthese TX carriers could be used in frequency hopping mode.

When the downlink power control is employed in the associated Horizoncompact, thepeak amplitude of the pulsed RF carrier at the booster inputs can vary from +5 dBm to+30.8 dBm.

The Horizoncompact booster gain remains constant when the RF input is reduced, so thebooster RF output power is correspondingly reduced.

The attenuation through the receive (ANT2 only) is less than 1.0 dB.

Alarms

The alarm board monitors the discrete outputs from both power amplifiers (PAs), PA1,PA2 and the ac to dc converter. When either or both (PAs) fail or the ac to dc converterfails, a signal is reported to the Horizoncompact via an RS-232C interface. The line drivervoltage levels are � 12 volts maximum.

An encoded RS232 status signal is sent to the Horizoncompact BTS every minute.Within the signal are fault indicators. After reception of five interrupts, theHorizoncompact BTS interrogates this signal to determine whether the booster isoperational. No indicator is transmitted to the OMC if the Horizoncompact booster isoperating correctly. Only fault conditions are flagged.

If an error has occurred, then the type and nature of the error(s) is/are reported to theOMC.

If the dc to dc converter fails within the booster, there will be a loss of power supply to thealarm board and in the absence of battery backup, no messages will be transmitted tothe BTS.

The transmissions from the Horizoncompact booster contain unique identification codesof the nature of failure, with expansion capability to detect a further four sub-failuremodes. The diagram opposite outlines an alarm interface functional diagram.

A description of the alarm codes sent to the BTS, (should a functionality failure occur atpower up or during normal operation), is provided in NO TAG.

Page 627: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Booster

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–91

Alarm codes sent to the BTS

BSS11_Ch5_43

Alarm codes

Alarm Description

MB PA Fail 1 Power amplifier failure 1

MB PA Fail 2 Power amplifier failure 2

MB Fail Occurs if booster is timed out

Functional block diagram outlining the alarm boardmonitoring of the power amplifiers

PUR

SIGNAL

COND.

PA 1 PA 2

MICROCONTROLLER

87C51

RS232

I/F

POWER AMPLIFIERS

ALARM BOARD

PUR = POWER UP RESET

PA = POWER AMPLIFIER

TX

RX

BSS11_Ch5_44

Page 628: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Booster

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–92

Functionaldescription ofbooster

Referencing the diagram opposite, pulsed signals originating from TX1 and TX2 areunder normal operation carried through relays. In the event of a failure in either or bothpower amplifiers, a bypass mode is automatically enabled by the booster once failure isdetected. This feature enables switching a maximum of +41.25 dBm when RF power isapplied to the relay. One amplifier can remain operational whilst the other is in bypassmode. Both carriers of the Horizoncompact remain operational in bypass mode.

From the switch the pulsed signal arrives at the attenuator and local heat sink. Theattenuator reduces a nominally 30.8 dBm by 8 dB to 22.8 dBm.

The pulsed signal is then passed to the linear Power Amplifiers (PAs) where they arebrought up to 40 dBm (� 1.25 dBm). A dc voltage of 28 volts derived from the powersupply drives the power amplifiers.

From the PAs, the pulsed signals are passed to the isolator. The isolator is a directionalpower device, which due to its electromagnetic properties enables a low loss forwardpath (0.3 dB) through to the next relay. The isolator prevents reverse intermodulation byabsorbing the power of an interferer into its internal load such that it does not reach thepower amplifier.

The pulsed signal is then passed through the second relay and onto the TX filter orduplexer. From the filter or duplexer the signal is routed to the antennas.

Modulated RX signals arrive at antenna 2 and pass through the duplexer before passingto the RX port.

The booster power supply unit has been described earlier.

Page 629: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Booster

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–93

Functional block diagram of the Horizon compact boostersystem

ANT1

ANT2

ISOLATOR RELAY TX FILTERLINEAR PAATTENUATORRELAY

TX1

AC SUPPLY

ALARMS

AC/DC SUPPLY

ANDALARMS BOARD

ISOLATOR RELAY DUPLEXER

LINEAR PA

RELAY

BYPASS PATH

BYPASS PATH

TX2

RX

ATTENUATOR

+ 28 V dc

+ 28 V dc

BSS11_Ch5_45

Page 630: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Booster

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–94

Bypass

In case of failure of either or both PAs inside the booster, there is an ability to bypass theamplifier which has failed. Bypass mode is automatically enabled by the booster oncethe fault is detected. This feature requires that the booster internal RF relays are capableof switching a maximum of +41.25 dBm, whilst the RF power is applied to the relay. Bothcarriers of the Horizoncompact remain operational in bypass mode. If there is an ac failboth relays bypass the amplifiers.

Overtemperature protection is required such that it is not latching and has sufficientrange to prevent rapid cycling of ON and OFF. There is no overtemperature signalpassed to the Horizoncompact.

Booster power supply unit

The Booster Power Supply Unit (BPSU) is mounted within the booster unit itself. It is anac to ac switch mode supply with standard universal voltage input capability (88 V to 264V, 45 to 66 Hz).

Two dc voltage outputs are provided (12 V and 28 V) to a maximum total output of 130Watts.

Page 631: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Booster

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–95

Bypass feature

ANT

ISOLATOR RELAY TX FILTERLINEAR PAATTENUATORRELAY

TX INPUT

BYPASS PATH

BSS11_Ch5_46

Page 632: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Booster

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–96

Page 633: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Booster

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–97

View of the Horison compact with booster unit

TO ANTENNA 2

RF CABLE

TO ANTENNA 1

RF CABLE

booster

LINK

ALARM

RS232

BTS

TX1

RX

TX2

Horizoncompact

Horizoncompact

BSS11_Ch5_47

Page 634: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Booster

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

5–98

Page 635: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 6

Horizon office

Page 636: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 637: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 6Horizonoffice i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Standard equipment 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional equipment 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Architecture of BTS 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horizonoffice hardware 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Controller Unit Enclosure 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU shelf 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL modem shelf 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of power distribution unit 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of fan cooling system 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Specifications 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of specifications 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Environment 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weights 6–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque values 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power requirements 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power consumption 6–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CU to RF head interconnection 6–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF head receiver sensitivity 6–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF head transmitter output 6–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency band characteristics 6–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External features of CU 6–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal features of CU 6–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interconnect panel 6–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of interconnect panel 6–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HIB board 6–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of HIB board 6–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of HIB 6–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of HIB 6–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E1 interface 6–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of E1 interface 6–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of E1 interface 6–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of CIM and BIM boards 6–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Shelf Unit (BSU) assembly 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of BSU 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU numbering 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSU shelf 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ventilation 6–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Backplane connectors 6–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HDSL modem shelf 6–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of HDSL modem shelf 6–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL connectors 6–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power supply system 6–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of power supply system 6–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IPSM 6–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of IPSM 6–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Distribution Unit (PDU) components 6–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of PDU 6–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input power 6–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit breakers 6–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 638: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

The Distribution Alarm Board (DAB) 6–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of DAB 6–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuses and LEDs 6–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch settings 6–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm functions 6–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Visual warnings 6–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communicate alarms 6–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cabinet Protection Board (CPB) 6–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of Cabinet Protection Board (CPB) 6–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirement of CPB 6–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specifications of CPB 6–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection 6–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fan cooling 6–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of fan cooling system 6–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of fan cooling system 6–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements for fan cooling 6–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarm processing 6–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to alarms 6–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements for CU alarm system 6–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controller power system alarms 6–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controller alarm details 6–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Digital Modules 6–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full size boards 6–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Half size boards 6–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HDSL modem boards 6–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to HDSL modem boards 6–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Processor (GPROC2) 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of GPROC2 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of GPROC2 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPROC2 board 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communication 6–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Bus Termination Card (BTC) 6–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of BTC 6–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of BTC 6–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Kiloport Switch (KSW) 6–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of KSW 6–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of KSW 6–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description of KSW 6–74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Generic Clock (GCLK) 6–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of GCLK 6–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of GCLK 6–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 6–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Multiple Serial Interface (MSI) 6–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of MSI 6–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of MSI 6–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description 6–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The LANB Extender half size board (LANX) 6–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of LANX 6–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of LANX 6–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brief description of LANX 6–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 639: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

v

The Parallel Interface Extender (PIX) board 6–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of PIX 6–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of PIX 6–82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Battery Backup Board (BBBX) 6–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of BBBX 6–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of BBBX 6–84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Management Interface Extender (MIX) board 6–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of MIX 6–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of MIX 6–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfaces 6–86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System clock and interface 6–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description 6–88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Line Terminal Unit (LTU) 6–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of LTU 6–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of LTU 6–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controls and indicators 6–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Exchange office Management Unit (EMU) 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of EMU 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements of EMU 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controls and indicators 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarms 6–92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RF head 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of RF head 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF features 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External interfaces 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multicarrier head mode 6–94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of RF head 6–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Physical description of RF head 6–96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power system 6–98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF transceiver board 6–100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF Loopback 6–102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connector pin-out details 6–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main source supply input 6–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Battery input / output 6–104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm connector on RF PCB 6–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDSL connector 6–106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multi head Sync Input connector 6–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multi head Sync Output connector 6–108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 640: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vi

Page 641: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–1

Page 642: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–2

Standardequipment

The standard Horizonoffice BTS, comprises a Controller Unit (CU) which can control upto 24 Radio Frequency units (RF heads) for in-building use. The RF single carrier headsoperate in all frequency bands that adopt the GSM standard (GSM900 and DCS1800).The CU consists of a GSM Base-shelf Unit (BSU) and a High bit-rate Digital SubscriberLine (HDSL) modem shelf for communications with the RF heads. In addition, the CUcontains fans and power supplies.

The standard CU cabinet is fitted with one Base Shelf Unit (BSU) card cage which isfitted into the lower half of the cabinet. The BSU is organized into two tiers. The lower tiercontains full size boards. The upper tier contains half size boards.

The BSU is equipped with an Multiple Serial Interface (MSI) board, which provides eitherdual E1 links for connection to the network, or dual E1 links to interface to the HDSLmodem shelf. The connection to the network is to a BSC or a daisy chain BTS.

The key objective for the CU is the use of in-building twisted-pair wiring as the means ofinterconnect between the RF heads and the CU.

Connectivity between the CU and the BSC is over an E1 line.

Each E1 interface, which connects to an HDSL modem board, is able to communicatewith up to two RF heads via HDSL links.

An option is available for a CIM (T43) board for interfacing to a 75 ohm single endednetwork, or a BIM (BIB) board for interfacing to a 120 ohm balanced network.

The 900 or 1800 MHz RF head is a single Field Replaceable Unit (FRU) capable of beinginstalled with minimal specialist handling equipment. The only access required is forconnection of power, communications link and, if required, external antenna. Each RFhead enclosure can be wall, pillar mounted, up to 1 km away from its CU cabinet. TheCU and RF heads are suited for indoor use only.

Optionalequipment

Optional equipment that can be ordered for the Horizonoffice consists of the followingtwo items:

� An external rectifier rack that is powered from the customers’ main ac powersource to provide the –48 V dc needed to supply the CU

� A battery backup pack to provide an emergency –48 V supply in the event of afailure of the main ac or dc supplies

Page 643: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–3

General view of the Horizon office Controller Unit (CU)

ig.044.rh

BSS11_Ch6_01

Page 644: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–4

Page 645: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–5

RF head

.BSS11_Ch6_02

ig.045.rh

Optional external –48 V dc rectifier unit

ig.072.rh

BSS11_Ch6_03

Page 646: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Architecture of BTS

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–6

Architecture of BTS

Horizon officehardware

The hardware for the CU is based on base station architecture, but with the followingobjectives:

� The CU uses a radio interface via an HDSL link using an HDSL modem and asingle pair link.

� An MSI board is used to route data from the Time Division Multiplex (TDM) busthrough the HDSL Line Terminal Unit (LTU) for routeing to the RF head.

� The CU supports up to 24 RF heads.

Page 647: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Architecture of BTS

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–7

Diagram of internal architecture

LTU

EMU

HDSL MODEMRACK

23

LTU

2

TDM BUS

31

GPROC

MSI

GCLK

MSI

MSI

MIX

16M CLK A

n

UPTO6

OFF

16M CLK B

2M CLK

RF HEADS

ÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓÓ

UNUSEDSLOTS

LTU

2

31

SERIAL BUS

UP TO12 OFF

GPROC

KSW

MCAP BUS

2M E1 LINK

2M E1 LINKS

HDSL MODEM

RF HEAD 24

TWISTEDPAIR A

TWISTEDPAIR B

MODEM RESETS

RS 232 CONTROL LINK

LTU

12

(VIA FRONT PANEL

CONNECTORS)

TRXBOARD

MSI

EXTERNALBSC

BSS11_Ch6_04

The HDSL Interface Board (HIB) located on the EMC barrier between the LTUand RF head twisted pair is not shown.

NOTE

Page 648: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Controller Unit Enclosure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–8

Controller Unit EnclosureThe Controller Unit (CU) enclosure consists of an aluminium cabinet. This houses thefollowing major components:

� BSU Shelf.

� HDSL modem shelf.

� Fans/power supplies.

BSU shelf

The BSU shelf provides the base control function for the CU supporting up to 24 RFheads using HDSL communication links. The BSU is organized into two tiers. The lowertier supports the equipage of full size boards whilst the upper tier supports the equipageof half size boards.

Part 2 (Controller Unit ) of this section gives a detailed description of the BSU shelf

HDSL modemshelf

The HDSL modem shelf provides slots for 16 HDSL modem boards (LTUs) and onemodem management board (EMU). The LTUs provide HDSL processing and transportcapability, each being able to communicate with up to 2 RF heads. Loading and shelfMMI functions are transferred over an RS–232 link to the GPROC2 MMI port via the MIXboard.

Part 2 (Controller Unit ) of this section gives a detailed description of the HDSL modemshelf.

Overview ofpowerdistribution unit

The Power Distribution Unit (PDU) is located on the top shelf of the cabinet and:

� Distributes dc power throughout the cabinet.

� Provides an alarm interface.

It consists of:

� A Distribution Alarm Board (DAB).

� A circuit breaker panel containing seven dc circuit breakers.

Overview of fancooling system

The cooling system, in conjunction with the correct use of shelf airflow deflectors,provides adequate cooling for all cabinet equipment. The fan tray assembly containsthree fans; each fan has a fan stall sensor which is connected to alarm circuits in theDAB through connector PC5.

Part 2 (Controller Unit) of this section gives a detailed description of power distributionand fan cooling.

Page 649: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Controller Unit Enclosure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–9

Power system alarms and reporting

POWER SUPPLIES

BOARD

CIRCUIT BREAKERS

SMOKE DETECTOR(HIDDEN FROM VIEW)

–48 V dc INPUT

DISTRIBUTION ALARM

ig.046.rh

The power system uses the standard BSS alarm reporting scheme, which includes visualalarms. The CU supports up to 16 external alarm inputs and eight relay outputs (as pro-vided by two standard PIX half size boards).

BSS11_Ch6_05

Page 650: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Specifications

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–10

Specifications

Overview ofspecifications

The Horizonoffice specifications, including frequency band characteristics, are tabulatedin this chapter.

Environment

The environmental limits are shown in Table 6-1.

Table 6-1 Environmental limits

Environment Temperature Humidity

Operating –5 �C to +45 �C 5% to 95% non-condensing

Storage –45 �C to +70 �C 8% to 100% non-condensing

Dimensions

The dimensions are shown in Table 6-2.

Table 6-2 Dimensions

Height Width Depth

CU 1620 mm 710 mm 470 mm

RF head 210 mm (landscape) 315 mm (landscape) 98 mm

Rectifier unit 133 mm 482 mm 355 mm

Battery box 420 mm 710 mm 470 mm

WeightsThe weight figures are shown in Table 6-3.

Table 6-3 Weights

Weight Comments

CU 138 kg (equipped withredundancy)

24 RF head version

124 kg (no redundancy)

12 RF head version

133 kg (with redundancy)

12 RF head version

RF head 2.3 kg

4.9 kg

Without Battery Pack fitted

With Battery Pack fitted

Rectifier unit 13 kg

Battery box 60 kg Without batteries

Page 651: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Specifications

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–11

Page 652: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Specifications

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–12

Torque values

Table 6-4 provides torque values.

Table 6-4 Torque values

Screw/bolt size M4 M6 M8 M10

Value 2.2 3.4 5 10

Values for M12 screws/bolts depend on local suppliers. Refer to manufacturerdata for correct torque values.

NOTE

Powerrequirements

The maximum current requirements are shown in Table 6-5.

Table 6-5 Power requirements

Supply voltage Maximum supply current range

CU Nominal –48 V dc if using anin-house dc supply (Input toleranceis in the range –40 V to –72 V dc)

A supply voltage in the range 88 to264 V ac (nominal 230 V ac) if using

the external rectifier option,Motorola Part No. 01-86740N01

21.2 A

(fully redundant plus 6 RF heads)

24.0 A

(fully redundant plus 12 RF heads)

27.3 A

(fully redundant plus 18 RF heads)

30.1 A

(fully redundant plus 24 RF heads)

RFhead

88 to 270 V ac

45 to 66 Hz

0.5 A

(Includes Battery Pack charging)

Page 653: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Specifications

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–13

Page 654: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Specifications

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–14

Powerconsumption

Table 6-6 shows the nominal and maximum power consumption figures for the CUcabinet.

Table 6-6 CU cabinet power consumption

Nominal power consumption Maximum power consumption

676 W

(fully redundant plus 6 RF heads)

762 W

(fully redundant plus 12 RF heads)

871 W

(fully redundant plus 18 RF heads)

957 W

(fully redundant plus 24 RF heads)

846 W

(fully redundant plus 6 RF heads)

959 W

(fully redundant plus 12 RF heads)

1091 W

(fully redundant plus 18 RF heads)

1200 W

(fully redundant plus 24 RF heads)

The power shown above is for the CU cabinet only. The RF heads are poweredindividually from a local source, see Table 6-7.

Table 6-7 shows the nominal and maximum power consumption figures for the RF head.

Table 6-7 RF head power consumption

Nominal power consumption Maximum power consumption

GSM900 31 W 44 W

DCS1800 33 W 47 W

CU to RF headinterconnection

The CU to RF head interconnections are shown in Table 6-8.

Table 6-8 CU to RF head interconnections

Type Specification Maximum range

HDSL Twisted pair, minimum wiregauge 26 AWG

1000 m

RF head receiversensitivity

The sensitivity of the receiver is –88 dBm GSM900 and –95 dBm DCS1800.

The RF head receiver is designed to operate up to an Rx input power of –5dBm (GSM) in a static environment.

NOTE

Page 655: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Specifications

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–15

Page 656: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Specifications

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–16

RF headtransmitteroutput

The specified maximum transmitter output power is +14dBm for GSM900 and +20dBmfor DCS1800.

The RF unit supports transmitter power control over a range of 0 –12dB, in 2 dB steps.

NOTE

Frequency bandcharacteristics

The RF head channels are duplex (transmit and receive) with the characteristics listed inTable 6-9:

Table 6-9 Frequency band characteristics

GSM900 DCS1800

Transmit frequency band (MHz) 925 to 960 1805 to 1880

Receive frequency band (MHz) 880 to 915 1710 to 1785

Transmit/receive duplex separation(MHz)

45 95

Channel width (kHz) 200 200

Number of channels 174 374

Transmit channel centre frequency(MHz)

Even 10ths of a MHzfrom 935.2 to 959.8

Even 10ths of a MHzfrom 1805.2 to

1879.8

Receive channel centre frequency(MHz)

Even 10ths of a MHzfrom 890.2 to 914.8

Even 10ths of a MHzfrom 1710.2 to

1784.8

Page 657: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Specifications

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–17

Page 658: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Specifications

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–18

External featuresof CU

The cabinet door is hinged on the left side of the cabinet and has inlet and outlet airvents in the door. The door incorporated a key lock.

All connections to the cabinet are on the interconnect panel, which is the cabinet toppanel. All cabinets are RF/EMI shielded.

Page 659: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Specifications

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–19

External view of CU

ig.044.rh

BSS11_Ch6_06

Page 660: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Specifications

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–20

Internal featuresof CU

The CU contains the following elements.

Power distribution

The power distribution is located at the top of the CU and comprises –48 V dc and +27 Vdc circuit breaker distribution, Distribution Alarm Board (DAB) and Cabinet ProtectionBoard (CPB).

HDSL module

The upper most part of the CU cabinet contains the HDSL modem shelf. This shelfaccommodates up to 16 Line Termination Units (LTU) High bit-rate Digital SubscriberLine (HDSL) boards.

Only the first 12 LTU slots out of the 16 slots are utilized.

NOTE

BSU cage

The BSU assembly consist of:

� A backplane.

� Two vertical slot shelves containing either full size or half size digital boards.

� A compartment for three Integrated Power Supplies (IPSMs).

Fan tray

The fan tray contains three axial fans.

The CU can tolerate a single fan failure within the tray.

Page 661: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Specifications

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–21

View of CU top panel

BSS11_ch6_07

RF HEADHIB 0

12

345678910

12

11131415161718192021

22

2324

RF HEADHIB 1

HIB 0HIB 1

MS 0PIX 0

PIX 1

BABACKUP

EARCONNECT

–48 V dc

0 V dc

MS 1

Internal view of CU

THREE FANS(BEHIND AIR BAFFLE)

AIR BAFFLE

POWER SUPPLIES

BASE SHELF UNIT

HDSL MODEM CAGE

BOARDDISTRIBUTION ALARM

CIRCUIT BREAKERS

CABINET PROTECTION

BOARD

(HIDDEN FROM VIEW)

SMOKE DETECT OR(HIDDEN FROM VIEW)

ig.046.rhBSS11_Ch6_internal view

Page 662: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Interconnect panel

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–22

Interconnect panel

Overview ofinterconnectpanel

The interconnect panel is mounted on the top of the cabinet and provides connectionsfor:

� DC input power.

� HDSL line interconnect modules.

� Battery backup input for DRAM.

The E1 line interconnection boards are:

� T43 interconnect board 75 ohm or

� Balanced-line interconnect board – 120 ohm (BIB).

Page 663: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Interconnect panel

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–23

Top interconnect panel layout

BSS11_ch6_top_interconnect

RF HEADHIB 0

12345678910

121113

141516171819202122

2324

RF HEADHIB 1

J0

J8

J14

J16

J13

J7

J17J5

J1

J11

J2

J10

J4

HIB 1 HIB 0

BATTBACKUP

MS 0MS 1

PIX 0

PIX 1

Top panel connectors

BSS11_Ch6_08

Top Panel Connectors

Connector Function Internal destination Externaldestination

BatteryBackup.

DRAM backupbattery.

DAB connector PC4 andBBBX connector PC2.

Backup battery oradditional –48 Vdc supply.

MS0 (MS1 notused).

Up to four E1 links. MS1 connector upon BSUbackplane.

BSC or daisychain BTS.

HIB0 and HIB1 Provides aninterconnect andsignal conditioningfor the HDSL signallines to the RFheads.

HIB0 and HIB1 connectorson the HDSL rack.

RF heads.

PIX0 and PIX1 Alarm connectors. PIX0 and PIX1 connectorsto BSU on PIX matingconnectors.

Customerequipment.

Page 664: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2HIB board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–24

HIB board

Overview of HIBboard

The HIB boards provide the external point of connection for the RF heads. HIB 0 feedsRF heads 1 to 12 and HIB 1 feeds RF heads 13 to 24.

Location of HIB

The HIB interface module plugs into the top panel, through a 37 pin D-type connector.

Description ofHIB

The board has only passive components and a single board connects 12 RF heads to sixHDSL modem boards inside the cabinet. A full system requires two of these boards tosupport 24 RF heads.

The HIB provides a 37 way 0.1” pitch female ‘standard’ D Type for internal connection.The connection to the HDSL modem cards is via cabling within the CU cabinet.

The board features IDC connections for the cabling from the RF heads.

The HIB board accepts a range of diameters of copper loop cable, with a diameter of 0.4mm as a minimum requirement.

The board is secured to the top panel by four cross head screws.

Page 665: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 HIB board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–25

Diagram of HIB board with HDSL connector

HIB 1 HIB 0

1112

10

98

7654

3

21

2423

22

2120

19

1817

16151413

1

STANDARD RJ11 TELEPHONE

HDSL CABLE

CONNECTOR TO FIT RF HEAD BSS11_Ch6_09

Page 666: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2E1 interface

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–26

E1 interface

Overview of E1interface

An interface module is provided to terminate the 2.048 Mbit/s (E1) links. It also providesan EMC barrier between the internal electronics and the external environment.

Two types of interface module are available:

� CIM.

� BIM.

Location of E1interface

The E1 interface module plugs into the top panel, through a 37 pin D-type connector.

Description ofCIM and BIMboards

CIM (T43) board

A CIM board provides the impedance matching between the E1 circuit lines and theBSU backplane.

The board provides an interface for up to six input and six output unbalanced coaxial 75ohm E1 lines.

Twelve transformers are used on the board to provide impedance matching between theE1 circuit lines and the Multiple Serial Interface (MSI) boards. Each transformer has a1:1.25 turns ratio to match the external 75 ohm and backplane 120 ohm connections.

Connection is made using a 37 pin D-type connector to the interconnect panel and twelvetype 43 coaxial connectors to the external E1 circuit lines. The board is secured by fourcross head screws.

BIM (BIB) board

A BIM board provides the impedance matching between the E1 circuit lines and the BSUbackplane.

The board provides an interface for up to six input and six output balanced 120 ohm E1lines.

Twelve transformers are used on the board to provide impedance matching between theE1 circuit lines and the MSI boards. Each transformer has a 1:1 turns ratio to match theexternal and backplane 120 ohm connections.

Connection is made using a 37 pin D-type connector to both the interconnect panel andthe external E1 circuit lines. The board is secured by four cross head screws.

Page 667: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 E1 interface

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–27

Diagram of line termination boards

BSS11_ch6_10

CIM (T43)

J0

J1

J2

J5

J4

J7

J8

J10

J13 J11

J14

J16

J17J0

J1BIM (BIB)

BOARDBOARD

Page 668: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Shelf Unit (BSU) assembly

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–28

Base Shelf Unit (BSU) assembly

Overview of BSU

A BSU assembly consists of:

� A backplane.

� Two vertical slot module shelves containing the required digital boards:

– The upper shelf holds half size digital boards.

– The lower shelf holds full size digital boards.

� A three-compartment shelf for the power supply boards.

BSU numbering

BSUs are numbered from F backwards using the sixteen position (0 to F hex) rotaryswitch on the LANX board. This rotary switch sets the BSU LAN address.

BSU shelf

The BSU shelf provides the base control function for the CU. The shelf can manage upto 24 RF heads. The BSU shelf interfaces to the LTUs. The BCU and LTU areconnected via E1 links. Each MSI board can communicate with up to four heads via twoLTUs.

A thermostat is located in the upper section of the cabinet and connected to the rear ofthe lower section of the backplane. If the internal cabinet temperature reaches 70 oC,the power supply will shut-down.

This thermal protection feature is in addition to the safety shut-down features provided bythe CPB.

Page 669: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Shelf Unit (BSU) assembly

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–29

Diagram of BSU connectors

AI0AI1AI2

MS0 TO HDSL SHELF)

MS1 (TO E1 LINKS)

MS2 (TO HDSL SHELF)

MS3

KS1

GK0

KS0

DR5DR4

DR3DR2

DR1DR0

PART OF BSU BACKPLANE

FULL SIZEBOARDS

HALF SIZEBOARDS

BLANKINGPLATE

IPSM DISABLE

(CONNECTS TO TOPPANEL THERMOSTAT)

LANX

MIX

PIX

BBBX

SOME BLANK

SENSE CONNECTOR

(NOT USED)

BSS11_Ch6_11

Page 670: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Shelf Unit (BSU) assembly

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–30

Shelf board fitThe table shows the board positions in a fully equipped BSU shelf assembly:

Table 6-10 Shelf board fit

Slot Half size boards Slot Full size boards

U0 Not used in this cabinet L0 BTC

U1 Not used in this cabinet L1 KSW (R)

U2 Not used in this cabinet L2 GCLB (B)

U3 Not used in this cabinet L3 GCLK (B)

U4 Not used in this cabinet L4 GCLK (A)

U5 Not used in this cabinet L5 GCLK (A)

U6 Not used in this cabinet L6 SPARE

U7 Not used in this cabinet L7 MSI RF (21 - 24)

U8 Not used in this cabinet L8 SPARE

U9 Not used in this cabinet L9 MSI RF (17 - 20)

U10 Not used in this cabinet L10 SPARE

U11 Not used in this cabinet L11 MSI RF (13 - 16)

U12 Not used in this cabinet L12 SPARE

U13 Not used in this cabinet L13 MSI RF (9 - 12)

U14 Not used in this cabinet L14 MSI 1

U15 BBBX L15 MSI RF (5 - 8)

U16 PIX 0 L16 MSI 0

U17 PIX 1 L17 MSI RF (1 - 4)

U18 MIX 0 L18 SPARE

U19 LANX B L19 SPARE

U20 LANX A L20 GPROC2

U21 Not used in this cabinet L21 GPROC2

U22 Not used in this cabinet L22 GPROC2

U23 Not used in this cabinet L23 GPROC2

U24 Not used in this cabinet L24 GPROC2(R)

U25 Not used in this cabinet L25 GPROC2

U26 Not used in this cabinet L26 SPARE

U27 Not used in this cabinet L27 KSW (A)

U28 Not used in this cabinet L28 BTC

Page 671: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Shelf Unit (BSU) assembly

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–31

Page 672: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Base Shelf Unit (BSU) assembly

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–32

Ventilation

Blanking plates are inserted in all unused full size board and power supply slots to assistwith the correct airflow and ventilation.

