Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

47
Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Transcript of Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Page 1: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Brownian Motion in AdS/CFTYITP Kyoto, 24 Dec 2009

Masaki Shigemori (Amsterdam)

Page 2: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

2

This talk is based on:

J. de Boer, V. Hubeny, M. Rangamani, M.S., β€œBrownian motion in AdS/CFT,” arXiv:0812.5112.

A. Atmaja, J. de Boer, M.S., in preparation.

Page 3: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

3

Introduction / Motivation

Page 4: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

4

thermodynamics

Hierarchy of scales in physics

hydrodynamics

atomic theory

subatomic theory

large

small

Scale

macrophysics

microphysics

coarse-grain

Brownian motion

Page 5: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

5

AdS BHin classical GR

Hierarchy in AdS/CFT

AdS CFT

[Bhattacharyya+Minwalla+

Rangamani+Hubeny]

thermodynamics of plasma

horizon dynamics

in classical GR

hydrodynamics

Navier-Stokes eq.

quantum BH

strongly coupled quantum plasma

large

small

Scale

long-wavelength approximation

macro-physics

micro-physics

?

This

talk

Page 6: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

6

Brownian motion

― Historically, a crucial step toward microphysics of nature

1827 Brown

Due to collisions with fluid particles Allowed to determine Avogadro #: NA= 6x1023 < ∞

Ubiquitous Langevin eq. (friction + random force)

Robert Brown (1773-1858)

erratic motion

pollen particle

Page 7: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

7

Brownian motion in AdS/CFT

Do the same in AdS/CFT!

Brownian motion of an external quark in CFT plasma

Langevin dynamics from bulk viewpoint?

Fluctuation-dissipation theorem

Read off nature of constituents of strongly coupled plasma

Relation to RHIC physics?Related work:Drag force: Herzog+Karch+Kovtun+Kozcaz+Yaffe, Gubser, Casalderrey-Solana+TeaneyTransverse momentum broadening: Gubser, Casalderrey-Solana+Teaney

Page 8: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

8

Preview: BM in AdS/CFT

horizon

AdS boundaryat infinity

fundamentalstring

black hole

endpoint =Brownian particle Brownian

motion

Page 9: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

9

Outline

Intro/motivation

Boundary BM

Bulk BM

Time scales

BM on stretched horizon

Page 10: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

10

Boundary BM

- Langevin dynamics

Paul Langevin (1872-1946)

Page 11: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

11

Simplest Langevin eq.

π‘₯,𝑝= π‘šπ‘₯ሢ π‘αˆΆαˆΊπ‘‘αˆ»= βˆ’π›Ύ0π‘αˆΊπ‘‘αˆ»+ π‘…αˆΊπ‘‘αˆ» (instantaneo

us)friction

random force

π‘…αˆΊπ‘‘αˆ»Ϋƒ =Ϋ„ 0, π‘…αˆΊπ‘‘αˆ»π‘…αˆΊπ‘‘β€²αˆ»Ϋƒ =Ϋ„ πœ…0𝛿(π‘‘βˆ’ 𝑑′) white noise

Page 12: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

12

Simplest Langevin eq.

diffusive regime(random walk)

β‰ˆΰ΅ž

π‘‡π‘šπ‘‘2 (𝑑 β‰ͺπ‘‘π‘Ÿπ‘’π‘™π‘Žπ‘₯)2𝐷𝑑 (𝑑 β‰«π‘‘π‘Ÿπ‘’π‘™π‘Žπ‘₯)

β€’ Diffusion constant:

𝐷≑ 𝑇𝛾0π‘š

𝑠2αˆΊπ‘‘αˆ»Ϋƒ ≑ۄ βˆ’αˆΎπ‘₯αˆΊπ‘‘αˆ»Ϋƒ π‘₯ሺ0ሻሿ2 Ϋ„

ballistic regime(init. velocity )

π‘₯ሢ~ΰΆ₯𝑇/π‘š

Displacement:

𝑑relax = 1𝛾0 β€’ Relaxation time:

