Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

36
[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical & Mechanical Engineer [email protected] Engineering 45 Crystalline Crystalline MicroStructure MicroStructure

description

Engineering 45. Crystalline MicroStructure. Bruce Mayer, PE Registered Electrical & Mechanical Engineer [email protected]. Learning Goals. Learn How atoms assemble into solid structures Use metals as Prototypical Example - PowerPoint PPT Presentation

Transcript of Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt1

Bruce Mayer, PE Engineering-45: Materials of Engineering

Bruce Mayer, PERegistered Electrical & Mechanical Engineer

[email protected]

Engineering 45

CrystallineCrystallineMicroStructMicroStruct

ureure

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt2

Bruce Mayer, PE Engineering-45: Materials of Engineering

Learning GoalsLearning Goals

Learn How atoms assemble into solid structures• Use metals as Prototypical Example

Determine Relationship Between Material density and material MicroStructure

Understand how material properties vary with the sample (i.e., part) orientation

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt3

Bruce Mayer, PE Engineering-45: Materials of Engineering

Properties of Solid MaterialsProperties of Solid Materials

Mechanical: Characteristics of materials displayed when Forces and/or Moments are applied to them.

Physical: Characteristics of materials that relate to the interaction of materials with various forms of Energy.

Chemical: Material characteristics that relate to the e− structure of a material.

Dimensional: Size, shape, and finish

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt4

Bruce Mayer, PE Engineering-45: Materials of Engineering

Material PropertiesMaterial Properties Chemical Physical Mechanical Dimensional

Composition Melting Point Tensile properties Standard Shapes

Microstructure Thermal Toughness Standard Sizes

Phases Magnetic Ductility Surface Texture

Grain Size Electrical Fatigue Stability

Corrosion Optical Hardness Mfg. Tolerances

Crystallinity Acoustic Creep

Molecular Wt Gravimetric Compression

Flammability

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt5

Bruce Mayer, PE Engineering-45: Materials of Engineering

Energy and Atomic PackingEnergy and Atomic Packing NonDense, Random Packing

Dense Regular Packing

Energy

r

typical neighbor bond length

typical neighbor bond energy

Energy

r

typical neighbor bond length

typical neighbor bond energy

Regular Structures Tend to have LOWER Energy → Energetically Favored

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt6

Bruce Mayer, PE Engineering-45: Materials of Engineering

Materials and Atomic-PackingMaterials and Atomic-Packing

Si Oxygen

crystalline SiO2

noncrystalline SiO2

CRYSTALLINE Materials• atoms pack in periodic, 3D arrays

• typical of: Metals, many Ceramics, and some Polymers

NONcrystalline Materials• atoms have no periodic packing

• occurs for:– Complex structures

– Rapid Cooling

"Amorphous" Noncrystalline

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt7

Bruce Mayer, PE Engineering-45: Materials of Engineering

Crystal BasicsCrystal Basics Crystalline Material

• atomic arrangement in solid:– periodic and repeating

3D array

– Long Range Order

lattice

Unit Cell Smallest Repeating Entity Within a Lattice• Geometry

– Lattice Constants: a, b, c

– interaxial angles:

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt8

Bruce Mayer, PE Engineering-45: Materials of Engineering

Crystal StructureCrystal Structure

Crystal Structure geometry + atom-positions• i.e.; the spatial arrangement of Atoms,

Ions, or Molecules

Some Types

polymer

Crystal Type Typical Metal Typical CeramicsFace Centered Cubic (FCC) Cu, Al NaCl

Body Centered Cubic (CCC) Cr, W CsCl

Hexagonal Close Packed (HCP Ti, Zn ZnSB

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt9

Bruce Mayer, PE Engineering-45: Materials of Engineering

Example Crystal SystemsExample Crystal Systems Tab 3.2 In Text

Shows the 7 Most Common Crystal Systems• Some Examples

Cubic• a = b = c = = = 90°

Hexagonal• a = b c = = 90°, =

120°

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt10

Bruce Mayer, PE Engineering-45: Materials of Engineering

Simple Cubic Stucture (SC)Simple Cubic Stucture (SC) Rare due to poor

packing (only Po has this structure)

Close-packed directions are cube edges.

