[email protected] CEA-Grenoble, France « Nanophysique et ...

72
1 «NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier OPTICS II Nanophotonics and quantum optics Bruno GAYRAL [email protected] CEA-Grenoble, France « Nanophysique et semiconducteurs » Group

Transcript of [email protected] CEA-Grenoble, France « Nanophysique et ...

1«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

OPTICS IINanophotonics and quantum optics

Bruno GAYRAL

[email protected]

CEA-Grenoble, France

« Nanophysique et semiconducteurs » Group

2«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Goal

Light-matter coupling

Some notions, peculiarities of GaN The “strong exciton” in GaN

Microcavity physics

From the weak to the strong coupling

Why do microcavity physics in GaN?

Books on the topic:

Confined Electrons and Photons: New Physics and Applications, Springer

(E. Burstein and C. Weisbuch)

Semiconductor Optics, Springer

(C. F. Klingshirn)

3«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

~

1

E

hcc

14

14

10~

24.1

10.3

1

cm

eVE

Hz

m

Units

4«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitons and polaritons in GaN

The excitons in GaN

See Optics I (M. Leroux)

A, B and C excitons

What does an exciton look like?

A well defined wavevector for the center of mass

The electron and hole are closely bound (Bohr radius)

a (nm) EX (meV)

GaN 2.8 25

GaAs 12 4.8

The excitonic force is strong in GaN

Why is it important ?

Is it useful ?

kT @ 300K

25 meV

5«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitons and polaritons in GaN

Does the exciton really exist?

e

h

Kexc

e

h

Kexc

J.J. Hopfield, Phys. Rev. 112 1555 (1958)

+ Pekar, Agranovich…

Polariton = mixed exciton-photon particles

6«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

JJ Hopfield

Very numerous papers on the theory of semiconductor optics…

… but his most famous paper is :

7«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

0

1

2

3

4

5

En

erg

y (

eV

)

Wavevector K

Excitons and polaritons in GaN

Photon

n

ckE

Exciton

m

kEE

*

22

02

coupling

0

1

2

3

4

5

En

erg

y (

eV

)

Wavevector K

8«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

3.470

3.475

3.480

3.485

3.490

En

erg

y (

eV

)

Wavevector K

Excitons and polaritons in GaN

UPB

LPB

DLT

DLT measures the intrinsic light-exciton coupling in the material

Note : in WZ GaN : A, B and C excitons + anisotropy

GaN : DLT(A)=0.8 meV GaAs : DLT=0.08 meV

9«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Consequences of the polariton pictureAbsorption

Beer-Lambert law

Propagating polariton

(attenuation = scattering)

LeII 0

10«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

0

1

2

3

3.33.43.53.63.73.83.94.0

En

erg

y (

eV

)

Wavevector K

Consequences of the polariton picture

Luminescence

Polariton propagating to

the surface !

Infrared catastrophy?

Relaxation bottleneck

Thermal like population

J. J. Hopfield, J. Phys. Soc. Jap. 21 77 (1966)

Y. Toyozawa, Prog. Theor. Phys. Suppl. 12 111 (1959)

11«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Consequences of the polariton picture

Luminescence

Relaxation bottleneck

Thermal like population

around EX on UPB and LPB

3.460

3.465

3.470

3.475

3.480

3.485

3.490

3.495

3.500

En

erg

y (

eV

)

Wavevector K

Luminescence properties are very complex to model !!

(sample and experiments dependent…)

Bottleneck

12«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

The polariton in GaAs

13«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitons and polaritons in GaN

B. Gil et al., Solid State Commun. 104 264 (1997)

14«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Confined electronic structures

The strong light-matter coupling in bulk GaN….

… creates strong polaritons, which are lousy emitters

What about QWs?

A confined exciton in a QW is coupled to a large number of photonic states

Luminescence allowed on the first order

V. M. Agranovitch and O. A. Dubovskii, JETP Lett. 3, 223 (1966)

C. Weisbuch et al., Solid State Commun. 37, 219 (1981)

The binding energy of excitons in QW is up to 4 times larger than in bulk

M. Shinada and S. Sugano, J. Phys. Soc. Jpn. 21 1936 (1966)

15«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Confined electronic structures : GaN

The QCSE reduces the exciton binding energy…

… but in thin QWs or non-polar QWs, the exciton binding energy can be large!

bulk

XE

P. Bigenwald et al., Phys. Stat. Sol. (b) 216 371 (1999)

16«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitonic effects in QWs

Strong confinement

E

E8f

p

2

D2a

Lateral weak confinement

a2D

E

Ef

p

22 2/ pReDar

heheX ezgzfrr 2/)()(),(

A. V. Kavokin, Phys. Rev. B, 50, 8000 (1994).

L. C. Andreani et al., Phys. Rev. B 60 13276 (1999).

Giant oscillator strength

fnE

12rad

Robert C. Hilborn, "Einstein coefficients, cross sections, f values, dipole moments, and all that”

http://arxiv.org/ftp/physics/papers/0202/0202029.pdf

Do we get fast emission from a strong exciton?