Backplaneconnectors

Table 6-11 shows the function of each connector fitted at the top of the BSU backplane.

Table 6-11 Backplane connectors

Connector Function

AI0 Serial bus primary, to DAB.

AI1 Serial bus redundant, to DAB.

MS0 MSI connector, to interconnect with HDSL modem shelf.

MS1 Not used.

MS2 MSI connector, to interconnect with HDSL modem shelf.

MS3 Not used.

Page 673: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Base Shelf Unit (BSU) assembly

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–33

Page 674: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2HDSL modem shelf

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–34

HDSL modem shelf

Overview ofHDSL modemshelf

The HDSL modem shelf consists of:

� A backplane.

� A vertical shelf to hold LTUs and an exchange-rack management unit (EMU).

The HDSL modem shelf is capable of housing up to 16 LTUs. For the maximumsupported configuration, only twelve LTUs are required and one EMU. The LTUs provideHDSL processing and transport capability. Each can communicate with up to two RFheads via the HIB.

The LTU converts between the E1 formatted data from an MSI board, into HDSLformatted data for two RF heads. The link is used to transport traffic and RSS data, plusfrequency and time reference information to a HDSL modem within the RF head.

The HDSL modem shelf is configured for a minimum amount of management support.Upon power up or reset, the LTUs attempt to establish a connection with the far-endmodems located in the RF heads.

Page 675: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 HDSL modem shelf

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–35

Diagram of HDSL modem shelf

BSS11_ch6_12

EMU BOARD

LTU BOARDS

Page 676: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2HDSL modem shelf

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–36

HDSL connectors

Table 6-12 shows the connectors on the upper shelf.

Table 6-12 HDSL connectors

Item Qty Function

D25F Data port connectors 16 Not used

10Base T port 1 Not used.

10Base 2 port 1 Not used.

EXT CLK (External Clock) 1 2 MHz clock reference for HDSL boards(per G.703, paragraph 10).

D9F HDSL connectors 16

(12 used)

Connectors HDSL pairs to the HIB.

Five-position –48 V dcpower-terminal strip

1 Connects dc power to the shelf.

D25F RS-485 connector 1 Not used.

D25F alarm connector 1 Not used.

D15F 120-ohm G.703 16

(12 used)

Connets to the MSI E1 interface(balanced 120 ohm).

BNC 75-ohm G.703 Inconnectors

16 Not used.

BC 75-ohn G.703 Outconnectors

16 Not used.

Protection switch moduleconnectors

8 Not used.

Page 677: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 HDSL modem shelf

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–37

HDSL modem shelf and pin connections

121110987654321

MODEMS

MODEM

MANAGER

13–16

NOT

SLOT 1

SLOT

11

G.703 120 Ohm 15 Way D

HDSL 9 Way D

POPULATED

SLOT

12

SLOT

13

SLOT

14

SLOT

15

SLOT

10

SLOT 2

SLOT 3

SLOT 4

SLOT 5

SLOT 6

SLOT 7

SLOT 8

SLOT 9

SLOT

16

BSS11_Ch6_13

The connectors will be referred to in the following manner:

15 Way D: Jx(G703).[pin number] e.g. slot 7, pin 5 is J7(G703).5

9 way D: Jx(HDSL).[pin number] e.g. slot 7, pin 5 is J7(HDSL).5

Page 678: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power supply system

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–38

Power supply system

Overview ofpower supplysystem

The CU –48 V dc input supply is routed via the input studs on the top panel to the PowerDistribution Unit (PDU). The PDU contains all the –48 V dc and +27 V dc distributioncircuit breakers.

The –48 V dc is routed to the Integrated Power Supply Modules (IPSM), the HDSLmodem shelf and the CPB. The +27 V dc, generated by the IPSMs, is routed to thecabinet fans and DAB. An auxiliary +27 V dc is also fed to the CPB from the DAB.

The HDSL boards (LTUs and EMU) have on-board power converters which are poweredfrom the –48 V dc supplied from the PDU.

There are three compartments at the base of the BSU assembly for the IPSMs. TheIPSMs supply all the power for the full size and half size boards within the BSU cage.

IPSM

The Integrated Power Supply (IPS) system for each BSU in a positive earth (–48 V/–60 Vdc) system consists of up to three plug-in IPSMs.

The IPSM is a switching type dc – dc power converter that converts the cabinet dc inputpower to the following dc outputs:

� +27.5 V ���� 5 % at 45 A (full load current).

� +5.1 V ���� 2 % at 87.5 A (full load current).

� +12 V ���� 5 % at 2.5 A (full load current).

� –12 V ���� 5 % at 2.5 A (full load current).

The BSU backplane connects the outputs of each IPSM in parallel.

When three IPSMs are fitted in the IPS system, they load-share as follows:

� Two IPSMs provide sufficient power for a fully equipped BSU.

� The third IPSM provides n + 1 redundancy.

An IPSM in an alarm condition sends an alarm message to the master GPROC2 via theserial bus.

Page 679: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power supply system

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–39

Location diagram of IPSMs

IPSMs

ACTIVE LED (GREEN) – ONWHEN ALL OUTPUTVOLTAGES ARE PRESENTAND WITHIN TOLERANCE.

ALARM LED (RED) – ONWHEN ONE OR MOREALARM CONDITIONS EXIST.OFF WHEN NO ALARMCONDITION EXISTS.

+ 5 V RTN (GROUND FOR +5 V OUTPUT)+ 5 V RTN (GROUND FOR +5 V OUTPUT)

C GND (CHASSIS GROUND)V RTN (0 V INPUT)V IN (–48 V/–60 V INPUT)

25-PIN D-TYPECONNECTOR(FEMALE)

(REAR VIEW)

+27.5 V RTN+27.5 V (OUTPUT)

(FRONT VIEW)

BSS11_Ch6_14

Page 680: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power supply system

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–40

Functionaldescription ofIPSM

The IPSM has six main functions.

� Normal operation.

� Redundancy.

� Power supply shutdown.

� Monitoring circuits.

� Circuit protection.

� LED displays.

Normal operation

When plugged into the backplane, all IPSM power outputs are connected in parallel.During normal operation, the IPSMs equally share load current demand of the CU loads(BSU boards, cabinet fans, DAB and CPB).

Redundancy

Two IPSMs can provide adequate operating power for all modules in a CU. A third IPSM can be added for redundancy (n + 1 redundancy). For small configurationsone IPSM can provide adequate operating power, with a second added for redundancy.

Power supply shutdown

In the event of a malfunction of an IPSM, the IPSM inhibits itself and will not cause theother IPSMs to go out of service.

The malfunctioning IPSM illuminates its red alarm LED, and informs the GPROC2 of itsfault condition.

Monitoring circuits

Parallel output connections allow each IPSM to sense its own output lines for:

� Output voltage regulation.

� Over-voltage protection to shut the IPSM down if the output voltage exceeds 1.2 to1.3 times the rated output.

� Over-current protection to latch the power supply off (after a short delay for largeoverloads) if the output current exceeds:

– 1.05 to 1.3 times the full load rating of the +5.1 V dc output.

– 1.05 to 2 times the full load rating of the +12 V dc and –12 V dc outputs.

The BSU shelf GPROC2 monitors the status of each IPSM via a serial alarm link on thebackplane for:

� Loss of dc input voltage.

� Loss of output voltage.

� Overtemperature.

� Loss of serial link.

Page 681: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power supply system

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–41

IPSM diagram

SERIAL LINK

VOUT (+27.5 V)

VOUT (–12 V)

BACKPLANE CONNECTOR

REDLED

GREENLED

VIN (–48 V/–60 V)

POWERCONVERTER

ANDSYSTEMMONITOR

VOUT (+12 V)

VOUT (+5 V)

INPUT FAILOUTPUT FAILOVERTEMPERATURE

BSS11_Ch6_15

Page 682: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power supply system

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–42

Circuit protection

Additional internal IPSM circuit protection includes:

� Input dc reverse polarity protection to prevent IPSM damage using an input seriesdiode that blocks reverse voltages.

� Thermal protection to send an alarm message to the GPROC via the serial port,then shut the IPSM down, if the IPSM ambient temperature exceeds a safe level.

After an alarm condition has ceased, normal IPSM operation is automatically restored.

LED display

Two LEDs are mounted on the front of the IPSM to indicate the following:

� Active (Green): on when all output voltages are present and within specified limits.

� Alarm (Red): on when one or more alarm conditions exist.

Page 683: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power supply system

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–43

Page 684: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Power Distribution Unit (PDU) components

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–44

Power Distribution Unit (PDU) components

Overview of PDU

The PDU is located on the top shelf of the cabinet and:

� Distributes dc power throughout the cabinet.

� Provides an alarm interface.

It consists of:

� A Distribution Alarm Board (DAB).

� A circuit breaker panel containing seven dc circuit breakers.

Input power

DC input power is applied at the interconnection panel on top of the cabinet and is routedto:

� The VIN bus bar.

� The earth (GND) bus bar in the PDU.

A second bus bar obtains +27 V dc power from the integrated power supply modules(IPSMs) in the lower BSU.

Circuit breakers

The seven circuit breakers distribute power to units within the cabinet.

� CB1 (60 A) provide the main input switch and power to the CPB.

� CB2 to CB4 (30A) provides –48/–60 V dc to the IPSMs in a positive earth cabinet.

� CB5 (1 A) provide –48 V dc to the CPB.

� CB6 (2 A) provide –48 V dc to the HDSL modems.

� CB7 (3 A) provide +27 V dc to the DAB.

Page 685: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Power Distribution Unit (PDU) components

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–45

Page 686: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–46

The Distribution Alarm Board (DAB)

Purpose of DAB

The DAB:

� Distributes +27 V dc to units within the cabinet via 25 fuses (only four are used).

� Monitors alarm lines.

� Passes individual alarms to the master GPROC2.

The DAB processes operational failure signals from:

� Ruptured fuses.

� The fan stall sense line from each cooling fan.

Two bi-coloured LEDs (D43 and D8) are mounted on the DAB to indicate DAB andcabinet-based faults. The other LEDs indicate fuse failures as shown in the tables in thissection.

Page 687: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–47

DAB diagram

�� �� ���� ��

������ ������ ������ ���

���

���

��� ��� �����������

�� ���������

��

���

���

��� ��

���

��

������

��

��

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

��

���

���

���

���

����

���

��

���

� ��������

DISRIBUTION ALARM

CABINETFAILURE

WARNINGLIVE

TERMINALS

DIL SWITCHSETTING FOR

BATTERYNO ALARMS

ALARMS

OR BATTERYBACKUPNOT USED

DIL SWITCH

DIL SWITCHSETTING

LEFT SIDE

RIGHT

DIAGRAM OF

ACTUAL DIL

DIAGRAM OF

SWITCHES

DIAGRAM OF

BOARD LABEL(DIL SWITCH SETTINGS)

S2

S1

BATTERY AND

DAB FAIL NOTUSED

NOTUSED

NOTUSED

NOTUSED

NOTUSED

NOTUSED

NOTUSED

NOTUSED

NOTUSED

SIDE

NOTUSED

NOTUSED

NOTUSED

NOTUSED

NOTUSED

0.5AFAN 2

2.0ACPB PWR

0.5AFAN 1

0.5AFAN 0

NOTUSED

NOTUSED

NOTUSED

NOTUSED

NOTUSED

NOTUSED

F23F24F25F26

ALARMS

BSS11_Ch6_DAB_diagram

Page 688: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–48

Fuses and LEDs

Table 6-13 details the functions of the DAB fuses and LEDs used in the CU cabinetversion. A description of the ’not used’ fuses is included for completeness, see notebelow.

Table 6-13 DAB fuses and LEDs

Fuse Rating Power to LED

F4 0.5 A Not used D27

F5 0.5 A Not used D29

F6 0.5 A Not used D31

F7 0.5 A Not used D24

F8 0.5 A Not used D21

F9 0.5 A Not used D23

F10 0.5 A Not used D22

F11 0.5 A Not used D25

F12 4 A Not used D28

F13 4 A Not used D26

F14, F15 4 A Not used D30

F18 2 A Not used D42

F19 0.5 A DAB supply no LED

F20 2 A Not used D40

F21 2A Not used D33

F22 2A Not used D37

F23 2 A CPB D41

F24 0.5 A Fan 2 D38

F25 0.5 A Fan 1 D35

F26 0.5 A Fan 0 D32

F27 2 A Not used D36

F28 2 A Not used D39

F29, F30 4 A Not used D34

If one of the ’not used’ fuses fails, then the DAB will report an alarm. Seecategory 523 for CU cabinet dc power distribution . The CU functionality willnot be effected by the active alarm. The necessary action would be to replacethe failed fuse and the alarm will be cleared.

NOTE

Page 689: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–49

Page 690: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–50

Switch settings

DAB switches S1 and S2 set the following configurations in the CU:

Table 6-14 DAB switch settings

Function Switch Position Setting

VSWR1 (Sector 1) S1 1 OFF

VSWR2 (Sector 2) S1 2 OFF

VSWR3 (Sector 3) S1 3 OFF

Spare S1 4 OFF

Battery backup O/P 2 S1 5 ON

Battery backup O/P 1 S1 6 ON (Set to OFF when alarmsare enabled in BBBX)

Battery backup I/P 2 S1 7 ON

Battery backup I/P 1 S1 8 ON (Set to OFF when alarmsare enabled in BBBX)

DRCU5 S2 1 OFF

DRCU2 S2 2 OFF

DRCU4 S2 3 OFF

DRCU1 S2 4 OFF

DRCU3 S2 5 OFF

DRCU0 S2 6 OFF

Spare S2 7 OFF

BB ID S2 8 ON (Set to OFF when theBBBX functionality is notutilized)

Alarm functions

The DAB produces alarms for several different devices and modules:

For this Horizonoffice configuration most of the DAB is not used.

NOTE

� 25 fuses : the CU utilizes 4 off only.

� Six circuit breakers : these alarms are not applicable for the function of the CU.

� Six fan alarms : the CU utlizes 3 off only, with the three original fan alarms nowreused as CPB reporting alarms.

Each signal from the fuse alarms is at a nominal +27 V dc level and is brought to a TTLhigh level. Under no-fault conditions, the TTL output is held at a high level.

The Addressable Asynchronous Receiver/Transmitter (AART) has eight status inputs,which are routed to the master GPROC2, via the BSU backplane. These are multiplexedto obtain the required alarm functionality.

Page 691: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–51

Page 692: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–52

Visual warnings

Each +27 V dc (nominal) fuse protected branch circuit that powers cabinet equipmenthas a corresponding LED indicator on the DAB. The LED lights if the fuse is ruptured bya fault condition, and the associated alarm line goes low.

The DAB also provides visual warnings for alarms via two bi-coloured LEDs:

� D43 indicates any internal cabinet failure.

� D8 indicates a fuse failure on the DAB only.

Both LEDs are driven by the master GPROC2 in response to alarms generated by theDAB; red indicates an alarm, otherwise the LEDs remain green. If the master GPROC2is not running then both LEDs default to red.

Communicatealarms

The master GPROC2 polls the DAB for alarm status via the serial bus. The masterGPROC2 always initiates connections, in which all modules respond with status reportson the serial bus.

The DAB indicates operational failure reports from the following:

� Ruptured fuses.

� Protected side of circuit breakers (except DPS circuit breakers, which aremonitored by the master GPROC2 directly).

� Fan stall sense line from each cooling fan.

� Hardware failures reported directly to the DAB are individually sent to the masterGPROC2 via the serial bus.

The serial bus circuitry is powered by + 5 V dc which powers the digital BSU. The powersupplies that provide this +5 V dc (as well as � 12 V dc) deliver isolated outputs.

Thus all devices in the serial bus circuit have a return that is floating (digital) earthrelative to the cabinet (main) earth (all internal 0 volts are isolated from the incoming 0volts which aids noise immunity). However, many of the alarm signals are referenced tocabinet earth.

Page 693: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Distribution Alarm Board (DAB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–53

Page 694: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cabinet Protection Board (CPB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–54

Cabinet Protection Board (CPB)

Purpose ofCabinetProtection Board(CPB)

A smoke detector is fitted within the Horizonoffice as it may be situated withinan office environment.

In many parts of the world, when a smoke detector is fitted the cost ofinsurance is reduced.

NOTE

The CPB provides the following:

� Alarms to the DAB.

� Senses the presence of smoke in the CU.

� Senses the overtemperature conditions within the CU.

� Interrupts the main input circuit breaker.

Requirement ofCPB

The CPB is fitted on the underside of the the top panel.

CPB connections

These are:

� PL1 –48 V dc supply and main circuit breaker trip coil connector (8 way).

� PL2 Smoke detector connector (6 way).

� PL3 Thermostats connector (4 way) .

� PL4 DAB connector (10 way).

Page 695: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cabinet Protection Board (CPB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–55

Cabinet Protection Board (CPB) diagram

PL1

DC/DC POWERMODULE

C47

C4 C46

C3C1

C2 F1F2

L3L2

U3

L1

D7

D6

D8

Q10

S1

M4 STANDOFF AND M4 SCREW POSITIONS

M4 STANDOFF AND M4 SCREW POSITIONS

–48v

PR

ES

EN

T

TH

ER

MO

STA

T 1

AC

TIV

E

TH

ER

MO

STA

T 2

AC

TIV

E

+27

V P

RE

SE

NT

SM

OK

E F

AIL

SM

OK

E

DE

TE

CT

ED

TR

IP F

AIL

CPB PLASTIC COVER LABEL

SMOKE

TEST

SW1

M4 STANDOFF AND M4 SCREW POSITIONS

INDICATION LEDSsee below for description

M4 STANDOFF

M4 SCREW

FRONT EDGE OF BOARD AS SEEN WHEN FITTED IN CU

INDICATION LEDSsee below for description

PL2

PL3

PL4

BSS11_Ch6_16

Page 696: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Cabinet Protection Board (CPB)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–56

Specifications ofCPB

The specifications are divided into:

� Supply voltages

� Input to Output isolation

� Smoke trip delay

Supply voltages

The CPB is powered from the main cabinet –48 V dc supply via its own dedicated circuitbreaker. It is also powered from the 27 V dc supply derived from the DAB.

Protection

The CPB reports an alarm for the following conditions:

� Cabinet over temperature:

Internal cabinet over temperature sensed.

� Cabinet smoke detection:

Internal cabinet smoke detected.

� Cabinet protection fail:

loss of –48 V dc supply CPB.

loss of connection to main input circuit breaker trip coil.

The CPB performs a cabinet power shutdown for the following conditions:

� Cabinet over temperature sensed.

� Cabinet smoke detected.

Smoke alarm and trip

If the CPB detects an active signal from the smoke detector, the CPB sends a smokealarm signal to the DAB. A nine second timer period, allows the alarm to be reported atthe Operations and Maintenance Centre (OMC), prior to the CPB shutting down thecabinet power.

The power to the system will remain off and will require manual resetting of the circuitbreaker to get the system back on.

Over-temperature alarm and trip

If the CPB detects an active signal from one of the two cabinet thermostats, the CPBsends a “cabinet over temperature alarm” to the DAB. If the CPB then detects an activesignal from the second thermostat, in addition to the first, the CPB will trip the maincircuit breaker thus shutting down the cabinet power.

The power to the system will remain off and will require manual resetting of the circuitbreaker to get the system back on.

Page 697: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Cabinet Protection Board (CPB)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–57

Page 698: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Fan cooling

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–58

Fan cooling

Overview of fancooling system

The cooling system, in conjunction with the correct use of shelf airflow deflectors,provides adequate cooling for all cabinet equipment. The fan tray assembly containsthree fans; each fan has a fan stall sensor which is connected to alarm circuits in theDAB through connector PC5.

Location of fancooling system

The fan tray assembly is mounted directly below the BSU shelf assembly.

Requirements forfan cooling

Power for the fans is derived from the +27 V dc busbar and is routed to the +27 dc Vterminal on the DAB, then from connector PC9 on the DAB to the fans.

Page 699: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Fan cooling

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–59

Page 700: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarm processing

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–60

Alarm processing

Introduction toalarms

This section describes the Horizonoffice CU alarms. The alarms generated are basedupon those handled by the DAB, plus an additional three new alarms. The CU alarm listconsists of:

� Active DAB alarms (a subset of the standard DAB alarm list).

� IPSM alarms via BCUP

� ‘New” CPB based alarms

� External Alarms Interface

Requirements forCU alarm system

The CU system utilizes the existing ‘Internal Alarm System (IAS)’, ‘External AlarmSystem (EAS)’ and Base station Control Unit Power supply system (BCUP) alarmsystems. In addition, three new alarms are incorporated to allow the cabinet to featuretwo M-Cell based protection systems:

� Cabinet overtemperature - alarm and shutdown.

� Smoke detected - alarm and shutdown.

� Cabinet protection system fail.

Controller powersystem alarms

The cabinet alarms supported are based upon those available via the DAB. The overallcabinet still reports IPSMs (cabinet power supplies) alarms via the BCUP serial buswithin the BSU digital board cage.

Up to sixteen ‘EAS’ inputs and eight ‘EAS’ outputs, are available for customeruse, with the use of two ‘PIX’ boards located within the 3U high section of thedigital board cage.

Page 701: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarm processing

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–61

CU DAB alarm tableTable 6-15 defines the alarms reported via the DAB, when used in the CU.

Table 6-15 CU DAB alarms

A2 A0Bits

S7MSB

0

S6 1

S5 1

S4 1

S3 1

S2 1

S1 1

S0 1

000D0

NOALARM

27 V dcDAB

SupplyF19

NOALARM

BatteryBackupOutputs

27 V dcDAB

SupplyF19

LS Fan 0 F26

NOALARM

NOALARM

001D1

NOALARM

27 V dc DAB

SupplyF19

NOALARM

BatteryBackupOutputs

NOALARM

LS Fan 1 F25

NOALARM

NOALARM

010D2

NOALARM

27 V dc DAB

SupplyF19

CabinetProtection

SystemFail

(was fan5 Alarm)

BatteryBackupOutputs

NOALARM

LS Fan 2 F24

NOALARM

NOALARM

011 D3 NOALARM

27 V dc DAB

SupplyF19

SmokeDetected(was fan4 Alarm)

BatteryBackupOutputs

NOALARM

NOALARM

NOALARM

NOALARM

100 D4 NOALARM

27 V dc DAB

SupplyF19

CabinetOverTempAlarm

(was Fan3 Alarm)

BatteryBackupOutputs

NOALARM

NOALARM

NOALARM

NOALARM

101D5

NOALARM

27 V dc DAB

SupplyF19

Fan 2Alarm

BatteryBackupOutputs

NOALARM

NOALARM

NOALARM

NOALARM

110 D6 NOALARM

27 V dc DAB

SupplyF19

Fan 0Alarm

BatteryBackupOutputs

NOALARM

NOALARM

NOALARM

NOALARM

111D7

NOALARM

27 V dc DAB

SupplyF19

Fan 1Alarm

BatteryBackupOutputs

NOALARM

BatteryBackupInput

NOALARM

NOALARM

BSS11_Ch6_17

& BSS11_Ch6_18

The S0 to S7 and A2 and A0 bits relate to ‘multiplexer’ coding of the alarm bits upon the DAB, andpermits the GPROC 2 to decode the information and report the appropriate alarm to the OMC.

Page 702: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarm processing

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–62

Controller alarmdetails

Details of the three new alarms are given below.

Cabinet over temperature

This alarm is generated when the overtemperature thermostat “T2” reaches its set pointat +65 oC.

A +70 oC set-point thermostat, “T3” removes power from the BSU, by disabling theIPSMs. A third thermostat, “T1”, with set-point at +80 oC, causes the CPB to remove allpower from the CU cabinet

The ‘overtemperature’ shutdown sequence is outlined in Table 6-16.

Table 6-16 Over temperature shutdown sequence

No Alarm Description

1 Overtemperature conditiondetected

“Cabinet Over Temperature”

Generated by the CPB and ’T2’.

T2 = +65 oC When the cabinet overtemperature alarm isactivated, the cabinet is running in an excessambient temperature condition.

If the excessive ambient condition furtherdeteriorates the cabinet power system shutsdown.

2 Overtemperature conditiondetected - IPSM Inhibit level

This condition disables the IPSMs, via ’T3’,and their enable line.

T3 = +70 oC The IPSMs inhibit their outputs so all power tothe BSU card cage is removed, so effectivelythe site will shut down.

3 Overtemperature condition -trip level

This condition is initiated by the CPB plus ’T1’and ’T2’.

T1 = +80 oC The power system opens the main input ECB.

This action removes the –48 V dc input supplyto the IPSMs and the HDSL modem shelf.

4 None A site visit is required in order to reset the maininput ECB.

The ECB should only be reset once the cause of the overtemperature conditionshave been found and rectified.

The power system will keep the input ECB closed until the shutdown thermostat’T1’ has cooled to its reset temperature level.

Page 703: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarm processing

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–63

Diagram of CU cabinet

BSS11_ch6_19

CABINET PROTECTION

FAN TRAY

IPSMs

3U DIGITAL CAGE

STANDARD BSUDIGITAL CAGE

HDSL MODEM RACK

DAB

INPUT ECBs

–48Vdc INPUT

THERMOST ATS :”T1”, ”T2” AND ”T3”

SMOKE DETECT OR(NOT SHOWN)

BOARD (CPB)

6U DIGITAL CAGE

(3 FAN UNITS)

Page 704: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarm processing

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–64

Cabinet smoke detected

This alarm is generated when the cabinet power system detects smoke within thecabinet.

The shutdown sequence is outlined in Table 6-17.

Table 6-17 Smoke detected shutdown sequence

No Alarm Description

1 Smoke detected - alarm level

“Smoke Detected”Once smoke is detected, the alarm isactivated.

2 Smoke detected After a delay of approximately nine seconds,the power system opens the main input ECB.

This action removes the –48 V dc input supplyto the IPSMs and the HDSL modem shelf, sothat all the power is lost within the cabinet.

3 None A site visit is required in order to reset the maininput ECB.

The ECB should only be reset once the cause of the smoke detection hasThe ECB should only be reset once the cause of the smoke detection hasbeen found and rectified.

Cabinet protection system fail

This alarm is generated when there is a failure upon the CPB which performs theovertemperature alarm/trip and smoke detection alarm/trip functions within the cabinet.

Page 705: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarm processing

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–65

Page 706: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Digital Modules

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–66

Digital Modules

Introduction

This part of section 6 describes the digital modules used in the controller unit (CU). Inthis chapter digital modules will be referred to as digital boards.

The digital boards fit into the Base Shelf Unit (BSU) and HDSL modem shelf, describedearlier in this section.

Full size boards

Full size boards fit into slots in the card cage of a BSU. In the BSU, the slots arenumbered, right to left, from L0 to L28.

The following sections describe the full size boards that can be mounted in a BSU. Thequantity fitted depends upon the specific configuration of the BSU and HDSL modemshelf.

The following full size boards are mounted in a BSU shelf:

� Generic Processor (GPROC2).

� Bus Terminator Card (BTC).

� Kiloport Switch (KSW).

� Generic Clock (GCLK).

� Multiple Serial Interface (MSI).

A brief overview of the boards’ functionality will be given in this section, as full sizeboards were described fully in section 3.

Half size boards

Half size digital boards provide interface extension for the full size boards, enabling unitinterconnection.

The boards fit into slots in the upper card cage of a BSU shelf. The slots are numbered,right to left, from U0 to U28.

