Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

download Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

of 218

Transcript of Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    1/218

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    2/218

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    3/218

    DOE/SC-0095

    BreakingtheBiologicalBarrierstoCellulosicEthanol: AJointResearchAgenda

    AResearchRoadmapResultingfromthe

    BiomasstoBiofuelsWorkshop December79,2005 Rockville,Maryland

    WorkshopSponsoredbythe

    U.S.DepartmentofEnergy

    OfficeofEnergyEfficiency OfficeofScienceandRenewableEnergy OfficeofBiologicalandEnvironmentalResearchOfficeoftheBiomassProgram Genomics:GTLProgram

    PublicationDate:June2006

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    4/218

    ii BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    5/218

    ExecutiveSummaryWell also fund additional research in cuttingedge methods of producingethanol, not just from corn, but from wood chips and stalks or switchgrass.

    PresidentGeorgeW.Bush,StateoftheUnionAddress,January2006*

    Arobustfusionoftheagricultural,industrialbiotechnology,andenergyindustriescancreateanewstrategicnationalcapabilityforenergyindependenceandclimateprotection.InhisStateofthe

    UnionAddress(*Bush2006),PresidentGeorgeW.BushoutlinedtheAdvancedEnergyInitiative,whichseekstoreduceournationaldependenceonimportedoilbyacceleratingthedevelopmentofdomestic,renewablealternativestogasolineanddieselfuels.Tepresidenthassetanationalgoalofdevelopingcleaner,cheaper,andmorereliablealternative

    energysourcestosubstantiallyreplaceoilimportsinthecomingyears.Fuelsderivedfromcellulosicbiomassthefibrous,woody,andgenerallyinedibleportionsofplantmatterofferonesuchalternativetoconventionalenergysourcesthatcandramaticallyimpactnationaleconomicgrowth,nationalenergysecurity,andenvironmentalgoals.Cellulosicbiomassisanattractiveenergyfeedstockbecauseitisanabundant,domestic,renewablesourcethatcanbeconvertedtoliquidtransportationfuels.

    Tesefuelscanbeusedreadilybycurrent-generationvehiclesanddistributedthroughtheexistingtransportation-fuelinfrastructure.

    TeBiomasstoBiofuelsWorkshop,heldDecember79,2005,wasconvenedbytheDepartmentofEnergysOfficeofBiologicalandEnvironmentalResearchintheOfficeofScience;andtheOfficeoftheBiomassProgramintheOfficeofEnergyEfficiencyandRenewableEnergy.

    Tepurposewastodefinebarriersandchallengestoarapidexpansionofcellulosic-ethanolproductionanddeterminewaystospeedsolutionsthroughconcertedapplicationofmodernbiologytoolsaspartofajointresearchagenda.Althoughthefocuswasethanol,thescienceappliestoadditionalfuelsthatincludebiodieselandotherbioproductsorcoproductshavingcriticalrolesinanydeploymentscheme.

    Tecorebarrieriscellulosic-biomassrecalcitrancetoprocessingtoethanol.Biomassiscomposedofnaturesmostreadyenergysource,sugars,buttheyarelockedinacomplexpolymercompositeexquisitelycreatedtoresistbiologicalandchemicaldegradation.Keytoenergizinganewbiofuel

    industrybasedonconversionofcellulose(andhemicelluloses)toethanolistounderstandplantcell-wallchemicalandphysicalstructureshowtheyaresynthesizedandcanbedeconstructed.Withthisknowledge,innovativeenergycropsplantsspecificallydesignedforindustrialprocessingtobiofuelcanbedevelopedconcurrentlywithnewbiology-basedtreatmentandconversionmethods.Recentadvancesinscienceandtechnologicalcapabilities,especiallythosefromthenascentdisciplineofsystemsbiology,promisetoaccelerateandenhancethisdevelopment.Resultingtechnologies

    *www.whitehouse.gov/stateoftheunion/2006/

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

    http://www.whitehouse.gov/stateoftheunion/2006http://www.whitehouse.gov/stateoftheunion/2006
  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    6/218

    Executive Summary

    willcreateafundamentallynewprocessandbiorefineryparadigmthatwillenableanefficientandeconomicindustryforconvertingplantbiomasstoliquidfuels.Tesekeybarriersandsuggestedresearchstrategiestoaddressthemaredescribedinthisreport.

    Astechnologiesmatureforaccomplishingthistask,thetechnicalstrategy

    proceedsthroughthreephases:Intheresearchphase,within5years,anunderstandingofexistingfeedstocksmustbegainedtodevisesustainable,effective,andeconomicalmethodsfortheirharvest,deconstruction,andconversiontoethanol.Researchiscenteredonenzymaticbreakdownofcellulosicbiomasstocomponent5-and6-carbonsugarsandlignin,usingacombinationofthermochemicalandbiologicalprocesses,followedbycofermentationofsugarstospecifiedendproductssuchasethanol.Processeswillbeintegratedandconsolidatedtoreducecosts,improveefficacy,reducegenerationofandsensitivitytoinhibitors,andimproveoverall

    yieldsandviabilityinbiorefineryenvironments.

    Tetechnologydeploymentphase,within10years,willincludecreationof

    anewgenerationofenergycropswithenhancedsustainability,yield,andcomposition,coupledwithprocessesforsimultaneousbreakdownofbiomasstosugarsandcofermentationofsugarsvianewbiologicalsystems.

    Teseprocesseswillhaveenhancedsubstraterange,temperatureandinhibitortolerance,andthecapabilitytofunctionincomplexbiorefiningenvironmentsandovertimescalesthatareeconomicallyviable.

    Tesystems-integrationphase,within15years,willincorporateconcurrentlyengineeredenergycropsandbiorefineriestailoredforspecificagroecosystems.Employingnewandimprovedenzymesforbreakingbiomassdowntosugarsaswellasrobustfermentationprocessesjointlyconsolidatedintoplantsormicrobes,thesehighlyintegratedsystemswill

    accelerateandsimplifytheend-to-endproductionoffuelethanol.Inmanyways,thesefinal-phasetechnologieswillstrivetoapproachtheoreticalconversionlimits.Tenewgenerationofbiotechnologieswillspurengineeringofflexiblebiorefineriesoperableindifferentagriculturalregionsofthecountryandtheworld.

    Tesuccessofthisprogramforeffectivelyconvertingcellulosicbiomasstoethanolwillbebasedoncouplingsophisticatedengineeringwithfundamentalbiologicalresearch.Tenewgenerationofbiologicalresearchsystemsbiologyisbuiltonthenationalinvestmentingenomics.Systemsbiologyinvolvesnewtechnologiesforincreasinglydetailedhigh-throughputanalysesandcomputingtomaketransparentthecomplexitiesofbiologyandallowpredictiveunderstandingandrationaldesign.Multidisciplinaryteamresearchapproacheswillacceleratescientificprogressanditstranslationtonewbiorefineryprocesses.Comprehensivesuitesoftechnologies,someinresearcherslaboratoriesandsomeconsolidatedinfacilities,willenhancetechnicalperformance,improveproductivity,andreducecoststoallowaffordableandtimelyprogresstowardthesegoals.Newresearchcapabilitiesandfacilitieswillserveasanengineforfundamentalresearch,technologydevelopment,andcommercialization.

    iv BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    7/218

    Contents

    Executive Summary..............................................................................................................................................................................iii

    Introduction.............................................................................................................................................................................................1

    Joint Workshop Challenges Biofuel Science and Technology Communities.........................................................................................1

    Americas Energy Challenges...................................................................................................................................................................2

    ThePromiseofBiofuels.........................................................................................................................................................................2

    A Growing Mandate for Biofuels: Policy, Legislative, and Other Drivers..............................................................................................3

    Benefits of Biofuels..................................................................................................................................................................................5

    NationalEnergySecurityBenefits.........................................................................................................................................................6

    EconomicBenefits.................................................................................................................................................................................6

    EnvironmentalBenefits.........................................................................................................................................................................7