(S-E relation) 𝛾0 = πœ…02π‘šπ‘‡ FD theorem

Page 13: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

13

Generalized Langevin equation

π‘αˆΆαˆΊπ‘‘αˆ»= βˆ’ΰΆ± π‘‘π‘‘β€²π‘‘βˆ’βˆž π›ΎαˆΊπ‘‘βˆ’ π‘‘β€²αˆ»π‘αˆΊπ‘‘β€²αˆ»+ π‘…αˆΊπ‘‘αˆ»+ 𝐹(𝑑)

delayed

friction

random force

π‘…αˆΊπ‘‘αˆ»Ϋƒ =Ϋ„ 0, π‘…αˆΊπ‘‘αˆ»π‘…αˆΊπ‘‘β€²αˆ»Ϋƒ =Ϋ„ πœ…(π‘‘βˆ’ 𝑑′)

external force

Qualitatively similar to simple LE ballistic regime diffusive regime

Page 14: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

14

Time scales

Relaxation time𝑑relax ≑ 1𝛾0 , 𝛾0 = ΰΆ± π‘‘π‘‘βˆž0 𝛾(𝑑)

π‘…αˆΊπ‘‘αˆ»π‘…αˆΊ0αˆ»Ϋƒ βˆ½Ϋ„ π‘’βˆ’π‘‘/𝑑coll time elapsed in a single collision

𝑑coll

𝑑mfp

Typically𝑑relax ≫𝑑mfp ≫𝑑coll but not necessarily sofor strongly coupled plasma

R(t)

t𝑑mfp

𝑑coll

time between collisions

Collision duration time

Mean-free-path time

Page 15: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

How to determine Ξ³, ΞΊ

15

1. Forced motion

2. No external force,

π‘αˆΊπœ”αˆ»= π‘…αˆΊπœ”αˆ»+ πΉαˆΊπœ”αˆ»π›ΎαˆΎπœ”αˆΏβˆ’ π‘–πœ” ≑ πœ‡αˆΊπœ”αˆ»αˆΎπ‘…αˆΊπœ”αˆ»+ πΉαˆΊπœ”αˆ»αˆΏ

πΉαˆΊπ‘‘αˆ»= 𝐹0π‘’βˆ’π‘–πœ”π‘‘

π‘αˆΊπ‘‘αˆ»Ϋƒ =Ϋ„ πœ‡αˆΊπœ”αˆ»πΉ0π‘’βˆ’π‘–πœ”π‘‘

𝑝𝑝ۃ =Ϋ„ a2πœ‡a22 𝑅𝑅ۃ Ϋ„measure

known

read off ΞΌ

read off ΞΊ

admittance

𝐹= 0

Page 16: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

16

Bulk BM

Page 17: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

17

Bulk setup

AdSd Schwarzschild BH(planar)

𝑑𝑠𝑑2 = π‘Ÿ2𝑙2 ΰ΅«βˆ’β„ŽαˆΊπ‘Ÿαˆ»π‘‘π‘‘2 + π‘‘π‘‹Τ¦π‘‘βˆ’22 ΰ΅―+ 𝑙2π‘‘π‘Ÿ2π‘Ÿ2β„Ž(π‘Ÿ)

β„ŽαˆΊπ‘Ÿαˆ»= 1βˆ’α‰€π‘Ÿπ»π‘Ÿα‰π‘‘βˆ’1

𝑇= 1𝛽 = αˆΊπ‘‘βˆ’ 1αˆ»π‘Ÿπ»4πœ‹π‘™2

r

π‘‹Τ¦π‘‘βˆ’2

horizon

boundary

fundamentalstring

black hole

endpoint =Brownian

particle

Brownian motion

𝑙:AdS radius

Page 18: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

18

Physics of BM in AdS/CFT

Horizon kicks endpoint on horizon(= Hawking radiation)

Fluctuation propagates toAdS boundary

Endpoint on boundary(= Brownian particle) exhibits BM

transverse fluctuationWhole process is dual to

quark hit by plasma particles

r

π‘‹Τ¦π‘‘βˆ’2 boundary

black hole

endpoint =Brownian

particle

Brownian motion

kick

Page 19: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

19

Assumptions

π‘‹Τ¦π‘‘βˆ’2(𝑑,π‘Ÿ)