The following half size boards are mounted in a BSU shelf:

� Battery Backup Board (BBBX).

� Local Area Network Extender (LANX).

� Management Interface Extender (MIX).

� Parallel Interface Extender (PIX).

A brief overview of the LANX, PIX and BBBX will be given in this section as they werefully described in section 3. The MIX board functionality will be covered extensively.

Page 707: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Digital Modules

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–67

Diagram of BSU connectors

AI0AI1AI2

MS0 TO HDSL SHELF)

MS1 (TO E1 LINKS)

MS2 (TO HDSL SHELF)

MS3

KS1

GK0

KS0

DR5DR4

DR3DR2

DR1DR0

PART OF BSU BACKPLANE

FULL SIZEBOARDS

HALF SIZEBOARDS

BLANKINGPLATE

IPSM DISABLE

(CONNECTS TO TOPPANEL THERMOSTAT)

LANX

MIX

PIX

BBBX

SOME BLANK

SENSE CONNECTOR

(NOT USED)

BSS11_Ch6_20

Page 708: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2HDSL modem boards

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–68

HDSL modem boards

Introduction toHDSL modemboards

There are two types of board within the HDSL modem shelf.

� The LTU LIne Terminal Unit (LTU) is an European Telecommunication StandardInstitute (ETSI) compliant High bit-rate Digital Subscriber Line (HDSL) card.

� The EMU-830 is an Exchange Office Management Unit (EMU). The EMU-830provides fault, alarm, configuration and performance management of HDSL circuitsdeployed.

In the HDSL modem shelf, the slots are numbered left to right, 1 to 16, EMU.

Page 709: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 HDSL modem boards

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–69

Diagram of HDSL modem shelf

ig.054.rh

16 D9F HDSLCONNECTORS

16 BNC 75 OHM G.703OUT CONNECTORS

EXTERNALCLOCK PORT(EXT CLK)

16 D15F OHM G.703CONNECTORS

16D25F DATA PORTCONNECTORS

16 NMC 75 OHM G.703

IN CONNECTORS

D25F RS–485CONNECTOR

10Base2 PORT

10BaseT PORT

FIVE POSITION –48Vdc POWER TERMINALSTRIP

�������������� �����

������ �����

���

D25 ALARMCONNECTOR

BSS11_CH6_21

Page 710: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–70

The Generic Processor (GPROC2)

Purpose ofGPROC2

The GPROC2 board provides the processing power to control a BSC, RXCDR or BTS.The GPROC2 cannot be used with software loads prior to GSR2.

GPROC2s in a BSU exchange control signalling in several ways:

� A token ring LAN. The LAN can link processors in several shelves via fibre opticcable.

� A Motorola Cellular Advanced Processor (MCAP) bus, which extends theprocessor address, data and control buses to peripheral modules in the sameshelf.

� A serial bus, which communicates alarm information between GPROC2s and halfsize boards. This serial bus extends to the power distribution unit.

� The active Time Division Multiplex (TDM) highway.

Requirements ofGPROC2

The GPROC2 board fits into:

Slots L19 to L25 in a BSU shelf assembly.

Each BSU requires at least one GPROC2.

GPROC2 board

Brief descriptionThe GPROC2 board contains:

� A Motorola MC68040 32-bit processor operating at 33 MHz.

� The LAN processors, which are the interface between the GPROC2 and the tokenring LAN.

� The COMM processor which, in conjunction with the TDM interface controller, isthe interface between the GPROC2 and the TDM highway.

CommunicationThe GPROC2 communicates with other full size boards via the MCAP bus, and with halfsize modules (and modules not on the BSU shelf) via the BSS serial bus.

The LAPD processor and the TDM interface controller communicate via a high-speedprivate bus. The private bus arbiter is the interface between the MC68040 address/databus and the high-speed private bus.

The parallel port controls output signals to the front panel LEDs, and receives inputsignals (via the register ports) from the backplane. These contain:

� Shelf ID.

� Slot ID.

� Backplane type.

� Backplane revision level.

Page 711: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Processor (GPROC2)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–71

GPROC2 block diagram

RESET/DISABLESWITCH

BACKPLANE CONNECTOR

WATCHDOGTIMERS

TIMINGCONTROL

PROCESSORMC6804033 MHz

DATA/ADDRESSBUS

LAN ADRAM

LAN APROC

LAN BPROC

LAN BDRAM

LANINTERFACE

LAN A

LAN B

LAPDPROC

EXT CACHE128 K

MAIN DRAM(16 – 64 Mb)

EEPROMNVRAM

BUSSIZER

TDMINTERFACE

MCAPINTERFACE

SERIAL BUSCONTROLLER

PERIPHERALBUS

TDM A

TDM B

MCAP A

MCAP A

SERIAL BUS A

SERIAL BUS BTTY TESTCONNECTOR

LANBUS

BSS11_Ch6_22

Page 712: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Bus Termination Card (BTC)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–72

The Bus Termination Card (BTC)

Purpose of BTC

The BTC terminates the backplane to keep signals on a BSU at the proper TTL level.

The BTC terminates:

� Both MCAP buses.

� Both reference clocks.

� All TDM buses (Expansion, Remote and Local).

Requirements ofBTC

Two BTC boards must be fitted in the BSU shelf, in slot L0 and slot L28, at all times.

While a faulty BTC is being replaced, another BTC must be fitted in a KSW slot tomaintain the above requirement.

Page 713: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Bus Termination Card (BTC)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–73

BTC board

BSS11_ch6_23

BACKPLANECONNECT OR

Page 714: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–74

The Kiloport Switch (KSW)

Purpose of KSW

The KSW board is a time division digital switch, and:

� Performs timeslot interchange for the active TDM highway.

� Communicates with the controlling GPROC2 via the MCAP bus.

� At a BSC, routes the logical channels dynamically on a per-call basis.

Requirements ofKSW

The KSW module fits in the following slots in a BSU shelf assembly:

� L27 for TDM highway A.

� L01 for redundancy (TDM highway B).

Brief descriptionof KSW

Refer to the KSW block diagram at the end of this section.

A Motorola MC56001 Digital Signal Processor (DSP) controls the KSW internally. TheDSP:

� Executes port connects between the switchbound TDM highway and the outboundTDM highway.

� Controls the Timeslot Interchange (TSI) section via the connection RAM controlsection.

� Performs on-line and off-line self diagnostics, including:

– Internal (KSW-related) tests.

– External (TDM bus-related) tests.

� Controls inbound and outbound multiplexers.

� Processes alarms.

� Updates the dynamic pattern registers.

The DSP communicates via the MCAP bus interface logic, the DSP data/address bus,and the serial interface logic.

Page 715: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Kiloport Switch (KSW)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–75

KSW block diagram

TIMINGREFERENCE

LOGIC

MCAP BUS A

MCAP BUS B

MCAP BUSINTERFACE

LOGIC

52

52 } 2 FOR REDUNDANCY

MC5600127 MHz

A CLOCK & REFERENCE CLKS (16.384 MHz, 125 us, 60 ms, AND 6.12 s)

B CLOCK & REFERENCE CLKS (16.384 MHz, 125 us,

60 ms, AND 6.12 s)

TDMCOUNTERS

GSMCOUNTERS

DS

P D

ATA

/AD

DR

ES

SERIALINTERFACE

LOGIC

WATCHDOGTIMER

TTY INTERFACE

MUX LOCAL SWITCHBOUND HWY 0

REMOTE SWITCHBOUNDHWY 0

MUX

MUX

HIGHWAYCONTROL

MUX

MUX

TIME SLOTINTERCHANGE

(TSI)

REMOTE KSWX HWYINTERFACE CONTROL

EXPANSION SWITCHBOUNDHWY 1

EXPANSION SWITCHBOUNDHWY 2

EXPANSION SWITCHBOUNDHWY 3

DELAY

TIME SLOTINTERCHANGE

(TSI)

TIME SLOTINTERCHANGE

(TSI)

TIME SLOTINTERCHANGE

(TSI)

CONNECTIONRAM CONTROL

HIGHWAYMONITOR

DS

P D

ATA

/AD

DR

ES

TSI MODE MUX

THIRDPARTY

CONFERENCEMEMORY

FIXED/DYNAMICPATTERN

REGISTERS

SU

B–R

AT

E

FU

LL–R

AT

E

SO

UR

CE

0

SO

UR

CE

1

OU

TB

OU

ND

SE

LEC

T M

UX

OUTBOUNDCONTROL

RAM

REMOTE OUTBOUND HWY

HIGHWAYMONITOR

PARITYGENERATOR

MUX

DELAY

DELAY LOCAL OUTBOUND HWY

PARITYGENERATOR EXPANSION OUTBOUND HWY

INTERRUPTLOGIC

RED LED

GREENLED

+12 V

–12 V

+5 V

GND

DIS

TR

IBU

TIO

N T

O

LOO

P

BA

CK

LOO

P

BA

CK

OT

HE

R K

SW

CIR

CU

ITR

Y

DSP

RESET/DISABLESWITCH

BACKPLANECONNECTOR

BSS11_Ch6_24

Page 716: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Generic Clock (GCLK)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–76

The Generic Clock (GCLK)

Purpose of GCLK

The BSU is equipped with the GCLK board. This provides the network and sitesynchronisation for the BCU shelf and to the HDSL modem shelf. The master TDM clockis normally synthesized from a 16.384 MHz � �.05 ppm stable reference (temperaturestabilized crystal oscillator) either free running or locked to a 2.048 MHz clock recoveredfrom one of the E1 lines.

Requirements ofGCLK

The GCLK board fits in slots L3 and L5 in the BSU shelf assemblies. The module is twoslots wide and covers L2/L3 and L4/L5.

There must be a GCLK board in either slot L3 or L5.

A second GCLK board in slot L5 provides n + 1 redundancy.

Brief description

Refer to the functional block NO TAG at the end of this section.

The GCLK board generates all timing reference signals required by the CU:

� 16.384 MHz TDM clock.

� 125 �s frame reference.

� 60 ms synchronization reference.

� 6.12 s superframe reference.

The GCLK is phase-locked to the recovered clock of a selected E1 line from an MSIboard. If the recovered clock signal is lost, and no Long Term Average (LTA) is availableupon which to synchronize, then the GCLK free-runs, providing reference stability betterthan 0.05 ppm. The module incorporates self-diagnostics to detect and isolate boardfaults and to select a redundant board in the event of module failure.

When a redundant GCLK is present, the GCLKs operate in a master/slave configurationwith the slaved outputs synchronized to the master. If an error is detected, the clockcontrol circuit reverses the master/slave status of the two GCLKs. Fault status isreported to the main processor via the MCAP bus.

Page 717: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Generic Clock (GCLK)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–77

GCLK block diagram

MUX

MUX

MUX

MUX

MUX

ENCODED CLK IN

6.12 s REF FROM MATE GCLK60 ms REF FROM MATE GCLK

125 us REF FROM MATE GCLK

16.384 MHz CLK FROM MATE GCLK

ENCODED CLK TO CLKX

ENCODED CLK TO MATE GCLK

REFERENCEOSCILLATOR

REFERENCEENCODER

125 usREFERENCE

COUNTER

60 msREFERENCE

COUNTER

6.12 sREFERENCE

COUNTER

BACKPLANE CONNECTOR

MUX

MASTER/SLAVE

OUTPUT ENABLECLOCK CONTROL /

ALARM LOGIC

REFERENCEFAIL

DETECT

6.12 s REF TO BACKPLANE

6.12 s REF TO MATE GCLK

60 ms REF TO BACKPLANE

60 ms REF TO MATE GCLK

125 us REF TO BACKPLANE

125 us REF TO MATE GCLK

16.384 MHz CLK TO BACKPLANE

16.384 MHz TO MATE GCLK

RED LED

GREEN LED

E1/T1 CLOCK REF A

RESET/DISABLESWITCH

TEST CONNECTOR

TEST CONNECTOR

TEST CONNECTOR

TEST CONNECTOR

MCAPINTERFACE

MCAP BUS A

MCAP BUS B

TEST CONNECTOR

125 us OUT

60 ms OUT

6.12 s OUT

16.384 MHz OUT

E1/T1 IN

E1/T1 CLOCK REF B

MASTER/SLAVE

CONTROL

CLOCKFAILUREDETECT

BSS11_Ch6_25

Page 718: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Multiple Serial Interface (MSI)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–78

The Multiple Serial Interface (MSI)

Purpose of MSIThe MSI drives two separate interface lines to and from the TDM bus.

MSI module

The MSI can drive two European 2.048 Mbit/s (E1) data lines.

One of the E1 lines is referred to as group A, the other E1 line is known as group B.

The E1 lines can come from either:

� Type 43 interconnect module (T43), (also known as a CIM).

� Balance-line Interconnect Module (BIM), (also known as a BIB).

The MSI can also extract the clock synchronization from the E1 line data stream.

An RS-232 maintenance port, to which a Personal Computer (PC) can be connected fortesting and debugging, is provided at the top of the BSU shelf.

Terminology

One wire pair (balanced or unbalanced) equals one E1 serial data stream.

Two E1 serial data streams (transmit and receive) equal one E1 line.

Requirements ofMSI

The MSI board is fitted in:

� Slots L7 to L17 of the BSU shelf assembly.

BTS initialization

An MSI must be located in at least one of the BSU locations below for BTS initializationpurposes:

� Six MSI slots (odd numbered 7, 9, 11, 13, 15 and 17) have been allocated tointerface to the HDSL modems.

� Two MSI slots (14 and 16) have been allocated to interface to the network via theT43 or BIB board.

Brief descriptionThe MSI converts signals from the E1 lines from serial format to the parallel format thatthe TDM highway requires, and converts signals transmitted to the E1 lines from parallelto serial. The MSI also provides surge protection and frame alignment.

Each serial line can carry the following to and from the active TDM highway in the BSU:

� One 64 kbit/s channel for synchronization.

� One 64 kbit/s channel for control signalling.

� Thirty 64 kbit/s channels that can each be used as follows:

– Traffic (four 16 kbit/s compressed voice/data channels each).

– Additional control channels.

These channels can be placed in any of the 1024 channels on the TDM highway underthe control of the GPROC2.

Page 719: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Multiple Serial Interface (MSI)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–79

MSI block diagram

TDMINTERFACE

LEVEL CONVERTER& E1/T1/JT1 LINETRANSMITTER

MC6800 PROCESSOR

MCAP INTERFACE

LEVELCONVERTER

MCAP BUS A

BACKPLANE CONNECTOR

WATCHDOGTIMER

REDLED

GREENLED

TDM SWITCHBOUND HIGHWAY A

TDM OUTBOUND HIGHWAY A

TDM SWITCHBOUND HIGHWAY B

TDM OUTBOUND HIGHWAY B

TTY TEST PORTRS232

DRIVERS

RECEIVE

TRANSMIT

RECEIVEDCLOCK

EXTRACTOR

EXTRACTED CLOCK REF

HDB3DECODER

CRC4DECODER

HDB3ENCODER

CRC4ENCODER

TDMINTERFACE

TDMINTERFACE

LEVELCONVERTER

TDM SWITCHBOUND HIGHWAY A

TDM OUTBOUND HIGHWAY A

TDM SWITCHBOUND HIGHWAY B

TDM OUTBOUND HIGHWAY B

RECEIVE

TRANSMIT

RECEIVEDCLOCK

EXTRACTOR

HDB3DECODER

CRC4DECODER

HDB3ENCODER

CRC4ENCODER

TDMINTERFACE

MUX

EPROM SRAM EEPROM

CO

NT

RO

L

2

2

2

2

RESET/DISABLESWITCH

IMPEDANCEMATCHING

IMPEDANCEMATCHING

IMPEDANCEMATCHING

IMPEDANCEMATCHING

MCAP BUS B

E1 LINE A

LEVEL CONVERTER& E1/T1/JT1 LINETRANSMITTER

E1 LINE B

(HDSL TO/FROMRF HEADS)

(HDSL TO/FROMRF HEADS)

BSS11_Ch6_26

Page 720: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The LANB Extender half size board (LANX)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–80

The LANB Extender half size board (LANX)

Purpose of LANX

Possible laser radiation when fibre optic cables are disconnected.Do not look directly into beams with or without the use of any opticalaids. Radiation can come from either the data in/out connectors orunterminated fibre optic cables connected to data in/out connectors.

WARNING

The LANX:

� Connects one of the LAN interfaces of each GPROC2 in a BSU shelf to the localshelf token ring LAN via the shelf backplane.

� Switches empty module slots or faulty GPROC2s out of the LAN.

� Sets the cage (BSU) ID.

� Performs on-board MCAP bus arbitration.

� Provides shelf active/standby redundant LAN control.

Shelf to shelf extension is via a LANX module in each shelf, interconnected with fibreoptic cabling.

The LANX supports up to eight GPROC2s on the local LAN in one BSU shelf.

Requirements ofLANX

LANX modules must be fitted in slots U19 and U20 of the BSU at all times.

A sixteen position (0 to F hex) rotary switch on the LANX module sets the BSU LANaddress (shelf ID number). The Horizonoffice uses the F hex position.

Brief descriptionof LANX

Refer to the block diagram at the end of this section.

Each LANX receives LAN data from another shelf via optical fibre cables and:

� Routes the LAN data to the first GPROC2.

� Receives the LAN data back from the first GPROC2.

� Routes the LAN data to the second GPROC2.

� Receives the LAN data back from the second GPROC2.

And so on until all GPROC2s in the shelf have received the LAN data.

If a GPROC2 is not present in the shelf or has failed, the LANX by-passes it and passesthe LAN data to the next GPROC2.

Page 721: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The LANB Extender half size board (LANX)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–81

LANX block diagram

FIBRE OPTICRECEIVER

FIBRE OPTICTRANSMITTER

MUX

LAN LOCAL/EXTERNAL

MUX

MUX

MUX

BUS GRANT 0

LAN DATA OUT 0

BUS REQUEST 0

LAN DATA IN 0

INSERT 0

BUS GRANT 1

LAN DATA OUT 1

BUS REQUEST 1

LAN DATA IN 1

INSERT 1

BUS GRANT 2

LAN DATA OUT 2

BUS REQUEST 2

LAN DATA IN 2

INSERT 2

GPROCSLOT 0

GPROCSLOT 1

GPROCSLOT 2

GPROCSLOT 7

GPROCSLOTS

3, 4, 5, 6

BUS GRANT 7

LAN DATA OUT 7

BUS REQUEST 7

LAN DATA IN 7

INSERT 7

BUS ARBITER

POWER FAIL DETECT &

LANLOCAL/EXTERNAL

LOGIC

SELECTSHELF ID NUMBER

BSS SERIAL BUS A

BACKPLANE CONNECTOR

BSS SERIAL BUS B

ROTARYSWITCH

SERIALINTERFACE

DC INPUTPOWER

DISTRIBUTION

Rx DATA

Tx DATA

BSS11_Ch6_27

Page 722: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Parallel Interface Extender (PIX) board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–82

The Parallel Interface Extender (PIX) board

Overview of PIX

The PIX board provides:

� An Input/Output (I/O) interface for customer site equipment.

� The interface logic between the GPROC2 and external customer alarm devicessuch as relays and switches.

� Eight optically isolated inputs and four relay outputs.

A block diagram of the PIX is shown opposite.

Requirements ofPIX

The PIX board can be normally be fitted in slots U16 and U17 of a BSU.

Page 723: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Parallel Interface Extender (PIX) board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–83

PIX block diagram

DC to DCCONVERTEROPTO–

COUPLERSURGEPROTECTION

SENSE S1SENSE D1

SERIAL BUSTRANSCEIVER

OPTO–COUPLER

SURGEPROTECTION

SENSE S2SENSE D2

OPTO–COUPLER

SURGEPROTECTION

SENSE S3SENSE D3

OPTO–COUPLER

SURGEPROTECTION

SENSE S4SENSE D4

OPTO–COUPLER

SURGEPROTECTION

SENSE S5SENSE D5

OPTO–COUPLER

SURGEPROTECTION

SENSE S6SENSE D6

OPTO–COUPLER

SURGEPROTECTION

SENSE S7SENSE D7

OPTO–COUPLER

SURGEPROTECTION

SENSE S8SENSE D8

RELAYDRIVERRELAY

N. O. 1N. C. 1

RELAYDRIVER

RELAY

COM 1

RELAYDRIVER

RELAY

RELAYDRIVER

RELAY

N. O. 2N. C. 2COM 2

N. O. 3N. C. 3COM 3

N. O. 4N. C. 4COM 4

TOCUSTOMEREQUIPMENT

EARTH

+12 V

+12 V–12 V

BSS SERIAL BUS A

BACKPLANE CONNECTOR

BSS SERIAL BUS B

62 PIN “D”CONNECTOR

FROMCUSTOMEREQUIPMENT

GREENLED

+5 V

BSS11_Ch6_28

Page 724: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Battery Backup Board (BBBX)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–84

The Battery Backup Board (BBBX)

Purpose of BBBX

If the main supply fails, the BBBX provides a backup supply of +5 V at 8 A.

The +5 V DRAM battery backup supply maintains power to the:

� Optical circuit on the LANX module.

� DRAM memory located on the GPROC2.

Normally, the IPSMs supply +5 V DRAM voltage to the BSU backplane. If the IPSMs failto deliver this due to cabinet input power failure or PSM failure, the BBBX converts anexternal backup supply to a fused +5 V DRAM supply.

Requirements ofBBBX

The BBBX board is normally positioned slot U15 of the BSU but can be fitted in anyspare half size board slot.

All connections are made at the front of the module.

Page 725: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Battery Backup Board (BBBX)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–85

BBBX block diagram

BSS11_Ch6_29

DC to DCCONVER TER

BRIDGERECTIFIER

SURGEPROTECTION

OUTPUT VOL TAGE(+5 V AT 8 A)

ALARMSIGNALS

INPUT VOL TAGE(20 TO 75 V AT 3.2

TO 0.85 A)

OUTPUT GOOD

INPUT GOOD

4 PIN ”AMP”CONNECT OR

9 PIN ”D”CONNECT OR

OVER VOL TAGE

OVERTEMPERA TURE

Page 726: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Management Interface Extender (MIX) board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–86

The Management Interface Extender (MIX) board

Purpose of MIX

The MIX board interfaces between the GPROC2 and the HDSL shelf to provide abuffered communication link, an EMU reset signal and a system clock derived fromGCLK to the modem shelf.

Requirements ofMIX

The MIX board fits normally in slot U18 of the BSU shelf assembly.

Interfaces

There are three external interfaces RS-232 (serial management data to/from EMU), TTL(serial management data to/from GPROC2 via backplane) and G703 (system clock toEMU). These interfaces are defined below.

RS-232

The MIX board provides an interface between the secondary serial bus TTL signals onthe backplane (from GPROC2) and the RS-232 signals on the EMU. This interfacepermits the GPROC2 to manage the LTUs, update their code version if required, andalso supports a hard reset signal for the EMU. The pin allocation of the RS-232 cable isshown Table 6-18.

Table 6-18 RS-232 pin connectors

Pin Signal Direction Description

2 RXD I Receive data

3 TXD O Transmit data

6 DSR I Data set ready

4 DTR O Data terminal ready

5 GND – Ground

9 HDSL_reset_n O EMU-830 hard reset (not RS232) level

Backplane

The connector is of the standard Teradyne 180 way staged pin type, as used on all BSUhalf size boards.

The MIX board supports secondary serial buses at TTL levels from two GPROC2 slots(L20 and L24). Only the bus that connects to the slot containing the BTP GPROC2 willbe active. The BTP GPROC2 tell MIX via the standard serial bus which of the secondaryserial buses to use.

Page 727: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Management Interface Extender (MIX) board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–87

Diagram of MIX board

ÄÄÄÄÄÄÄÄÄÄ

BAR CODES

REF 3 (RS-232)

REF 1 (CLK)

J2 (NOT USED)

BACKPLANECONNECTOR

BSS11_Ch6_30

Page 728: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Management Interface Extender (MIX) board

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–88

System clockand interface

This consists of the logic function and the interface.

Logic

The MIX board provides a system 2.048 MHz clock derived from GCLK. At power-up,the MIX card selects whichever 16.384 MHz clock is available (it defaults to A if both areavailable).

If both clocks are available, the GPROC2 has the ability via the standard serial bus toforce the selection of the 16.384 MHz clock on the MIX, however the MIX boardautomatically swaps the clock source if the selected clock fails.

A signal is provided via the secondary serial bus to GPROC2 identifying the current 16MHz backplane clock in use on the MIX board.

Interface

The MIX is compliant with G.703, paragraph 10.

The interface is capable of driving a 5 m 75 ohm cable.

Functionaldescription

The MIX provides two secondary serial buses for communication between the site controlbase transceiver processor (BTP) GPROC2 and the HDSL modem shelf. The MIX isinformed by the BTP GPROC2 via the standard serial bus controller which of thesecondary serial buses to use. This functional area is also responsible for informingGPROC2 on the board ID, revision level and which backplane clock is currently beingused.

The actual multiplexing/demultiplexing (MUX/deMUX) is performed by the secondaryserial bus MUX and I/O buffers, and the process for selecting the backplane clock to beused, is performed by the system clock. The backplane clock is selected by GPROC2via the standard serial bus, but block B also monitors that clock and will auto-swap if itfails.

The selected backplane clock is divided to 2.048 MHz and routed to the interface section.

The interface section comprises of interface transceivers/drivers. The system clockinterface converts the TTL level 2.048MHz clock into a signal compliant with G.703. Theremaining components of are level converters and connectors.

Page 729: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Management Interface Extender (MIX) board

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–89

Block diagram of a MIX module

BSS11_Ch6_31

BACKPLANE CONNECTOR

STANDARDSERIAL BUSCONTROLLER

RS–232 PORTINTERF ACE

CLK16.A

SECONDAR YSERIAL BUS

SLOT ID

SYSTEM CLOCK

SYSTEMCLOCK

INTERF ACE

SECONDARYSERIAL BUSMUX AND I/OBUFFERS

RESET

CONTROL ANDSTATUS

2.048 MHz

STANDARDSERIAL BUS

RESET

SER.DA T–B

CLK16.B

DSR

TxD

DTR

RESET

RxD

(FROM GPROC2SLOT L20)

SECONDAR YSERIAL BUS

(FROM GPROC2SLOT L24)

SER.DA T–A

SER.SELA

Page 730: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Line Terminal Unit (LTU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–90

The Line Terminal Unit (LTU)

Purpose of LTUThe LTU is an European Telecommunication Standard Institute (ETSI) compliant highHDSL board.The LTU drives HDSL data over two twisted pair cables to communicate with two RFheads. Data is transmitted at 1168 kbit/s to each RF head.

Requirements ofLTU

The LTU board fits into:� Slots 1 to 12.

Controls andindicators

Table 6-19 outlines the controls and indicators on the front panel of the LTU-830.

Table 6-19 Controls and indicators

Item ParameterMode

Function

HDSL loop 1 SYNC LEDHDSL loop 2 SYNC LED

Steady green HDSL loop is ready to transmitand receive data.

Blinking green HDSL loop acquisition is inprogress.

HDSL loop 1 ALM LEDHDSL loop 2 ALM LED

Steady red Loss of sync word (LOSW).

Pulsing red Pulses for every ES received.

I/F ALM LED Blinking red Loss of frame alignment or AlarmIndication Signal (AIS) received atG.703 port.

Steady red Loss of Signal at G.703 port.

The PROT SW LED shown above is not used.

The LOC and REM loop back buttons shown above cause the LTU to enter adiagnostic loopback mode. The LTU remains in this mode for twenty minutesunless the button is again depressed terminating the diagnostic mode.

This function is not supported by Horizonoffice. Consequently neither of thesebuttons should be pressed as the communication to the RF head would beinterrupted during loopback.

NOTE

V.24 (D9F) connector

The connector is not used in Horizonoffice.

Page 731: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Line Terminal Unit (LTU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–91

LTU board

PAIRGAIN

V24

1

V24 (R2-232) CONNECTOR

MOTOROLA

SYNC

ALM

SYNC

ALM

I/F

LOC

REM

LTU

WARRANTY CONTROLNUMBER LABEL

2

HDSL LEDs

LOOPBACK LEDs

ALMPROTSW

BAR CODE LABEL

BAR CODE LABEL

BSS11_Ch6_32

Page 732: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Exchange office Management Unit (EMU)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–92

The Exchange office Management Unit (EMU)

Purpose of EMU

The EMU-830 is an Exchange office Management Unit (EMU). The EMU-830 providesfault, alarm, configuration and performance management of HDSL circuits deployed.The EMU is managed by a GPROC2.