    Feasibility of Biofuels...............................................................................................................................................................................8

    LandAvailability....................................................................................................................................................................................8

    AgriculturalSustainabilityofBiomassProduction...............................................................................................................................12TodayFuelEthanolProductionfromCornGrain(StarchEthanol).....................................................................................................12

    TomorrowBiorefineryConcepttoProduceFuelEthanolfromCellulosicBiomass.............................................................................13

    Ethical,Legal,andSocialIssues(ELSI).................................................................................................................................................17

    EERE OBP Platform for Integrated Biorefineries..................................................................................................................................17

    DOE Office of Science Programs.............................................................................................................................................................19

    Biomass to Biofuels Workshop: Creating a Common Research Agenda to Overcome Technology Barriers.....................................22

    Cited References.....................................................................................................................................................................................24

    Background Reading..............................................................................................................................................................................28

    Technical Strategy: Development of a Viable Cellulosic Biomass to Biofuel Industry...................................................29Research Phase (within 5 years)............................................................................................................................................................29

    FeedstockUseandOptimization..........................................................................................................................................................29

    Deconstruction....................................................................................................................................................................................30

    FermentationandRecovery.................................................................................................................................................................31

    Technology Deployment Phase (within 10 years)................................................................................................................................32

    Feedstocks...........................................................................................................................................................................................34

    Deconstruction....................................................................................................................................................................................34

    FermentationandRecovery.................................................................................................................................................................34

    Systems Integration Phase (within 15 years).......................................................................................................................................34

    IntegrationandConsolidation.............................................................................................................................................................35

    SYSTEMS BIOLOGY TO OVERCOME BARRIERS TO CELLULOSIC ETHANOL................................................................................37

    Lignocellulosic Biomass Characteristics.......................................................................................................................................39

    Structure and Assembly of Cell Walls....................................................................................................................................................41

    Factors in Recalcitrance of Lignocellulose Processing to Sugars.........................................................................................................44

    PlantArchitecture...............................................................................................................................................................................45

    Cell-WallArchitecture..........................................................................................................................................................................45

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    8/218

    CONTENTS

    MolecularStructure.............................................................................................................................................................................45

    Optimization of Plant Cell Walls............................................................................................................................................................47

    UnderstandingCell-WallStructureandFunction.................................................................................................................................47

    ControlofLigninSynthesisandStructure............................................................................................................................................49

    Improved Methods, Tools, and Technologies........................................................................................................................................50Technical Milestones..............................................................................................................................................................................51

    Cited References.....................................................................................................................................................................................56

    Feedstocksfor Biofuels.......................................................................................................................................................................57

    Creation of a New Generation of Lignocellulosic Energy Crops...........................................................................................................60

    MaximizingBiomassProductivity.......................................................................................................................................................61

    TechnicalMilestones...........................................................................................................................................................................67

    Ensuring Sustainability and Environmental Quality............................................................................................................................68

    TechnicalMilestones...........................................................................................................................................................................70

    Model Systems for Energy Crops............................................................................................................................................................71

    TechnicalMilestones...........................................................................................................................................................................73

    The Role of GTL Capabilities for Systems Biology .................................................................................................................................74

    ProteinProductionCapabilities...........................................................................................................................................................74

    MolecularMachinesCapabilities.........................................................................................................................................................75

    ProteomicCapabilities.........................................................................................................................................................................75

    CellularSystemCapabilities.................................................................................................................................................................75

    DOEJointGenomeInstitute.................................................................................................................................................................76

    OtherNeededCapabilities...................................................................................................................................................................76

    Other Biofuel Opportunities: Development of High-Productivity Biodiesel Crops............................................................................77

    Cited References.....................................................................................................................................................................................80

    For Further Reading...............................................................................................................................................................................81

    Deconstructing Feedstocks to Sugars............................................................................................................................................85

    Determining Fundamental Physical and Chemical Factors in the Recalcitrance of Lignocellulosic Biomass to Processing ...........86

    ResearchGoals....................................................................................................................................................................................88

    TechnicalMilestones...........................................................................................................................................................................89

    TheRoleofGTLandOBPFacilitiesandCapabilities.............................................................................................................................90

    CrosscuttingTools,Technologies,andScience......................................................................................................................................91

    Developing Better Enzymatic Systems for Biological Pretreatment: Ligninases and Hemicellulases.............................................91

    ResearchGoals....................................................................................................................................................................................92

    TechnicalMilestones...........................................................................................................................................................................94

    CrosscuttingTools,Technologies,andScience......................................................................................................................................97

    Understanding the Molecular Machinery Underpinning Cellulose Saccharification: Cellulases and Cellulosomes .......................97

    ResearchGoals....................................................................................................................................................................................98

    TechnicalMilestones.........................................................................................................................................................................101

    CrosscuttingTools,Technologies,andScience....................................................................................................................................103

    TheRoleofGTLandOBPFacilitiesandCapabilities...........................................................................................................................104

    Harvesting the Biochemical Potential of Microorganisms Through Metagenomics .......................................................................105

    ResearchGoals..................................................................................................................................................................................106

    vi BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    9/218

    TechnicalMilestones.........................................................................................................................................................................106

    TheRoleofGTLandOBPFacilitiesandCapabilities...........................................................................................................................107

    Characterizing Cell Walls Using High-Throughput Methods..............................................................................................................108

    TechnicalMilestones.........................................................................................................................................................................110

    TheRoleofGTLandOBPFacilitiesandCapabilities...........................................................................................................................111

    CrosscuttingTools,Technologies,andScience....................................................................................................................................112

    Breakthrough, High-Payoff Opportunity: Simplifying the Bioconversion Process by Understanding Cell-WallDeconstruction Enzymes Expressed in Plants....................................................................................................................................113

    ScientificChallengesandOpportunities............................................................................................................................................113

    ResearchGoals..................................................................................................................................................................................113

    References............................................................................................................................................................................................115

    Cellulosome References.......................................................................................................................................................................117

    CellulosomeReviews.........................................................................................................................................................................117

    DesignerCellulosomes......................................................................................................................................................................117

    Sugar Fermentation to Ethanol.....................................................................................................................................................119Optimizing Microbial Strains for Ethanol Production: Pushing the Limits of Biology.....................................................................122

    ScienceChallengesandStrategy.......................................................................................................................................................124

    TechnicalMilestones.........................................................................................................................................................................130

    TheRoleofGTLCapabilities...............................................................................................................................................................131

    Advanced Microorganisms for Process Simplification.......................................................................................................................132

    ScienceChallengesandStrategiesforProcessSimplification............................................................................................................135

    TechnicalMilestones.........................................................................................................................................................................137

    TheRoleofGTLCapabilities...............................................................................................................................................................138

    Enabling Microbiological Tools and Technologies that Must be Developed.....................................................................................138

    Breakthrough, High-Payoff Opportunities.........................................................................................................................................140MicrobialCommunitiesforRobustEnergyProduction.......................................................................................................................140

    Model-DrivenDesignofCellularBiocatalyticSystemsUsingSystemsBiology...................................................................................142

    DirectBioproductionofEnergy-RichFuels.........................................................................................................................................147

    OptimalStrains:FermentativeProductionof40%EthanolfromBiomassSugars..............................................................................149

    AnAlternativeRouteforBiomasstoEthanol:MicrobialConversionofSyngas...................................................................................152

    Cited References...................................................................................................................................................................................154

    Crosscutting 21st Century Science, Technology, and Infrastructure for a New Generationof Biofuel Research............................................................................................................................................................................155

    Opportunities and Challenges ............................................................................................................................................................155

    Analytical Tools to Meet the Challenges of Biofuel Research............................................................................................................156Genomics..........................................................................................................................................................................................156

    Transcriptomics:High-ThroughputExpressionAnalyses....................................................................................................................158

    Proteomics........................................................................................................................................................................................158

    Metabolomics...................................................................................................................................................................................159

    GlycomicsandLignomics..................................................................................................................................................................160

    Fluxomics..........................................................................................................................................................................................161

