BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji...

40
Keith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS AND APPLICATIONS OF FLUORESCENCE, GENOA, ITALY SEPTEMBER 10, 2013 System Division BRIDGING THE GAP Impact and Correction of Camera Noise for Computational Microscopy including Precision Localization Nanoscopy

Transcript of BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji...

Page 1: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Keith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi

ADAPTED FROM PRESENTATION GIVEN AT METHODS AND APPLICATIONS OF FLUORESCENCE,GENOA, ITALY

SEPTEMBER 10, 2013

System Division

BRIDGINGTHEGAP

Impact and Correction of Camera Noise for Computational Microscopy including Precision Localization Nanoscopy

Page 2: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Cameras are NOT perfect!

Page 3: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Why is a camera manufacturer 

proclaimingthat 

cameras are not perfect?

Page 4: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Because NO camera is perfect&

Because understanding why matters to your science

Page 5: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

WHAT IS THE GAP?

The GAP {Perfect Camera

Actual Camera

The difference between the performance of an actual camera and a theoretically perfect camera

Page 6: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

THE AMOUNT OF THE GAP DEPENDS ON:

{{ {

{

1. Sensor technology

CCDEMCCDsCMOS

2. Camera specifications

3. Input photon level

Quantum EfficiencyCamera Noise

Read noiseExcess NoisePhoto‐response non‐uniformity (PRNU)

Ultra low lightLow Light

IntermediateHigh

Page 7: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

UNDERSTANDINGWHY THERE IS A GAP ENABLES:

• Appropriate camera selection

• Optimized camera usage

• Optimized experimental design 

• More reliable data analysis

BetterResults

Page 8: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

THE REAL CAMERAS

CCD

• Well established technology• All electron to digital conversion done in one chain

• Limited speed• Moderate read noise• Very low dark current• High QE• Best pixel response uniformity

Page 9: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

THE REAL CAMERASEMCCD

• Back‐thinned for increased QE• High voltage gain register on sensor to achieve on‐chip amplification

• All electron to digital conversion through one chain(either for EM or no EM)

• Read noise is low due to gain• Stochastic EM amplification adds excess noise and long tail

Page 10: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

THE REAL CAMERASCMOS

• Newest technology• Every pixel and column has own amplifier

• Very low mean rms read noise• Pixel dependent read noise • Fastest speeds and largest field of view

• FPGA processing achieves excellent response uniformity (low PRNU)

Page 11: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

SEEING THEPREDICTED

GAP

Single Pixel Noise & SNR

Fixed Pattern Noise &Image SNR

(from specs)

Page 12: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

THE PERFECT CAMERA

Every photon is converted into one electron

0

1

10

100

0.1 1 10 100 1000 10000 100000

Sign

al to

Noi

se R

atio

(SN

R)

Signal (Photons)

Perfect Camera Signal to Noise Ratio

In a perfect camera, the SNR of a single pixel is limited only by the physics of photon statistics… i.e. shot noise.

100% QE 

0 e‐read noise

0% fixed pattern noise

Every electron is digitized exactly as expected every time

Every pixel and amplifier perform identically and predictably

{{{

Page 13: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

EFFECT OF QE ON THE GAP

0

1

10

100

0.1 1 10 100 1000 10000Sign

al to

Noi

se R

atio

Signal (Photons)

Signal to Noise Ratio (SNR)

Perfect

QE 70%

QE 50%

A reduction in QE reduces SNR at all light levels

Page 14: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

RELATIVE SNR (rSNR) PLOTS CLEARLY SHOW THE GAP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

Rel

ativ

e SN

R (r

SNR

)

Signal (Photons)

Perfect

QE 70%

QE 50% rSNR shows differences among cameras over full range of signal level

All SNR graphs in this talk will be presented as rSNR{ }

rSNR is the SNR for a camera plotted relative to the perfect camera

Page 15: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

THE SIMPLE SIGNAL TO NOISE RATIO (SNR)

QE: Quantum EfficiencyS:    Input Signal Photon Number (photon/pixel)F:    Noise Factor (= 1 for CCD/sCMOS and √2 for EM‐CCD)Nr:  Readout NoiseM:  EM Gain (=1 for CCD / CMOS)Ib:   Background