Requirements ofEMU

The EMU-830 board fits into the extreme right slot of the HDSL shelf (labelled EMU).

� The extreme right slot of the HDSL shelf (labelled EMU).

Every HDSL rack requires one EMU-830 board.

Controls andindicators

Table 6-20 Controls and indicators

Item ParameterMode

Function

POWER LED Green Indicates power to the EMU-80.

FAIL LED Red Indicates system failure*

EXT COMM LED Green Indicates when data is beingtransmitted to a managmentstation.

CRITICAL ALM LED Red Function not used.

MAJOR ALM LED Yellow Function not used.

MINOR ALM LED Yellow Function not used.

ACO LED Green Function not used.

ACO switch Function not used.

RESET switch Resets the EMU-830 hardware.

* It is normal for the FAIL LED to illuminate briefly when power isinitially applied to the EMU-830.

Alarms

The alarms are managed by software and the LEDs are for indication only.

The EMU-830 constantly monitors each of the LTU boards for alarm conditions.

Page 733: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Exchange office Management Unit (EMU)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–93

EMU board

PAIRGAIN

POWER

FAIL

EXT COMM

CRITICAL

MAJOR ALM ALM

ACO

V24

SYSTEM – STATUS LEDs

ALARMs – LEDs

ALARM CUTOFF LED ANDSWITCHRESET SWITCH

V24 (R2-232) CONNECTOR

EMU-830

WARRANTY CONTROLNUMBER LABEL

BAR CODE LABELS

MINOR

RESET

BSS11_Ch6_33

Page 734: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–94

RF head

Overview of RFhead

This chapter describes the physical and functional operation of the RF head. Alldescriptions are presented with block diagrams.

RF features

Each RF head provides a single carrier and is a single Field Replaceable Unit (FRU).

RF head

The key technical features are:

� Single carrier, Class P1 BTS.

� Integrated RF, control, equalisation, channel coding, PSU and communications.

� HDSL interface to the controller.

� Integrated power supply.

� Fixed internal antenna.

� Optional battery back up.

Externalinterfaces

The unit has ten external interfaces:

� AC power input.

� HDSL communications port.

� Multi head sync input.

� Multi head sync output.

� External alarm connections.

� Battery Pack port.

� Duplexed antenna connector (factory connected to internal antenna, optionallyconnect to external antenna).

� DC power input (AC/DC output is factory fitted to this port).

� Field diagnostic ‘Test Port’.

� RF Transceiver ‘Status’ LED

Multicarrier headmode

The Horizonoffice allows up to four RF heads to operate in a single logical cell. This isaccomplished by connecting the RF heads together, using the sync link cables provided.The sync link cable passes a timing reference from the master RF head to the slave RFheads.

The RF heads are set to operate in multicarrier mode by configuring the database.

For further details refer to the installation section of this Service Manual (Category 423).

Page 735: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF head

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–95

View of RF head, with access and appearance coversfitted

BSS11_Ch6_34

Page 736: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–96

Description of RFhead

The description is subdivided into:

� Physical.

� Power.

� RF transceiver board.

Physicaldescription of RFhead

The RF head is designed for wall and pillar mounting. The RF head is provided with twomoulded access covers and an aesthetic cover panel which should be fitted once thehead is secured in place. Once the two moulded access covers are removed, there issufficient access for installation and maintenance.

Pillar mounting is facilitated by the use of an additional bracket.

All input and output interconnections are via ‘breakout’ on the top/bottom of the accesscover or via the rear when mounted to a hollow wall.

The diagram opposite shows the location of the various modules making up the RF head.The constituent parts are detailed below.

� The RF transceiver board which provides all RF functions (RX,TX,SYNTH andloopback) and digital processing/control (capable of running CP,EQ,CC and FEP).The RF transceiver board is frequency sensitive, being available for a GSM900variant, or a DCS1800 variant.

� The DC-DC converter board which produces the primary power rails from a singleinput voltage supplied by the AC-DC converter or battery. Additionally it hascontrol circuits to switch to battery back-up and provides charging power. It hasthe connectors and interface circuitry for the HDSL input fitted and acts as acarrier for the HDSL modem card.

� An AC-DC converter that can convert a wide range AC voltage inputs to theDC-DC converter primary input voltage.

� An HDSL modem controller (mounted on the DC-DC converter).

� An internal antenna connected to the duplexed RF port. The antenna is frequencysensitive, configured for GSM900 or DCS1800.

� An optional back-up battery.

� A metal chassis which provides an EMC enclosure within which the DC-DC, RFtransceiver and HDSL boards are mounted, and mounting points for the internalantenna .

� A two piece plastic housing, provides mounting for the metal EMC enclosure,AC-DC converter, battery, cable ducting and unit mounting points (non fieldmaintainable).

� An aesthetic cover, made up of three pieces fitting over the complete unit.

Page 737: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF head

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–97

Diagram of RF head components

BATTERY PACK)

LOCATION

AC/DC CONVERTERWITHIN CLIP-ON COVER

FRONT COVER AC/DC CONVERTER

CLIP-ON COVER

REMOVEDCLIP-ON COVER

SYNC IN

SYNC OUT

DC INPUT (PL1)

ALARMSPORT (J5)

HDSL PORT

LED INDICATOR

CONNECTOR (PL3)

BATTERYCONNECTOR (PL2)

ANTENNA IN

TEST PORT

(OR OPTIONAL

DC CABLEPATH

MCX TO MCX CABLEAND CONNECTORS

(FACTORY FITTED TOANTENNA PORTS FOR

INTERNAL AERIAL)

ANTENNA OUT

BATTERY PACK

BSS11_Ch6_35

Page 738: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–98

Power system

The RF head power system comprises the AC/DC unit, the DC/DC and HDSL Board andwhen fitted, a battery pack.

Diagram of RF head power system

Opposite is a block diagram of the overall RF Head power system, showing power railsand signal link paths.

The ac/dc is a Class II, 40 W, +25 V dc output unit, with a wide ac mains input range.The nominal running current, from the ac/dc is 1.1 amps, with an additional 0.5 ampsallocated for when the battery pack is fitted and in its maximum charging mode. Theac/dc features output power limit, output over-voltage and thermal shutdown functions.

The DC/DC and HDSL board generates the supply voltages for the RF transceiver board.The typical loading on the DC/DC and HDSL board is shown in Table 6-21.

Table 6-21 Output voltage and system load

Output voltage Typical CurrentGSM900

Typical currentDCS1800

+ 6.5 V dc 1 A 1.1 A

– 6.5 V dc 45 mA 45 mA

+ 5 V dc 650 mA 650 mA

+ 3.3 V dc 1.5 A 1.5 A

One half of the board carries the dc/dc converter section, the other half carries the HDSLinterface, HDSL modem and RF head synchronism circuitry.

Page 739: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF head

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–99

RF head unit functional blocks

DC/DC CONVERTERS+ 6.5 V dc AND – 6.5 V dc

+ 5 V dc

+ 3.3 V dc

Tx/RxPORT

RF TRANSCEIVERBOARD

HDSL MODEM

INTERFACE

BATTERY PACK

(WITH INTERNAL FUSE)

Input_FailLVD ANDPSS O/T

CONTROLAND

ALARMSAC / DC

CONVERTER

AC MAINS

POWER RAILS SIGNAL LINKS

RF HEAD UNIT

BSS11_Ch6_36

Page 740: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–100

RF transceiverboard

The RF transceiver board contains a number of functional parts, as follows:

� Duplexer, this provides filtering and combination of RX/TX signals.

� Loopback (this provides a self test of RF functionality).

� Transmitter (this provides a baseband modulation, up conversion and RFamplification section).

� Receiver (this provides amplification and RF down conversion to I/Q basebanddigitization).

� Synthesizer (this provides the source of down/up conversion frequencies forRX/TX).

� DSP section (this provides call processing, equalization, channel coding, radiocontrol, modem link support and alarm processing functions).

Description of RF transceiver board

The RF head is a single carrier which supports the operation of GSM. The frequencyband of operation for GSM is factory preset.

The frequency accuracy of the 13 MHz reference synthesizer locks the HDSL modem toensure that long term transmitter frequency accuracy is better than 0.05 ppm.

Long term frequency accuracy is dependent on the CU reference oscillator.

NOTE

The RF head is fitted with a single internal duplexed Rx/Tx antenna.

The internal antenna is not accessible.

NOTE

The internal antenna is connected to the RF transceiver board via a short MCX, male, toMCX cable, male. The RF transceiver MCX port is also used as the test reference point.

The RF head is a one (1) carrier, non-redundant, and non-expandable unit.

The RF head does not require field calibration, nor the use of a bay level offset. Thepower level output can only be reduced in steps of 2 dB, through transmitter powercontrol, set via the system data.

Alarms are reported to the DSP section. The RF head provides a number of alarmfunctions related to the ‘RF’, ‘Digital’ and ‘Power System’ sections of the unit. The‘Power System’ alarms are as follows :

� ‘Input Low‘ alarm : indicates when the ac mains has been lost or the failure of theac/dc unit.

� ‘Low Voltage Disconnect Imminent’ : indicates when the battery pack has almostreached its ‘disconnect point’, at which the RF head will power down.

� ‘PSU Over Temperature’ : indicates that the power system has detected an‘overtemperature’ condition. If this continues, the power system will initiate apower down.

Page 741: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF head

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–101

RF transceiver block diagram

DUPLEXER

LOOPBACK

DSP SECTIONTEST

CONNECTOR

ANTENNA INTERFACE

RF FUNCTIONS

TEMPDETECTOR

TRANSMITTER SYNTHESIZER RECEIVER

RF TRANSCEIVER BOARD

BSS11_Ch6_37

Page 742: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–102

� ‘External Alarm’ : this is an externally accessible ‘input’ alarm, designed to beconnected to ‘zero-volt’ contacts. This alarm is ‘flagged’ when the input circuitdetects a ‘closed or short-circuit’ across its input terminals. This alarm is notdesignated for “safety critical” use.

The ‘External Alarm’ input, available via the ‘alarms connector’, can only beused with ‘volt-free’ contacts. For example, by using the Normally-Open(N/O) or Normally-Closed (N/C) contacts of a relay. This is to ensure thereare no 0V dc or Ground loops induced in the Horizonoffice RF Head or theequipment providing the alarm source.

WARNING

The alarms which are reported to the digital (DSP) section are in turn reported to higherlevels.

The RF head is equipped with a temperature detector that provides both alarmgeneration and thermal compensation.

RF Loopback

The RF head can implement a loopback test function, in which the transmitter outputsignal is converted into the receiver Intermediate Frequency (IF), via a switchablereceiver Voltage Controlled Oscillator (VCO).

The loopback function is controlled from the DSP section and includes a register to selectthe mode of operation. There are three modes of operation, these are Normal (i.e.Traffic Channel (TCH) operation), Loopback and Listen.

Loopback tests all active RF section elements but does not test the RFfiltering.

NOTE

When the RF loopback is active, no more than the preceding two timeslots and thefollowing two timeslots are muted to allow the synthesizer to retune,

The sensitivity of the receiver and power output are given in the Technical Description,Category 323 Specifications , of this Service Manual.

Page 743: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF head

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–103

Page 744: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–104

Connectorpin-out details

This section outlines the pin-out details for the RF head. The diagram opposite showsthe RF head ports. Table 6-22 to Table 6-24 and the diagrams on page 99 and 101detail the pin-out connections and their respective connectors.

Main sourcesupply input

Table 6-22 illustrates the main source supply input PL1 (from the ac/dc converter) pin-outdetails. This is a six way right-angle plug with polarization and retention.

Table 6-22 Main source supply input pin-out connections

Pin Function

1 + 25 V dc

2 0 V return

3 Functional earth

4 Spare

5 + 25 V dc

6 0 V return

Battery input /output

Table 6-23 illustrates the battery input / output connector PL2 pin-outs (from the batterypack). This is an eight way plug, with polarization and retention.

Table 6-23 Battery input / output pin-out connections

Pin Function

1 + 25 V dc nominal feed (switched)

2 0 V return

3 Battery power request

4 Alarm 1 (battery present)

5 Alarm 2 (battery charging)

6 Alarm 3 (battery good)

7 Alarm 4 (low voltage disconnect imminent)

8 + 5 V dc ‘logic’ enable feed (max 50 mA)

Page 745: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF head

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–105

PL1 and 2 plug pin-outs

PIN 6

PIN 5 PIN 1PIN 3

PIN 4

PIN 2

(VIEW ONTO MATING END)

PCB RETENTS

PIN 6

PIN 5

PIN 1

PIN 3

PIN 4

PIN 2

(VIEW ONTO MATING END)

PIN 8

PIN 7

PCB RETENTS BSS11_Ch6_38

Page 746: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–106

External alarmconnector on RFPCB

The external alarm connector (J5) on the RF digital Printed Circuit Board (PCB) is a fourway plug with polarization and retention. Table 6-24 lists the pin-out functions.

Table 6-24 RF transceiver external alarm pin-out functions

Pin Function

1 Shield GND

2 Ext alarm 1

3 GND (signal return)

4 Buffer clock output

HDSL connector

Table 6-25 illustrates the HDSLport (J1) connector pin-outs. J1 is a RJ11 socket with sixcontacts. The mating half uses a 6/4 RJ11 plug, where only the center four terminal waysare loaded. See Making the HDSL cable, and the Installation and Configuration section.

Table 6-25 HDSL Port pin-out connections

Pin Function

1 & 2 none

3 EXT_TIP1

4 EXT_RING1

5 & 6 none

Page 747: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF head

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–107

Connector pin-outs

PIN 1PIN 3

PIN 4PIN 2

(VIEW ONTO MATING END)

BSS11_Ch6_39

J1 plug pin-outs

PCB

Pin1 BSS11_Ch6_40

Page 748: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–108

Multi head SyncInput connector

Table 6-26 illustrates the Multi head connector (J6) pin-outs. This is a RJ45 socket witheight contaacts.

Table 6-26 Multi head Sync Input pin-out connections

Pin Function

1 clk_sync_rx_b

2 clk_sync_rx_a

3 to 8 none

Multi head SyncOutputconnector

Table 6-28 illustrates the Multi head connector (J5) pin-outs. This is a RJ45 socket witheight contacts.

Table 6-27 Multi head Sync Output pin-out connections

Pin Function

1 clk_sync_rx_a

2 clk_sync_rx_b

3 to 8 none

Page 749: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RF head

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–109

J6 and J5 plug pin-outs

PCB

Pin 1

PCB

Pin 1

BSS11_Ch6_41

Page 750: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RF head

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

6–110

Page 751: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 7

Equipment Appreciation

Page 752: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 753: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 7Equipment Appreciation i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter Objectives 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSS Equipment Appreciation 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BSC/XCDR 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Base Transceiver Station (BTS) 7–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 754: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Page 755: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Chapter Objectives

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–1

Chapter ObjectivesAt the end of this chapter the student should be able to:

� Participate in a visit/demonstration of the various BSS equipment.

Page 756: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSS Equipment Appreciation

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–2

BSS Equipment Appreciation

Introduction

This section of BSS11 will allow students to gain a physical appreciation of the variedBSS equipments studied throughout the course.

BSC/XCDR

All students are to participate in a visit to an equipment room, led by their courseinstructor.

The equipments to be observed are BSSC2 cabinets and associated hardware modulesinternal to the cabinet:

GPROC.

GCLK.

TSW/KSW.

MSI.

KSWX.

GCLKX.

LANX.

BBBX.

PIX.

BTC.

In addition to the slot in modules other areas of a cabinet that can be viewed are theDAB, PSMs, PDU and the BSU and RXU shelves.

Students are to use the time to consolidate their theory knowledge on the BSSC2equipment.

Page 757: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSS Equipment Appreciation

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–3

Internal view of the BSSC2 cabinet

FANS

HALF-SIZE DIGITALBOARD SHELF

POWER SUPPLYMODULES

FULL-SIZE DIGITALBOARD SHELF

HALF-SIZE DIGITALBOARD SHELF

FULL-SIZE DIGITALBOARD SHELF

POWER SUPPLYMODULES

EXTERIOR DOORS REMOVED TO SHOW DETAIL

POWER DISTRIBUTION UNIT(PDU)

BSS11_Ch7_01

Page 758: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–4

The Base Transceiver Station (BTS)All students are to participate in a visit to an equipment room, led by their courseinstructor.

Equipments to be observed are the BTS equipments in the Horizon family:

Horizonmacro Indoor.

Horizonmacro Outdoor.

Horizonmicro.

Horizonoffice.

Students are to use the time to consolidate their theory knowledge on the equipments.

Page 759: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–5

External view of a closed Horizon macro indoor cabinetwith hood cover

BSS11_Ch7_02

Horizon macro cabinet with door open and hood removed.

BSS11_Ch7_03

Page 760: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–6

Page 761: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–7

External view of a standard Horizon macro outdoor cabinet

BSS11_Ch7_04

Page 762: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–8

Page 763: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–9

Horizon micro

BSS11_Ch7_05

Page 764: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–10

Page 765: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–11

General view of the Horizon office equipment

CONTROLLER UNIT

RF HEAD

BSS11_Ch7_06

Page 766: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Base Transceiver Station (BTS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

7–12

Page 767: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 8

BSS Software

Page 768: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 769: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 8BSS Software i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSS Software 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Objectives 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Software architecture 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Executive and Protocol 8–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSS Executive 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating System Structure 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Process Isolation and Memory Protection 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flexible Interprocess Communication 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Operations and Maintenance 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Areas 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OMC Interface 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Man Machine Interface (MMI) 8–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Configuration Management (CM) 8–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Configuration Management Database Dependencies 8–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . Device and Function Dependancies 8–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Performance Management (PM) 8–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fault Management (FM) 8–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Central Authority (CA) 8–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Central Authority Device States 8–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fault Detection and Handling System 8–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSS Alarm Categories 8–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault reporting 8–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Categories 8–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alarm Message Format 8–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Message formats: Standard Alarm 8–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Severity 8–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Category 8–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Switch Manager (SM) 8–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization Process (IP) 8–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization in ROM 8–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization in RAM 8–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call Processing (CP) 8–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 770: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Call Processing at the BSC 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Message Transfer Part L2 (MTP_L2) 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Message Transfer Part L3/SCCP Pre–processor 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . SCCP State Machine (SSM) 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connectionless Manager (CLM) 8–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call Processing at the BTS 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio Resource State Machine (RRSM) 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio Channel Interface (RCI) 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Resource Manager (CRM) 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Broadcast Scheduler (CBS) 8–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Allocation Manager (AM) 8–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Radio Subsystem (RSS) 8–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RSS Layer 1 Protocol (Layer 1) 8–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSS Configuration and Fault Management (CFM) 8–48. . . . . . . . . . . . . . . . . . . . . . . . .

Handover Detection and Power Control (HDPC) 8–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Handover Decision Criteria 8–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Motorola Systems 8–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview 8–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call Establishment 8–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description 8–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Voice Channel Assignment 8–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description 8–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intra BSS Handover 8–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description 8–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 771: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSS Software

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–1

BSS Software

Objectives

On completion of this chapter the student should be able to:

� Identify the major sections of the BSS software.

– BSS executive/operating

– BSS operations and maintenance

– Radio Subsystem (RSS)

– Call Processing (CP)

� Identify the Motorola software configuration.

� State the basic GSM call and handover sequences.

Page 772: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Software architecture

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–2

Software architecture

Overview

The BSS software is composed of many processes, which carry out specific functionswithin the BSS. These processes will be distributed among the GPROCs at the siteaccording to the configuration given in the database.

At initialisation the different processes are downloaded to the site as code objects, this ispart of the initialisation process permanently stored in the boot ROM. A code object is abinary file that can be built into an application process by the operating system, whichruns on the GPROC boards. Each GPROC will be loaded with a complete set of thecode objects for the type of site (i.e. RXCDR, BSC or BTS). However not all the objectswill be started as applications. Which objects are started will depend on what functionsare being supported by each GPROC. For instance a BSP (master GPROC) will rundifferent processes to a Link Control Function (LCF).

In addition to the code objects required by the GPROCs there are code objectsdownloaded for the peripheral devices (KSW, MSI, XCDR and GDP). These devices willreceive their code from a GPROC via the MCAP bus at initialisation or whenever thatdevice is brought into service.

The operating system is called the Executive and is responsible for running theapplication processes, passing of messages between application processes, thehardware interfaces to the application processes and memory management. Thisarchitecture means that in a lot of cases application processes are not aware of thephysical location of the other processes they communicate with and because of thisfunctions can move without any adverse affect on other processes (e.g. a LCF could bemoved from one GPROC to another at a BSC without adversely affecting processescommunicating with that function).

Page 773: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Software architecture

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–3

BSS Software

���������������

���������������� ����������������������� �����

���������������

���������������

��������

���������������

������������

Page 774: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Software architecture

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–4

Software architectureThe BSS software can be split into five main functional areas. Each functional area ismade up of a number of application processes.

The five main functional areas are:

1. Executive and protocol

2. Fault Management (FM)

3. Operations and maintenance

4. Call Processing (CP)

5. Radio Subsystem (RSS) (only found at the BTS)

Data Link Service Process (DLSP)

Interface (INT)

Man Machine Interface (MMI)

Executive andProtocol

The Executive is the operating system of the GPROC, however it is made up of severalprocesses to provide different functions for the application processes.

For example the MCAP Data Link Service Process (DLSP) is an executive process thatprovides the application processes with an interface to the MCAP bus for communicationwith the peripheral cards.

The EXEC DLSP provides a similar function for communications between GPROCs viathe LAN or across a Radio Signal Link (RSL) (i.e. a message sent to or from the BSCand BTS).

The TTY DLSP provides an interface to the serial bus for the local maintenance terminaland for remote logins from the OMC.

These are a small selection of the processes that make up the Executive function.

Page 775: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Software architecture

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–5

Software architecture

���� ����������� � ����� ��������

BSS11_Ch8_02

BSS SYSTEMSOFTWARE

EXECUTIVE/OPERATING

SYSTEM

FAULT MANAGEMENT

OPERATIONSAND

MAINTENANCE

CALLPROCESSING

MCAP DLSP

TTY DLSP

EXEC DLSP

CENTRALAUTHORITY

FAULTTRANSLATIONPROCESS

SWITCHMANAGER

CONFIGURATIONMANAGEMENT

MMI

AGENT

CENTRALSTATISTICSPROCESS

CELL RESOURCEMANAGER

SCCP STATEMACHINE

RADIORESOURCESTATE MACHINE

LAYER 1 INT

LAYER 2 INT

HAND OVERAND POWERCONTROL

ABIS INT

CONFIGURATIONAND FAULTMANAGEMENT

RADIOSUBSYSTEM

Page 776: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSS Executive

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–6

BSS Executive

OperatingSystem Structure

The BSS Executive software running on each of the Generic Processor (GPROC) boardscreates the operating system for the application processes to run on. As part of this ituses process isolation and memory protection with flexible interprocess communication.

Process Isolationand MemoryProtection

The Executive utilises a memory management unit to isolate the memory used by eachapplication process from every other application process. It is therefore impossible forone process to write into the memory area of another process.

The memory management unit gives each application process an area of memorydedicated to that process. Allocation of memory is dynamic and these memory areas arecreated and destroyed as required by the software.

A supervisor is created at the base of each of the memory areas allocated to theapplication processes. The supervisor contains functions that allow the applicationprocess to talk with the Executive and so pass messages to other processes via theExecutive. All communication to and from the application process must go through thesupervisor.

FlexibleInterprocessCommunication

The Executive supports a flexible message routing system for passing messagesbetween application processes and provides five modes of addressing.

� Physical

� Logical

� Active subsystem

� Active cage

� Active link

The differences in these modes of addressing are beyond the scope of this course,however the different modes give the routing mechanism flexibility.

In order to support each mode of addressing the Executive requires a set of routingtables, which contain information on where to route messages for each process in theBSS. These tables are created and updated by the central authority and the routerprocess at initialisation and whenever changes are made to the configuration of the BSS.

Page 777: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSS Executive

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–7

BSS Operating Systems Overview

��

��������

����� ���

����� ��

��� �����������������

�� ��

�����

�� ��

�����

����

�� ��

BSS11_CH8_03

Page 778: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Operations and Maintenance

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–8

Operations and Maintenance

FunctionalAreas

Operations and maintenance consists of the following functional areas:

1. OMC interface

2. Man Machine Interface (MMI)

3. Configuration Management (CM)

4. Performance Management (PM)

OMC Interface

The Operations and Maintenance Link (OML) provides the connection between theOMC-R and the BSC and supports communications for the four main functions of theOMC, which are:

Download of code Download of the code objects and the database object

Upload of code Upload of statistics, database and code objects

Event reporting Reporting events and alarm information

Remote loginand configuration Access to the site MMI for diagnostics

The four main functions relate to unique X.25 addresses at the OMC and are routed todifferent functional areas within the OMC. Usually there will be two X.25 addresses fordownload, two for event reporting, one for upload and one for remote login.

The RXCDR or BSC have only one X.25 address and so all communications to and fromthe OMC go through the X.25 packet link protocol and the agent process.

The X.25 PLP deals with the layer 3 processing of the X.25 packets and passes data toand from the agent. The agent is responsible for routing the data to and from the correctprocesses within the BSS. It can be thought of as a funnel through which allcommunications with the OMC are passed.

Page 779: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Operations and Maintenance

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–9

Operations and Maintenance – OMC Interface

� �*�'�����)�%'(� ���%�(�'&�&($$#%'

� � �%!&��)�"'&�%�$#%'�"�

� ��!#'���#��"

� �#*" #��&���#��� #��&��#"���(%�'�#"�

���"��&�

� �$ #��&����'���&���&'�'�&'��&�

� �����"����� ��+�'#�+������"����� �

� �����������'�&

BSS11_Ch8_04

Page 780: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Man Machine Interface (MMI)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–10

Man Machine Interface (MMI)

Overview

The MMI process provides an interface between the human operator and the softwareapplications to enter commands for controlling devices, displaying information andconfiguring the system. The MMI can receive commands from the local maintenanceterminal or via a remote login from the OMC. The MMI process checks each commandfor syntax before forwarding to the relevant processes for processing.

The MMI process provides three levels of access by the operator for security.

� Level 1 Monitor commands only

� Level 2 All MMI commands supported

� Level 3 Motorola engineers only. (Provides access to restricted command library for specialist diagnostics)

For descriptions of all the MMI commands refer to the BSS Command Reference Manual68P02901W23 in the Customer Documentation Set.

Page 781: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Man Machine Interface (MMI)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–11

Operations and Maintenance

����!��#���������"�

� ���

� ��������!�"�!

����"����������#��������

� ����"����%�����!�"�

� ����������� ���!!�"�����"�� ��"�"���!����!�"�

� �������"�����" ����������

���� ���!!���"� ����!�$�"�����������

���� ���!!���"� ����!�$�"���� ����������"��&�����

����!��

BSS11_Ch8_05

Page 782: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Configuration Management (CM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–12

Configuration Management (CM)

Overview

The CM software is responsible for maintaining and updating the configurationmanagement database at the BSC. This database holds all the configuration informationfor the BSC and all the BTS sites under its control. The Remote Transcoder (RXCDR) isconsidered as a separate network entity and has its own configuration database. Thedatabase is downloaded as an object file and contains site parameters such as carrierfrequencies, site configuration, handover thresholds, device functionality and timinginformation.

At the BSC the database is copied across all active GPROCs and all processes haveaccess to the database. Similarly, at the BTS all processes can read the database.However only at the BSC may changes be made and only by the master GPROC whichhas write access as well as read.

If there are any changes to be made to the database, the new information is written intothe master database via the CM process. Once the changes have been made the CMand Central Authority (CA) check that the changes are valid before broadcasting thechanges to all other GPROCs. If the changes are invalid then they are deleted from themaster copy.

If the database changes are required by one or more BTS sites then the master CMprocess will forward the changes to the CM master at each site via the RSL. Databaselevel numbers are used to track changes and provide control. Once a database hasbeen changed, the changes will be reflected at the OMC terminals, however, it should beuploaded to the OMC in order to update the database object held there. If the databaseobject is not uploaded and the site was reset the OMC would download the old copy andthe changes will be lost.

Page 783: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Configuration Management (CM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–13

Configuration Management Overview

BSS11_Ch8_06

All Other ProcessesRead only

CM Process

Read/Write

GPROC

Process A

Process B

GPROC

Process C

GPROC

Process Y

Process Z

GPROC

MASTER CMPROCESS

LAN

slave CM process slave CM process slave CM process

BSC

CMDATABASE

MasterDatabase

DatabaseCopy

DatabaseCopy

DatabaseCopy

Page 784: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Configuration Management Database Dependencies

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–14

Configuration Management Database Dependencies

Device andFunctionDependancies

The following chart shows device and function dependencies. Due to systemrequirements some devices and functions can only be equipped after other specificdevices have been equipped. For example, before a Message Transfer Link (MTL) canbe equipped there must be a Multiple Serial Interface (MSI) board equipped in thedatabase to take the MTL device.