    EnzymeStructureandFunction.........................................................................................................................................................162

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    10/218

    CONTENTS

    Imaging Technologies..........................................................................................................................................................................163

    ImagingNeedsforFeedstockResearch..............................................................................................................................................163

    ImagingNeedsforMicrobialCommunitiesinDeconstructionandConversionofBiomasstoEthanol...............................................164

    Microbial Cultivation............................................................................................................................................................................165

    Data Infrastructure...............................................................................................................................................................................166Computational Modeling.....................................................................................................................................................................168

    Modeling:GenomeSequenceAnalysis..............................................................................................................................................168

    Modeling:Molecular.........................................................................................................................................................................170

    Modeling:PathwaysandNetworks...................................................................................................................................................171

    Modeling:BiorefineryProcess...........................................................................................................................................................171

    Capability Suites for Bioenergy Research and Facility Infrastructure..............................................................................................172

    DOEJointGenomeInstitute...............................................................................................................................................................173

    ProductionandCharacterizationofProteinsandMolecularTags......................................................................................................173

    CharacterizationandImagingofMolecularMachines......................................................................................................................175

    AnalysisofGenomeExpression:TheOmics.......................................................................................................................................176

    AnalysisandModelingofCellularSystems.......................................................................................................................................178

    Cited References...................................................................................................................................................................................180

    Bioprocess Systems Engineering and Economic Analysis.....................................................................................................181

    Research Goals......................................................................................................................................................................................181

    Milestones.........................................................................................................................................................................................182

    TheRoleofGTLandOBPFacilitiesandCapabilities...........................................................................................................................183

    APPENDICES.........................................................................................................................................................................................185

    Appendix A. Provisions for Biofuels and Biobased Products in the Energy Policy Act of 2005..................................186

    Appendix B. Workshop Participants.............................................................................................................................................188

    Appendix C. Workshop Participant Biosketches......................................................................................................................192

    viii BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    11/218

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    12/218

    INTRODUCTION

    Tecurrentapproachtointroducingbiofuelsreliesonanevolutionarybusinessandeconomicdriverforasteadybutmoderateentryintothemarket.echnologiesforimplementingthisnewindustryarebeingtestedeitherbyproducinghigher-valueproductsfromrenewables(suchaslacticacid)orasincrementaladditionstocurrentcorn-ethanolrefineries(suchastheconversionofresidualcorn-kernelfiberstoethanol).

    Tisreportisaworkshop-producedroadmapforacceleratingcellulosicethanolresearch,helpingmakebiofuelspracticalandcost-competitiveby2012($1.07/galethanol)andofferingthepotentialtodisplaceupto30%ofthenationscurrentgasolineuseby2030.ItarguesthatrapidlyincorporatingnewsystemsbiologyapproachesviasignificantR&Dinvestmentwillspuruseofthesetechnologiesforexpandedprocessingofenergycropsandresidues.Furthermore,thisstrategywilldecreaseindustrialriskfromuseofafirst-of-a-kindtechnology,allowingfasterdeploymentwithimprovedmethods.Ultimately,theseapproachesfostersettingmoreaggressivegoalsforbiofuelsandenhancethestrategyssustainability.

    AmericasEnergyChallengesTetripleenergy-relatedchallengesofthe21stCenturyareeconomicandenergygrowth,energysecurity,andclimateprotection.TeUnitedStatesimportsabout60%ofthepetroleumitconsumes,andthatdependencyisincreasing.*SincetheU.S.economyistiedsocloselytopetroleumproductsandoilimports,disruptionsinoilsuppliescanresultinsevereeconomicandsocialimpacts.Conventionaloilproductionwillpeakinthenearfuture,andtheresultingenergytransitionwillrequireaportfolioofresponses,includingunconventionalfossilresourcesandbiofuels.Environmentalqualityandclimatechangeduetoenergyemissionsareadditionalconcerns.AnnualU.S.transportationemissionsofthegreenhousegas(GHG)carbondioxide

    (CO2)areprojectedtoincreasefromabout1.9billionmetrictonsin2004toabout2.7billionmetrictonsin2030(EIA2006).

    ThePromiseofBiofuelsFuelsderivedfromcellulosicbiomass**thefibrous,woody,andgenerallyinedibleportionsofplantmatterofferanalternativetoconventionalenergysourcesthatsupportsnationaleconomicgrowth,nationalenergysecurity,andenvironmentalgoals.Cellulosicbiomassisanattractiveenergyfeedstockbecausesuppliesareabundantdomesticallyandglobally.Itisarenewablesourceofliquidtransportationfuelsthatcanbeusedreadilybycurrent-generationvehiclesanddistributedthroughtheexistingtranspor

    tation-fuelinfrastructure.Ethanolfromcorngrainisanincreasinglyimportantadditivefuelsource,butithaslimitedgrowthpotentialasaprimarytransportationfuel.***TeU.S.starch-basedethanolindustry

    willjumpstartagreatlyexpandedethanolindustrythatincludescellulosicethanolasamajortransportationfuel.

    Celluloseandhemicelluloses,foundinplantcellwalls,aretheprimarycomponentofbiomassandthemostplentifulformofbiologicalmaterialonearth.Teyarepolysaccharidesmadeupofenergy-richsugarsthatcanbeconvertedtoethanol(seesidebar,UnderstandingBiomass,p.53).Current

    2 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    13/218

    methodstobreakdownbiomassintosimplesugarsandconvertthemintoethanolareinefficientandconstitutethecorebarriertoproducingethanolatquantitiesandcostscompetitivewithgasoline.

    Biologicalresearchisundergoingamajortransformation.Tesystemsbiologyparadigmbornofthegenomerevolutionandbasedonhigh-

    throughputadvancedtechnologies,computationalmodeling,andscientific-teamapproachescanfacilitaterapidprogressandisareadilyapplicablemodelforbiofueltechnology.SystemsbiologyisthecoreoftheOBERGenomics:GLprogram,whosegoalistoachieveapredictiveunderstandingofthecomplexnetworkofinteractionsthatunderpinthebiologicalprocessesrelatedtobiofuelproduction.BiologicalchallengestowhichGLcanapplysystemsbiologyapproachesincludeenhancingtheproductivityofbiomasscropsoptimizedforindustrialprocessing,improvingenzymesystemsthatdeconstructplantcellwalls,andincreasingtheyieldofethanol-producingmicroorganisms.Systemsbiologytoolsandknowledgewillenablerationalengineeringofanewgenerationofbioenergysystemsmadeupofsustainableenergycropsforwidelyvaryingagroecosystemsandtai

    loredindustrialprocesses.Tisresearchapproachwillencouragethecriticalfusionoftheagriculture,industrialbiotechnology,andenergysectors.

    AGrowingMandateforBiofuels:Policy,Legislative,andOtherDrivers

    Aprimarygoalofthepresidents2001NationalEnergyPolicy(NEP)istoincreaseU.S.energysupplies,incorporatingamorediversemixofdomesticresourcestosupportgrowthindemandandtoreducenationaldependenceonimportedoil(NEPDG2001).AEIacceleratesandexpandsonseveralpolicyandlegislativemandates(AEI2006).Itaimsto

    reducethenationsrelianceonforeignoilintheneartermandprovidesa22%increaseinclean-energyresearchatDOEforFY2007,acceleratingprogressinrenewableenergy.

    AccordingtoAEI,theUnitedStatesmustmovebeyondapetroleum-basedeconomyanddevisenewwaystopowerautomobiles.Tecountryneedstofacilitatedomestic,renewablealternativestogasolineanddieselfuels.Teadministrationwillaccelerateresearchincutting-edgemethodsofproducingsuchhomegrownrenewablebiobasedtransportationfuelsasethanolfromagriculturalandforestryfeedstocksincludingwoodchips,

    *Gasolineanddieselconstituted98%ofdomestictransportationmotorfuelsin2004,withethanolfromcorngrainsupplyingmostoftheremaining2%.Annualgasoline

    consumptionin2004wasabout139billiongallons,and3.4billiongallonsofethanolwereusedprimarilyasafuelextendertoboostgasolineoctanelevelsandimprovevehicleemissions.