π‘‹αˆΊπ‘‘,π‘Ÿαˆ» r

π‘‹Τ¦π‘‘βˆ’2

horizon

boundary

Probe approximation

Small gs

No interaction with bulk

Only interaction is at horizon

Small fluctuation

Expand Nambu-Goto actionto quadratic order

Transverse positions aresimilar to Klein-Gordon scalar

Page 20: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

20

Transverse fluctuations

Quadratic action

𝑆2 = βˆ’ 14πœ‹π›Όβ€² ࢱ𝑑𝑑 π‘‘π‘Ÿα‰ˆπ‘‹αˆΆ2β„ŽαˆΊπ‘Ÿαˆ»βˆ’ π‘Ÿ4β„ŽαˆΊπ‘Ÿαˆ»π‘™4 𝑋′2

α‰ˆπœ”2 + β„ŽαˆΊπ‘Ÿαˆ»π‘™4 πœ•π‘ŸαˆΊπ‘Ÿ4β„ŽαˆΊπ‘Ÿαˆ»πœ•π‘Ÿαˆ» π‘“πœ”αˆΊπ‘Ÿαˆ»= 0

π‘‹αˆΊπ‘‘,π‘Ÿαˆ»=ΰΆ± π‘‘πœ”βˆž0 ΰ΅«π‘“πœ”αˆΊπ‘Ÿαˆ»π‘’βˆ’π‘–πœ”π‘‘π‘Žπœ” + h.c.ΰ΅―

d=3: can be solved exactlyd>3: can be solved in low frequency limit

π‘‹αˆΊπ‘‘,π‘Ÿαˆ»

𝑆NG = const + 𝑆2 + 𝑆4 + β‹―

Mode expansion

Page 21: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

21

Bulk-boundary dictionary

Near horizon:

π‘‹αˆΊπ‘‘,π‘Ÿcαˆ»β‰‘ π‘₯(𝑑) = ΰΆ± π‘‘πœ”βˆž0 οΏ½π‘“πœ”(π‘Ÿπ‘)π‘’βˆ’π‘–πœ”π‘‘π‘Žπœ” + h.c.ࡧ

π‘‹αˆΊπ‘‘,π‘Ÿαˆ»βˆΌΰΆ±π‘‘πœ”ΞΎ2πœ”βˆž

0 οΏ½ΰ΅«π‘’βˆ’π‘–πœ”(π‘‘βˆ’π‘Ÿβˆ—) + π‘’π‘–πœƒπœ”π‘’βˆ’π‘–πœ”(𝑑+π‘Ÿβˆ—)ΰ΅―π‘Žπœ” + h.c.ࡧ outgoin

gmode

ingoingmode

phase shift

π‘Ÿβˆ—

: tortoise coordinate

π‘Ÿc : cutoff

β‹―π‘₯αˆΊπ‘‘1ሻπ‘₯αˆΊπ‘‘2αˆ»Ϋƒ ↔ۄ β€ π‘Žπœ”1π‘Žπœ”2Ϋƒ β‹― Ϋ„

observe BMin gauge theory

correlator ofradiation

modesCan learn about quantum gravity in principle!

Near boundary:

Page 22: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

22

Semiclassical analysis

Semiclassically, NH modes are thermally excited:

AdS3

β€ π‘Žπœ”π‘Žπœ”Ϋƒ βˆΫ„ 1π‘’π›½πœ” βˆ’ 1

Can use dictionary to compute x(t), s2(t) (bulk boundary)

𝑠2(𝑑) ≑ ⟨:ሾπ‘₯αˆΊπ‘‘αˆ»βˆ’ π‘₯ሺ0ሻሿ2:⟩ β‰ˆΫ•Ϋ”

Ϋ“

π‘‡π‘šπ‘‘2 (𝑑 β‰ͺ𝑑relax )π›Όβ€²πœ‹π‘™2𝑇𝑑 (𝑑 ≫𝑑relax )

𝑑relax ∼ π›Όβ€²π‘šπ‘™2𝑇2

: ballistic: diffusiveDoes exhibit

Brownian motion

Page 23: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

23

Semiclassical analysis Momentum

distribution

Diffusion constant

Probability distribution for 𝑝= π‘šπ‘₯ሢ π‘“αˆΊπ‘αˆ»βˆ expΰ΅«βˆ’π›½πΈπ‘ΰ΅―, 𝐸𝑝 = 𝑝22π‘š