17«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitonic effects in QWs

2D limit = intrinsic lifetime of two-dimensional exciton

~ 10 ps for a GaAs/AlAs QW

L. C. Andreani et al., Solid State Commun. 77 641 (1991)

B. Deveaud et al., Phys. Rev. Lett. 67 2355 (1991)

Dephasing (exciton-exciton or exciton-phonon scattering) limits the

coherence surface and hence the radiative emission rate

18«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitonic effects in QWs

The 2D quantum well excitons does couple efficiently to photons!

In a non perfect structure, the fundamental emitting state will be

laterally localized states

Even in a very good (i.e. III-As) quantum well, it takes very peculiar

experimental conditions to observe the intrinsic fast lifetimes of 2D excitons

- Very low temperature (phonon scattering)

- Resonant and low excitation (carrier-carrier scattering)

19«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitonic effects in GaN QWs

100 200 3000.01

0.1

1

10

100

Decay T

ime (

ns)

Temperature (K)

Polar QWs

3 nm

1 nm

J. Renard et al., Appl. Phys. Lett. 95 131903 (2009) P. Lefebvre et al., Phys. Rev. B 59 15363 (1999)

20«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitonic effects in GaN QWs

Non-Polar QWs

P. Waltereit et al., Nature, 406 865 (2000)

P. Corfdir et al., Phys. Rev. B 83 245326 (2011)

21«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Excitonic effects in GaN QWsIs 100 ps @ 3.5 eV a fast recombination??

fnE

12rad

GaAs QW emitting at 1.7 eV with a lifetime of 25 ps : f=320

GaN QW emitting at 3.5 eV with a lifetime of 100 ps : f=24

Strong excitonic effects in III-N, but ordinary recombination rates

Quite strong localization effects, no giant oscillator strength

22«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Microcavity physics

More control on light-matter coupling

What are microcavities ?

How does an emitter in a microcavity behave ?

Strong coupling

Weak coupling

Two-dimensional microcavity polaritons

Peculiarities of the III-N system

23«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Optical cavities

What is a mode of the E-M field?

A solution of Maxwell equations in the absence of source

What is a confined mode?

« An optical resonator, the optical counterpart of an electronic resonant circuit,

confines and stores light at certain resonant frequencies »

« Fundamentals of photonics »

B.E.A. Saleh and M.C. Teich, Wiley ed.

« Optical resonators [...] are used primarily in order to build up large field

intensities with moderate power inputs. They consist in most cases of two,

or more, curved mirrors that serve to "trap," by repeated reflections and

refocusing, an optical beam that thus becomes the mode of the resonator. »

« Optical electronics in modern communications »

A. Yariv, Oxford ed.

24«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Optical cavities

High intensity in a confined region of space for resonant frequencies

Quality factor measures the decay of stored E-M energy in mode :

Q

t

0eEE

25«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Various semiconductor microcavities

1 µm

2 µm

26«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Spontaneous emission : irreversible emission of a photon

2

2sp iHf2

Spontaneous emission

Mirror

Influence of the E-M surrounding:

27«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

2

2sp iHf2

Spontaneous emission

Control of the emitter-field

coupling

Control of the density of states

for the EM field

Cavity Quantum ElectroDynamics

28«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Free space

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

P(e

xcite

d s

tate

)

Time

Free space emission

3

0

232

2spc3

d2iHf

2

0

29«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Isolated system : strong coupling

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

P(e

xcite

d st

ate)

Time

2ħW

Energy

|g, 1> |e, 0>

Photon/emitter

hybrid eigenstates

Strong coupling

W Rabi frequency

V2

d

0

2

W

/W

Perfect mirrors

d transition dipole, V mode volume

30«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Damped strong coupling

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

P(e

xcite

d st

ate)

Time

Strong coupling

W Rabi frequency

cav cavity damping (Q=cav/cav)

at atomic decay in other modes

W>(cav, at)