    **Cellulosicbiomass,alsocalledlignocellulosicbiomass,isacomplexcompositematerialconsistingprimarilyofcelluloseandhemicellulose(structuralcarbohydrates)bondedtolignininplantcellwalls.Forsimplification,weusethetermcellulosicbiomass.

    ***In2004,11%oftheU.S.cornharvestyielded3.4billiongallonsofethanol(NRDC2006),roughly1.7%ofthe2004fueldemand.TusifallcorngrainnowgrownintheUnitedStateswereconvertedtoethanol,itwouldsatisfyabout15%ofcurrenttransportationneeds.

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    14/218

    INTRODUCTION

    stalks,andswitchgrass.AEIwouldfostertheearlycommercializationofadvancedbiofueltechnologies,enablingU.S.industrytoleadindeployingbiofuelsandchemicalsinternationally.

    Achievingthegoalofdisplacing30%ofthenationscurrentgasolineuseby2030wouldrequireproductionlevelsequaltoroughly60billiongallonsa

    year(Bgal/year)ofethanol(seeable1.Comparisonsof2004GasolineandEthanolEquivalents,thispage).Anannualsupplyofroughlyabilliondrytonsofbiomasswillbeneededtosupportthislevelofethanolproduction.

    ArecentreportbytheU.S.DepartmentofAgriculture(USDA)andDOEfindspotentialtosustainablyharvestmorethan1.3billionmetrictonsofbiomassfromU.S.forestandagriculturallandsbymid-21stCentury(Perlacketal.2005).InvestmentsinR&Dandinfrastructureareneededtorealizethisfeedstockpotential.

    TeU.S.EnergyPolicyActof2005(EPAct;AppendixA,Provisionsfor

    BiofuelsandBiobasedProductsintheEnergyPolicyActof2005,p.186)hasestablishedaggressivenear-termtargetsforethanolproduction.Akeyprovisionrequiresmixing4Bgalofrenewablefuelwithgasolinein2006.

    Tisrequirementincreasesannuallyto7.5Bgalofrenewablefuelby2012.For2013andbeyond,therequiredvolumewillincludeaminimumof250milliongallons(Mgal)ofcellulosicethanol.AnothersectionoftheEPActauthorizesfundsforanincentiveprogramtoensuretheannualproductionof1Bgalofcellulosicbiomass-basedfuelsby2015.Ethanolisthemostcommonbiofuelproducedfromcellulose,butotherpossiblebiofuelcompoundscanbeproducedaswell.

    OtherimportantlegislativedriverssupportingbiofuelsaretheBiomassR&DActof2000anditleIXoftheFarmBill2002(U.S.Congress2000;U.S.

    Congress2002).TeBiomassR&DActdirectedthedepartmentsofEnergyandAgriculturetointegratetheirbiomassR&DandestablishedtheBiomassResearchandDevelopmentechnicalAdvisoryCommittee(BAC),which

    advisestheSecretaryofEnergyandtheSecretaryofAgricultureonstra-Table1.Comparisonsof2004GasolineandEthanolEquivalents

    2004Gasoline

    (billion gallons)

    Ethanol Equivalents

    (billion gallons)

    U.S.consumption,2004 139 200

    About60%fromimports 83 120

    Requirements to displace 30% of 2004 U.S.consumption

    42 60

    Biomassrequirementsat80gal/ton 750Mton

    Landrequirementsat10ton/acreand80gal/ton

    75Macre

    Numbersofrefineriesat100Mgal/refinery

    600(eachrequiring160miles2netor125,000acres)

    tegicplanningforbiomassR&D.Asaprecedenttothecurrentpresidentialinitiative,in2002BACsetagoalrequiringbiofuelstomeet20%ofU.S.transportationfuelconsumptionby2030aspartofitsvisionforbiomass

    technologies(BAC2002).itleIXsupportsincreaseduseofbiobasedfuelsandproductsandincentivesandgrantsforbiofuelandbiorefineryR&D.

    Inadditiontolegislativemandates,severalindependentstudieshaveacknowledgedthegreatpotentialofbiofuelsinachievingamorediversedomesticenergysupply(NCEP2004;Greeneetal.2004;Lovinsetal.2005).Growing

    4 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    15/218

    supportfordevelopingbiomassasakeyenergyfeedstockiscomingfromavarietyofnationalandinternationalorganizations(GEC2005;AgEnergyWorkingGroup2004;IEA2004).Althoughthesereportsdifferintheamountsofgasolinethatcouldbereplacedbyethanolfrombiomass,theyallagreeonthreekeyissues:(1)Currenttrendsinenergyusearenotsustainableandareasecurityrisk;(2)Nosinglesolutionwillsecuretheenergyfutureadiverseportfolioofenergyoptionswillberequired;and(3)Biofuelscanbeasignificantpartofthetransportationsectorsenergysolution.

    Initsevaluationofoptionsfordomesticproductionofmotorfuels,theNationalCommissiononEnergyPolicy(NCEP)recommendedcellulosicbiomassasanimportanttopicfornear-termfederalresearch,development,anddemonstrationandfoundthatcellulosicethanolhasthepotentialtomakeameaningfulcontributiontothenationstransportationfuelsupplyinthenexttwotothreedecades(NCEP2004).

    TeNaturalResourcesDefenseCouncil(NRDC)hasprojectedthatanaggressiveplantodevelopcellulosicbiofuelsintheUnitedStatescouldproducetheequivalentofnearly7.9millionbarrelsofoilperdayby2050morethan50percentofourcurrenttotaloiluseinthetransportationsectorandmorethanthreetimesasmuchasweimportfromthePersianGulfalone(Greeneetal.2004).Tiscorrespondstoroughly100Bgal/yearethanol.NRDCalsorecommends$1.1billioninfundingbetween2006and2012forbiomassresearch,development,anddemonstrationwith45%ofthisfundingfocusedonovercomingbiomassrecalcitrancetoethanolprocessing.Tisleveloffundingisexpectedtostimulatearegularflowofadvancesneededtomakeethanolcost-competitivewithgasolineanddiesel.

    AnindependentanalysisfromtheRockyMountainInstitutefoundthat

    significantgainsinenergyefficiencyandthelarge-scaledisplacementofoilwithbiofuels,mainlycellulosicethanol,wouldbekeycomponentsofitsstrategytoreduceAmericanoildependenceoverthenextfewdecades(Lovinsetal.2005).

    oillustratethewidespreadsupportforfuelethanol,theGovernorsEthanolCoalition,anorganizationdevotedtothepromotionandincreaseduseofethanol,nowincludes32memberstatesaswellasinternationalrepresentativesfromBrazil,Canada,Mexico,Sweden,andTailand.Inarecentreport,thecoalitioncalledforrapidexpansionofethanoltomeetatleast10%oftransportationfuelneedsassoonaspracticableandfordevelopmentoflignocellulosic-basedfuelsforexpansionbeyondthoselevels

    (GEC2005).Teuseofethanol,particularlybiomass-derivedethanol,canproducesignificantsavingsincarbondioxideemissions.Tisapproachoffersano-regretspolicythatreducesthepotentialfuturerisksassociated

    withclimatechangeandhastheaddedbenefitofeconomicdevelopment.

    BenefitsofBiofuelsBiofuels,especiallycorn-derivedandcellulosicethanol,constitutetheonlyrenewableliquidtransportationfueloptionthatcanbeintegratedreadily

    withpetroleum-basedfuels,fleets,andinfrastructure.Productionanduse

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    16/218

    INTRODUCTION

    ofbiofuelscanprovidesubstantialbenefitstonationalenergysecurity,economicgrowth,andenvironmentalquality.