Database Build Example:

CHANGE ELEMENT (SITE CONFIGURATION)

EQUIP SITE

EQUIP CABINET

EQUIP CAGE

EQUIP DEVICES

CHANGE ELEMENT (TIMERS)

ADD CIRCUITS

KSW CONFIGURATION

Page 785: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Configuration Management Database Dependencies

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–15

Device and Function Dependence – BSC

������

����

��� ���� �� �����

��� �� �����

���

����

��

���� ��� ��

���

BSS11_Ch8_07

Page 786: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Performance Management (PM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–16

Performance Management (PM)

Overview

The PM applications gather and transport to the OMC the BSS statistics in order to tracktrends and gives a picture of network efficiency.

All application processes responsible for collecting statistics in the BSS will create aDistributed Statistics Function (DSF) as a sub-process to look after the statisticinformation of the process.

A DSF can store up to 12 sets of statistics equivalent to 12 gathering periods. Thegathering period duration is set by the network operator in the configuration databaseand typically is 30 minutes or 60 minutes.

At the BSC a Central Statistics Process (CSP) takes responsibility for the co-ordinationand collection of statistics from all sites in the BSS and provides an interface to the Agentprocess for control of the statistic process between the OMC and BSS. All sites in theBSS (including the BSC) will start a Site Statistics Process (SSP) responsible forinterfacing to the CSP and registering with DSFs at their site.

At the end of the gathering period CSP will send a file ready indication to the OMC-R viathe Agent. When the OMC-R requests an upload the CSP will send a similar request toall SSPs and DSFs in the BSS. At this time the SSPs will collate all statistics for theirsite and consolidate statistics from processes performing the same function beforesending them on to the CSP at the BSC. The CSP consolidates statistics from all sitesin the BSS into one report and converts them into a binary object file ready for filetransfer via the Code Object Upload Process (COUP) and the agent to the OMC-R.

The COUP takes responsibility for any code upload whether it is the statistics object fromCSP, a database object from CM or a code object from the Code Object Manager(COM).

If statistics exceed an alarm threshold set in the configuration database, during thegathering period, this will be reported by CSP via the Agent to the OMC-R.

Page 787: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Performance Management (PM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–17

Performance Management

BSS11_Ch8_08

OMCR

AGENT

SSP

DSF DSF

SSP

DSF DSF

SSP

DSF DSF

Remote BTS Remote BTS Remote BTS

BTS

BSC

OMCR

X25

COUP

CENTRAL STATISTICSPROCESS (CSP)

Page 788: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Fault Management (FM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–18

Fault Management (FM)

Overview

The FM system can be split into two main areas, the fault detection, alarm handling andreporting and the Central Authority (CA), although the CA is also involved in faulthandling.

� Fault detection and handling

� Central Authority

The FM software is designed to operate on a site basis and it has responsibility formaintaining the site integrity in response to any fault/alarm indications that may occurwith the hardware or the software and operator initiated configuration/state changes.

The fault detection and handling system is tasked with detecting any alarms and decidingon any hardware/software re-configurations required.

The CA, under direction of the fault detection and handling system is then responsible forcarrying out reconfigurations and state changes. This may include, taking hardware outof service and bringing in other hardware or the creation/deletion of software processes.

Page 789: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Fault Management (FM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–19

Fault Management

����������������

�� ����������� ���������������

��������������������

��������������

� ��� ����������

BSS11_Ch8_09

Page 790: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Central Authority (CA)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–20

Central Authority (CA)

Overview

At site initialization the CA is one of the first processes created by the operating system.Its first task is to query the configuration database to obtain site configuration and deviceequipage. The CA is then responsible for creating all the necessary software processeson the GPROCs as well as downloading and bringing “into service” all the peripheralboards and devices. On completion of site initialization, the CA works as an independentprocess and maintains a dynamic database to keep track of all the device function andsoftware process states.

The CA supervises all state changes at the site although this can be in response to MMIcommands issued from the local maintenance terminal, an OMC remote login or initiatedby the fault detection and handling processes in response to a fault/alarm condition. Inall cases the CA will update the dynamic database to show the new state and this willalso be reported to the OMC as an alarm/event.

Configuration changes may affect the routing tables used by the operating systemthroughout the site or possibly the BSS. In these cases the CA will initiate an update ofthe routing tables by the various routing processes in the site or BSS. This allows thesoftware to reconfigure dynamically to any changes made.

At the BSC and RXCDR the CA is also involved along with the fault handling processeswith the selection of the reference clock source for the GCLK.

Page 791: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Central Authority (CA)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–21

Central Authority Functions

�� ��$�� ��$����'�$���

��� �%�"��#���"���$���#����"�#�$��

������%"�$���������!%� ���

���� �&���������#��$&�"��$��$�����"�&�"�

��� "��$��#��$&�"����������

���� "��$����"�%$����$����#

���� "��$����#$�$��$����#

�� ��$��$�������"��$������%"�$���������#

��� ��"�&�"�

��� ���$&�"�

��� � ��$����"�%$�"

���� � ��$����#$�$��$����#

BSS11_Ch8_10

Page 792: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Central Authority Device States

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–22

Central Authority Device States

Overview

Each device in the system has a device state that is reported to the Central Authority(CA) and consists of two parts:

C. Administrative (lock, unlock, not equipped)

D. Operational (enabled, disabled, shutting down, busy)

The administrative part is generally under the control of the operator by using MMIcommands at the OMC or LMT. The operational states indicate the state from theviewpoint of the software.

It is a combination of these two conditions which will determine if a device can/cannot beused/operated within the system.

The flowchart gives an idea of how the device states are used in the system.

Not equipped The device may be physically in the system but has not been entered into the configuration database and therefore cannot be used by the software.

Locked enabled The device is available for use but has been made unusable by the system operator using the lock command from the MMI. If it was intended to replace a board such as an MSI this should be the state before physically removing it from the cage.

Unlocked enabled The device is ready for use but at this time is not performing any function. It can be thought of as being instandby.

Unlocked busy The device is in use and operating correctly.

Busy shutting down Operator has decided to take the device out of service ina controlled way. The device will continue with the tasksthat it has active but will not take on any new tasks. When all the active tasks have been completely the device will be idle.

Unlocked disabled The device has been taken out of service by the fault management processes possibly in response to an alarm condition on the device or an associated device.

Locked disabled The device is taken out of service by the fault management processes and has been locked by the operator, possibly in preparation for replacement.

Page 793: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Central Authority Device States

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–23

Device States Flow Chart

� ���������

� �����������

��� �����������

��� ��������

�������������� ��

� �������������� ����������

������ �����

� �����������

������ �����

BSS11_Ch8_11

Page 794: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Fault Detection and Handling System

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–24

Fault Detection and Handling System

Introduction

The fault detection and handling system is based around three processes

1. Fault Collection Process (FCP)

The FCP exists on every GPROC in a site. It collects alarm reports from all processeson the GPROC where it is active and also any other devices that the GPROC isassociated with. For example the peripheral boards will raise alarms to the GPROCcontrolling the MCAP bus. FCP will acknowledge receipt of each alarm to the alarmedprocess/device and generates an alarm message, which it sends on to the FaultTranslation Process.

2. Fault Translation Process (FTP)

The FTP exists only on the site master. FCPs throughout the site send alarm informationto FTP whose task is to diagnose the problem and decide the action to take in eachcase. FTP holds a table of fault scenarios and the action to be taken in each case. Oncea course of action has been decided FTP will request the CA to carry out the requiredstate change. For example, reset the alarmed device. In addition FTP will send thealarm message to the OMC. FTP keeps a record of all active alarm conditions in a tablecalled the active alarms list. The active alarms list can be retrieved at the MMI with thecommand “disp_act_alarms #” where # is the site number.

3. System Audit Process (SAP)

The SAP exists on every GPROC in a site. The SAP periodically performs a local auditwhere it checks the BSS software and forwards any faults found to the fault collectionprocess for normal fault management processing. The SAP can also be set up toperform audits on the hardware in the site. The system operator from the MMI controlsthis and may set the audit to be scheduled in different ways.

� Continuously at a set interval, e.g. every hour.

� Once at a specific time (e.g. at a specific time every 24 hours).

� At set intervals in a specific time range e.g. every 15 minutes between 0300 –0400 hours each day.

There are two types of hardware audit:

� Cage – Audits the hardware in the cage where the audit is scheduled.

� Site – Audits the hardware in the site where the audit is scheduled.

Note:

In some cases the SAP will be invoked by the FTP in order to obtain more information ona fault condition.

Page 795: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Fault Detection and Handling System

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–25

Fault Translation Process

�#�"�������"���

� ���!!�����

���

���

���

������$���!

��������������

����� �

���������

�#�"�� ��!��"����� ���!!

����

��� ����� �

������������

�������

BSS11_Ch8_12

Page 796: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2BSS Alarm Categories

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–26

BSS Alarm Categories

Fault reporting

Hardware alarms are automatically sent to the OMC by FTP, however they will not beoutput at the local maintenance terminal unless enabled from the MMI using thecommand “enable_alarms #” where # is the site number.

AlarmCategories

For the purpose of reporting and clearing, alarms are arranged in three categories:

1. Intermittent alarms

These occur, but generally do not remain active. Intermittent alarms are regardedas information and FTP does not add them to the active alarm list. However, FTPwill increment a counter for every intermittent alarm received and if the counterreaches 6 FTP will request CA to reset the device associated with the alarm. Forevery minute that passes without the alarm occurring FTP will decrement thecounter until it returns to zero. If a device is reset 3 times in 10 minutes the devicewill be taken out of service. Therefore if an intermittent alarm proves to be causinga serious problem the Fault Management (FM) software can take further action.

Alarm Throttle

There is a command, which can be used at the MMI to set a period of up to 24hours to inhibit an intermittent alarm from being displayed. The ‘alarm_throttle’when set allows the first intermittent alarm to be displayed but will stop any furtherdisplay for the period set. At the end of this duration the next receipt of the alarmwill trigger another display, including a count of the number of times the alarmoccurred during the throttle period. This is a useful way of stopping intermittentalarms causing a distraction at the OMC.

2. FM Initiated Clear Alarm (FMIC)

After a fault condition has been fixed/cleared the FM software will automaticallyclear the alarm from FTPs active alarm list.

3. Operator Initiated Clear (OIC)

When the fault has been dealt with the system operator must clear the alarm fromFTPs active alarm list by using a MMI command.

Page 797: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 BSS Alarm Categories

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–27

BSS Alarm Categories

���������������������

������������ �����������

������������������� �����������

BSS11_Ch8_13

Page 798: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarm Message Format

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–28

Alarm Message Format

Introduction

Alarm messages contain information to help the system operator analyse the faultcondition in order to take appropriate action to fix the problem. Alarm messages shouldbe analysed by using the ‘Alarm Handling at the OMC’ manual 68P02901W26. Howeverall alarms follow the same basic format.

Messageformats:Standard Alarm

The format shown is a standard alarm message. The asterisk (*) preceding each lineindicates that this output is not a response to operator action, it has been generated bythe software.

<alarm code> Number representing the type of alarm

<alarm Description> Text describing the specific alarm

<severity> Critical, Major, Minor, Warning, Clear, Investigate

<device type> e.g. KSW, BSP, MSI etc…

<device id> Device identity made up of the 1st, 2nd and 3rd elements

<(subtype)> Subtype of the device (e.g. MSI, XCDR or GDP)

<site> Which site the device is located at

<cage> Which cage the device is located in

<slot> Which slot the device is located in

<date> The date the alarm occurred

<time> The time the alarm occurred

<alarm type> Intermittent, FMIC or OIC

<hardware version> Hardware version of the device

<additional info> Refer to the alarms manual

Page 799: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarm Message Format

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–29

Standard Alarm Message Format

��,;0*,��2(73�??"(.�/,=����*54-0.�9(.�

����2(73�*5+,����(2(73�+,8*7069054�

�??!,;,709>���8,;,709>���(9,.57>���*(9,.57>�

�??�+,;0*,�9>6,��+,;0*,�0+���8:)9>6,��&�-:4*9054�0+�'

�??!09,��809,���(.,��*(.,��!259��8259�

�??"03,��+(9,��903,�

�??�2(73�">6,��(2(73�9>6,���:3),7�5-�!:667,88,+

��2(738���8:667,88,+�

�??� #���"��:3),7���109�4:3),7�

�??�(7+<(7,�$,78054��:3),7�/,=����/(7+<(7,�;,78054�

�??�++09054(2��4-5��(++09054(2�04-5�

�=(362,�

��,;0*,��2(73�??�"(.�/,=�����������

��

�������,;0*,�8����!�+:,�95�(*9054�54�9/08�+,;0*,

�??!,;,709>�� ��$�!"���"�����(9,.57>����#�����"

�??�!����������!��

�??!09,�������(.,������!259���

�??"03,��%,+������ ������������

�??�2(73�">6,���(:29��(4(.,3,49��4090(9,+��2,(7

�??� #���"��:3),7��/;4��

�??�(7+<(7,�$,78054��:3),7�/,=����

������������

Page 800: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Alarm Message Format

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–30

Alarm Severity

This field is a text string that indicates the severity of the alarm condition. Refer to thealarm manual for a more complete definition of the six possible strings:

� Critical Site out of service

� Major Site partially out of service

� Minor Repair required but no loss of service

� Warning Maintenance required

� Clear Condition cleared

� Investigate Unable to assign severity, check it out!

Alarm Category

This field indicates the general category of system operation affected by the alarm.Refer to the alarm manual for a more complete definition of the six possible strings:

� Communication E1 link failure

� Quality of service Slow call setup

� Processing Firmware problem on a peripheral card

� Equipment Radio failure

� Environment Customer defined alarm (PIX)

� SWFM notice GPROC software fault

Page 801: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Alarm Message Format

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–31

� �����

��������

�����

�����

������

�� ��

��� ������

��� �����

�������������

������������ ����

���� �����

������ ��

�������� ��

��������

BSS11_Ch8_15

Page 802: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Switch Manager (SM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–32

Switch Manager (SM)

Introduction

The SM exists on the master GPROC only. It is responsible for controlling the TDMhighway switch connection made on the KSW. At the BSC the SM is responsible formapping the logical channels (Circuit Identity Codes) on the A interface to the channelson the A-bis interface on a per call basis. Dynamic switching at 16kbps enables call setupand handovers at the BSC.

At the RXCDR and BTS switching is static therefore the SM at these sites will makeconnections at initialisation which will remain unchanged for the duration of operation orthe network is re-configured.

Page 803: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Switch Manager (SM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–33

Operations and Maintenance – Switch Manager

BSS11_Ch8_16

SM – BSC/RXCDR

Static Switching – RXCDR (16 kbit/s)

Dynamic Switching – BSC (16 kbit/s)

Page 804: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Initialization Process (IP)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–34

Initialization Process (IP)

Overview

The Executive is responsible for starting the initialization of the GPROC, using the IPstored in EEPROM.

The IP has no knowledge of the database therefore it works with default values for siteconfiguration, such as a master GPROC in slot 20 or 24 of the first cage. Defaultpositions for the OML to the OMC:

BSC OML defaults

1st default cage 0 slot 16 MMS 0 timeslot 1

2nd default cage 0 slot 16 MMS 1 timeslot 1

3rd default cage 0 slot 14 MMS 0 timeslot 1

4th default cage 1 slot 16 MMS 0 timeslot 1

RXCDR OML defaults

1st default cage 0 slot 10 MMS 0 timeslot 1

2nd default cage 0 slot 10 MMS 1 timeslot 1

3rd default cage 0 slot 8 MMS 0 timeslot 1

4th default cage 1 slot 10 MMS 0 timeslot 1

Initialization inROM

The IP first initializes the LAN and waits for all GPROCs at the site to broadcast theirpresence on the LAN. The master GPROC then takes control (i.e. the GPROC in slot 20or 24).

Assuming the site has no code available the IP then tests to see if there are enoughperipheral cards to support a link to the OMC on one of the default link positions (i.e.KSW, GCLK and a MSI or XCDR in slot 16 or 14 (10 or 8 at a RXCDR)). A link is thenestablished to the OMC.

The master GPROC checks to see if any GPROC has valid code objects (identical tothose held at the OMC) that could be used to crossload to all GPROCs. If no code existson any GPROC then the code will be downloaded from the OMC.

When the master GPROC has received all the code objects from the OMC it willcrossload all the GPROCs at the site over the LAN. On receipt of a successful crossloadfrom all GPROCs the master broadcasts a “Jump to RAM” message.

Page 805: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Initialization Process (IP)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–35

Initialization Process in ROM

BSS11_Ch8_17

Reboot

Establish LAN

Select master GPROC

Download code

Y

Y

N

Y

N

N

Y

N

Bring GPROCson to LAN

Checkif there isenough

equipment fora download

of code

Connectto OMCwithin6 mins

Is adownloadrequired?

JumptoRAM

Is therecodein RAM?

Cross load codeto all GPROC’s

Page 806: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Initialization in RAM

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–36

Initialization in RAM

Overview

Once the system has moved to RAM the IP starts again but this time it executes fromRAM. The move to RAM causes the LAN to deactivate therefore the first task is tore-establish the LAN.

When the LAN is up and running the IP checks to see if a valid database exists on any ofthe GPROCs. If a database exists the IP co-ordinates a crossload to all GPROcs.

If no database is available (it is not necessary to download a database from the OMC)the IP waits for 45 seconds before re-booting the site and starting the initializationprocess again.

A system operator has this time to enter a MMI command called ‘sysgen_mode on’. Thistells IP that a database script file is going to be provided. A database script file containsall the necessary information to allow the master GPROC to build a database object.The IP then re-initializes the site and goes through the IP process as describe so far.When it gets to this point the second time it stops and waits for the script to be provided.The script is uploaded to the GPROC via the TTY interface from the Local MaintenanceTerminal (LMT). Once the script has been uploaded the system operator enters thecommand “sysgen off” to return the site to normal operation. At this point the CM andCA processes check that the database provided is sane. If for any reason the databaseis invalid the IP will remain in sysgen mode (indicated by the MMI prompt) and waits forcorrections to be made with MMI commands or a new script to be entered. A report ofwhy the script failed is provided to aid correction.

When sysgen is successful the IP crossloads the new database object to all GPROCsand IP initiates the CA process which then takes control. The CA then configures thesite according to the database and takes it into call processing mode. At the BSC the CAwill then work on bringing the BTS sites into operation.

Page 807: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Initialization in RAM

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–37

Initialization Process

BSS11_Ch8_18

RAM

Re-establish LAN

Y

Ask user to reset site

Sysgenmode

N

Initialize CA

Y

continuebootup

XLoad

N

Reboot

N

Y

Does adatabaseexist?

Inform user a sysgenis required

Do allGPROCs have

the samedatabase?

Hassysgen

mode beenstarted within45 seconds

Page 808: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Call Processing (CP)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–38

Call Processing (CP)

Overview

The purpose of CP is controlling communications between the MSC, BSC, BTS and MS.CP and the Radio Subsystem (RSS) interact to control call set-up and clearing,handovers, encryption and movement of Direct Transfer Application Part (DTAP)messages between the MSC and MS.

In the Motorola software architecture the call processing system has been split into twoparts. One part is executed at the BSC the other at the BTS. This is a departure fromthe normal architecture that distributes the call processing functions only at the BSC.With the Motorola structure the BTS takes some of the CP functions along with all of theRSS functions.

CP at the BSC

� Connectionless Manager (CLM)

� Message Transfer Part L3 (MTPL3)

� SCCP pre-Processor (SCCP)

� SCCP State Machine (SSM)

CP at the BTS

� Radio Resource State Machine (RRSM)

� Cell Resource Manager (CRM)

� Cell Broadcast Scheduler (CBS)

� Radio Channel Interface (RCI)

The SSM at the BSC, manages the SCCP interface to the MSC. The RRSM managesthe radio resource interface to the RSS. The division of the call processing statemachine into two levels allows each state machine to handle common procedures at itsown level without knowing the background for the specific request.

For example, if the SSM sends a release radio channel to the RRSM, the RRSM caninvoke the normal radio channel release procedure without knowing if the channel isbeing released because of a Clear Command from the MSC, a break in the SCCPconnection, or O & M intervention. Similarly, if the SSM receives a radio channelreleased message from the RRSM, it proceeds in the same manner regardless ofwhether this message was generated as a result of a timer expiry or a radio channel linkerror. The advantage of this is a reduction in the amount of signalling required betweenthe BSC and BTS for call processing.

Page 809: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Call Processing (CP)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–39

Call Processing

� ������"���������&� ���� �"����!

� �#��"���!

�����!�"'#������ ���

��!!����" ��!�� �������������

���" ��������$� !

���������"� ����

�� &�"���

�%��!"�"���������!��� ����

� ����� � �

��� �

����

���

��

��

� ����� ��������

���

���

���

��

BSS11_CH8_19

Page 810: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Call Processing at the BSC

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–40

Call Processing at the BSC

MessageTransfer Part L2(MTP_L2)

The MTP_L2 process is responsible for the data link layer operations (layer 2 processing)of the MTL link at the BSC. It terminates the C7 signalling on the LCF GPROCcontrolling the MTL link at the BSC and provides error detection and flow control for thelink.

MessageTransfer PartL3/SCCPPre–processor

The MTP_L3 process also executes on the LCF GPROC controlling the MTL link and isresponsible for maintaining the signalling link between the BSC and MSC. As part of theMTP_L3 process there is a function called the SCCP Pre-processor responsible fordetermining the type of messages being passed (DTAP/BSSMAP) and routing themessages internally at the BSC.

SCCP StateMachine (SSM)

The SSM executes on LCF GPROCs controlling RSLs to BTS sites. The SSM processis responsible for call set-up, maintenance, release and the primary control of handovers.A handover evaluator process is part of the SSM process and is responsible fordetermining the target BTS for a handover. The SSM also provides a call trace facililitywithin the BSS.

ConnectionlessManager (CLM)

The CLM executes on the master GPROC (BSP) at the BSC and is responsible forconnectionless signalling procedures on the MTL link to and from the MSC.Connectionless procedures are all procedures that are needed to maintain operationbetween the BSS and the MSC that are not directly connected with calls. Examples arecircuit blocking, reset of circuits, global reset and signalling point inaccessible.

Page 811: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Call Processing at the BSC

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–41

Call Processing at the BSC

��

��

��

�������

�����

����

����

��

��

��

��

���

��

��

�������

BSS11_Ch8_20

Page 812: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Call Processing at the BTS

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–42

Call Processing at the BTS

Introduction

The following call processing functions all execute on the master processor at the BTSand will not be found active at the BSC.

Radio ResourceState Machine(RRSM)

RRSM is responsible for maintaining the state of the radio channels allocated to calls atthe BTS. This involves channel requests for call set-up, maintenance and release on calltermination.

Radio ChannelInterface (RCI)

The RCI provides an interface between Radio Subsystem processes and CP. Calls aretracked within CP by a unique identifier called the SCCP reference number, howeverwithin the RSS calls are tracked by a Radio Channel Identifier (RCI). The RCI processprovides a mapping function for SCCP references to RCIs.

Cell ResourceManager (CRM)

The CRM is responsible for managing the allocation of radio resources within the BTSsite. Upon request for a radio channel, CRM determines what radio resources to usebased on how the cell is being used, loading on the cell and interference levels on theavailable resources. CRM also takes care of intra-cell handovers, dynamic configurationof traffic channels to SDCCH and generation of SCCP reference numbers at call set-up.

Cell BroadcastScheduler (CBS)

The CBS is responsible for Short Message Service Cell Broadcast message scheduling.The Cell Broadcast Centre (CBC) sends messages and scheduling information to theBSC and this is forwarded to the CBS at the BTS. The CBS works with the CRM andRRSM to ensure SMSCB messages are sent out.

Both CBC and OMC can send messages for broadcasting but CBC messages will takepriority over OMC messages.

Page 813: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Call Processing at the BTS

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–43

Call Processing at the BTS

���

��

��

��

��

�����

���

BSS11_Ch8_21

Page 814: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Allocation Manager (AM)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–44

Allocation Manager (AM)

Introduction

The AM process exists at the BSC and the BTS to manage the dynamic allocation ofterrestrial channels between the BSC and BTS. When dynamic allocation is in use theCRM sends a request to the AM at the BTS for a terrestrial backhaul channel. That is, a16kbps sub-channel on an E1 link to the BSC.

The BTS AM forwards the request to the AM at the BSC, which in turn takesresponsibility for setting up the channel with the BSC SM process.

When the CRM requests a backhaul channel it identifies the TCH with a Radio ChannelIdentifier (RCI). This is sent by the BTS AM and used at the BSC SM to correlatebetween the Radio Channel Identifier (RCI) and the Network Channel Identifier (NCI)used to identify the terrestrial backhaul channel.

On release the RCI and NCI become available for another call although not necessarilyas a pair as would be the case without dynamic allocation where the RCI specificallyidentifies timeslots on the air interface to 16kbps channels on the terrestrial link betweenthe BTS and BSC.

Page 815: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Allocation Manager (AM)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–45

Call Processing Allocation Manager

����

���

���

���

��

��

��

��

���

����

BSS11_Ch8_22

Page 816: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Radio Subsystem (RSS)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–46

Radio Subsystem (RSS)

Overview

The RSS is a collection of application processes responsible for managing the radiohardware at the BTS. The RSS consists of five processes:

1. RSS A-bis Interface

2. RSS Layer 2 Protocol

3. RSS Layer 1 Protocol

4. RSS configuration and fault management

5. Handover detection and power control

RSS A-bis Interface (A-bis)

A-bis supports the interface and message protocol between the RSS and CP. It supportsa pseudo A-bis interface, designed to conform closely with GSM requirements betweenthe RSS and the CP function located at the BTS (RRSM/RCI, CRM and CBS). Allmessages between CP and RSS go through the RSS A-bis to RCI.

The main responsibilities of the RSS A-bis interface are:

� Initialising the RSS A-bis interface to call processing.

� Checking the validity of downlink messages.

� Translation of messages received from CP into internal RSS messgaes.

� Translation of messages to CP from the RSS.

RSS Layer 2 Protocol (Layer 2)

Layer 2 provides the data link layer processing of the air interface signalling link. DirectTransfer and Application Part (DTAP) and system information messages for the MS areformatted by Layer 2 for the LAPDm protocol used on the air interface. Similarly DTAPand system messages received from the MS are converted back from LAPDm to aformat suitable for their destination. Error detection and flow control on the air interfacesignalling link are performed as part of the Layer 2 function.

Page 817: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Radio Subsystem (RSS)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–47

Radio Subsystem (RSS)

� ����������������������������� ���������

������������������ ��������������

� ������� �������������������������������

�������������

BSS11_Ch8_23

Page 818: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2RSS Layer 1 Protocol (Layer 1)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–48

RSS Layer 1 Protocol (Layer 1)The Layer 1 process interfaces the software processes in the RSS to the hardwareinterface to the radio hardware. The functions of Layer 1 are:

� Download of firmware to the radio hardware.

� Message link between RSS to the hardware.

� Reports on communication problems between the RSS and radio hardware to theFault Collection Process (FCP).

� Maintains a database for CRM regarding multiple pages, immediate assignmentsand immediate assignment rejects.

� Translates downlink messages received from Layer 2 into a format suitable fortransfer to the radio hardware.

� Translates uplink messages received from the radio hardware into Layer 2messages.

� Obtaining timer information for non-synchronised handovers.

RSSConfigurationand FaultManagement(CFM)

The CFM process controls initialisation of the RSS and supervises codeload andconfiguration of the radio hardware. CFM takes responsibility for configuration changesduring operation and reporting of alarms from the radio hardware.

Page 819: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 RSS Layer 1 Protocol (Layer 1)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–49

Radio Subsystem

��

���������������������

�������

�������

� ��

��

���

������������������

�������������������

BSS11_Ch8_24

Page 820: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Handover Detection and Power Control (HDPC)

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–50

Handover Detection and Power Control (HDPC)

Overview

The HDPC process has by far the most functions to fulfil within the RSS. It controls thetransmission power of the MS (uplink) and the transmission power of the BTS (downlink)on a per timeslot basis. The object is to keep transmission power in the system to aminimum to avoid unnecessary interference. HDPC is also responsible for calculatingthe MS timing advance base on measurements by the BTS radio hardware.