Maxwell-Boltzmann

𝐷= αˆΊπ‘‘βˆ’ 1ሻ2𝛼′8πœ‹π‘™2𝑇

Agrees with drag force computation[Herzog+Karch+Kovtun+Kozcaz+Yaffe]

[Liu+Rajagopal+Wiedemann][Gubser] [Casalderrey-Solana+Teaney]

Page 24: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

24

Forced motion Want to determine ΞΌ(Ο‰), ΞΊ(Ο‰)

― follow the two-step procedure

Turn on electric field E(t)=E0e-iωt

on β€œflavor D-brane” and measure response ⟨p(t)⟩ E(t)p

freely infalling therm

al

b.c. changed from Neumann

β€œflavor D-brane”

Page 25: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

25

Forced motion: results (AdS3) Admittance

Random force correlator

FD theorem

πœ‡αˆΊπœ”αˆ»= 1π›ΎαˆΎπœ”αˆΏβˆ’ π‘–πœ”= 𝛼′𝛽2π‘š2πœ‹ 1βˆ’ π‘–πœ”/πœ‹π›Όβ€²π‘š1βˆ’ π›Όβ€²π‘šπ›½2πœ”/2πœ‹

πœ…αˆΊπœ”αˆ»= 4πœ‹π›Όβ€²π›½3 1βˆ’αˆΊπ›½πœ”/2πœ‹αˆ»21βˆ’αˆΊπœ”/2πœ‹π›Όβ€²π‘šαˆ»2 𝑑coll ∼ 1𝑇 (no Ξ»)

2π‘š Re(π›ΎαˆΎπœ”αˆΏ) = π›½πœ…αˆΊπœ”αˆ» satisfiedcan be proven

generally

Page 26: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

26

Time scales

Page 27: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

27

Time scales

R(t)

t𝑑mfp

𝑑coll

𝑑relax

𝑑mfp 𝑑coll

information about plasma

constituents

Page 28: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

28

Time scales from R-correlators

R(t) : consists of many pulses randomly distributed

A toy model:

π‘…αˆΊπ‘‘αˆ»= πœ–π‘–π‘“αˆΊπ‘‘βˆ’ π‘‘π‘–αˆ»π‘˜

𝑖=1 𝑓(𝑑) : shape of a single

pulseγ€€γ€€πœ–π‘– = Β±1 : random sign

πœ‡ : number of pulses per unit time,∼ 1/𝑑mfp

πœ–1 = 1 πœ–2 = 1

πœ–3 = βˆ’1

𝑓(π‘‘βˆ’ 𝑑1) 𝑓(π‘‘βˆ’ 𝑑2)

βˆ’π‘“(π‘‘βˆ’ 𝑑3) Distribution of pulses = Poisson distribution

Page 29: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

29

Time scales from R-correlators

Can determine ΞΌ, thus tmfp

𝑅෨(πœ”1)𝑅෨(πœ”2)Ϋƒ β‰ˆΫ„ 2πœ‹πœ‡π›Ώ(πœ”1 + πœ”2)π‘“αˆšαˆΊ0ሻ2

π‘…ΰ·¨αˆΊπœ”1αˆ»π‘…ΰ·¨αˆΊπœ”2αˆ»π‘…ΰ·¨αˆΊπœ”3αˆ»π‘…ΰ·¨αˆΊπœ”4αˆ»Ϋƒ connΫ„ β‰ˆ 2πœ‹πœ‡π›Ώ(πœ”1 + πœ”2 + πœ”3 + πœ”4)π‘“αˆšαˆΊ0ሻ4

tilde = Fourier transform

2-pt func

Low-freq. 4-pt func

π‘…αˆΊπ‘‘αˆ»π‘…αˆΊ0αˆ»Ϋƒ 𝑑collβ†’Ϋ„

π‘…ΰ·¨αˆΊπœ”1αˆ»π‘…ΰ·¨αˆΊπœ”2αˆ»π‘…ΰ·¨αˆΊπœ”3αˆ»π‘…ΰ·¨αˆΊπœ”4αˆ»Ϋƒ 𝑑mfpβ†’Ϋ„

Page 30: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

30

Sketch of derivation (1/2)

π‘ƒπ‘˜αˆΊπœαˆ»= π‘’βˆ’πœ‡πœαˆΊπœ‡πœαˆ»π‘˜π‘˜!