    NationalEnergySecurityBenefitsNational security is linked to energy through the dependence of thiscountry and many others on imported oilmuch of it located in

    politically troubled parts of the globe. As such, the potential for largescale failures in the global production and distribution system presentsa real threat. GovernorsEthanolCoalition(GEC2005)

    odaytheUnitedStatesisdependentonoilfortransportation.Alternative,domesticallybased,andsustainablefuel-developmentstrategies,therefore,areessentialtoensuringnationalsecurity.Americaaccountsfor25%ofglobaloilconsumptionyetholdsonly3%oftheworldsknownoilreserves.About60%ofknownoilreservesarefoundinsensitiveand

    volatileregionsoftheglobe.Increasingstrainonworldoilsupplyisexpectedasdevelopingcountriesbecomemoreindustrializedandusemoreenergy.AnystrategytoreduceU.S.relianceonimportedoilwillinvolveamixofenergytechnologiesincludingconservation.Biofuelsareanattractiveoptiontobepartofthatmixbecausebiomassisadomestic,secure,andabundantfeedstock.Globalavailabilityofbiomassfeedstocksalsowouldprovideaninternationalalternativetodependenceonanincreasinglystrainedoil-distributionsystemaswellasareadymarketforbiofuel-productiontechnologies.

    EconomicBenefitsAbiofuelindustrywouldcreatejobsandensuregrowingenergysupplies

    tosupportnationalandglobalprosperity.In2004,theethanolindustrycreated147,000jobsinallsectorsoftheeconomyandprovidedmorethan$2billionofadditionaltaxrevenuetofederal,state,andlocalgovernments(RFA2005).Conservativeprojectionsoffuturegrowthestimatetheadditionof10,000to20,000jobsforeverybilliongallonsofethanolproduction(Petrulis1993).

    In2005theUnitedStatesspentmorethan$250billiononoilimports,andthetotaltradedeficithasgrowntomorethan$725billion(U.S.CommerceDept.2006).Oilimports,whichmakeup35%ofthetotal,couldriseto70%overthenext20years(EthanolAcrossAmerica2005).

    Amongnationaleconomicbenefits,abiofuelindustrycouldrevitalize

    strugglingruraleconomies.Bioenergycropsandagriculturalresiduescanprovidefarmerswithanimportantnewsourceofrevenueandreducerelianceongovernmentfundsforagriculturalsupport.Aneconomicanalysis

    jointlysponsoredbyUSDAandDOEfoundthattheconversionofsomecroplandtobioenergycropscouldraisedepressedtraditionalcroppricesbyupto14%.Higherpricesfortraditionalcropsandnewrevenuefrombioenergycropscouldincreasenetfarmincomeby$6billionannually(DeLa

    orreUgarte2003).

    6 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    17/218

    Fig. 1. Reduced Carbon

    Dioxide Emissions of Ethanol

    from Biomass.Whencom

    paredwithgasoline,ethanol

    fromcellulosicbiomasscould

    dramaticallyreduceemissionsofthegreenhousegas,carbon

    dioxide(CO ).Althoughburn2

    inggasolineandotherfossil

    fuelsincreasesatmospheric

    CO concentrations,thepho2

    tosyntheticproductionofnew

    biomasstakesupmostofthe

    carbondioxidereleasedwhen

    bioethanolisburned.[Source:

    AdaptedfromORNL Review(www.ornl.gov/info/ornlreview/

    v33_2_00/bioenergy.htm)]

    EnvironmentalBenefits

    ClimateChange

    Whenfossilfuelsareconsumed,carbonsequesteredfromtheglobalcarboncycleformillionsofyearsisreleasedintotheatmosphere,whereitaccumulates.BiofuelconsumptioncanreleaseconsiderablylessCO

    2,

    dependingonhowitisproduced.TephotosyntheticproductionofnewgenerationsofbiomasstakesuptheCO releasedfrombiofuelproduction

    2

    anduse(seeFig.1.ReducedCarbonDioxideEmissionsofEthanolfromBiomass,thispage).Alife-cycleanalysisshowsfossilCO

    2emissionsfrom

    cellulosicethanoltobe85%lowerthanthosefromgasoline(Wang2005).Teseemissionsarisefromtheuseoffossilenergyinproducingcellulosicethanol.NonbiologicalsequestrationofCO

    2producedbythefermentation

    processcanmakethebiofuelenterprisenetcarbonnegative.

    Arecentreport(Farrelletal.2006)findsthatethanolfromcellulosicbiomassreducessubstantiallybothGHGemissionsandnonrenewable

    energyinputswhencomparedwithgasoline.Telowquantityoffossilfuelrequiredtoproducecellulosicethanol(andthusreducefossilGHGemissions)isduelargelytothreekeyfactors.Firstistheyieldofcellulosicbiomassperacre.Currentcorn-grainyieldsareabout4.5tons/acre.Starchis66%byweight,yielding3tonstoproduce416galofethanol,comparedtoanexperimentalyieldof10drytonsofbiomass/acreforswitchgrasshybridsinresearchenvironments(10drytonsatafuture

    yieldof80gal/ton=800galethanol).Useofcorngrain,theremainingsolids(distillersdriedgrains),andstovercouldyieldethanolatroughly

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

    http://www.ornl.gov/info/ornlreviewhttp://www.ornl.gov/info/ornlreview
  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    18/218

    INTRODUCTION

    700gal/acre.Currentyieldfornonenergy-cropbiomassresourcesisabout5drytons/acreandroughly65gal/ton.Tegoalforenergycropsis10tons/acreat80to100gal/tonduringimplementation.Second,perennialbiomasscropswilltakefarlessenergytoplantandcultivateandwillrequirelessnutrient,herbicide,andfertilizer.Tird,biomasscontainsligninandotherrecalcitrantresiduesthatcanbeburnedtoproduceheatorelectricityconsumedbytheethanol-productionprocess.

    Energycropsrequireenergyinputsforproduction,transportation,andprocessingaviablebioenergyindustrywillrequireasubstantialpositiveenergybalance.Figure2.ComparisonofEnergyYieldswithEnergyExpenditures,thispage,comparesresultsforcellulosicandcornethanol,gasoline,andelectricity,demonstratingasubstantiallyhigheryieldforcellulosicethanol.Overtimeamaturebioenergyeconomywillsubstitutebiomass-derivedenergysourcesforfossilfuel,furtherreducingnetemissions.

    Fig. 2. Comparison of Energy Yields with Energy Expendi

    tures.Tefossilenergyreplacementratio(FER)compares

    energyyieldfromfourenergysourceswiththeamountoffos-

    silfuelusedtoproduceeachsource.Notethatthecellulosic

    ethanolbiorefinerysprojectedyieldassumesfuturetechno-

    logicalimprovementsinconversionefficienciesandadvances

    thatmakeextensiveuseofabiomasscropsnoncellulosic

    portionsforcogenerationofelectricity.SimilarassumptionswouldraisecornethanolsFERif,forexample,cornstover

    weretoreplacecurrentnaturalgasusage.Tecornethanol

    industry,alreadyproducingethanolasanimportantadditive

    andfuelextender,isprovidingafoundationforexpansion

    tocellulosicethanol.[Source:Figure,basedontheArgonne

    NationalLaboratoryGREEmodel,isderivedfromBrink-

    manetal.2005.Otherpapersthatsupportthisstudyinclude

    Farrelletal.2006andHammerschlag2006.]

    OtherEnvironmentalBenefitsPerennialgrassesandotherbioenergycropshavemanysignificantenvironmentalbenefitsovertraditionalrowcrops(seeFig.3.MiscanthusGrowthoveraSingleGrowingSeasoninIllinois,p.9).Perennialenergycropsprovideabetterenvironmentformore-diversewildlifehabitation.Teirextensiverootsystemsincreasenutrientcapture,improvesoilquality,sequestercarbon,andreduceerosion.Ethanol,whenusedasatransportationfuel,emitslesssulfur,carbonmonoxide,particulates,andGHGs

    (Greeneetal.2004).