HDPC is also responsible for detecting when a handover is required based on themeasurement reports received from the MS and the BTS radio hardware.

Idle timeslots are monitored by the radio hardware for interference, HDPC collects themeasurements into a report to be sent periodically to the Call Resource Manager (CRM)where they are used to order the radio resources so that CRM can allocate channels withthe least uplink interference.

Once a call to a MS has been established, if the MS was then to leave the systemwithout releasing, the radio channel resource would be wasted. To protect against thisHDPC monitors the SACCH messages from all MS in calls. The HDPC process willdecrement a counter for every SACCH message that fails to appear from a MS and if thecount reaches zero the channel will be released by the BTS. If a SACCH message issuccessfully received after the counter has been decreased the count will beincremented by two up to but not above the initial value of the counter. In this way thecounter is biased to keeping the channel open but if the call is lost then the radio channelwill be released and so become available for use by another call. The initial value of theSACCH counter is determined in the configuration database and informed to HDPC atinitialisation.

The HDPC process is not a true RSS process but because of the Motorola architecture itresides with the RSS processes. For this reason all messaging to and from the HDPCprocess is in GSM A-bis format so that in theory the location of the HDPC isinterchangeable and it could be executed at the BSC if required.

Page 821: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Handover Detection and Power Control (HDPC)

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–51

Handover Detection and Power Control (HDPC)

��� �����

� �������������������������������

� ������������������������� �����

� ��������������������������������

��������

� ��������������������������������

���������������������

� ���������������������� ����������������

�������

� ���� �������������������������

� ���������������� ���

BSS11_Ch8_25

Page 822: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Handover Decision Criteria

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–52

Handover Decision Criteria

Overview

For intra-BSS handovers the at BSC will select the cell to which a call is to be handedover to based on the following criteria.

1. Receive quality (uplink and downlink)

2. Receive signal strength (uplink and downlink)

3. Distance (timing advance)

4. Power budget

5. Interference

At the BSC each of the five criteria are dealt with in order of priority where receive qualityis the highest and power budget is the lowest. This means that if there are more bids forhandovers than channels available the bids with handover cause of receive quality will beallocated first whilst those with power budget cause will be last.

Target cells for a handover can also be placed priority and if two target cells meet thesame criteria for handover selection then the cell with the highest priority will be selected.This enables macro cells in a multi-layer network to be gven a low priority and soencourage mobiles to stay in the micro layer.

Channel congestion in the best cell will cause the choice of the second best cell. If nosecond cell is available and call queuing is employed then the MS will be placed in thequeue until the relevant cell becomes available. MS in a queue for handover take priorityover new calls.

Page 823: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Handover Decision Criteria

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–53

Handover Decision Criteria

� ��������������

� ����������������������

� ����� �����

� �������

� �����������

��������������������

� ������ ���������

� ��������

� ����� �����������

BSS11_Ch8_26

Page 824: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Motorola Systems

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–54

Motorola Systems

Overview

Using the Motorola system, the control of the radio and terrestrial circuits are splitbetween the BSC and BTS. The BSC retains the processes that control the terrestriallinks to the MSC and the final decision process concerning handovers. The BTS has allprocesses necessary to monitor and control the radio channels and because of this theamount of signalling required between the BSC and BTS is reduced. This maximises theuse of the E1 link between the BSC and BTS as more timeslots are available for carryingtraffic than with architecture that locates all the call processing functions at the BSC.

Page 825: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Motorola Systems

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–55

Motorola System

������

� � ���

���

���������

�������

����

������

����

��� ��

���

������

������

����

� ����

�������

����

��������

����

�������������

�����

���

���

���

�� ����

������

���

�� ��

� �����

����� ����

� � ���

����������

������

��������������

� � ���

BSS11_Ch8_27

Page 826: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Call Establishment

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–56

Call Establishment

Description

The following description covers the interprocess communication to place an MS on aDCCH and have the MS in communication with the MSC.

1. The MS accesses the system with a Random Access Burst (RAB) on the BCCH.

2 The RSS passes the request onto the RRSM via the RCI in the form of a Channel Required message.

3. RRSM asks the CRM to assign a SDCCH channel and the CRM responds.

4. RRSM tells the RSS which DCCH the MS is to go to and the RSS activates that channel. When channel activated, the RSS informs the RRSM.

5. The RRSM then tells the MS via the RSS on an Access Granted Channel (AGCH), which DCCH the MS is to move to.

6. The MS moves to the DCCH and establishes two way communication with its allocated BTS. The MS forwards CM Service Request, telling the RRSM what the MS wants to do. Is it –

– responding to a page from the MSC?

– doing a location update?

– IMSI deregistration?

– wanting to establish a call?

– trying to salvage an established call?

7. The RRSM forwards the CM service request up to the SCCP State Machine (SSM).

8. The SSM then has to request the MSC to handle the call.

Radio Sub-System (RSS)

Radio Resource State Machine (RRSM)

Cell Resource Manager (CRM)

SCCP State Machine (SSM)

Message Transfer Port (MTP)

Page 827: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Call Establishment

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–57

Call Establishment

BSS11_Ch8_28

Mobile RSS CRMRRSM/

RCI

SSM MTP

Random accessChannel required

Channel required

Channel assigned

Base sitechecksout channel

SDCCH channel activation

Channel activation acknowledgement

Immediate assign command

Establish indication CM service requirement

MS power controlPower control

Mobile moves to DCCH

CompleteLayer 3information

MSCrequestedto handlecall

ChooseDCCH

Initial Layer 3 Info CM service req

AGCH

BTS FUNCTIONS

BSC FUNCTIONS

MSC

Page 828: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Voice Channel Assignment

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–58

Voice Channel Assignment

Description

The following text describes the interprocess communication for the assignment of a MSfrom a DCCH to a traffic channel. This procedure assumes that all authentication hastaken place on the DCCH.

1. The MSC sends a message to the SSM assigning the MS a terrestrial circuit.

2. The SSM sends an initiate assignment command to the RRSM to assign a channelto the MS.

3. The RRSM asks the CRM to assign traffic a channel. The CRM responds with thechannel.

4. The RRSM then asks the RSS to supply the timing information for the MSconcerned.

5. The RRSM then tells the RSS to activate the required traffic channel.

6. The RRSM then instructs the mobile via the RSS to move onto the new trafficchannel.

7. The MS now moves to the new traffic channel and establishes signalling links.

8. The RRSM then informs the SSM that MS is on its new channel and signallinglinks have been established, and deactivates the SDCCH channel.

9. The SSM then tells the SM to connect the radio channel to the terrestrial MSCcircuit. The SM responds when complete.

10. he SSM then tells the MSC that the MS is on the new channel and that the radiochannel has been connected to the MSC channel.

When this procedure is completed, it leaves the MS on its new traffic channel and‘talking’ to the MSC.

Page 829: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Voice Channel Assignment

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–59

Traffic Channel Assignment

����

��� ���

�����

��� �� ��� ��� ���

�� ������

���������

����� ��� �������������������

�� �����

��� ���

�� ����� �������

�$��� �������#�����

�$��� �������#���������

�� ����� ���! ��������

��������������� ��

��� ������������ ����

� � ������ ���������������

��

�����"

�� ����

�� ���� �������

�������

� ���

�� �������

��������� �

�� ����

��������������

�"���������

���������������

���������������

��

��!�����

����

�� ����

�� ���������������

�� ����� ���! ����

������������� ������ �

��

������

�! ���

��� ����

����

����

���������� �����������

BSS11_Ch8_29

Page 830: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Intra BSS Handover

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–60

Intra BSS Handover

Description

The following text describes the interprocess messages for an intra-BSS handover. Theterm ‘source’ describes the cell from which the MS is moving, whilst ‘target’ describesthe cell to which the MS is moving.

1. The handover detection and power control process decides whether a handover isrequired.

2. The RSS forwards the message to the SSM (handover evaluation process).

3. The SSM (handover evaluation process) decides where the MS is to move andsends a message to the CRM of the target cell requesting a channel.

4. The CRM target then tells the RRSM target that a channel has been assigned.

5. The RRSM target tells the RSS target to activate the channel.

6. Target RSS activates the channel and sends a channel activationacknowledgement to target RRSM. Target RRSM then informs SSM at the BSC ofthe channel allocation for the handover.

7. The SSM then sends the RRSM source the ‘initiate handover’ message whichcontains the channel information for the MS. This information is then passed viathe RSS source to the MS. The MS then moves to the new channel.

8. The MS is detected on the new channel by the RSS target and the signalling linksare established between RSS target and the MS.

9. The RRSM target is informed that the MS has been detected on the new channeland signalling links have been established.

10. The RRSM target informs the SSM that the MS has been detected and iscompleting the link establishment. This enables the SSM to inform the SM tochange the traffic connection to the new BTS.

11. RRSM target then informs the SSM that the handover has been successful. TheSSM then informs the MSC as to the new location of the MS.

12. The SSM then tells the RRSM source to release the MS’s old radio channel.

The handover process is now complete.

Page 831: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Intra BSS Handover

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–61

Intra BSS Handover

������

��� ����

�� ������

���

����

�����������������

�������������������������

�������� ��������

���������������

���������������

��������������

���������������

�����������������

���

�� ���

�������

�������� ���

��

�����

������

�����

������

�������

��������

�������

�������

������

������� �

������������� ��

���

��������

BSS11_Ch8_30

Page 832: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Intra BSS Handover

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

8–62

Page 833: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 9

BSS Customer MMI Overview

Page 834: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 835: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 9BSS Customer MMI Overview i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Objectives 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MMI Structure 9–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to BSS MMI 9–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Security 9–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Command Categories 9–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Command/Database Parameter Types 9–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Device and Function Dependencies 9–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Emon Prompt 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Executive Monitor and Command List 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emon and Security 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emon and Rlogin (Remote Login) 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emon and Initialization 9–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 836: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Page 837: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Objectives

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–1

ObjectivesAt the end of this section the student should be able to describe the capabilities of theCustomer MMI, and describe the following MMI command types:

� Maintenance.

� System Change Control (Configuration Management).

� Call Processing.

� Miscellaneous.

State the purpose of the EMON and the restrictions on its use and identify the followingprocedures with regard to EMON:

� Security

� Rlogin.

� Initialization

Page 838: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2MMI Structure

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–2

MMI Structure

Introduction toBSS MMI

In order to access the MMI commands at the base site a PC must be connected via anRS–232 cable to the TTY connector of the GPROC. Once the initial software has beendownloaded from the OMC the MMI command language becomes available via thisconnection.

The MMI has been developed to provide an interface between the maintainer and theBSS processing.

Note:

The TTY port is configured to meet the requirements of the EIA RS232C and CCITT V.24specifications.

Page 839: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 MMI Structure

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–3

PC–GPROC Interconnection

������

��������� ���������

Page 840: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Security

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–4

SecurityThe BSS system is divided into three different levels of security. The diagram oppositeshows how the different levels overlap each other.

Security level one

These represent the basic commands that are available to the first level maintainer.Security level two represents all of the commands available to the customer.

Security level two

These commands are more sensitive than security level one commands in terms ofpossible damage caused (e.g. take an entire BSC out of service).

Security level three

This level is completely hidden from the first level maintainer or customer. Motorola onlyhas access to this level. The first level maintainer or customer will not be allowed to usesecurity level three.

Security level three provides access to the Executive Monitor (ROM/RAM:EMON).

The password for security Level 2 can be changed by the customer, as can the level 3password if the “Optional Level 3 Password’’ feature is purchased.

The command to change the security level is:

chg_level

The user will then be prompted for the passwords for each level.

To move into the Executive Monitor, move to security level three and press ‘Control N’ onthe keyboard.

Page 841: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Security

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–5

Different levels of security

BSS11_9_1

Level 3

Level 2

Level 1

High security (allowsaccess to theExecutive Monitor)

Customer

First level maintainer

Page 842: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Command Categories

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–6

Command CategoriesEach available command within the BSS MMI command language falls into one of fivecategories. They are as follows:

Maintenance (Fault Management Database)

Purpose of Fault Management commands:

� Display the administrative state of devices.

� Display the administrative state of functions.

� Modify the administrative state of devices.

� Modify the administrative state of functions.

� Enable, modify, disable, and display alarms.

System Change Control (Configuration Management database)

Purpose of Configuration Management commands:

� Configure the Base Station System.

� Modify the CM database.

� Populate the database during SYSGEN.

� Display information from the CM database.

Call Processing (Database)

Purpose of Call Processing commands:

� Trace the progress of a specified call via random trace (by call rate).

� Trace the progress of a specified call via random trace (by SCCP connectionnumber).

� Report call processing data.

Statistics (Central Statistics Processing Database)

Purpose of Statistics commands:

� Enable/disable statistics.

� Display/modify statistics for devices or cells.

� Modify statistics time Interval for system.

� Monitor active (enabled) statistics for system.

� Report statistics data.

Miscellaneous Commands

Purpose of Miscellaneous commands:

� Begin/end a SYSGEN session.

� Reset the entire BSS.

� Clear database contents.

� Display/modify time function (time–stamp).

� Display version of a software load.

� Perform miscellaneous procedures (display DTE link address, ROM checksum,etc).

Page 843: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Command Categories

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–7

Command categories

� �����������

��������������������

� ����� �������������

���� �����������������������

� ��������������

������

� ����������

����������������������������������

� ���������������� ����

Page 844: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Command/Database Parameter Types

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–8

Command/Database Parameter TypesMMI commands and database parameters are classified on the basis of whether or not auser action is required to enter the command or change the value of the databaseparameter.

TYPE A

No special user action is required to enter a Type A command or change a Type Adatabase.

TYPE B

Special conditions must exist in the system when entering a Type B command orchanging a Type B database parameter. The special conditions are included in theOperator Actions listing of each command and database parameter description.

Page 845: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Command/Database Parameter Types

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–9

Command/Database Parameter Types

� ������ �������� ������� �����

� ������ ���� ��������������������������������

Page 846: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Device and Function Dependencies

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–10

Device and Function DependenciesThe following chart shows device and function dependencies. Due to systemdependencies, some devices and functions can only be equipped after other specificdevices have been equipped. For example, before a BTF can be equipped, a GPROCmust be equipped. A device or function at a lower level can only be equipped if thedevice above it has been equipped.

Page 847: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Device and Function Dependencies

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–11

Device and Function Dependences

������

����

��� ���� �� �����

��� �� �����

���

����

��

���� ��� ��

���

Page 848: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2The Emon Prompt

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

9–12

The Emon PromptThe Emon (Executive monitor) prompt is the main access point for debugging the BSSsystem. From this prompt you can gain access to the whole system as well as issue all ofthe Emon commands.

ExecutiveMonitor andCommand List

Once at the Emon prompt the commands available to the user can be divided into thefollowing categories:

� Statistics.

� Virtual memory.

� Debugging.

� Timer.

� System.

� Analysis.

Emon andSecurity

To gain access to the Emon the user must be at security level 3. This level of securityensures only those users who are allowed to access this level may gain access to theExecutive monitor.

Emon and Rlogin(Remote Login)

One command available to the user at the Emon prompt is Rlogin (Remote Login). Thiscommand allows the user to login to any connected BTS from a BSC, from a BTS backto the parent BSC, or from one GPROC to another at the same site. Once the user isremotely logged into a site commands can be executed as though they were logged indirectly to that site.

Emon andInitialization

During the Initialization process, progress of the site boot–up can be monitored byentering the Executive monitor. Once at the Emon prompt the terminal screen will scrollup the page giving detailed information on the current state of the site.

The Executive monitor can be entered by pressing the keys Ctrl + N.

Page 849: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Chapter 10

Course Assessment

Page 850: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 851: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Chapter 10Course Assessment i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Objectives 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Course Assessment Completion 10–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Answer Grid 10–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 852: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

Page 853: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Objectives

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

10–1

ObjectivesOn completion of this section the student should be able to:

� Complete a multiple choice option assessment paper covering the technicalcontent of this training course.

Page 854: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Course Assessment Completion

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

10–2

Course Assessment CompletionThe end of course assessment paper will be issued by the instructor on the finalafternoon of the course.

The assessment will last for 1 hour and is NOT a pass/fail assessment, the results beingfor statistical purposes only.

Upon completion of the paper the instructor will go through the correct answers to thequestions posed.

Students are not to mark the assessment paper; answers are to be given on the answergrid provided.

Answer Grid

On the answer grid students are to fill in details as required at the top of the grid:

� Course number.

� Date.

� Student name.

� Student ID.

The test paper number can be found on the top of the assessment paper.

The correct answer to a question is to be indicated by filling in the appropriate ovalcompletely.

E.g. If the answer to question 1 is multiple-choice answer C, oval C needs to be filled into indicate this:

A B C D

Q1

If the first choice of answer is incorrect, place a cross over the first choice and fill in theappropriate oval for what is thought to be the correct answer.

E.g. If answer C is thought to be incorrect and answer A correct, a cross needs to beplaced over answer C and the oval for answer A filled in:

A B C D

Q2

Page 855: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Course Assessment Completion

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

10–3

Page 856: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Course Assessment Completion

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

10–4

Page 857: BSS 11 BSS Operational Theory

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

i

Glossary of Terms

Page 858: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ii

Page 859: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Numbers

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iii

Numbers# Number.

2 Mbit/s link As used in this manual set, the term applies to the European4-wire 2.048 Mbit/s digital line or link which can carry 30A-law PCM channels or 120 16 kbit/s GSM channels.

4GL 4th Generation Language.

Page 860: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2A

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

iv

AA interface Interface between MSC and BSS.

A3 Authentication algorithm that produces SRES, using RANDand Ki.

A38 A single algorithm performing the function of A3 and A8.

A5 Stream cipher algorithm, residing on an MS, that producesciphertext out of plaintext, using Kc.

A8 Ciphering key generating algorithm that produces Kc usingRAND and Ki.

AB Access Burst.

Abis interface Interface between a remote BSC and BTS. Motorola offers aGSM standard and a unique Motorola Abis interface. TheMotorola interface reduces the amount of message traffic andthus the number of 2 Mbit/s lines required between BSC andBTS.

ABR Answer Bid Ratio.

ac–dc PSM AC–DC Power Supply module.

ac Alternating Current.

AC Access Class (C0 to C15).

AC Application Context.

ACC Automatic Congestion Control.

ACCH Associated Control CHannel.

ACK, Ack ACKnowledgement.

ACM Accumulated Call meter.

ACM Address Complete Message.

ACPIM AC Power Interface Module. Used in M-Cell6 indor ac BTSequipment.

AC PSM AC Power Supply Module. Used in M-Cell6 BTS equipment.

ACSE Associated Control Service Element.

ACU Antenna Combining Unit.

A/D Analogue to Digital (converter).

ADC ADministration Centre.

ADC Analogue to Digital Converter.

ADCCP ADvanced Communications Control Protocol.

ADM ADMinistration processor.

ADMIN ADMINistration.

ADN Abbreviated Dialling Number.

ADPCM Adaptive Differential Pulse Code Modulation.

AE Application Entity.

AEC Accoustic Echo Control.

AEF Additional Elementary Functions.

Page 861: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 A

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

v

AET Active Events Table. Alarms and events are sent to theEvents Log in the GUI. Different operators will have differentsubscription lists. All alarms and events are sent to the AETbefore they are re-routed to different subscription lists.

AFC Automatic Frequency Control.

AFN Absolute Frame Number.

AGC Automatic Gain Control.

AGCH Access Grant CHannel. A GSM common control channelused to assign MS to a SDCCH or a TCH.

Ai Action indicator.

AI Artificial Intelligence.

AIB Alarm Interface Board.

AIO A class of processor.

Air interface The radio link between the BTS and the MS.

AM Amplitude Modulation.

AMA Automatic Message Accounting (processor).

AM/MP Cell broadcast mobile terminated message. A messagebroadcast to all MSs in a cell.

AoC Advice of Change.

AoCC Advice of Change Charging supplementary service.

AoCI Advice of Change Information supplementary service.

AOC Automatic Output Control.

AP Application Process.

ARFCN Absolute Radio Frequency Channel Number. An integerwhich defines the absolute RF channel number.

ARQ Automatic ReQuest for retransmission.

ARP Address Resolution Protocol.

ASCE Association Control Service Element. An ASE whichprovides an AP with the means to establish and control anassociation with an AP in a remote NE. Maps directly ontothe Presentation layer (OMC).

ASE Application Service Element (OMC)

ASE Application Specific Entity (TCAP).

ASN.1 Abstract Syntax Notation One.

ASP Alarm and Status Panel.

ASR Answer Seizure Ratio.

ATB All Trunks Busy.

ATI Antenna Transceiver Interface.

ATT (flag) ATTach.

ATTS Automatic Trunk Testing Subsystem.

AU Access Unit.

AuC Authentication Centre. A GSM network entity which providesthe functionality for verifying the identity of an MS whenrequested by the system. Often a part of the HLR.

Page 862: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2A

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vi

AUT(H) AUThentication.

AUTO AUTOmatic mode.

Page 863: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 B

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

vii

B

B Interface Interface between MSC and VLR.

BA BCCH Allocation. The radio frequency channels allocated in acell for BCCH transmission.

BAIC Barring of All Incoming Calls supplementary service.

BAOC Barring of All Outgoing Calls supplementary service.

BBBX Battery Backup Board.

BBH Base Band Hopping.

BCC BTS Colour Code.

BCCH Broadcast Control CHannel. A GSM control channel used tobroadcast general information about a BTS site on a per cellor sector basis.

BCD Binary Coded Decimal.

BCF Base station Control Function. The GSM term for the digitalcontrol circuitry which controls the BTS. In Motorola cell sitesthis is a normally a BCU which includes DRI modules and islocated in the BTS cabinet.

BCIE Bearer Capability Information Element.

BCU Base station Control Unit. A functional entity of the BSSwhich provides the base control function at a BTS site. Theterm no longer applies to a type of shelf (see BSC and BSU).

BCUP Base Controller Unit Power.

BER Bit Error Rate. A measure of signal quality in the GSMsystem.

BES Business Exchange Services.

BFI Bad Frame Indication.

BHCA Busy Hour Call Attempt.

BI all Barring of All Incoming call supplementary service.

BIB Balanced-line Interconnect Board. Provides interface to 12balanced (6-pair) 120 ohm (37-pin D-type connector) lines for2 Mbit/s circuits (See also T43).

BIC–Roam Barring of All Incoming Calls when Roaming outside theHome PLMN Country supplementary service.

BIM Balanced-line Interconnect Module.

Bin An area in a data array used to store information.

BL BootLoad. Also known as download. For example, databasesand software can be downloaded to the NEs from the BSS.

BLLNG BiLLiNG.

bit/s Bits per second (bps).

Bm Full rate traffic channel.

BN Bit Number. Number which identifies the position of aparticular bit period within a timeslot.

BPF Bandpass Filter.

BPSM �BCU Power Supply Module.

Page 864: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2B

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

viii

BS Basic Service (group).

BS Bearer Service. A type of telecommunication service thatprovides the capability for the transmission of signalsbetween user-network interfaces. The PLMN connection typeused to support a bearer service may be identical to that usedto support other types of telecommunication service.

BSC Base Station Controller. A network component in the GSMPLMN which has the digital control function of controlling allBTSs. The BSC can be located within a single BTS cabinet(forming a BSS) but is more often located remotely andcontrols several BTSs (see BCF, BCU, and BSU).

BSG Basic Service Group.

BSIC Base Transceiver Station Identity Code. A block of code,consisting of the GSM PLMN colour code and a base stationcolour code. One Base Station can have several BaseStation Colour Codes.

BSIC-NCELL BSIC of an adjacent cell.

BSP Base Site control Processor (at BSC).

BSN Backward Sequence Number.

BSS Base Station System. The system of base station equipment(Transceivers, controllers and so on) which is viewed by theMSC through a single interface as defined by the GSM 08series of recommendations, as being the entity responsiblefor communicating with MSs in a certain area. The radioequipment of a BSS may cover one or more cells. A BSSmay consist of one or more base stations. If an internalinterface is implemented according to the GSM 08.5x seriesof recommendations, then the BSS consists of one BSC andseveral BTSs.

BSSAP BSS Application Part (of Signalling System No. 7) (DTAP +BSSMAP).

BSSC Base Station System Control cabinet. The cabinet whichhouses one or two BSU shelves at a BSC or one or two RXUshelves at a remote transcoder.

BSSMAP Base Station System Management Application Part (6-8).

BSSOMAP BSS Operation and Maintenance Application Part (ofSignalling System No. 7).

BSU Base Station Unit shelf. The shelf which houses the digitalcontrol modules for the BTS (p/o BTS cabinet) or BSC (p/oBSSC cabinet).

BT British Telecom.

BT Bus Terminator.

BTC Bus Terminator Card.

BTF Base Transceiver Function.

BTP Base Transceiver Processor (at BTS). One of the six basictask groups within the GPROC.

Page 865: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 B

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

ix

BTS Base Transceiver Station. A network component in the GSMPLMN which serves one cell, and is controlled by a BSC.The BTS contains one or more Transceivers (TRXs).

Burst A period of modulated carrier less than one timeslot. Thephysical content of a timeslot.

Page 866: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2C

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

x

CC Conditional.

C Interface Interface between MSC and HLR/AUC.

C7 ITU-TSS Signalling System 7 (sometimes referred to as S7 orSS#7).

CA Cell Allocation. The radio frequency channels allocated to aparticular cell.

CA Central Authority.

CAB Cabinet.

CADM Country ADMinistration. The Motorola procedure used withinDataGen to create new country and network files in theDataGen database.

CAI Charge Advice Information.

CAT Cell Analysis Tool.

CB Cell Broadcast.

CB Circuit Breaker.

CBC Cell Broadcast Centre.

CBCH Cell Broadcast CHannel.

CBF

CBIA

Combining Bandpass Filter.

Cage Backplane Interface panel harness Assembly

CBL Cell Broadcast Link.

CBM Circuit Breaker Module.

CBMI Cell Broadcast Message Identifier.

CBSMS Cell Broadcast Short Message Service.

CBUS Clock Bus.

CC Connection Confirm (Part of SCCP network connectivity).

CC Country Code.

CC Call Control.

CCB Cavity Combining Block, a three way RF combiner. Thereare two types of CCB, CCB (Output) and CCB (Extension).These, with up to two CCB Control cards, may comprise theTATI. The second card may be used for redundancy.

CCBS Completion of Calls to Busy Subscriber supplementaryservice.

CCCH Common Control CHannels. A class of GSM controlchannels used to control paging and grant access. IncludesAGCH, PCH, and RACH.

CCCH_GROUP Group of MSs in idle mode.

CCD Common Channel Distributor.

CCDSP Channel Coding Digital Signal Processor.

CCF Conditional Call Forwarding.

CCH Control CHannel. Control channels are channels which carrysystem management messages.

Page 867: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 C

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xi

CCH Council for Communications Harmonization (referred to inGSM Recommendations).

CCIT Comité Consultatif International Télégraphique etTéléphonique. This term has been superceded by ITU–TSS(International Telecommunications Union –Telecommunications Sector).

CCM Current Call Meter.

CCP Capability/Configuration Parameter.

CCPE Control Channel Protocol Entity.

CCS Hundred call-seconds. The unit in which amounts oftelephone traffic are measured. A single call lasting onehundred seconds is one CCS. See also erlang.

Cct Circuit.

CDB Control Driver Board.

CDE Common Desktop Environment. Part of the SUN software(crontab – cron job file).

CDR Call Detail Records.

CDUR Chargeable DURation.

CEB Control Equalizer Board (BTS).

CED Called station identifier.

CEIR Central Equipment Identity Register.

Cell By GSM definition, a cell is an RF coverage area. At anomni-site, cell is synonymous with site; at a sectored site, cellis synonymous with sector. This differs from analoguesystems where cell is taken to mean the same thing as site.(See below).

Omni Site1-Cell Site

(1 BTS)

6-Sector Siteor

6-Cell Site(6 BTSs)

1 Cell =1 Sector

CEND End of charge point.

CEPT Conférence des administrations Européennes des Postes etTelecommunications.

CERM Circuit Error Rate Monitor.

CF Conversion Facility.

CF all Call Forwarding services.

CFB Call Forwarding on mobile subscriber Busy supplementaryservice.

CFC Conditional Call Forward.

Page 868: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2C

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xii

CFNRc Call Forwarding on mobile subscriber Not Reachablesupplementary service.

CFNRy Call Forwarding on No Reply supplementary service.

CFU Call Forwarding Unconditional supplementary service.