Coordination No. = 6• CoOrd No. (CN) = the

No. of Nearest Neighbors

Ro

tate

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt11

Bruce Mayer, PE Engineering-45: Materials of Engineering

Polonium, Z = 84, SC StructurePolonium, Z = 84, SC Structure HardSphere Model

a (pm) b (pm) c (pm) 335.9 335.9 335.9 90 90 90

Lattice Constants InterAxial 's

Reduced Sphere Mod

Note: 100 PicoMeters = 1 Å http://www.webelements.com/webelements/index.html

http://www.webelements.com/webelements/elements/text/Po/key.html

http://www.webelements.com/webelements/elements/text/Po/xtal.html

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt12

Bruce Mayer, PE Engineering-45: Materials of Engineering

Atomic Packing Factor, APFAtomic Packing Factor, APF Assuming HardSphere Model

APF For Simple Cubic Structure = 52%

Cell Unit of Volume TOTAL

Cell Unit aIn ATOMS of VolumeAPF

close-packed directions

a

R=0.5a

contains 8 x 1/8 = 1 atom/unit cell

APF = a3

4

3(0.5a)31

atoms

unit cellatom

volume

unit cellvolume

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt13

Bruce Mayer, PE Engineering-45: Materials of Engineering

Body Centered Cubic (BCC)Body Centered Cubic (BCC) HardSphere Model

Atoms per Unit Cell = 1 + (8 x 1/8) = 2

CoOrd No. = 8• 8 Atoms Touch the

“Center” Atom Rotate

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt14

Bruce Mayer, PE Engineering-45: Materials of Engineering

Atomic Packing Factor: BCC Atomic Packing Factor: BCC Find Radius, r, in

terms of Lattice Const, a

Thus r in Terms of a

Atoms Touch On Cube Diagonal, L• L = a3 = L = 4r

aarra 433.04

343

And Vsphere = (4/3)R3

So the BCC APF

cellma

atmacellat

APF33

3

3

43

34

2

%02.68BCCAPF

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt15

Bruce Mayer, PE Engineering-45: Materials of Engineering

Face Centered Cubic (FCC)Face Centered Cubic (FCC) HardSphere Model

Atoms per Unit Cell = 6x½ + (8 x 1/8) = 4

CoOrd No. = 12• CN = 4top + 4bot + 4midRotate

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt16

Bruce Mayer, PE Engineering-45: Materials of Engineering

Atomic Packing Factor: FCC Atomic Packing Factor: FCC Find Radius, r, in

terms of Lattice Const, a

Thus r in Terms of a

Atoms Touch on Face Diagonal, f• f = a2 = 4r

aarra 3536.022

142

And Vsphere = (4/3)R3

So the FCC APF

cellma

atmacellat

APF33

3

3

22

134

4

%05.74FCCAPF

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt17

Bruce Mayer, PE Engineering-45: Materials of Engineering

FCC Stacking SequenceFCC Stacking Sequence

An ABCABC... Stacking Sequence• The 2D

projection

A sites

B B

B

BB

B B

C sites

C C

CA

B

B sites B B

B

BB

B B

B sitesC C

CA

C C

CA

The FCCUnit Cell

AB

C

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt18

Bruce Mayer, PE Engineering-45: Materials of Engineering

Hexagonal Close Packed (HCP) Hexagonal Close Packed (HCP) Built Up in an A-B

Stacking Pattern Exhibits NonCubic

Symmetry on a & c axes• c:a Ratio 1.633

Atoms per Cell = 6• (12 x 1/6)corners +

(2 x ½)top/bot + 3mid = 6

APF and CN are the SAME as the FCC Structure• APF = 74.05%

– Close Packeda

c

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt19

Bruce Mayer, PE Engineering-45: Materials of Engineering

HCP CoOrdination NumberHCP CoOrdination Number For 3 Stacking

Planes Below, Consider the CENTER Atom

Observe The Center Atom’s Nearest Neighbors• 6 Surrounding in the

Center Plane

• 3 Touching From Below

• 3 Touching From Above

Thus

12363 HCPCN

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt20

Bruce Mayer, PE Engineering-45: Materials of Engineering

Structure of Compounds Structure of Compounds Compounds: Often

have similar close-packed structures

NaCl Structure• Ionic Radii

– Na+ = 116 pm

– Cl– = 167 pm

Expand Na+ ions to Reveal Close-Packed X-tal Structure

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt21

Bruce Mayer, PE Engineering-45: Materials of Engineering

Theoretical Density, Theoretical Density, Atomic Radii for Crystals are Measured by

X-Ray Diffraction • Can use The Data From XRD Measurements to

Calc Density for Crystals

On the Macro Scale Densities are Calc’d by Weight & Measure of Chunks of Crystals

n AVcNA

# atoms/unit cell Atomic weight (g/mol)

Volume/unit cell

(cm3/unit cell)Avogadro's number (6.023 x 1023 atoms/mol)

Fcn of Ratom

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt22

Bruce Mayer, PE Engineering-45: Materials of Engineering

Theoretical Density Example Theoretical Density Example For Copper

• Ratom = 128 pm

• Acu = 63.54 g/mol

• Xtal Structure = FCC

Recall From FCC APF Calc

FCC Cu has 4 atoms per Unit Cell; so

And The VC = a3

3330

233

kg/m8893g/pm10893.8

10023.6pm128216

54.634

AC

Cu

NV

nA

macro = 8940 kg•m-3

0.53% HIGHER than Theoretical Value

RaaR 2222

1

333 22822 RRa

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt23

Bruce Mayer, PE Engineering-45: Materials of Engineering 15

Element Aluminum Argon Barium Beryllium Boron Bromine Cadmium Calcium Carbon Cesium Chlorine Chromium Cobalt Copper Flourine Gallium Germanium Gold Helium Hydrogen