Probability that there are k pulses in period [0,Ο„]:

π‘…αˆΊπ‘‘αˆ»= πœ–π‘–π‘“αˆΊπ‘‘βˆ’ π‘‘π‘–αˆ»π‘˜

𝑖=1

π‘…αˆΊπ‘‘αˆ»π‘…(𝑑′)Ϋƒ =Ϋ„ π‘ƒπ‘˜αˆΊπœαˆ»βˆžπ‘˜=1 βˆ’πœ–π‘–πœ–π‘—π‘“αˆΊπ‘‘Ϋƒ π‘‘π‘–αˆ»π‘“(π‘‘βˆ’ 𝑑𝑗) π‘˜Ϋ„

π‘˜π‘–,𝑗=1

πœ–π‘– = Β±1 ∢ random signs β†’ πœ–π‘–πœ–π‘—Ϋƒ =Ϋ„ 𝛿𝑖𝑗

0

k pulses

𝑑1 𝑑2 π‘‘π‘˜ … 𝜏

(Poisson dist.)

βˆ’π‘“αˆΊπ‘‘Ϋƒ π‘‘π‘–αˆ»π‘“αˆΊπ‘‘β€² βˆ’ π‘‘π‘–αˆ» π‘˜Ϋ„ = π‘˜πœΰΆ± π‘‘π‘’πœ0 π‘“αˆΊπ‘‘βˆ’ π‘’αˆ»π‘“(𝑑′ βˆ’ 𝑒)

2-pt func:

Page 31: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

31

Sketch of derivation (2/2)

π‘…αˆΊπ‘‘αˆ»π‘…(𝑑′)Ϋƒ =Ϋ„ πœ‡ΰΆ± π‘‘π‘’βˆžβˆ’βˆž π‘“αˆΊπ‘‘βˆ’ π‘’αˆ»π‘“(𝑑′ βˆ’ 𝑒)

π‘…ΰ·¨αˆΊπœ”αˆ»π‘…ΰ·¨(πœ”β€²)Ϋƒ =Ϋ„ 2πœ‹πœ‡π›ΏαˆΊπœ”+ πœ”β€²αˆ»π‘“αˆšαˆΊπœ”αˆ»π‘“αˆš(πœ”β€²)

Similarly, for 4-pt func,

+2πœ‹πœ‡π›ΏαˆΊπœ”+ πœ”β€² + πœ”β€²β€² + πœ”β€²β€²β€² αˆ»π‘“αˆšαˆΊπœ”αˆ»π‘“αˆšαˆΊπœ”β€²αˆ»π‘“αˆšαˆΊπœ”β€²β€²αˆ»π‘“αˆšαˆΊπœ”β€²β€²β€²αˆ» π‘…ΰ·¨αˆΊπœ”αˆ»π‘…ΰ·¨(πœ”β€²)𝑅෨(πœ”β€²β€²)𝑅෨(πœ”β€²β€²β€²)Ϋƒ Ϋ„π‘…ΰ·¨αˆΊπœ”αˆ»π‘…ΰ·¨αˆΊπœ”β€²αˆ»βŸ© βŸ¨π‘…ΰ·¨(πœ”β€²β€²)𝑅෨(πœ”β€²β€²β€²)Ϋƒ ሺ2 more termsሻ+Ϋ„

β€œdisconnected part”

β€œconnected

part”=

𝑅෨(πœ”1)𝑅෨(πœ”2)Ϋƒ β‰ˆΫ„ 2πœ‹πœ‡π›Ώ(πœ”1 + πœ”2)π‘“αˆšαˆΊ0ሻ2

π‘…ΰ·¨αˆΊπœ”1αˆ»π‘…ΰ·¨αˆΊπœ”2αˆ»π‘…ΰ·¨αˆΊπœ”3αˆ»π‘…ΰ·¨αˆΊπœ”4αˆ»Ϋƒ connΫ„ β‰ˆ 2πœ‹πœ‡π›Ώ(πœ”1 + πœ”2 + πœ”3 + πœ”4)π‘“αˆšαˆΊ0ሻ4

Page 32: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

32

⟨RRRR⟩ from bulk BM

Expansion of NG action to higher order: π‘‹αˆΊπ‘‘,π‘Ÿαˆ» 𝑆NG = const + 𝑆2 + 𝑆4 + β‹―

Can compute tmfp from connected to 4-pt func.