Channel A means of one-way transmission. A defined sequence ofperiods (for example, timeslots) in a TDMA system; a definedfrequency band in an FDMA system; a defined sequence ofperiods and frequency bands in a frequency hopped system.

CIM Coaxial Interconnect Module.

CHP CHarging Point.

CHV Card Holder Verification information.

CKSN Ciphering Key Sequence Number.

CI Cell Identity. A block of code which identifies a cell within alocation area.

CI CUG Index.

CIC Circuit Identity Code.

CIR, C/I Carrier to Interference Ratio.

Ciphertext Unintelligible data produced through the use of encipherment.

CKSN Ciphering Key Sequence Number.

CLI Calling Line Identity.

CLIP Calling Line Identification Presentation supplementaryservice.

CLIR Calling Line Identification Restriction supplementary service.

CLK Clock.

CLKX Clock Extender half size board. The fibre optic link thatdistributes GCLK to boards in system (p/o BSS etc).

CLM Connectionless Manager.

CLR CLeaR.

CM Configuration Management. An OMC application.

CM Connection Management.

CMD CoMmanD.

CMM Channel Mode Modify.

CMIP Common Management Information Protocol.

CMISE Common Management Information Service Element. An ASEwhich provides a means to transfer management informationvia CMIP messages with another NE over an associationestablished by ASCE using ROSE (OMC).

CMR Cellular Manual Revision.

CNG CalliNg tone.

COLI COnnected Line Identity.

Collocated Placed together; two or more items together in the sameplace.

Page 869: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 C

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xiii

Coincident Cell A cell which has a co-located neighbour whose cell boundaryfollows the boundary of the said cell. The coincident cell hasa different frequency type, but the same BSIC, as that of theneighbour cell.

COLP COnnected Line Identification Presentation supplementaryservice.

COLR COnnected Line Identification Restriction supplementaryservice.

CODEX Manufacturer’s name for a type of multiplexer and packetswitch commonly installed at the Motorola OMC-R.

COM Code Object Manager.

COM COMplete.

COMB Combiner.

CONNACK CONNect ACKnowledgement.

COMM, Comms COMMunications.

CommsLink Communications Link. (2Mbit/s)

CONF CONFerence circuit.

CONFIG CONFIGuration Control Program.

CP Call Processing.

CPU Central Processing Unit.

C/R Command/Response field bit.

CR Carriage Return (RETURN).

CR Connection Request (Part of SCCP network connectivity).

CRC Cyclic Redundancy Check (3 bit).

CRE Call RE-establishment procedure.

CREF Connection REFused (Part of SCCP network connectivity).

CRM Cell Resource Manager.

CRM-LS/HS Cellular Radio Modem-Low Speed/High Speed. Low speedmodem used to interwork 300 to 2400 bit/s data servicesunder V.22bis, V.23, or V.21 standards. High speed modemused to interwork 1200 to 9600 bit/s data services underV.22bis, V.32, or V.29/V.27ter/V.21 standards.

CRT Cathode Ray Tube (video display terminal).

CSFP Code Storage Facility Processor (at BSC and BTS).

CSP Central Statistics Process. The statistics process in the BSC.

CSPDN Circuit Switched Public Data Network.

CT Call Transfer supplementary service.

CT Channel Tester.

CT Channel Type.

CTP Call Trace Product (Tool).

CTR Common Technical Regulation.

CTS Clear to Send. Method of flow control (RS232 Interface).

CTU Compact Transceiver Unit (M-Cellhorizon radio).

Page 870: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2C

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xiv

CUG Closed User Group supplementary service.

Cumulative value The total value for an entire statistical interval.

CW Call Waiting supplementary service.

Page 871: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 D

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xv

D

D Interface Interface between VLR and HLR.

D/A Digital to Analogue (converter).

DAB Disribution Alarm Board.

DAC Digital to Analogue Converter.

DACS Digital Access Cross-connect System.

DAN Digital ANnouncer (for recorded announcements on MSC).

DAS Data Acquisition System.

DAT Digital Audio Tape.

DataGen Sysgen Builder System. A Motorola offline BSS binary objectconfiguration tool.

dB Decibel. A unit of power ratio measurement.

DB DataBase.

DB Dummy Burst (see Dummy burst).

DBA DataBase Administration/Database Administrator.

DBMS DataBase Management System.

dc Direct Current.

DCB Diversity Control Board (p/o DRCU).

DCCH Dedicated Control CHannel. A class of GSM controlchannels used to set up calls and report measurements.Includes SDCCH, FACCH, and SACCH.

DCD Data Carrier Detect signal.

DCE Data Circuit terminating Equipment.

DCF Data Communications Function.

DCF Duplexed Combining bandpass Filter. (Used inHorizonmacro).

DCN Data Communications Network. A DCN connects NetworkElements with internal mediation functions or mediationdevices to the Operations Systems.

DC PSM DC Power Supply Module.

DCS1800 Digital Cellular System at 1800 MHz. A cellular phonenetwork using digital techniques similar to those used in GSM900, but operating on frequencies of 1710 – 1785 MHz and1805 – 1880 MHz.

DDF Dual-stage Duplexed combining Filter. (Used inHorizonmacro).

DDS DataGen Directory Structure.

DDS Data Drive Storage.

DDS Direct Digital Synthesis.

DEQB Diversity Equalizer Board.

DET DETach.

DFE Decision Feedback Equalizer.

DGT Data Gathering Tool.

Page 872: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2D

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xvi

DHP Digital Host Processor.

DIA Drum Intercept Announcer.

DINO E1/HDSL Line termination module.

DINO T1 Line termination module.

DISC DISConnect.

Discon Discontiuous.

DIQ Diversity In phase and Quadrature phase.

DIR Device Interface Routine.

DL Data Link (layer).

DLCI Data Link Connection Identifier.

DLD Data Link Discriminator.

DLNB Diversity Low Noise Block.

DLSP Data Link Service Process.

DLSP Digital Link Signalling Processor.

Dm Control channel (ISDN terminology applied to mobile service).

DMA Deferred Maintenance Alarm. An alarm report level; animmediate or deferred response is required (see also PMA).

DMA Direct Memory Access.

DMR Digital Mobile Radio.

DMX Distributed Electronic Mobile Exchange (Motorola’snetworked EMX family).

DN Directory Number.

DNIC Data network identifier.

Downlink Physical link from the BTS towards the MS (BTS transmits,MS receives).

DP Dial/Dialled Pulse.

DPC Destination Point Code. A part of the label in a signallingmessage that uniquely identifies, in a signalling network, the(signalling) destination point of the message.

DPC Digital Processing and Control board.

DPNSS Digital Private Network Signalling System (BT standard forPABX interface).

DPP Dual Path Preselector.

DPR, DPRAM Dual Port Random Access Memory.

DPSM Digital Power Supply Module.

DRAM Dynamic Random Access Memory.

DRC Data Rate Converter board. Provides data and protocolconversion between PLMN and destination network for 8circuits (p/o IWF).

DRCU Diversity Radio Channel Unit. Contains transceiver, digitalcontrol circuits, and power supply (p/o BSS) (see RCU).

(D)RCU Generic term for radio channel unit. May be standard RCU ordiversity radio channel unit DRCU.

Page 873: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 D

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xvii

DRI Digital Radio Interface. Provides encoding/decoding andencryption/decryption for radio channel (p/o BSS).

DRIM Digital Radio Interface extended Memory. A DRI with extramemory.

DRIX DRI Extender half size board. Fibre optic link from DRI toBCU (p/o BSS).

DRX, DRx Discontinuous reception (mechanism). A means of savingbattery power (for example in hand-portable units) byperiodically and automatically switching the MS receiver onand off.

DS-2 German term for 2 Mbit/s line (PCM interface).

DSE Data Switching Exchange.

DSI Digital Speech Interpolation.

DSP Digital Signal Processor.

DSS1 Digital Subscriber Signalling No 1.

DSSI Diversity Signal Strength Indication.

DTAP Direct Transfer Application Part (6-8).

DTE Data Terminal Equipment.

DTF Digital Trunk Frame.

DT1 DaTa form 1 (Part of SCCP network connectivity).

DTI Digital Trunk Interface.

DTMF Dual Tone Multi-Frequency (tone signalling type).

DTR Data Terminal Ready signal. Method of flow control (RS232Interface).

DTRX Dual Transceiver Module. (Radio used in M-Cellarena andM-Cellarenamacro).

DTX, DTx Discontinuous Transmission (mechanism). A means ofsaving battery power (for example in hand-portable units) andreducing interference by automatically switching thetransmitter off when no speech or data are to be sent.

Dummy burst A period of carrier less than one timeslot whose modulation isa defined sequence that carries no useful information. Adummy burst fills a timeslot with an RF signal when noinformation is to be delivered to a channel.

DYNET DYnamic NETwork. Used to specify BTSs sharing dynamicresources.

Page 874: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2E

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xviii

E

E See Erlang.

E Interface Interface between MSC and MSC.

EA External Alarms.

EAS External Alarm System.

Eb/No Energy per Bit/Noise floor.

EBCG Elementary Basic Service Group.

EC Echo Canceller. Performs echo suppression for all voicecircuits.

ECB Provides echo cancelling for telephone trunks for 30 channels(EC).

ECID The Motorola European Cellular Infrastructure Division.

ECM Error Correction Mode (facsimile).

Ec/No Ratio of energy per modulating bit to the noise spectraldensity.

ECT Event Counting Tool.

ECT Explicit Call Transfer supplementary service.

EEL Electric Echo Loss.

EEPROM Electrically Erasable Programmable Read Only Memory.

EGSM900 Extended GSM900.

EI Events Interface. Part of the OMC-R GUI.

EIR Equipment Identity Register.

EIRP Effective Isotropic Radiated Power.

EIRP Equipment Identity Register Procedure.

EL Echo Loss.

EM Event Management. An OMC application.

EMC ElectroMagnetic Compatibility.

EMF Electro Motive Force.

EMI Electro Magnetic Interference.

eMLPP enhanced Multi-Level Precedence and Pre-emption service.

EMMI Electrical Man Machine Interface.

EMU Exchange office Management Unit (p/o Horizonoffice)

EMX Electronic Mobile Exchange (Motorola’s MSC family).

en bloc Fr. — all at once (a CCITT #7 Digital Transmission scheme);En bloc sending means that digits are sent from one systemto another ~ (that is, all the digits for a given call are sent atthe same time as a group). ~ sending is the opposite ofoverlap sending. A system using ~ sending will wait until ithas collected all the digits for a given call before it attempts tosend digits to the next system. All the digits are then sent asa group.

EOT End of Tape.

EPROM Erasable Programmable Read Only Memory.

Page 875: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 E

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xix

EPSM Enhanced Power Supply Module (+27 V).

EQB Equalizer Board. Control circuit for equalization for 8 timeslots each with equalizing circuitry and a DSP (p/o RCU).

EQCP Equalizer Control Processor.

EQ DSP Equalizer Digitizer Signal Processor.

Erlang International (dimensionless) unit of traffic intensity defined asthe ratio of time a facility is occupied to the time it is availablefor occupancy. One erlang is equal to 36 CCS. In the USthis is also known as a traffic unit (TU).

ERP Ear Reference Point.

ERP Effective Radiated Power.

ERR ERRor.

ESP Electro-static Point.

ESQL Embedded SQL (Structured Query Language). An RDBMSprogramming interface language.

E-TACS Extended TACS (analogue cellular system, extended).

Ethernet Type of Local Area Network.

ETR ETSI Technical Report.

ETS European Telecommunication Standard.

ETSI European Telecommunications Standards Institute.

ETX End of Transmission.

EXEC Executive Process.

Page 876: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2F

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xx

F

F Interface Interface between MSC and EIR.

FA Fax Adaptor.

FA Full Allocation.

FA Functional Area.

FAC Final Assembly Code.

FACCH Fast Associated Control Channel. A GSM dedicated controlchannel which is associated with a TCH and carries controlinformation after a call is set up (see SDCCH).

FACCH/F Fast Associated Control Channel/Full rate.

FACCH/H Fast Associated Control Channel/Half rate.

FB Frequency correction Burst (see Frequency correction burst).

FC-AL Fibre Channel Arbitration Loop. (Type of hard disc).

FCCH Frequency Correction CHannel. A GSM broadcast controlchannel which carries information for frequency correction ofthe mobile (MS).

FCP Fault Collection Process (in BTS).

FCS Frame Check Sequence.

FDM Frequency Division Multiplex.

FDMA Frequency Division Multiple Access.

FDN Fixed Dialling Number.

FDP Fault Diagnostic Procedure.

FEC Forward Error Correction.

FEP Front End Processor.

FER Frame Erasure Ratio.

FFS, FS For Further Study.

FH Frequency Hopping.

FIB Forward Indicator Bit.

FIR Finite Impulse Response (filter type).

FK Foreign Key. A database column attribute; the foreign keyindicates an index into another table.

FM Fault Management (at OMC).

FM Frequency Modulation.

FMIC Fault Management Initiated Clear.

FMUX Fibre optic MUltipleXer.

FN Frame Number. Identifies the position of a particular TDMAframe within a hyperframe.

FOA First Office Application.

FOX Fibre Optic eXtender.

FR Full Rate. Refers to the current capacity of a data channel onthe GSM air interface, that is, 8 simultaneous calls per carrier(see also HR – Half Rate).

Page 877: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 F

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxi

FRU Field Replaceable Unit.

Frequency correction Period of RF carrier less than one timeslot whose modulationbit stream allows frequency correction to be performed easilywithin an MS burst.

FS Frequency Synchronization.

FSL Free Space Loss. The decrease in the strength of a radiosignal as it travels between a transmitter and receiver. TheFSL is a function of the frequency of the radio signal and thedistance the radio signal has travelled from the point source.

FSN Forward Sequence Number.

FTAM File Transfer, Access, and Management. An ASE whichprovides a means to transfer information from file to file(OMC).

ftn forwarded-to number.

FTP Fault Translation Process (in BTS).

FTP File Transfer Protocol.

Page 878: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2G

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxii

GG Interface Interface between VLR and VLR.

Gateway MSC An MSC that provides an entry point into the GSM PLMNfrom another network or service. A gateway MSC is also aninterrogating node for incoming PLMN calls.

GB, Gbyte Gigabyte.

GBIC Gigabit Interface Converter.

GCLK Generic Clock board. System clock source, one per site (p/oBSS, BTS, BSC, IWF, RXCDR).

GCR Group Call Register.

GDP Generic DSP Processor board. Interchangeable with the XCDRboard.

GDP E1 GDP board configured for E1 link usage.

GDP T1 GDP board configured for T1 link usage.

GHz Giga-Hertz (109).

GID Group ID. A unique number used by the system to identify auser’s primary group.

GMB GSM Multiplexer Board (p/o BSC).

GMR GSM Manual Revision.

GMSC Gateway Mobile-services Switching Centre (see GatewayMSC).

GMSK Gaussian Minimum Shift Keying. The modulation techniqueused in GSM.

GND GrouND.

GOS Grade of Service.

GPA GSM PLMN Area.

GPC General Protocol Converter.

GPROC Generic Processor board. GSM generic processor board: a68030 with 4 to 16 Mb RAM (p/o BSS, BTS, BSC, IWF,RXCDR).

GPROC2 Generic Processor board. GSM generic processor board: a68040 with 32 Mb RAM (p/o BSS, BTS, BSC, IWF, RXCDR).

GPRS General Packet Radio Service.

GPS Global Positioning by Satellite.

GSA GSM Service Area. The area in which an MS can be reachedby a fixed subscriber, without the subscriber’s knowledge ofthe location of the MS. A GSA may include the areas servedby several GSM PLMNs.

GSA GSM System Area. The group of GSM PLMN areasaccessible by GSM MSs.

GSM Groupe Spécial Mobile (the committee).

GSM Global System for Mobile communications (the system).

GSM MS GSM Mobile Station.

GSM PLMN GSM Public Land Mobile Network.

Page 879: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 G

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxiii

GSR GSM Software Release.

GT Global Title.

GTE Generic Table Editor. The Motorola procedure which allowsusers to display and edit MCDF input files.

Guard period Period at the beginning and end of timeslot during which MStransmission is attenuated.

GUI Graphical User Interface.

GUI client A computer used to display a GUI from an OMC-R GUIapplication which is beingbrun on a GUI server.

GUI server A computer used to serve the OMC-R GUI applicationprocess running locally (on its processor) to other computers(Gui clients or other MMI processors).

GWY GateWaY (MSC/LR) interface to PSTN.

Page 880: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2H

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxiv

HH Interface Interface between HLR and AUC.

H-M Human-Machine Terminals.

HAD, HAP HLR Authentication Distributor.

HANDO, Handover HANDOver. The action of switching a call in progress fromone radio channel to another radio channel. Handover allowsestablished calls to continue by switching them to anotherradio resource, as when an MS moves from one BTS area toanother. Handovers may take place between the followingGSM entities: timeslot, RF carrier, cell, BTS, BSS and MSC.

HCU Hybrid Combining Unit. (Used in Horizonmacro).

HDLC High level Data Link Control.

HDSL High bit-rate Digital Subscriber Line.

HLC High Layer Compatibility. The HLC can carry informationdefining the higher layer characteristics of a teleservice activeon the terminal.

HLR Home Location Register. The LR where the current locationand all subscriber parameters of an MS are permanentlystored.

HMS Heat Management System. The system that providesenvironmental control of the components inside the ExCell,TopCell and M-Cell cabinets.

HO HandOver. (see HANDO above).

HPU Hand Portable Unit.

HOLD Call hold supplementary service.

HPLMN Home PLMN.

HR Half Rate. Refers to a type of data channel that will doublethe current GSM air interface capacity to 16 simultaneouscalls per carrier (see also FR – Full Rate).

HS HandSet.

HSI/S High Speed Interface card.

HSM HLR Subscriber Management.

HSN Hopping Sequence Number.

HU Home Units.

HW Hardware.

Hyperframe 2048 superframes. The longest recurrent time period of theframe structure.

Page 881: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 I

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxv

I

I Information frames (RLP).

IA Incomming Access (closed user group (CUG) SS(supplementary service)).

IA5 International Alphanumeric 5.

IADU Integrated Antenna Distribution Unit. (The IADU is theequivalent of the Receive Matrix used on pre-M-Cell BTSs).

IAM Initial Address Message.

IAS Internal Alarm System.

IC Integrated Circuit.

IC Interlock Code (CUG SS).

IC(pref) Interlock Code op the preferential CUG.

ICB Incoming Calls Barred.

ICC Integrated Circuit(s) Card.

ICM In-Call Modification.

ICMP Internet Control Message Protocol.

ID, Id IDentification/IDentity/IDentifier.

IDN Integrated Digital Network.

IDS INFOMIX Database Server. (OMC-R relational databasemanagement system).

IE Information Element (signalling).

IEC International Electrotechnical Commission.

IEEE Institute of Electrical and Electronic Engineers.

IEI Information Element Identifier.

I-ETS Interim European Telecommunication Standard.

IF Intermediate Frequency.

IFAM Initial and Final Address Message.

IM InterModulation.

IMACS Intelligent Monitor And Control System.

IMEI International Mobile station Equipment Identity. Electronicserial number that uniquely identifies the MS as a piece orassembly of equipment. The IMEI is sent by the MS alongwith request for service.

IMM IMMediate assignment message.

IMSI International Mobile Subscriber Identity. Published mobilenumber (prior to ISDN) (see also MSISDN) that uniquelyidentifies the subscription. It can serve as a key to derivesubscriber information such as directory number(s) from theHLR.

IN Intelligent Network.

IN Interrogating Node. A switching node that interrogates anHLR, to route a call for an MS to the visited MSC.

INS IN Service.

Page 882: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2I

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxvi

INS Intelligent Network Service.

InterAlg Interference Algorithm. A single interference algorithm in acell.

Interworking The general term used to describe the inter-operation ofnetworks, services, supplementary services and so on. Seealso IWF.

Interval A recording period of time in which a statistic is pegged.

Interval expiry The end of an interval.

I/O Input/Output.

IOS Intelligent Optimization Platform.

IP Initialisation Process.

IP Internet Protocol.

IPC Inter-Process Communication.

IP, INP INtermodulation Products.

IPR Intellectual PRoperty.

IPSM Integrated Power Supply Module (–48 V).

IPX (A hardware component).

ISAM Indexed Sequential Access Method.

ISC International Switching Centre.

ISDN Integrated Services Digital Network. An integrated servicesnetwork that provides digital connections betweenuser-network interfaces.

ISG Motorola Information Systems group (formally CODEX).

ISO International Organisation for Standardization.

ISQL Informix Structured Query Language.

ISUP ISDN User Part (of signalling system No. 7).

IT Inactivity Test (Part of SCCP network connectivity).

ITC Information Transfer Capability.

ITU International Telecommunication Union.

ITU–TSS International Telecommunication Union – TelecommunicationsSector.

IWF InterWorking Function. A network functional entity whichprovides network interworking, service interworking,supplementary service interworking or signalling interworking.It may be a part of one or more logical or physical entities in aGSM PLMN.

IWMSC InterWorking MSC.

IWU InterWorking Unit.

Page 883: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 K

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxvii

Kk kilo (103).

k Windows size.

K Constraint length of the convolutional code.

KAIO Kernal Asynchronous Input/Output.

kb, kbit kilo-bit.

kbit/s, kbps kilo-bits per second.

kbyte kilobyte.

Kc Ciphering key. A sequence of symbols that controls theoperation of encipherment and decipherment.

kHz kilo-Hertz (103).

Ki Individual subscriber authentication Key (p/o authenticationprocess of AUC).

KIO A class of processor.

KSW Kiloport SWitch board. TDM timeslot interchanger to connectcalls (p/o BSS).

KSWX KSW Expander half size board. Fibre optic distribution ofTDM bus (p/o BSS).

kW kilo-Watt.

Page 884: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2L

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxviii

LL1 Layer 1.

L2ML Layer 2 Management Link.

L2R Layer 2 Relay function. A function of an MS and IWF thatadapts a user’s known layer2 protocol LAPB onto RLP fortransmission between the MT and IWF.

L2R BOP L2R Bit Orientated Protocol.

L2R COP L2R Character Orientated Protocol.

L3 Layer 3.

LA Location Area. An area in which an MS may move freelywithout updating the location register. An LA may compriseone or several base station areas.

LAC Location Area Code.

LAI Location Area Identity. The information indicating the locationarea in which a cell is located.

LAN Local Area Network.

LANX LAN Extender half size board. Fibre optic distribution of LANto/from other cabinets (p/o BSS etc).

LAPB Link Access Protocol Balanced (of ITU–TSS Rec. x.25).

LAPD Link Access Protocol Data.

LAPDm Link Access Protocol on the Dm channel.

LC Inductor Capacitor (type of filter).

LCF Link Control Function.

LCN Local Communications Network.

LCP Link Control Processor.

LE Local Exchange.

LED Light Emitting Diode.

LF Line Feed.

LI Length Indicator.

LI Line Identity.

LLC Lower Layer Compatibility. The LLC can carry informationdefining the lower layer characteristics of the terminal.

Lm Traffic channel with capacity lower than a Bm.

LMP LAN Monitor Process.

LMS Least Mean Square.

LMSI Local Mobile Station Identity. A unique identity temporarilyallocated to visiting mobile subscribers in order to speed upthe search for subscriber data in the VLR, when the MSRNallocation is done on a per cell basis.

LMT Local Maintenance Terminal.

LNA Low Noise Amplifier.

LND Last Number Dialled.

Page 885: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 L

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxix

Location area An area in which a mobile station may move freely withoutupdating the location register. A location area may compriseone or several base station areas.

LPC Linear Predictive Code.

LPLMN Local PLMN.

LR Location Register. The GSM functional unit where MSlocation information is stored. The HLR and VLR are locationregisters.

LSSU Link Stations Signalling Unit (Part of MTP transport system).

LSTR Listener Side Tone Rating.

LTA Long Term Average. The value required in a BTS’s GCLKfrequency register to produce a 16.384 MHz clock.

LTE Local Terminal Emulator.

LTP Long Term Predictive.

LTU Line Terminating Unit.

LU Local Units.

LU Location Update.

LV Length and Value.

Page 886: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2M

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxx

MM Mandatory.

M Mega (106).

M-Cell Motorola Cell.

M&TS Maintenance and Troubleshooting. Functional area ofNetwork Management software which (1) collects anddisplays alarms, (2) collects and displays Software/Hardwareerrors, and (3) activates test diagnostics at the NEs (OMC).

MA Mobile Allocation. The radio frequency channels allocated toan MS for use in its frequency hopping sequence.

MAC Medium Access Control.

MACN Mobile Allocation Channel Number.

Macrocell A cell in which the base station antenna is generally mountedaway from buildings or above rooftop level.

MAF Mobile Additional Function.

MAH Mobile Access Hunting supplementary service.

MAI Mobile Allocation Index.

MAIDT Mean Accumulated Intrinsic Down Time.

MAINT MAINTenance.

MAIO Mobile Allocation Index Offset.

MAP Mobile Application Part (of signalling system No. 7). Theinter-networking signalling between MSCs and LRs and EIRs.

MAPP Mobile Application Part Processor.

MB, Mbyte Megabyte.

Mbit/s Megabits per second.

MCAP Motorola Cellular Advanced Processor.

MCC Mobile Country Code.

MCDF Motorola Customer Data Format used by DataGen for simpledata entry and retrieval.

MCI Malicious Call Identification supplementary service.

MCSC Motorola Customer Support Centre.

MCU Main Control Unit for M-Cell2/6. Also referred to as the MicroControl Unit in software.

MCUF Main Control Unit, with dual FMUX. (Used in M-Cellhorizon).

MCU-m Main Control Unit for M-Cell Micro sites (M-Cellm). Alsoreferred to as the Micro Control Unit in software.

MCUm The software subtype representation of the Field ReplaceableUnit (FRU) for the MCU-m.

MD Mediation Device.

MDL (mobile) Management (entity) - Data Link (layer).

ME Maintenance Entity (GSM Rec. 12.00).

Page 887: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 M

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxi

ME Mobile Equipment. Equipment intended to access a set ofGSM PLMN and/or DCS telecommunication services, butwhich does not contain subscriber related information.Services may be accessed while the equipment, capable ofsurface movement within the GSM system area, is in motionor during halts at unspecified points.

MEF Maintenance Entity Function (GSM Rec. 12.00).

MF MultiFrame.

MF Multi-Frequency (tone signalling type).

MF MultiFunction block.

MGMT, mgmt Management.

MGR Manager.

MHS Message Handling System.

MHS Mobile Handling Service.

MHz Mega-Hertz (106).

MI Maintenance Information.

MIB Management Information Base. A Motorola OMC-Rdatabase. There is a CM MIB and an EM MIB.

MIC Mobile Interface Controller.

Microcell A cell in which the base station antenna is generally mountedbelow rooftop level. Radio wave propagation is by diffractionand scattering around buildings, the main propagation iswithin street canyons.

min minute(s).

�s micro-second (10–6).

�BCU Micro Base Control Unit.

MIT Management Information Tree. Name of a file on theMotorola OMC-R.

MM Man Machine.

MM Mobility Management.

MME Mobile Management Entity.

MMF Middle Man Funnel process.

MMI Man Machine Interface. The method in which the userinterfaces with the software to request a function or changeparameters.

MMI client A machine configured to use the OMC-R software from anMMI server.

MMI processor MMI client/MMI server.

MMI server A computer which has its own local copy of the OMC-Rsoftware. It can run the OMC-R software for MMI clients tomount.

MML Man Machine Language. The tool of MMI.

MMS Multiple Serial Interface Link. (see also 2Mbit/s link)

MNC Mobile Network Code.

MNT MaiNTenance.

Page 888: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2M

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxii

MO Mobile Originated.

MO/PP Mobile Originated Point-to-Point messages.

MOMAP Motorola OMAP.

MoU Memorandum of Understanding.

MPC Multi Personal Computer (was p/o OMC).

MPH (mobile) Management (entity) - PHysical (layer) [primitive].

MPTY MultiParTY (Multi ParTY) supplementary service.

MPX MultiPleXed.

MRC Micro Radio Control Unit.

MRN Mobile Roaming Number.

MRP Mouth Reference Point.

MS Mobile Station. The GSM subscriber unit.

MSC Mobile-services Switching Centre, Mobile Switching Centre.

MSCM Mobile Station Class Mark.

MSCU Mobile Station Control Unit.

msec millisecond (.001 second).

MSI Multiple Serial Interface board. Intelligent interface to two2 Mbit/s digital links (see 2 Mbit/s link and DS-2) (p/o BSS).

MSIN Mobile Station Identification Number.