    FeasibilityofBiofuelsTeUnitedStatescouldbenefitsubstantiallybyincreasingitsuseofdomestic,renewablefuelsinthetransportationsector,butcanbiofuelsbeproducedatthescaleneededtomakearealdifferenceintransportationconsumptionoffossilfuels?Morespecifically,isthereenoughlandtoprovidetheneededlarge-scalesupplyofbiomass,istheuseofbiofuelssustainableagriculturally,canbiofuels

    becomecost-competitivewithgasoline,andiscellulosic-biofuelproductiontechnicallyfeasibleforenergy?Teshortanswertoallthesequestionsis

    yes,andthissectionsummarizesrecentreportsthatsupportthisview.

    LandAvailabilityAmajorfactorinfluencingtheextenttowhichbiofuelswillcontributetoAmericasenergyfutureistheamountoflandavailableforbiomassharvesting.

    8 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    19/218

    Arebiomassresourcessufficienttomeetasignificantportionoftransportation-fuelconsumption,andhowwouldharvestingbiomassforenergyaffectcurrentagriculturalandforestrypractices?

    In2005,astudyjointlysupportedbyDOEandUSDAexaminedwhetherlandresourcesintheUnitedStatesaresufficienttosustainproductionofover1billiondrytonsofbiomassannually,enoughtodisplace30%ormoreofthe

    nationscurrentconsumptionofliquidtransportationfuels.Byassumingrelativelymodestchangesinagriculturalandforestrypractices,thisstudyprojectsthat1.366billiondrytonsofbiomasscouldbeavailableforlarge-scalebioenergyandbiorefineryindustriesbymid21stCenturywhilestillmeetingdemandforforestryproducts,food,andfiber(Perlacketal.2005)(seesidebar,ABillion-onAnnualSupplyofBiomass,p.10).Tissupplyofbiomasswouldbeasevenfoldincreaseoverthe190milliondrytonsofbiomassperyearcurrentlyusedforbioenergyandbioproducts.Mostofthisbiomassisburnedforenergy,withonly18milliondrytonsusedforbiofuels(primarilycorn-grainethanol)and6milliondrytonsusedforbioproducts.

    Tebiomasspotentialdeterminedbythebillion-tonstudyisonescenariobasedonasetofconservativeassumptionsderivedfromcurrentpracticesandshouldnotbeconsideredanupperlimit.Crop-yieldincreasesassumedinthisstudyfollowbusiness-as-usualexpectations.Withmoreaggressivecommitmentstoresearchonimprovingenergycropsandproductivity,thebio

    masspotentialcouldbemuchgreater.Energy-cropyieldisacriticalfactorinestimatinghowmuchlandwillbeneededforlarge-scalebiofuelproduction,andthisfactorcanbeinfluencedsignificantlybybiotechnologyandsystemsbiologystrategiesusedinmodernplantbreedingandbiomassprocessing.

    Manypotentialenergycrops(e.g.,switchgrass,poplar,andwillow)areessentiallyunimprovedorhavebeenbredonlyrecentlyforbiomass,comparedtocornandothercommercialfoodcropsthathaveundergonesubstantialimprovementsinyield,diseaseresistance,andotheragronomictraits.Amorecompleteunderstandingofbiologicalsystemsand

    Fig. 3.MiscanthusGrowth over

    a Single Growing Season in

    Illinois.Miscanthushasbeen

    exploredextensivelyasapoten

    tialenergycropinEuropeand

    nowisbeingtestedintheUnited

    States.Tescaleisinfeet.Tese

    experimentsdemonstrateresults

    thatarefeasibleindevelopment

    ofenergycrops.[Imagesource:

    S.Long,UniversityofIllinois]

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    20/218

    INTRODUCTION

    ABillion-TonAnnualSupplyofBiomass:SummaryofPotentialForestandAgriculturalResources

    I

    n2005,astudyjointlysupportedbyDOEandUSDAexaminedwhetherlandresourcesintheUnitedStatesaresufficienttosustainproductionofover1billiondrytonsofbiomassannually,enoughtodisplace30%ormoreofthenationscurrentconsumptionofliquidtransportationfuels(Perlacketal.2005).

    Assumingrelativelymodestchangesinagriculturalandforestrypractices,thisstudyprojectsthat1.366billiondrytonsofbiomass(368milliondrytonsfromforestand998milliondrytonsfromagriculture)couldbeavailableforlarge-scalebioenergyandbiorefineryindustriesbymid-21stCenturywhilestillmeetingdemandforforestryproducts,food,andfiber(seeFig.A.PotentialBiomassResources,below).Tissupplyofbiomass

    wouldbeasevenfoldincreaseoverthe190milliondrytonsofbiomassperyearcurrentlyusedforbioenergyandbioproducts.Mostofthisbiomassisburnedforenergy,withonly18milliondrytonsusedforbiofuels(primarilycorn-grainethanol)and6milliondrytonsusedforbioproducts.

    LandareaintheUnitedStatesisabout2billionacres,with33%forestlandsand46%agriculturallandsconsistingofgrasslandsorpasture(26%)andcroplands(20%).Oftheestimated368milliondrytonsofforestbiomass,142milliondrytonsalreadyareusedbytheforestproductsindustryforbioenergyandbioproducts.Severaldifferenttypesofbiomasswereconsideredinthisstudy.Residuesfromtheforestproductsindustry

    includetreebark,woodchips,shavings,sawdust,miscellaneousscrapwood,andblackliquor,aby-productofpulpandpaperprocessing.Loggingandsite-clearingresiduesconsistmainlyofunmerchantabletreetopsandsmallbranchesthatcurrentlyareleftonsiteorburned.Forestthinninginvolvesremovingexcesswoodymaterialstoreducefirehazardsandimproveforesthealth.Fuelwoodincludesroundwoodorlogsburnedforspaceheatingorotherenergyuses.Urbanwoodresiduesconsistprimarilyofmunicipalsolidwaste(MSW,e.g.,organicfoodscraps,yardtrimmings,discardedfurniture,containers,andpackingmaterials)andconstructionanddemolitiondebris(seeableA.PotentialBiomassResources,thispage,andFig.B.BiomassAnalysisfortheBillion-onStudy,p.11).

    Fig. A. Potential Biomass Resources: A otal of

    More than 1.3 Billion Dry ons a Year from Agri-

    cultural and Forest Resources.

    Biomass ResourcesMillion

    Dry Tons per Year

    Forest Biomass

    Forestproductsindustryresidues 145

    Loggingandsite-clearingresidues 64

    Forestthinning 60

    Fuelwood 52

    Urbanwoodresidues 47

    Subtotal for Forest Resources 368

    Agricultural Biomass

    Annualcropresidues 428

    Perennialcrops 377

    Miscellaneousprocessresidues,manure 106

    Grains 87

    Subtotal for Agricultural Resources 998

    Total Biomass Resource Potential 1366

    TableA.PotentialBiomassResources

    10 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    21/218

    Fig. B. Biomass Analysis for the Billionon Study[Source:Multi Year Program Plan, 20072012,OBP,EERE,

    U.S.DOE(2005)]

    Severalassumptionsweremadetoestimatepotentialforestbiomassavailability.Environmentallysensitiveareas,landswithoutroadaccess,andregionsreservedfornontimberuses(e.g.,parksandwilderness)wereexcluded,andequipment-recoverylimitationswereconsidered.Asannualforestgrowthisprojectedtocontinuetoexceedannualharvests,continuedexpansionofstandingforestinventoryisassumed.

    Amongagriculturalbiomassresources,annualcropresiduesaremostlystemsandleaves(e.g.,cornstoverandwheatstraw)fromcorn,wheat,soybeans,andothercropsgrownforfoodandfiber.Perennialcropsconsideredinthestudyincludegrassesorfast-growingtreesgrownspecificallyforbioenergy.Grainprimarilyiscornusedforethanolproduction,andmiscellaneousprocessresiduesincludeMSWandotherby-productsofagriculturalresourceprocessing.