𝑆4 = 116πœ‹π›Όβ€² ࢱ𝑑𝑑 π‘‘π‘Ÿα‰ˆπ‘‹αˆΆ2β„ŽαˆΊπ‘Ÿαˆ»βˆ’ π‘Ÿ4β„ŽαˆΊπ‘Ÿαˆ»π‘™4 𝑋′22

𝑅𝑅𝑅𝑅ۃ connΫ„ Can compute and thus tmfp

4-point vertex

Page 33: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

33

Holographic renormalization [Skenderis]

Similar to KG scalar, but not quite

Lorentzian AdS/CFT [Skenderis + van Rees]

IR divergence

Near the horizon, bulk integral diverges

⟨RRRR⟩ from bulk BM

Page 34: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

34

Reason: Near the horizon, local

temperature is high String fluctuates wildly Expansion of NG action breaks

down

Remedy: Introduce an IR cut off

where expansion breaks down Expect that this gives

right estimate of the full result

IR divergence

cutoff

Page 35: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

35

Times scales from AdS/CFT (weak)

conventional kinetic theory is good

𝑑relax ~ π‘šΞΎπœ† 𝑇2 𝑑coll ~1𝑇

Resulting timescales:

πœ†β‰‘ 𝑙4𝛼′2

weak couplingπœ†β‰ͺ1 𝑑relax ≫𝑑mfp ≫𝑑coll

𝑑mfp ~ 1 𝑇logΞ»

Page 36: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

36

Times scales from AdS/CFT (strong)

Multiple collisions occur simultaneously.

strong couplingπœ†β‰«1 𝑑mfp β‰ͺ𝑑coll

Cf. β€œfast scrambler”

[Hayden+Preskill] [Sekino+Susskind]

𝑑relax ~ π‘šΞΎπœ† 𝑇2 𝑑coll ~1𝑇

Resulting timescales:

πœ†β‰‘ 𝑙4𝛼′2 𝑑mfp ~ 1 𝑇logΞ»

Page 37: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

37

BM on stretched horizon

Page 38: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

38

Membrane paradigm?

Attribute physical properties to β€œstretched horizon”

E.g. temperature, resistance, …

stretched horizon

actual horizonQ. Bulk BM was due to b.c. at horizon (ingoing: thermal, outgoing: any). Can we reproduce this by interaction between string and β€œmembrane”?

Page 39: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

39

Langevin eq. at stretched horizon

π‘‹αˆΊπ‘‘,π‘Ÿαˆ» r

r=rsr=rH

βˆ’#πœ•π‘Ÿπ‘‹αˆΊπ‘‘,π‘Ÿπ‘ αˆ»= πΉπ‘ αˆΊπ‘‘αˆ» 𝐹𝑠(𝑑) = βˆ’ΰΆ± π‘‘π‘‘β€²π›Ύπ‘ αˆΊπ‘‘βˆ’ π‘‘β€²αˆ»πœ•π‘‘π‘‹αˆΊπ‘‘β€²,π‘Ÿπ‘ αˆ»+ 𝑅𝑠(𝑑)𝑑

βˆ’βˆž

π‘…π‘ αˆΊπ‘‘αˆ»Ϋƒ =Ϋ„ 0, π‘…π‘ αˆΊπ‘‘αˆ»π‘…π‘ αˆΊπ‘‘β€²αˆ»Ϋƒ =Ϋ„ πœ…π‘ (π‘‘βˆ’ 𝑑′)

πΉπ‘ αˆΊπ‘‘αˆ»

EOM for endpoint: Postulate:

Page 40: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Langevin eq. at stretched horizon

π‘‹αˆΊπ‘‘,π‘Ÿ~π‘Ÿπ»αˆ»=ΰΆ±π‘‘πœ”ΞΎ2πœ”[π‘Žπœ”αˆΊ+αˆ»π‘’βˆ’π‘–πœ”αˆΊπ‘‘βˆ’π‘Ÿβˆ—αˆ»+ π‘Žπœ”αˆΊβˆ’αˆ»π‘’βˆ’π‘–πœ”αˆΊπ‘‘+π‘Ÿβˆ—αˆ»+ h.c.]