/W

atcav.te

cav

at

In general cav>>at

31«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

P(e

xcite

d st

ate

)

Time

Weak coupling, Purcell effect

W<cav

2 unperturbed eigenstates

modified decay rates

0

= Fp 0

Fp Purcell factor

32«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Weak coupling, Purcell effect

E.M. Purcell

Phys. Rev. 69, 681 (1946)

A famous paper :

33«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Weak coupling, emission diagram modification

Example : 1 atom in a Fabry-Pérot cavity, emitting at

A. Kastler, Appl. Optics 1,17 (1962)

L

q

ncav

reflection

coefficient r

2i22

1

2

er1

2cosr*2r1,I

q

d

c

cosdn

ccosLn

cav1

cav

q

q

34«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Weak coupling, emission diagram modification

A. Kastler, Appl. Optics 1,17 (1962)

Emission for a centered atom (varying ) at normal incidence, r=0.9

0 1 2 3 4 5 6

I(

, q=

0)

in(2c)/(ncav

L))

Free spectral

range

35«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Weak coupling, emission diagram modification

A. Kastler, Appl. Optics 1,17 (1962)

0

30

60

90

120

150

180

210

240

270

300

330

Monochromatic atom at =5(2c)/(ncavL)

directional emission

Only spectral and angular intensity redistribution

No spontaneous emission rate modification!!

But can be used to extract more light out of a high index material !!

H. Benisty, H. De Neve and C.Weisbuch, IEEE J. Quantum Electron., 34, pp. 1612–1643 (1998)

36«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Weak coupling, emission diagram modification

A. Kastler, Appl. Optics 1,17 (1962)

0

30

60

90

120

150

180

210

240

270

300

330

Only spectral and angular intensity redistribution

No spontaneous emission rate modification!!

37«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Weak coupling, emission diagram modification

A. Kastler, Appl. Optics 1,17 (1962)

38«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Key ideas

Spontaneous emission depends on the E-M field mode structure

The SE radiation pattern is in general modified by the E-M field boundaries

When resonantly coupled to a cavity mode, the SE rate can be modified:

- Weak coupling : faster SE in the « overdamped » regime

=> Purcell effect

- Strong coupling : damped reversible SE

=> mixed emitter-photon modes

39«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling in a planar cavity

Quantum Well

In-plane translational invariance for confined field and QW excitons

one to one coupling of confined modes and excitons of same kx,y

GaN

AlGaN

yxyxDRKiar

heheX eezgzfrr ,,2./)()(),(

he

h

y,x

e

y,xy,x*

h

*

e

h

*

he

*

e

y,xrrr,kkK,

mm

rmrmR

1 nm

AlGaN

40«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling in a planar cavity

anticrossing at resonance

Creation of mixed exciton-photon states : 2D polaritons

C. Weisbuch et al., Phys. Rev. Lett. 69, 3314 (1992)

41«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Bragg mirrors

DBR = Distributed Bragg Reflector

rely on periodicity to have Bragg reflection

Lh=0/(4nh) Ll=0/(4nl)

nh nl

Reflection at each interface

At resonant wavelength:

- Constructive reflection interference

- Destructive propagation interference

42«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Bragg mirrors

0.7 0.8 0.9 1.0 1.1 1.2 1.30.0

0.2

0.4

0.6

0.8

1.0

R

Energy (eV)

0.7 0.8 0.9 1.0 1.1 1.2 1.30.0

0.2

0.4

0.6

0.8

1.0

R

Energy (eV)

0.7 0.8 0.9 1.0 1.1 1.2 1.30.0

0.2

0.4

0.6

0.8

1.0

R

Energy (eV)nsub=3.5

DBR N pairs

nh=3.5 (GaAs), nl=2.95 (AlAs)

resonant at E=1eV (=1.24µm)

nsup=1

N2

h

l

sub

sup

maxn

n

n

n41R

lh

lhres

nn

nnE4E

D

DE

N=9

N=15

N=21, Rmax=0.9991

Varying E

43«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Comparison of III-N and III-As systems

III-As III-N

nGaAs=3.5, nAlAs=3

Lattice-matched

R=99%

N=16

nGaN=2.3, nAlN=2.1

Lattice mismatch=2.4%

R=99%

N=20 to 60 for GaN/AlGaN DBR

Al0.2Ga0.8N/Al0.85In0.15N

Lattice matched

R=99%

N=27

E. Feltin et al., Appl. Phys. Lett. 88 051108 (2006)

N2

h

l

sub

sup

maxn

n

n

n41R

44«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

DBR based Fabry-Pérot

nsub=2.3

-cavity, nh

Varying E

0.7 0.8 0.9 1.0 1.1 1.2 1.30.0

0.2

0.4

0.6

0.8

1.0

R

Energy (eV)