“Changing the Game”

Page 16: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

QE: Quantum Efficiency, P: Input Signal Photon Number, M: EM Gain Fn: Noise Factor (assumes dark current and read noise are negligible)

PQE

PQEPQESNR

PQE

FPQE

PQEMFPQEMSNR

eff

n

2n

22

QEFQEQE

neff

EMCCDS: EXCESS NOISE IS THE REASON FOR THE GAP

SNR for CCD / CMOS SNR  for EM‐CCD

Page 17: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

THE REAL CAMERAS

CCD EMCCD CMOS

Sensor Type Charged Coupled DeviceInterline 

Electron Multiplying CCDBack‐thinned 

Complimentary Metal Oxide Sensor

Camera Name ORCA‐R2  ImagEM x2 ORCA Flash4.0  V2

Pixel Number 1024 x 1344 512 x 512 2048 x 2048

Pixel Size 6.45 µm x 6.45 µm 16 µm x 16 µm 6.5 µm x 6.5 µm

QE ( @650 nm) 58 % 90 % 72 % 

Frame Rate 18 fps / 8 fps 70 fps 100 fps / 30 fps

Relative read noise (Nr/M), single‐frame rms 10 e‐ / 6 e‐ < 0.2 e‐ (M = 200) 1.9 e‐ / 1.3 e‐Noise Factor (Fn) 1 √2@ M>10 1

Page 18: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

Rel

ativ

e SN

R (r

SNR

)

Signal (Photon, no background)

Perfect sCMOS Flash4.0 (100 fps)ORCA-R2 (CCD)ImagEM X2 (EMCCD)sCMOS Flash4.0 (30 fps)ImagEM X2 (BT CCD mode)

MIND THE GAP:  PREDICTED PIXEL rSNR PERFORMANCE FOR THE MOSTCOMMON CAMERAS

= 650 nm

A camera with the highest SNR at the lowest light level may not be the best at higher light levels

1.

The SNR of an EMCCD above 1 electron/pixel is comparable to a camera with QEeff =QE/2 due to excess noise from EM gain.

1.{ 2. {

2.

Page 19: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

BEYOND THE SWEET SPOT: THE GAP EXPANDS AT HIGH LIGHT IF PRNU IS NOT CORRECTED

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1 10 100 1000 10000

Rel

ativ

e SN

R

Signal (photons)

Single Frame rSNR

Model:• QE: 70%• Noise Factor (Fn): 1• Read Noise 3

photons rms• PRNU (s): 1%

• PRNU reduces SNR at high light

• Cannot be subtracted from image

• “Raw” PRNU varies by sensor

• Can be corrected in camera to varying degrees

ImageSNR{

All SNR curves will be rSNR @ =650 nm

Page 20: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

MEASURINGTHE

REAL GAPAn in‐depth look at noise in CCD, EMCCD and CMOS cameras

Page 21: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

1

10

100

1000

10000

‐78 ‐60 ‐43 ‐25 ‐8 10 27 45 62 80

Coun

t

Dark reading (ph)

ORCA‐R2 INTERLINE CCD:  PREDICTABLE AND ROBUST

 ‐ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91.0

 10  100  1,000  10,000signal (photon)

Mean intensity: 17,300 e-: 130.5e-

PRNU: not measurable

PRNU is insignificant{1. Bright Image: shot noise limited

Read Noise(Nr/QE)

Shot Noise & QE

{2.Read noise histogram has single Gaussian distribution 

=650 nm

58% QE Limit

Page 22: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

EMCCD:  SOME SURPRISING RESULTS

Thickness variations from back-thinning process causes spectrally-dependent PRNU

• Cannot be removed during manufacturing

• Must be calibrated by users for their specific spectrum.

• Individual pixel map required for correction

550 nm 850 nm

Mean: 30157s: 369.5 (1.2%)

Mean: 30508s: 432 (1.4%)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10 100 1000 10000 100000

rSNR

Photons

Calculated Single Frame rSNR

eQE: 95% (gain off)Nr/eQE = 8.4 photonsPRNU: 1.4%

The Gap for EMCCD in CCD mode becomes very wide due to PRNU

{1.