MSISDN Mobile Station International ISDN Number. Published mobilenumber (see also IMSI). Uniquely defines the mobile stationas an ISDN terminal. It consists of three parts: the CountryCode (CC), the National Destination Code (NDC) and theSubscriber Number (SN).

MSRN Mobile Station Roaming Number. A number assigned by theMSC to service and track a visiting subscriber.

MSU Message Signal Unit (Part of MTP transport system). Asignal unit containing a service information octet and asignalling information field which is retransmitted by thesignalling link control, if it is received in error.

MT Mobile Terminated. Describes a call or short messagedestined for an MS.

MT (0, 1, 2) Mobile Termination. The part of the MS which terminates theradio transmission to and from the network and adaptsterminal equipment (TE) capabilities to those of the radiotransmission. MT0 is mobile termination with no support forterminal, MT1 is mobile termination with support for an S-typeinterface and MT2 is mobile termination with support for anR-type interface.

MTM Mobile-To-Mobile (call).

MTP Message Transfer Part.

MT/PP Mobile Terminated Point-to-Point messages.

MTBF Mean Time Between Failures.

MTK Message Transfer LinK.

MTL MTP Transport Layer Link (A interface).

Page 889: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 M

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxiii

MTP Message Transfer Part.

MTTR Mean Time To Repair.

Multiframe Two types of multiframe are defined in the system: a26-frame multiframe with a period of 120 ms and a 51-framemultiframe with a period of 3060/13 ms.

MU Mark Up.

MUMS Multi User Mobile Station.

MUX Multiplexer.

Page 890: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2N

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxiv

NN/W Network.

NB Normal Burst (see Normal burst).

NBIN A parameter in the hoping sequence.

NCC Network (PLMN) Colour Code.

NCELL Neighbouring (of current serving) Cell.

NCH Notification CHannel.

ND No Duplicates. A database column attribute meaning thecolumn contains unique values (used only with indexedcolumns).

NDC National Destination Code.

NDUB Network Determined User Busy.

NE Network Element (Network Entity).

NEF Network Element Function block.

NET Norme Européennes de Telecommunications.

NETPlan Frequency planning tool.

NF Network Function.

NFS Network File System.

NHA Network Health Analyst. Optional OMC-R processor feature.

NIC Network Interface Card.

NIC Network Independent Clocking.

NIS Network Information Service. It allows centralised control ofnetwork information for example hostnames, IP addressesand passwords.

NIU Network Interface Unit.

NIU-m Network Interface Unit, micro.

NLK Network LinK processor(s).

Nm Newton metres.

NM Network Management (manager). NM is all activities whichcontrol, monitor and record the use and the performance ofresources of a telecommunications network in order toprovide telecommunication services to customers/users at acertain level of quality.

NMASE Network Management Application Service Element.

NMC Network Management Centre. The NMC node of the GSMTMN provides global and centralised GSM PLMN monitoringand control, by being at the top of the TMN hierarchy andlinked to subordinate OMC nodes.

NMSI National Mobile Station Identification number.

NMT Nordic Mobile Telephone system.

NN No Nulls. A database column attribute meaning the columnmust contain a value in all rows.

Normal burst A period of modulated carrier less than a timeslot.

NPI Number Plan Identifier.

Page 891: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 N

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxv

NRZ Non Return to Zero.

NSAP Network Service Access Point.

NSP Network Service Provider.

NSS Network Status Summary.

NT Network Termination.

NT Non Transparent.

NTAAB New Type Approval Advisory Board.

NUA Network User Access.

NUI Network User Identification.

NUP National User Part (of signalling system No. 7).

NV NonVolatile.

NVRAM Non-Volatile Random Access Memory.

nW Nano-Watt (10–9).

Page 892: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2O

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxvi

O

O Optional.

OA Outgoing Access (CUG SS).

O&M Operations and Maintenance.

OASCU Off-Air-Call-Set-Up. The procedure in which atelecommunication connection is being established whilst theRF link between the MS and the BTS is not occupied.

OCB Outgoing Calls Barred within the CUG.

OCXO Oversized Voltage Controlled Crystal Oscillator.

OD Optional for operators to implement for their aim.

OFL % OverFlow.

offline IDS shutdown state.

online IDS normal operatng state.

OIC Operator Initiated Clear.

OLM Off_Line MIB. A Motorola DataGen database, used to modifyand carry out Radio Frequency planning on multiple BSSbinary files.

OLR Overall Loudness Rating.

OMAP Operations and Maintenance Application Part (of signallingsystem No. 7) (was OAMP).

OMC Operations and Maintenance Centre. The OMC node of theGSM TMN provides dynamic O&M monitoring and control ofthe PLMN nodes operating in the geographical areacontrolled by the specific OMC.

OMC-G Operations and Maintenance Centre — Gateway Part.(Iridium)

OMC-G Operations and Maintenance Centre — GPRS Part.

OMC-R Operations and Maintenance Centre — Radio Part.

OMC-S Operations and Maintenance Centre — Switch Part.

OMF Operations and Maintenance Function (at BSC).

OML Operations and Maintenance Link.

OMP Operation and Maintenance Processor.

OMS Operation and Maintenance System (BSC–OMC).

OMSS Operation and Maintenance SubSystem.

OOS Out Of Service.

OPC Originating Point Code. A part of the label in a signallingmessage that uniquely identifies, in a signalling network, the(signalling) origination point of the message.

ORAC Olympus Radio Architecture Chipset.

OS Operating System.

OSI Open Systems Interconnection.

OSI RM OSI Reference Model.

OSF Operation Systems Function block.

Page 893: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 O

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxvii

OSF/MOTIF Open Software Foundation Motif. The basis of the GUI usedfor the Motorola OMC-R MMI.

OSS Operator Services System.

Overlap Overlap sending means that digits are sent from one systemto another as soon as they are received by the sendingsystem. A system using ~ will not wait until it has received alldigits of a call before it starts to send the digits to the nextsystem. This is the opposite of en bloc sending where alldigits for a given call are sent at one time.

Page 894: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2P

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxviii

P

PA Power Amplifier.

PAB Power Alarm Board.

PABX Private Automatic Branch eXchange.

PAD Packet Assembler/Disassembler facility.

Paging The procedure by which a GSM PLMN fixed infrastructureattempts to reach an MS within its location area, before anyother network-initiated procedure can take place.

PATH CEPT 2 Mbit/s route through the BSS network.

PBUS Processor Bus.

PBX Private Branch eXchange.

PC Personal Computer.

PCH Paging CHannel. A GSM common control channel used tosend paging messages to the MSs.

PCHN Paging Channel Network.

PCHN Physical Channel.

PCM Pulse Code Modulation (see also 2 Mbit/s link which is thephysical bearer of PCM).

PCN Personal Communications Network.

PCR Preventative Cyclic Retransmission. A form of errorcorrection suitable for use on links with long transmissiondelays, such as satellite links.

PCU Packet Control Unit (p/o GPRS).

PCU Picocell Control unit (p/o M-Cellaccess).

pd Potential difference.

PD Protocol Discriminator.

PD Public Data.

PDB Power Distribution Board.

PDF Power Distribution Frame (MSC/LR).

PDN Public Data Networks.

PDU Power Distribution Unit.

PDU Protected Data Unit.

PEDC Pan European Digital Cellular.

Peg A single incremental action modifying the value of a statistic.

Pegging Modifying a statistical value.

PH Packet Handler.

PH PHysical (layer).

PHI Packet Handler Interface.

PI Presentation Indicator.

Picocell A cell site where the base station antenna is mounted within abuilding.

PICS Protocol Implementation Conformance Statement.

Page 895: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 P

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xxxix

PID Process IDentifier/Process ID.

PIM PCM Interface Module (MSC).

PIN Personal Identification Number.

PIN Problem Identification Number.

PIX Parallel Interface Extender half size board. Customer alarminterface (p/o BSS).

PIXT Protocol Implementation eXtra information for Testing.

PK Primary Key. A database column attribute, the primary key isa not-null, non-duplicate index.

Plaintext Unciphered data.

PlaNET Frequency planning tool.

PLL Phase Lock Loop (refers to phase locking the GCLK in theBTS).

PLMN Public Land Mobile Network. The mobile communicationsnetwork.

PM Performance Management. An OMC application.

PM-UI Performance Management User Interface.

PMA Prompt Maintenance Alarm. An alarm report level; immediateaction is necessary (see also DMA).

PMS Pseudo MMS.

PMUX PCM MUltipleXer.

PN Permanent Nucleus (of GSM).

PNE Présentation des Normes Européennes.

POI Point of Interconnection (with PSTN).

POTS Plain Old Telephone Service (basic telephone services).

p/o Part of.

pp, p-p Peak-to-peak.

PP Point-to-Point.

ppb Parts per billion.

PPE Primative Procedure Entity.

ppm Parts per million (x 10–6).

Pref CUG Preferential CUG.

Primary Cell A cell which is already optimized in the network and has aco-located neighbour whose cell boundary follows theboundary of the said cell. The primary cell has a preferredband equal to the frequency type of the coincident cell.

PROM Programmable Read Only Memory.

Ps Location probability.

PSA Periodic Supervision of Accessability.

PSAP Presentation Services Access Point.

PSM Power Supply Module.

Page 896: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2P

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xl

PSPDN Packet Switched Public Data Network. Public datacommunications network. x.25 links required for NE to OMCcommunications will probably be carried by PSPDN.

PSTN Public Switched Telephone Network. The UK land linetelephone network.

PSU Power Supply Unit.

PSW Pure Sine Wave.

PTO Public Telecommunications Operator.

PUCT Price per Unit Currency Table.

PVC Permanent Virtual Circuit.

PW Pass Word.

PWR Power.

PXPDN Private eXchange Public Data Network.

Page 897: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Q

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xli

QQA Q (Interface) – Adapter.

Q3 Interface between NMC and GSM network.

Q-adapter Used to connect MEs and SEs to TMN (GSM Rec. 12.00).

QAF Q-Adapter Function.

QEI Quad European Interface. Interfaces four 2 Mbit/s circuits toTDM switch highway (see MSI).

QIC Quarter Inch Cartridge (Data storage format).

QOS Quality Of Service.

Quiescent mode IDS intermediate state before shutdown.

Page 898: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2R

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xlii

RR Value of reduction of the MS transmitted RF power relative to

the maximum allowed output power of the highest powerclass of MS (A).

RA RAndom mode request information field.

RAB Random Access Burst.

RACCH Random Access Control CHannel. A GSM common controlchannel used to originate a call or respond to a page.

RACH Random Access CHannel.

RAM Random Access Memory.

RAND RANDom number (used for authentication).

RATI Receive Antenna Transceiver Interface.

RAx Rate Adaptation.

RBDS Remote BSS Diagnostic System (a discontinued Motoroladiagnostic facility).

RBER Residual Bit Error Ratio.

RBTS Remote Base Transceiver Station.

RCB Radio Control Board (p/o DRCU).

RCI Radio Channel Identifier.

RCP Radio Control Processor.

RCU Radio Channel Unit. Contains transceiver, digital controlcircuits, and power supply (p/o BSS) (see DRCU).

RCVR Receiver.

RDBMS Relational DataBase Management System (INFORMIX).

RDI Radio Digital Interface System.

RDIS Restricted Digital Information.

RDM Reference Distribution Module.

RDN Relative Distinguished Name. A series of RDN form a uniqueidentifier, the distinguished name, for a particular networkelement.

REC, Rec RECommendation.

REJ REJect(ion).

REL RELease.

RELP Residual Excited Linear Predictive.

RELP-LTP RELP Long Term Prediction. A name for GSM full rate (seefull rate).

resync Resynchronize/resynchronization.

REQ REQuest.

Revgen A Motorola DataGen utility for producing an MMI script from abinary object database.

RF Radio Frequency.

Page 899: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 R

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xliii

RFC, RFCH Radio Frequency Channel. A partition of the system RFspectrum allocation with a defined bandwidth and centrefrequency.

RFE Receiver Front End (shelf).

RFEB Receiver Front End Board (p/o DRCU II).

RFI Radio Frequency Interference.

RFM Radio Frequency Module.

RFN Reduced TDMA Frame Number.

RFU Reserved for Future Use.

RJ45 Network cable/Connector type.

RISC Reduced Instruction Set Computer.

RL Remote login.

RLC Release Complete.

RLP Radio Link Protocol. An ARQ protocol used to transfer userdata between an MT and IWF. See GSM 04.22.

RLR Receiver Loudness Rating.

RLSD ReLeaSeD.

RMS Root Mean Square (value).

RMSU Remote Mobile Switching Unit.

RNTABLE Table of 128 integers in the hopping sequence.

ROM Read Only Memory.

ROSE Remote Operations Service Element. An ASE which carriesa message between devices over an association establishedby ASCE (a CCITT specification for O & M) (OMC).

Roundtrip Time period between transmit and receive instant of atimeslot in the BTS, propagation determined by the responsebehaviour of the MS and the MS to BTS delay distance.

RPE Regular Pulse Excited.

RPE-LTP Regular Pulse Excitation - Long Term Prediction. The GSMdigital speech coding scheme.

RPOA Recognised Private Operating Agency.

RPR Read Privilege Required. Access to the column is allowedonly for privileged accounts.

RR Radio Resource management.

RR Receive Ready (frame).

RRSM Radio Resource State Machine.

RS232 Standard serial interface.

RSE Radio System Entity.

RSL Radio Signalling Link.

RSLF Radio System Link Function.

RSLP Radio System Link Processor.

RSS Radio SubSystem (replaced by BSS).

RSSI Received Signal Strength Indicator.

Page 900: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2R

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xliv

RSZI Regional Subscription Zone Identity.

RTC Remotely Tuneable Channel Combiner.

RTE Remote Terminal Emulator.

RTF Radio Transceiver Function.

RTF Receive Transmit Functions.

RTS Request to Send. Method of flow control (RS232 Interface).

RU Rack Unit.

Run level System processor operating mode.

Rx Receive(r).

RXCDR Remote Transcoder.

RXF Receive Function (of the RTF).

RXLEV-D Received signal level downlink.

RXLEV-U Received signal level uplink.

RXQUAL-D Received signal quality downlink.

RXQUAL-U Received signal quality uplink.

RXU Remote Transcoder Unit. The shelf which houses theremote transcoder modules in a BSSC cabinet at a remotetranscoder site.

Page 901: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 S

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xlv

SS/W SoftWare.

SABM Set Asynchronous Balanced Mode. A message whichestablishes the signalling link over the air interface.

SABME SABM Extended.

SACCH Slow Associated Control CHannel. A GSM control channelused by the MS for reporting RSSI and signal qualitymeasurements.

SACCH/C4 Slow Associated Control CHannel/SDCCH/4.

SACCH/C8 Slow Associated Control CHannel/SDCCH/8.

SACCH/T Slow Associated Control CHannel/Traffic channel.

SACCH/TF Slow Associated Control CHannel/Traffic channel Full rate.

SACCH/TH Slow Associated Control CHannel/Traffic channel Half rate.

SAGE A brand of trunk test equipment.

SAP Service Access Point. In the reference model for OSI, SAPsof a layer are defined as gates through which services areoffered to an adjacent higher layer.

SAP System Audits Process.

SAPI Service Access Point Indicator (identifier).

SAW Surface Acoustic Wave.

SB Synchronization Burst (see Synchronization burst).

SBUS Serial Bus.

SC Service Centre (used for Short Message Service).

SC Service Code.

SCCA System Change Control Administration. Software modulewhich allows full or partial software download to the NE(OMC).

SCCP Signalling Connection Control Part (6-8).

SCEG Speech Coding Experts Group (of GSM).

SCH Synchronization CHannel. A GSM broadcast control channelused to carry information for frame synchronization of MSsand identification of base stations.

SCI Status Control Interface.

SCIP Serial Communication Interface Processor.

SCM Status Control Manager.

SCN Sub-Channel Number. One of the parameters defining aparticular physical channel in a BS.

SCP Service Control Point (an intelligent network entity).

SCSI Small Computer Systems Interface.

SCU Slim Channel Unit.

SCU900 Slim Channel Unit for GSM900.

SDCCH Stand-alone Dedicated Control CHannel. A GSM controlchannel where the majority of call setup occurs. Used forMS to BTS communications before MS assigned to TCH.

Page 902: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2S

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xlvi

SDL Specification Description Language.

SDT SDL Developement Tool.

SDU Service Data Unit.

SDR Special Drawing Rights (an international “basket” currency forbilling).

SE Support Entity (GSM Rec. 12.00).

Secondary Cell A cell which is not optimized in the network and has aco-located neighbour whose cell boundary follows theboundary of the said cell. The secondary cell has a preferredband the same as that of its own frequency type.

SEF Support Entity Function (GSM Rec.12.00).

SFH Slow Frequency Hopping.

SI Screening Indicator.

SI Service Interworking.

SI Supplementary Information.

SIA Supplementary Information A.

SID Silence Descriptor.

SIF Signal Information Field. The bits of a message signal unitthat carry information for a certain user transaction; the SIFalways contains a label.

SIM Subscriber Identity Module. Removable module which isinserted into a mobile equipment; it is considered as part ofthe MS. It contains security related information (IMSI, Ki,PIN), other subscriber related information and the algorithmsA3 and A8.

SIMM Single Inline Memory module.

SIMM System Integrated Memory Module.

SIO Service Information Octet. Eight bits contained in a messagesignal unit, comprising the service indicator and sub-servicefield.

SITE BSC, BTS or collocated BSC-BTS site.

SIX Serial Interface eXtender. Converts interface levels to TTLlevels. Used to extend 2 serial ports from GPROC to externaldevices (RS232, RS422, and fibre optics).

SK Secondary Key. A database column attribute, the secondarykey indicates an additional index and/or usage as acomposite key.

SL Signalling Link.

SLNK Serial Link.

SLR Send Loudness Rating.

SLTM Signalling Link Test Message.

SM Switch Manager.

SM Summing Manager.

SMAE System Management Application Entity (CCITT Q795, ISO9596).

SMCB Short Message Cell Broadcast.

Page 903: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 S

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xlvii

SME Short Message Entity.

SMG Special Mobile Group.

SMP Motorola Software Maintenance Program.

SMS Short Message Service.

SMSCB Short Message Service Cell Broadcast.

SMS-SC Short Message Service - Service Centre.

SMS/PP Short Message Service/Point-to-Point.

Smt Short message terminal.

SN Subscriber Number.

SND SeND.

SNDR SeNDeR.

SNR Serial NumbeR.

SOA Suppress Outgoing Access (CUG SS).

SP Service Provider. The organisation through which thesubscriber obtains GSM telecommunications services. Thismay be a network operator or possibly a separate body.

SP Signalling Point.

SP Special Product.

SP SPare.

SPC Signalling Point Code.

SPC Suppress Preferential CUG.

SPI Signalling Point Inaccessible.

SPP Single Path Preselector.

SQE Signal Quality Error.

SQL Structured Query Language.

SRD Service Request Distributor.

SRES Signed RESponse (authentication).

SS Supplementary Service. A modification of, or a supplementto, a basic telecommunication service.

SS System Simulator.

SSA SCCP messages, Subsystem-allowed (see CCITT Q.712para 1.15).

SSAP Site System Audits Processor.

SSC Supplementary Service Control string.

SSF Subservice Field. The level 3 field containing the networkindicator and two spare bits.

SSM Signalling State Machine.

SSN SubSystem Number.

SSP Service Switching Point (an intelligent network element).

SSP SCCP messages, Subsystem-prohibited (see CCITT Q.712para 1.18).

SSP SubSystem Prohibited message.

Page 904: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2S

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xlviii

SSS Switching SubSystem (comprising the MSC and the LRs).

SS7 ANSI Signalling System No. 7 (alias C7).

STAN Statistical ANalysis (processor).

STAT STATistics.

stats Statistics.

STC System Timing Controller.

STMR Side Tone Masking rating.

SUERM Signal Unit Error Rate Monitor.

STP Signalling Transfer Point.

Superframe 51 traffic/associated control multiframes or 26broadcast/common control multiframes (period 6.12s).

Super user User account that can access all files, regardless ofprotection settings, and control all user accounts.

SURF Sectorized Universal Receiver Front-end (Used inHorizonmacro).

SVC Switch Virtual Circuit.

SVM SerVice Manager.

SVN Software Version Number.

SW Software.

SWFM SoftWare Fault Management.

sync synchronize/synchronization.

Synchronization burst Period of RF carrier less than one timeslot whose modulationbit stream carries information for the MS to synchronize itsframe to that of the received signal.

SYS SYStem.

SYSGEN SYStem GENeration. The Motorola procedure for loading aconfiguration database into a BTS.

Page 905: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 T

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

xlix

TT Timer.

T Transparent.

T Type only.

T43 Type 43 Interconnect Board. Provides interface to 12unbalanced (6-pair) 75 ohm (T43 coax connectors) lines for2 Mbit/s circuits (See BIB).

TA Terminal Adaptor. A physical entity in the MS providingterminal adaptation functions (see GSM 04.02).

TA Timing Advance.

TAC Type Approval Code.

TACS Total Access Communications System (European analoguecellular system).

TAF Terminal Adaptation Function.

TATI Transmit Antenna Transceiver Interface. The TATI consistsof RF combining equipments, either Hybrid or CavityCombining. (See CCB).

TAXI Transparent Asynchronous Transmitter/Receiver Interface(physical layer).

TBD To Be Determined.

TBR Technical Basis for Regulation.

TBUS TDM Bus.

TC Transaction Capabilities.

TCAP Transaction Capabilities Application Part (of SignallingSystem No. 7).

TCB TATI Control Board.

TCH Traffic CHannel. GSM logical channels which carry eitherencoded speech or user data.

TCH/F A full rate TCH.

TCH/F2.4 A full rate TCH at � 2.4 kbit/s.

TCH/F4.8 A full rate TCH at 4.8 kbit/s.

TCH/F9.6 A full rate TCH at 9.6 kbit/s.

TCH/FS A full rate Speech TCH.

TCH/H A half rate TCH.

TCH/H2.4 A half rate TCH at � 2.4 kbit/s.

TCH/H4.8 A half rate TCH at 4.8 kbit/s.

TCH/HS A half rate Speech TCH).

TCI Transceiver Control Interface.

TCP/IP Transmission Control Protocol/Internet Protocol.

TC-TR Technical Commitee Technical Report.

TCU Transceiver Control Unit.

TDF Twin Duplexed Filter. (Used in M-Cellhorizon).

TDM Time Division Multiplexing.

Page 906: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2T

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

l

TDMA Time Division Multiple Access.

TDU TopCell Digital Unit.

TE Terminal Equipment. Equipment that provides the functionsnecessary for the operation of the access protocols by theuser.

Tei Terminal endpoint identifier.

TEI Terminal Equipment Identity.

TEMP TEMPorary.

TEST TEST control processor.

TFA TransFer Allowed.

TFP TransFer Prohibited.

TFTP Trivial File Transfer Protocol.

TI Transaction Identifier.

Timeslot The multiplex subdivision in which voice and signalling bitsare sent over the air. Each RF carrier is divided into 8timeslots.

Timing advance A signal sent by the BTS to the MS. It enables the MS toadvance the timing of its transmission to the BTS so as tocompensate for propagation delay.

TLV Type, Length and Value.

TM Traffic Manager.

TMI TDM Modem Interface board. Provides analogue interfacefrom IWF to modems for 16 circuits (p/o IWF).

TMM Traffic Metering and Measuring.

TMN Telecommunications Management Network. Theimplementation of the Network Management functionalityrequired for the PLMN is in terms of physical entities whichtogether constitute the TMN.

TMSI Temporary Mobile Subscriber Identity. A unique identitytemporarily allocated by the MSC to a visiting mobilesubscriber to process a call. May be changed between callsand even during a call, to preserve subscriber confidentiality.

TN Timeslot Number.

TON Type Of Number.

Traffic channels Channels which carry user’s speech or data (see also TCH).

Traffic unit Equivalent to an erlang.

Training sequence Sequence of modulating bits employed to facilitate timingrecovery and channel equalization in the receiver.

TRAU Transcoder Rate Adaption Unit.

TRU TopCell Radio unit.

TRX Transceiver(s). A network component which can serve fullduplex communication on 8 full-rate traffic channels accordingto specification GSM 05.02. If Slow Frequency Hopping(SFH) is not used, then the TRX serves the communicationon one RF carrier.

TS Technical Specification.

Page 907: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 T

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

li

TS TeleService.

TS TimeSlot (see Timeslot).

TSA TimeSlot Acquisition.

TSA TimeSlot Assignment.

TSDA Transceiver Speech & Data Interface.

TSC Training Sequence Code.

TSI TimeSlot Interchange.

TSDI Transceiver Speech and Data Interface.

TSM Transceiver Station Manager.

TSW Timeslot SWitch.

TTCN Tree and Tabular Combined Notation.

TTL Transistor to Transistor Logic.

TTY TeleTYpe (refers to any terminal).

TU Traffic Unit.

TUP Telephone User Part (SS7).

TV Type and Value.

Tx Transmit(ter).

TXF Transmit Function (of the RTF).

TXPWR Transmit PoWeR. Tx power level in theMS_TXPWR_REQUEST and MS_TXPWR_CONFparameters.

TxBPF Transmit Bandpass Filter.

Page 908: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2U

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

lii

UUA Unnumbered Acknowledgment. A message sent from the

MS to the BSS to acknowledge release of radio resourceswhen a call is being cleared.

UDI Unrestricted Digital Information.

UDP User Datagram Protocol.

UDUB User Determined User Busy.

UHF Ultra High Frequency.

UI Unnumbered Information (Frame).

UIC Union International des Chemins de Fer.

UID User ID. Unique number used by the system to identify theuser.

UL Upload (of software or database from an NE to a BSS).

Um Air interface.

UMTS Universal Mobile Telecommunication System.

UPCMI Uniform PCM Interface (13 bit).

UPD Up to Date.

Uplink Physical link from the MS towards the BTS (MS transmits,BTS receives).

UPS Uninterruptable Power Supply.

UPU User Part Unavailable.

Useful part of burst That part of the burst used by the demodulator; differs fromthe full burst because of the bit shift of the I and Q parts ofthe GMSK signal.

USSD Unstructured Supplementary Service Data.

UUS User-to-User Signalling supplementary service.

Page 909: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 V

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

liii

VV Value only.

VA Viterbi Algorithm (used in channel equalizers).

VAD Voice Activity Detection. A process used to identify presenceor absence of speech data bits. VAD is used with DTX.

VAP Videotex Access Point.

VBS Voice Broadcast Service.

VC Virtual Circuit.

VCO Voltage Controlled Oscillator.

VCXO Voltage Controlled Crystal Oscillator.

VDU Visual Display Unit.

VGCS Voice Group Call Service.

VLR Visitor Location Register. A GSM network element whichprovides a temporary register for subscriber information for avisiting subscriber. Often a part of the MSC.

VLSI Very Large Scale Integration (in ICs).

VMSC Visited MSC. (Recommendation not to be used).

VOX Voice Operated Transmission.

VPLMN Visited PLMN.

VSC Videotex Service Centre.

V(SD) Send state variable.

VSP Vehicular Speaker Phone.

VSWR Voltage Standing Wave Ratio.

VTX host The components dedecated to Videotex service.

Page 910: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2W

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

liv

WWAN Wide Area Network.

WPA Wrong Password Attempts (counter).

WS Work Station. The remote device via which O&M personnelexecute input and output transactions for networkmanagement purposes.

WSF Work Station Function block.

WWW World Wide Web.

Page 911: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 X

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

lv

XX.25 CCITT specification and protocols for public packet-switched

networks (see PSPDN).

X.25 link A communications link which conforms to X.25 specificationsand uses X.25 protocol (NE to OMC links).

XBL Transcoder to BSS Link. The carrier communications linkbetween the Transcoder (XCDR) and the BSS.

XCB Transceiver Control Board (p/o Transceiver).

XCDR Full-rate Transcoder. Provides speech transcoding and 4:1submultiplexing (p/o BSS, BSC or XCDR).

XCDR board The circuit board required to perform speech transcoding atthe BSS or (R)XCDR). Also known as the MSI (XCDR)board. Interchangeable with the GDP board.

XFER Transfer.

XID eXchange IDentifier.

X-Term X terminal window.

Page 912: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Z

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

lvi

ZZC Zone Code

Page 913: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2 Z

�MOTOROLA LTD. 2000 BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

lvii

Page 914: BSS 11 BSS Operational Theory

ISSUE 1 REVISION 2Z

�MOTOROLA LTD. 2000BSS11: Base Station Systems – Operational Theory

FOR TRAINING PURPOSES ONLY

lviii