0.9990 0.9995 1.0000 1.0005 1.00100.0

0.2

0.4

0.6

0.8

1.0

R

Energy (eV)

DE=E/Q

Q typically

103 => 104

(cav : 0.5 => 5 ps)

Transmission=1

on resonance for

perfectly balanced

mirrors

45«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Bragg mirrors as 1D photonic band gap

R. P. Stanley et al., Phys. Rev. A 48, 2246 (1993)

Analogy between Maxwell and Schrödinger equations

the Bragg reflector as a 1D photonic bandgap

varying the height of one layer introduces

an impurity state in the gap

46«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

DBR based Fabry-Pérot

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0

50

100

150

200

250

300

Refr

active index

Fie

ld inte

nsity

z (µm)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Longitudinal E-M field profile at resonance:

Field peaked at cavity center, exponential decay in the DBRs

Mode extent larger than for metal mirror cavity!

47«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Planar microcavities : the photon effective mass

L

q

ncav

reflection

coefficient r

Resonance condition : L

pkz

cL

pnm

m

k

Ln

cpk

L

p

n

cE

cavph

ph

yx

cav

yx

cav

*

*

2

,

2

2

,

2

2

48«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

-2x105

-1x105 0 1x10

52x10

5

1.498

1.500

1.502

1.504

1.506

1.508

En

erg

y (

eV

)

kx,y

(cm-1)

Strong coupling in a planar cavity

-2x105

-1x105 0 1x10

52x10

5

1.498

1.500

1.502

1.504

1.506

1.508

En

erg

y (

eV

)

kx,y

(cm-1)

selection

rule

Ephoton

Eexciton

mph~10-5 me

mexc~10-1 me

New dispersion relation :

Lower polariton

Upper polariton

« Exciton-like »

(confined photon + exciton)

Fast (~5 ps) desintegration through photon escape

100% directional extraction through top mirror

*

2

//

2

0,

//,

2

//

2

0,

2

2

Ph

PhPh

X

XX

m

kEE

M

KEE

49«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

-2x105

-1x105 0 1x10

52x10

5

1.498

1.500

1.502

1.504

1.506

1.508

En

erg

y (

eV

)

kx,y

(cm-1)

Strong coupling in a planar cavity

-2x105

-1x105 0 1x10

52x10

5

1.498

1.500

1.502

1.504

1.506

1.508

En

erg

y (

eV

)

kx,y

(cm-1)

selection

rule

Ephoton

Eexciton

mph~10-5 me

mexc~10-1 me

Relaxation bottleneck

(high DOS vs low DOS at kx,y~0)

BUT excitons = bosons in the low density regime

Stimulated emission of polaritons : R=R0(1+<N>)

Polariton laser or solid-state BEC

F. Tassone et al., Phys. Rev. B 53, R7642 (1996)

A. Imamoglu et al.

Phys. Rev. A 53, 4250 (1996)

Condition for

condensation

2

2

h

m

Tk

n

B

50«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling in a planar cavity

J. Kasprzak et al., Nature 443, 409 (2006)

"Bose–Einstein condensation of exciton polaritons"

reach stimulated relaxation of polaritons before exciton screening

51«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Polariton lasing and polariton condensation…

B. Deveaud-Plédran

"On the condensation of polaritons"

J. Opt. Soc. Am. B 29 A138 (2012)

D. Bajoni

"Polariton lasers. Hybrid light-

matter lasers without inversion"

J. Appl. Phys. D: Appl. Phys. 45

409501 (2012)

The phenomenon of polariton condensation

is exactly equivalent to the polariton lasing

we have described in the previous section,

and further investigation showed that

thermal equilibrium is not achieved by the

polariton gas, so that the term Bose–

Einstein condensate is not exact and a

weaker definition of condensation, which

does not involve thermal equilibrium, has

been applied to the justify the term

condensation for polaritons

It is central at this stage to correct a misuse of

words: conventional lasing in semiconductors

does not correspond to population inversion

(which would mean having more electrons in

the conduction band than electrons in the

valence band). The lasing condition in

semiconductors is the well-known Bernard–

Durraffourg condition [63], i.e., that the

distance between the quasi-Fermi levels for

electron and holes is larger than the energy of

the gap. It is therefore misleading to talk, in

semiconductors, about lasing without

inversion.