Symbol Al Ar Ba Be B Br Cd Ca C Cs Cl Cr Co Cu F Ga Ge Au He H

At. Weight (amu) 26.98 39.95 137.33 9.012 10.81 79.90 112.41 40.08 12.011 132.91 35.45 52.00 58.93 63.55 19.00 69.72 72.59 196.97 4.003 1.008

Atomic radius (nm) 0.143 ------ 0.217 0.114 ------ ------ 0.149 0.197 0.071 0.265 ------ 0.125 0.125 0.128 ------ 0.122 0.122 0.144 ------ ------

Density (g/cm3) 2.71 ------ 3.5 1.85 2.34 ------ 8.65 1.55 2.25 1.87 ------ 7.19 8.9 8.94 ------ 5.90 5.32 19.32 ------ ------

Crystal Structure FCC ------ BCC HCP Rhomb ------ HCP FCC Hex BCC ------ BCC HCP FCC ------ Ortho. Dia. cubic FCC ------ ------

Characteristics of Some Elements at 20 °CCharacteristics of Some Elements at 20 °C

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt24

Bruce Mayer, PE Engineering-45: Materials of Engineering

16

(g

/cm

3)

Graphite/ Ceramics/ Semicond

Metals/ Alloys

Composites/ fibersPolymers

1

2

20

30Based on data in Table B1, Callister *GFRE, CFRE, & AFRE are Glass,

Carbon, & Aramid Fiber-Reinforced Epoxy composites (values based on 60% volume fraction of aligned fibers

in an epoxy matrix). 10

3 4 5

0.3 0.4 0.5

Magnesium

Aluminum

Steels

Titanium

Cu,Ni

Tin, Zinc

Silver, Mo

Tantalum Gold, W Platinum

Graphite Silicon

Glass -soda Concrete

Si nitride Diamond Al oxide

Zirconia

HDPE, PS PP, LDPE

PC

PTFE

PET PVC Silicone

Wood

AFRE *

CFRE *

GFRE*

Glass fibers

Carbon fibers

Aramid fibers

Why? Metals have... • close-packing (metallic bonding) • large atomic mass Ceramics have... • less dense packing (covalent bonding) • often lighter elements Polymers have... • poor packing (often amorphous) • lighter elements (C,H,O) Composites have... • intermediate values

Data from Table B1, Callister 6e.

Densities Of Material ClassesDensities Of Material Classesmetals > ceramics > polymers

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt25

Bruce Mayer, PE Engineering-45: Materials of Engineering

SINGLE Crystal Applications SINGLE Crystal Applications Most Crystalline

Materials Are Composed of many Small Crystals• i.e., they are

POLYcrystalline and exhibit a GRAIN Structure

Grain Structure Introduces Weakness into the Material

But Making LARGE Single Crystals is Very Difficult; i.e., Expensive

Single Xtal Examples• SemiConductor

wafers

• Turbine Blades

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt26

Bruce Mayer, PE Engineering-45: Materials of Engineering

1-Material; Several Crystal Types1-Material; Several Crystal Types Polymorphism More Than One

Crystal Structure• Often Found in Compounds

Allotropy Polymorphism in ELEMENTAL Solids

Examples

• Carbon Allotropes– Graphite

– Diamond

– Bucky Balls/Tubes

• Iron Allotropes– BCC Ferrite (RT)

– FCC Austenite (> 912 °C)

– BCC Delta (~TMelt)

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt27

Bruce Mayer, PE Engineering-45: Materials of Engineering

Cabon Cabon Allotropes Allotropes Diamond - tetrahedral,

covalent bonds, Single-Element Form; the ZincBlende Crystal structure

Graphite – Layers of Hexagonally Bonded C-atoms

C60 Fullerenes

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt28

Bruce Mayer, PE Engineering-45: Materials of Engineering

WhiteBoard WorkWhiteBoard Work Example

similar to P3.15• Uranium

• Orthorhombic

• Lattice Constants– a = 286 pm

– b = 587 pm

– c = 495 pm

• ratom = 138.5 pm

= 19050 kg/m3

• AU = 238.03 g/mol

→ FIND APF

SR Case

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt29

Bruce Mayer, PE Engineering-45: Materials of Engineering

Uran

ium

Un

it Cell (B

CR

)U

raniu

m U

nit C

ell (BC

R)

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt30

Bruce Mayer, PE Engineering-45: Materials of Engineering

Uran

ium

Un

it Cell (B

C)

Uran

ium

Un

it Cell (B

C)

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt31

Bruce Mayer, PE Engineering-45: Materials of Engineering

Uran

ium

Un

it Cell (S

R)

Uran

ium

Un

it Cell (S

R)

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt32

Bruce Mayer, PE Engineering-45: Materials of Engineering

All Done for TodayAll Done for Today

Uranium hasthe Highest ZOf Any Natural

Element

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt33

Bruce Mayer, PE Engineering-45: Materials of Engineering

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt34

Bruce Mayer, PE Engineering-45: Materials of Engineering

P3-15P3-15

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt35

Bruce Mayer, PE Engineering-45: Materials of Engineering

[email protected] • ENGR-45_Lec-03_Crystal_Structure.ppt36

Bruce Mayer, PE Engineering-45: Materials of Engineering