    Atotalof448millionacresofagriculturallands,largelyactiveandidlecroplands,wereincludedinthisstudy;landsusedpermanentlyforpasturewerenotconsidered.Otherassumptionsforagriculturalbiomassresourcesincludea50%increaseincorn,wheat,andsmall-grainyield;doublingtheresidue-to-grainratioforsoybeans;recoveryof75%ofannualcropresidueswithmoreefficientharvestingtechnologies;managementofallcroplandwithno-tillmethods;55millionacresdedicatedtoproductionofperennialbioenergycrops;averagebiomassyieldforperennialgrassesandwoodyplantsestimatedat8drytonsperacre;conversionofallmanurenotusedforon-farmsoilimprovementtobiofuel;anduseofallotheravailableresidues.

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    22/218

    INTRODUCTION

    applicationofthelatestbiotechnologicaladvanceswillacceleratethedevelopmentofnewbiomasscropshavingdesirableattributes.Teseattributesincludeincreasedyieldsandprocessability,optimalgrowthinspecificmicroclimates,betterpestresistance,efficientnutrientuse,andgreatertolerancetomoisturedeficitsandothersourcesofstress.Furthermore,manybiotechnologicaladvancesforgrowingbetterbiomasscropswillbeusedtoimprovefoodcrops,easingthepressureonlandareaneededtogrowfood.Jointdevelopmentofthesebiotechnologicaladvanceswithothercountrieswillhelpmoderatetheglobaldemandforcrudeoil.Inanidealizedfuturescenariowithgreaterper-acreproductivityinenergy,food,andfibercropsanddecreaseddemandfortransportationfuelsresultingfrommoreefficientvehicles,theUnitedStatescouldhavesufficientlandresourcestoproduceenoughbiomasstomeetallitstransportation-fuelneeds.

    AgriculturalSustainabilityofBiomassProductionSustainablepracticesforgrowingandharvestingbiomassfromdedicatedcropswillbeessentialtothesuccessoflarge-scalebiofuelproduction.Capitalcostsofrefineriesandassociatedfacilitiestoconvertbiomasstofuelswillbeamortizedoverseveraldecades.Tesecapitalassetswillrequireasteadyannualsupplyofbiomassfromalargeproportionofsurroundingland.Terefore,athoroughunderstandingoftheconversionpathwayandofbiomassharvestingslong-termimpactsonsoilfertilityisneededtoensuresustainability.Vitalnutrientscontainedinprocessresiduesmustbereturnedtothesoil.Perennialcropsexpectedtobeusedforbiofuelsimprovesoilcarboncontentandmakehighlyefficientuseofmineralnutrients(seesidebar,TeArgumentforPerennialBio

    massCrops,p.59).Additionalinformationaboutthecompositionandpopulationdynamicsofsoilmicrobialcommunitiesisneeded,however,todeterminehowmicrobescontributetosustainingsoilproductivity(seesection,EnsuringSustainabilityandEnvironmentalQuality,p.68).Mixedcultivarsofgeneticallydiverseperennialenergycropsmaybeneededtoincreaseproductivityandpreservesoilquality.Becauseconventionalannualfoodandfibercropsaregrownasmonocultures,relativelylittleresearchhasbeencarriedoutonissuesassociatedwithgrowingmixedstands.

    TodayFuelEthanolProductionfromCornGrain(StarchEthanol)

    In2004,3.41Bgalofstarchethanolfuelwereproducedfrom1.26billionbushelsofcorn11%ofallcorngrainharvestedintheUnitedStates.Tisrecordlevelofproductionwasmadepossibleby81ethanolplantslocatedin20states.Completionof16additionalplantsandotherexpansionsincreasedethanol-productioncapacityto4.4Bgalbytheendof2005;additionalplannedcapacityisonrecordforanother1Bgalfrom2006to2007(RFA2005).Althoughdemandforfuelethanolmorethandoubledbetween2000and2004,ethanolsatisfiedlessthan2%ofU.S.transportation-energydemandin2004.

    12 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    23/218

    IntheUnitedStates,ethanolisproducedincornwetordrymills.Cornwet millsfractionatethecorngrainforproductslikegermandoilbeforeconvertingthecleanstarchtosugarsforfermentationorforsuchvaluablefoodproductsashigh-fructosecornsyrupandmaltodextrins. Tecornfiberby-productusuallyissoldasanimalfeed.Incorn dry mills,thegrainisground,brokenintosugarmonomers(saccharified),andfermented.Sincethegrainisnotfractionated,theonlyby-productistheremainingsolids,calleddistillersdriedgrainswithsolubles,ahighlynutritiousproteinsourceusedinlivestockfeed.Abushelofcornyieldsabout2.5galethanolfromwet-millprocessingandabout2.8galfromdrygrind(BothastandSchlicher2005).Some75%ofcornethanolproductionisfromdry-millfacilitiesand25%fromwetmills.

    TomorrowBiorefineryConcepttoProduceFuelEthanolfromCellulosicBiomass

    Cellulosicethanolhasthepotentialtomeetmost,ifnotall,transportation-fuelneeds.However,duetothecomplexstructureofplantcellwalls,cellulosicbiomassismoredifficultthanstarchtobreakdownintosugars.Treekeybiomasspolymersfoundinplantcellwallsarecellulose,hemicellulose,andlignin(seeLignocellulosicBiomassCharacteristicschapter,p.39).

    Tesepolymersareassembledintoacomplexnanoscalecomposite,notunlikereinforcedconcretebutwiththecapabilitytoflexandgrowmuchlikealiquidcrystal.Tecompositeprovidesplantcellwallswithstrengthandresistancetodegradationandcarriesoutmanyplantfunctions.Teirrobustness,however,makesthesematerialsachallengetouseassubstratesforbiofuelproduction.

    raditionalcellulosicbiorefinerieshavenumerouscomplex,costly,andenergy-intensivestepsthatmaybeincompatibleorreduceoverallprocessefficiency.Tecurrentstrategyforbiochemicalconversionofbiomasstoethanolhasitsrootsintheearlydaysofwoodchemistry.Developedinthe1930sfor

    wartimeuseinGermany, itisusedinRussiatoday.Tisprocessinvolvesthreebasicsteps,eachelementofwhichcanbeimpactedbycellulosicbiomassresearch(seeFig. 4.raditionalCellulosicBiomassConversiontoEthanolBasedonConcentratedAcidPretreatmentFollowedbyHydrolysisandFermentation,p.14).Afteracquisitionofsuitablecellulosicbiomass,biorefiningbeginswithsizereductionandthermochemicalpretreatmentofrawcellulosicbiomasstomakecellulosepolymersmoreaccessibletoenzymaticbreakdownandtofreeuphemicellulosicsugars,followedbyproductionandapplicationofspecialenzymepreparations(cellulases)forhydrolysisofplantcell-wallpolysaccharidestoproducesimplesugars.Finalstepsintheprocessincludefermentation,mediatedbybacteriaoryeast,toconvertthesesugarstoethanolandothercoproductsthatmustberecoveredfromtheresultingaqueousmixture.Recentresearchanddevelopmenthasreduceddramaticallythecostofenzymesandhasimprovedfermentationstrainstoenablesimultaneoussaccharificationandfermentation(SSF),inwhichhydrolysisofcelluloseandfermentationofglucosearecombinedinonestep.