{2.

Page 23: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

COMPLEX BEHAVIOR:  A CLOSER LOOK AT EMCCD SNR WITH HIGHAND LOW GAIN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000 10000

Relativ

e SN

R

Input photon number (photon)

Series1Series2Gain = 5

Gain = 400

Complex Behavior

- Excess noise (eQE)- PRNU- Saturation- High read noise

(34 e- @ M=5, 70 fps)- Gain hard to measure

Satu

ratio

n

90% QE Limit

Excess Noise

Page 24: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

EMCCD GAIN CAUSES UNEVEN PROBABILITY DISTRIBUTIONS

In simulated probability distribution functions for EMCCD, the output at high gain is not Poisson due to the electron multiplication process!

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

‐5 0 5 10

Prob

ability [a

.u.]

Photon equivalent

0

0.00005

0.0001

0.00015

0.0002

0.00025

0 5 10 15 20 25 30

Prob

ability [a

.u.]

Photon equivalent

Long tailLong tail

2 Photon Average InputGain = 200

10 Photon Average InputGain = 200

Page 25: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

ORCA‐FLASH4.0 V2 (SCMOS):  A VERY COMFORTABLE SWEET SPOT

0.00.10.20.30.40.50.60.70.80.91.0

1 10 100 1,000 10,000

rSNR

Signal (Photons @650 nm)

Shot Noise & QE

The “Sweet Spot”

70% QE Limit

Page 26: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

NOT ALL CAMERAS ARE CREATED EQUAL:  FLASH4.0 SWEET SPOT BROUGHT TOYOU BY HAMAMATSU CAMERA ENGINEERS

Signal amplified and digitized in column‐parallel ADC.FPGA provides offset and gain correction to the  raw digitized signal.

PRNU: ~2%

{ Raw Data Bright Image

{Corrected Data Bright Image

PRNU: ~0.5%

Page 27: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Rms read noise matches single frame rSNR.

Does not fit a Gaussian distribution, i.e. is not completely modeled by a single “read noise.”

SCMOS:  PIXEL‐DEPENDENT READ NOISE

10

100

1,000

10,000

100,000

1,000,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Num

ber o

f pixels 

Temporal read noise (e‐, rms)

(30 s/ row)

0.85  e‐Median

1.51 e‐ rms

Single Frame Read Noise (measured)

1

10

100

1000

10000

‐19.7

‐17.8

‐15.8

‐13.9

‐11.9

‐10.0

‐8.0

‐6.1

‐4.1

‐2.2

‐0.2 1.7

3.7

5.6

7.6

9.5

11.5

13.4

15.4

17.3

19.3

Num

ber o

f pixels

photon equivalent @ 650 nm

Single Frame Dark Histogram

Page 28: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

BRIDGINGTHE GAP

Using knowledge of camera noise to get highest camera performance provides improved Precision Localization Results

Page 29: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

WHAT ISMOST

IMPORTANT?accuracy

resolution

frame ratesample contrast

background

Page 30: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

TWO PHASES OF PRECISION LOCALIZATION MICROSCOPY

1. Collect Image Data

Prepare Sample Minimize BackgroundOptimize Optical SystemConsider Camera Induced Noise

2. Reconstruct Superresolution Image

Calibrate Camera Implement Noise CorrectionsApply Statistical Algorithms

Page 31: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Adapted from: J. Chao et al (Ober Lab), Nat.  Meth10, 2013) doi:10.1038/nmeth.2396

STANDARD PRACTICE IS NOT THE BEST PRACTICE:  USING EMCCD WITH GAINYIELDS LEAST ACCURATE RESULTS

http://www.wardoberlab.com/

CCD QE: 100%, read noise = 1.8 ph, no background;  No fixed pattern noise.