52«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling with nitrides

Reference system : GaAs/AlAs cavities, InGaAs QWs

Very large Q factors (10000-50000)

long polariton lifetime ~15 ps and little disorder induced localization

But : restricted to low temperatures

restricted to low pump powers

III-N system:

Large intrinsic light matter coupling

QW exciton stable at 300 K, more stable at large pump power

But : high quality mirrors difficult to fabricate, much photonic disorder

53«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling with nitrides

The "Mott density" for 2D excitons

225

1

Ban

a (nm) Nmott(cm-2)

GaN 2.8 5 1011

GaAs 12 2.5 1010

Smooth transition to e-h plasma, due to phase-space filling

N. F. Mott, Philos. Mag. 6 287 (1961)

S. Schmitt-Rink et al., Phys. Rev. B 32 6601 (1985)

54«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling with nitrides

55«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling with nitrides

First demonstration:

Bulk GaN, Q~100, 5 K, but strong coupling W=30 meV

A. Antoine-Vincent et al., Phys. Rev. B 68 153313 (2003)

56«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling with nitridesF. Semond et al., Appl. Phys. Lett. 87 021102 (2005)

Room temperature strong coupling !

R. Butté et al., Phys. Rev. B 73 033315 (2006)

57«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling with nitrides

W=50 meV

G. Christmann et al., Phys. Rev. B 77 085310 (2008)

NW

For N QWs

58«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Strong coupling with nitrides

Room temperature polariton lasing

G. Christmann et al., Appl. Phys. Lett. 93 051102 (2008)

59«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

The Purcell effect

Practical situation

=cav+leak~0(Fp+1)

b=(photons in confined mode)/(emitted photons)=cav/

leak

cav=Fp0

b=Fp/(Fp+1)

For high Fp, monomode emission without inhibition!!

60«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

The Purcell effect

Application prospects

Thresholdless laser:

Conventional laser:

Below threshold:

Above threshold:

b~10-5 photons

in mode

~all photons

in mode

61«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

The Purcell effect

Thresholdless laser:

High b regime : all photons feed into mode below threshold!!

ln(b)

Pth= cav (1+b)/2b => Pth scales as 1/b

For b~1 and Q~10000, Pth ~ 20 nA!Y. Yamamoto et al., Phys. Rev. A 44, 657 (1991)

T. Kobayashi et al., Tech. Dig. of 43rd Fall meeting of

Japanese Applied Physics Society, paper 29a-B-6 (1982)

n1

n1nP cav

inb

b

laser

62«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Whispering gallery modes confined by total internal reflection

G. Mie, Ann. Phys. (NY) 25, 377 (1908)

Lord Rayleigh, « The problem of the whispering gallery », Scientic Papers 5, 617 (1912)

E2

Various nitride microcavities

63«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Various nitride microcavities

Lasing at room temperature in a microlaser

Q~4000

A. C. Tamboli et al., Nature Photon. 1 61 (2007)

InGaN QWs in a GaN slab

64«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Various nitride microcavities

GaN quantum dots in AlN slab on Si

M. Mexis et al., Opt. Lett. 36 2203 (2011)

65«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Various nitride microcavities

M. Arita et al., Appl. Phys. Exp. 5 126502 (2012)

66«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Various nitride microcavities

D. Sam-Giao et al., Appl. Phys. Lett. 100 191104 (2012)

GaN quantum dots in AlN on Si

67«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Various nitride microcavities

Prospects

- UV microlasers based on the Purcell effect

- Strong coupling in other geometries than planar cavity

Strong coupling in photonic crystal slabs

68«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Microdisk cavities

d~ 4 µm, V~ 6 (/n)3, Q=360000, Fp=4500 !

Remark : Result for empty cavities… probably less when QDs are inserted

due to the increase of residual background absorption

K. Srinivasan et al., Appl. Phys. Lett. 86, 151106 (2005)

69«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

2D photonic band gap cavities

Y. Akahane et al., Nature 425, 944 (2003)

Q=35000

Fp~4000

100 nm

70«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Fundamental papers (my very subjective selection)

71«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Fundamental papers (my very subjective selection)

72«NanoPhysique et SemiConducteurs» CEA-Grenoble Ganex School 2013, Montpellier

Fundamental papers (my very subjective selection)