π›Ύπ‘ αˆΊπ‘‘αˆ»βˆ π›ΏαˆΊπ‘‘αˆ», π‘…π‘ αˆΊπœ”αˆ»βˆ ΞΎπœ” π‘Žπœ”(+)

π‘…π‘ αˆΊπœ”αˆ»β€ π‘…π‘ αˆΊπœ”αˆ»Ϋƒ βˆΫ„ π‘Žπœ”αˆΊ+αˆ»β€ π‘Žπœ”αˆΊ+αˆ»Ϋƒ βˆΫ„ πœ”π‘’π›½πœ” βˆ’ 1

Plug into EOM

Ingoing (thermal)

outgoing (any)

40

Friction precisely cancels outgoing

modes

Random force excites ingoing

modes thermally

Can satisfy EOM if

Correlation function:

Page 41: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

41

Granular structure on stretched horizon

BH covered by β€œstringy gas”[Susskind et al.]

Frictional / random forcescan be due to this gas

Can we use Brownian stringto probe this?

Page 42: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

42

Granular structure on stretched horizon AdSd BH

One quasiparticle / string bit per Planck area

Proper distance from actual horizon:

𝑑𝑠𝑑2 = π‘Ÿ2𝑙2 ΰ΅«βˆ’β„ŽαˆΊπ‘Ÿαˆ»π‘‘π‘‘2 + π‘‘π‘‹Τ¦π‘‘βˆ’22 ΰ΅―+ 𝑙2π‘‘π‘Ÿ2π‘Ÿ2β„Ž(π‘Ÿ)

β„ŽαˆΊπ‘Ÿαˆ»= 1βˆ’α‰€π‘Ÿπ»π‘Ÿα‰π‘‘βˆ’1

𝑇= 1𝛽 = αˆΊπ‘‘βˆ’ 1αˆ»π‘Ÿπ»4πœ‹π‘™2

π›₯π‘‹βˆΌ π‘™π‘Ÿπ»β„“π‘ƒ

π›₯𝑑 ∼ Ξ”π‘‹ΞΎπœ– ∼ π‘™β„“π‘ƒΞΎπœ– π‘Ÿπ» π‘Ÿπ‘  = ሺ1+ 2πœ–αˆ»π‘Ÿπ» 𝐿∼ ΞΎπœ– 𝑙

qp’s are moving at speed of light

(stretched horizon at )

Page 43: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Granular structure on stretched horizon

43

String endpoint collides with a quasiparticle once in time

Cf. Mean-free-path time read off Rs-correlator:

Scattering probability for string endpoint:

Δ𝑑 ∼ ℓ𝑃𝑇𝐿

𝑑mfp ∼ 1𝑇

𝜎= π›₯𝑑𝑑mfp ∼ ℓ𝑃𝐿 ∼࡜1 (𝐿∼ β„“P)𝑔s# (𝐿∼ β„“s)

Page 44: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

44

Conclusions

Page 45: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

45

Conclusions

Boundary BM ↔ bulk β€œBrownian string”

Can study QG in principle

Semiclassically, can reproduce Langevin dyn. from bulk

random force ↔ Hawking rad. (β€œkick” by horizon)

friction ↔ absorption

Time scales in strong coupling QGP: trelax, tcoll, tmfp FD theorem

Page 46: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

46

Conclusions

BM on stretched horizon

Analogue of Avogadro # NA= 6x1023 < ∞?

Boundary:

Bulk:

energy of a Hawking quantum is tiny as compared to BH mass, but finite

𝐸/π‘‡βˆΌ π’ͺαˆΊπ‘2ሻ< ∞ 𝑀/π‘‡βˆΌ π’ͺαˆΊπΊπ‘βˆ’1ሻ< ∞

Page 47: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

47

Thanks!