Page 32: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

COMPENSATING READ NOISE VARIATION

Courtesy Prof. Joerg Bewersdorf, Yale University

Incorporating pixel‐specific read noise into the Maximum Likelihood Probability Model eliminates  and narrows the asymmetric  distribution of localized molecules caused by higher read noise pixels.Courtesy F. Huang, Bewersdorf Lab

Page 33: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

SELECTING AND USING CAMERAS: CASE STUDIES

{{

{

Page 34: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

{ResultsAccurate measurement of the distance between two fluorophores of different colors.  distance ~0.77 nm using a dichroic beamsplitter to direct each color of light to separate halves of the CCD camera.

{DetailsSpeed: 5 – 50 s / measurementLight: ~4,000 – 10,000 ph/ mol/frame

~105 ph / mol before bleaching

Imaging: Simultaneous 2 colorCamera:  Back‐thinned EM‐CCD, gain off

Nature (2010)| doi:10.1038/nature09163

{CameraCorrection

Measured PRNU maps for each color.  Improved localization relative accuracy by ~2– 4 nm.

Page 35: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Localization Microscopy with Minimal Bleaching.  Plasma membrane dynamics for > 60 s (594 frames). 40% better localization precision than “conventional” EMCCD localization 

Courtesy of J. Chao et al (Ober Lab) Adapted from Nat  Meth (2013) doi:10.1038/nmeth.2396

Speed: ~60s / reconstructed imageLight: ~100 photons /molecule  frame

Mag: 630XCamera: EM‐CCD, Gain ~1000

1 m

Implemented detailed statistical EM noise model into maximum likelihood reconstruction probability model.

1 m{Results

{CameraCorrection

{Details

Cholera toxin B subunit             scale bar: 1 m

Page 36: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

{Results32 reconstructed frames / sec (6.6 x 6.6 m2) field of view; fixed and living cells showed cellular dynamics not visible in reconstructions using longer data collection times.

{Details Speed: 0.03 s/ reconstructed imageLight: ~3,000 photons /mol/ frame

Mag: 60X,  Camera:  sCMOS, 3200 fps

Courtesy of F. Huang,(Bewersdorf Lab)

{CameraCorrection

Implemented pixel‐specific read noise into probability model for MLEM.

Page 37: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Courtesy of F. Huang. Bewersdorf Lab, Yale   Adapted from F. Huang et al., Nature Methods 10(7): 653‐658 (2013) 

Localization Precision “conventional” EMCCD vs. sCMOS

Page 38: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

MINIMIZING THE GAP: MATCHING THE CAMERA TO YOURNEEDS

Speed / Field of View

Light R

equired

Faster (or more pixels)

Higher AccuracyBetter ResolutionLower Sample Contrast

EMCCD (Gain ON)UAIM

(BT)‐CCD

EMCCD (Gain‐On)

“Conventional” Localization

Scientific CMOS“Conventional” Localization

Page 39: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

HAVE YOU DONE A GAP ANALYSIS?

{

{

{

1. How much light do I have?

The relative performance of CCD, back‐thinned CCD, EMCCD and sCMOS cameras is light‐level dependent.

2. Do I know my camera’s strengths and weaknesses?

3. What is the goal of my experiment?

No camera is perfect; proper use is required for the best results and to avoid errors

The most appropriate choice of camera depends upon the specific super resolution / localization experiment

Page 40: BRIDGING Correction THE Camera GAP includingKeith Bennett, Ph.D., Stephanie Fullerton, Ph.D., Eiji Toda, Hiroyuki Kawai, Teruo Takahashi ADAPTED FROM PRESENTATION GIVEN AT METHODS

Acknowledgements

Prof. Zhen‐li Huang, Huanzhong University of Science and TechnologyF.  Long et al, OPTICS EXPRESS 17741 (2012) 

Prof. Joerg Bewersdorf, Yale UniversityF. Huang et al., Nature Methods 10(7): 653‐658 (2013) 

Prof. Raimund Ober, Texas Southwestern UniversityJ. Chao et al, Nat  Meth (2013) doi:10.1038/nmeth.2396

HamamatsuHiroyuki Kawai: camera measurementsTeruo Takahashi: simulationsStephanie Fullerton: presentation preparation

Keith [email protected]

See a movie of 32 fps dynamics in the supplementary materials  of the article by Huang et al.