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    24/218

    INTRODUCTION

    Figure5.ABiorefineryConceptIncorporatingAdvancedPretreatmentandConsolidatedProcessingofCellulosetoEthanol,p.15,depictskeytargetsforsimplifyingandimprovingthebiorefineryconcept.Feedstockresearchseeksfirsttoincreasebiomassyieldsandenhancebiomasscharacteristicstoenablemoreefficientprocessing.Advancedbiocatalystswillaugmentorreplacethermochemicalmethodstoreducetheseverityandincreasetheyieldofpretreatment.Morerobustprocessesandreductionofinhibitorswouldalloweliminationofthedetoxificationandseparationsteps.Developingmodifiedenzymesandfermentationorganismsulti

    matelywillallowincorporationofhydrolysisenzymeproduction,hydrolysis,andfermentationintoasingleorganismorafunctionallyversatilebutstablemixedculturewithmultipleenzymaticcapabilities.ermedconsolidatedbioprocessing(CBP),thiscouldenablefourcomponentscomprisingsteps2and3(greenboxes)inFig.4tobecombinedintoone,whichinFig.5iscalleddirectconversionofcelluloseandhemicellulosicsugars.Furtherrefinementwouldintroducepretreatmentenzymes(ligninasesandhemicellulases)intotheCBPmicrobialsystemsaswell,

    Fig. 4. raditional Cellulosic Biomass Conversion to

    Ethanol Based on Concentrated Acid Pretreatment Followed

    by Hydrolysis and Fermentation.Treestepsintheprocessare

    (1) sizereductionandthermochemicalpretreatmentofrawcellulosicbiomasstomakecellulosepolymersmoreaccessibletoenzy

    maticbreakdownandfreeuphemicellulosicsugars(blueboxesonleft);

    (2) productionandapplicationofspecialenzymepreparations(cellulases)

    thathydrolyzeplantcell-wallpolysaccharides,producingamixtureofsimple

    sugars(greenboxes);and (3) fermentation,mediatedbybacteriaoryeast,to

    convertthesesugarstoethanolandothercoproducts(yellowdiamonds).Recent

    researchand developmenthasreduced dramatically thecostof enzymes andhas improvedfermentationstrains

    toenablesimultaneoussaccharificationandfermentation(SSF,greenboxessurroundedbyorange),inwhichhydro

    lysisofcelluloseandfermentationofglucosearecombinedinonestep.Cellulosicbiomassresearchistargetingthese

    stepstosimplifyandincreasetheyieldofbiomassproductionandprocessing(seeFig.5.p.15).[Source:Adaptedfrom

    M.HimmelandJ.Sheehan,NationalRenewableEnergyLaboratory]

    14 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    25/218

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    26/218

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    27/218

    Ethical,Legal,andSocialIssues(ELSI)Usingbiomasstoproducebiofuelsholdsmuchpromiseforprovidingarenewable,domesticallyproducedliquid

    energysourcethatcanbeaviablealternativetopetroleum-basedfuels.BiofuelR&D,therefore,aimstoachievemorethanjustscientificandtechnologicaladvancesperse.Itisconductedtoaccomplishimportantsocietalneeds,withthebroadergoalsofbolsteringnationalenergysecurity,economicgrowth,andtheenvironment.Analyzingandassessingthesocietalimplicationsof,andresponsesto,thisresearchlikewiseshouldcontinuetobeframedwithinthecontextofsocialsystemsandnotsimplyintermsoftechnologicaladvancesandtheirefficacy(seesidebar,Ethical,Legal,andSocialIssuesforWidespreadDevelopmentofCellulosicBiofuels,thispage).

    EEREOBPPlatformforIntegratedBiorefineries

    TeDepartmentofEnergysstrategicplanidentifiesitsenergygoal:oprotectournationalandeconomicsecuritybypromotingadiversesupplyanddeliveryofreliable,affordable,andenvironmentallysoundenergy.Oneofseveralstrategiesidentifiedtoachievethisgoalistoresearchrenewableenergytechnologieswind,hydropower,biomass,solar,andgeothermalandworkwiththeprivatesectorindevelopingthesedomesticresources.

    TedepartmentsOfficeofEnergyEfficiencyandRenewableEnergy(EERE)OfficeoftheBiomassProgram(OBP)elaboratesonthatgoal:Improveenergysecuritybydevelopingtechnologiesthatfosteradiversesupplyofreliable,affordable,andenvironmentallysoundenergybyprovidingforreliabledeliveryofenergy,guardingagainstenergyemergencies,exploringadvancedtechnologiesthatmakeafundamentalimprovementinourmixofenergyoptions,andimprovingenergyefficiency.

    Majoroutcomessoughtincludethefollowing.

    By2012,completetechnologydevelopmentnecessarytoenablestartupdemonstrationofabiorefineryproducingfuels,chemicals,andpower,possiblyatanexistingornewcorndrymillmodifiedtoprocesscornstoverthroughasidestream.

    By2012(basedonAEI),completetechnologyintegrationtodemonstrateaminimumsugarsellingpriceof$.064/lb,resultinginaminimumethanolsellingpriceof$1.07/gal.Ethanolwouldbeproducedfromagriculturalresiduesordedicatedperennialenergycrops.

    Ethical,Legal,andSocialIssuesforWidespreadDevelopmentofCellulosicBiofuels

    Societalquestions,concerns,andimplications

    clearlymayvaryaccordingtotheevolutionarystageofbiofueldevelopment.Acceptanceandsupportfromdiversecommunitieswillbeneeded.Further,societalandtechnologicalinteractionsatearlierphasesofresearch,development,demonstration,deployment,anddecommissioning(RDDD&D)willaffectinteractionsatlaterphases.Withinthecontextofsocialsystems,threeoverarchingquestionsemerge.

    Whatarethepossiblelong-termimplicationsofbiofueldevelopmentanddeploymentforsocialinstitutionsandsystemsifthestrategyworksasanticipatedandifitdoesnot?

    Howareindividuals,organizations,andinstitutionslikelytorespondovertimetothisdevelopmentandthechangesintegraltoitsdeployment?

    Whatactionsorinterventions(e.g.,regulations)associatedwithbiofueldevelopmentanditsuseanddeploymentwillprobablyorshouldbetakenatlocal,regional,andnationallevelstopromotesociallydeterminedbenefitsandtoavoid,minimize,ormitigateanyadverseimpacts?

    Broadtopicsraisedattheworkshopincludedthefollowing:

    Sustainabilityofthetotalintegratedcycle.

    Competinginterestsforlanduse.

    Creationanduseofgeneticallymodifiedplants.Whocreatesandusesthem,whodecidesbasedonwhatcriteria,andhowmightorshouldtheyberegulated?

    Creationanduseofgeneticallymodifiedmicro

    bialorganismsinacontrolledindustrialsetting. Individualsandgroupsthathavetheauthority

    topromoteorinhibitR&D,demonstration,anduse.

    Groupsmostlikelytobeaffected(positivelyornegatively)bybiofuelsatallevolutionarystagesofRDDD&Donthelocal,national,andgloballevels.

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    28/218

    INTRODUCTION

    By2030,helpenabletheproductionof60billiongallonsofethanolperyearintheUnitedStates.Areportelaboratingonthisgoalwillbereleasedsoon.

    TeBiomassProgramalsoisalignedwithrecommendationsintheMay2001NEPtoexpandtheuseofbiomassforwide-rangingenergyapplications.NEPoutlinesalong-termstrategyfordevelopingandusingleading-edgetechnologywithinthecontextofanintegratednationalenergy,environmental,andeconomicpolicy.

    Fig. 7. DOE Energy Efficiency and Renewable Energy Strategic Goals as Tey Relate to Development of Biofuels.

    [Source:Multi Year Program Plan 20072012,OBP,EERE,U.S.DOE(2005)]

    18 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    29/218

    Teprogramsoverarchingstrategicgoalistodevelopbiorefinery-relatedtechnologiestothepointthattheyarecost- andperformance-competitiveandareusedbythenationstransportation,energy,chemical,andpower

    industriestomeettheirmarketobjectives.Tenationwillbenefitbyexpandingclean,sustainableenergysupplieswhilealsoimprovingitsenergyinfrastructureandreducingGHGsanddependenceonforeignoil.TisgoalisinalignmentwithDOEandEEREstrategicgoalsasshowninFig.7.DOEEnergyEfficiencyandRenewableEnergyStrategicGoalsasTeyRelatetoDevelopmentofBiofuels,p.18.

    PlanningdocumentsofEEREsOBPdescribeadvancestheprogramseeksforfourcriticalobjectives:(1)Alterfeedstocksforgreateryieldandforcon

    vertinglargerportionsofrawbiomassfeedstockstofuelethanolandotherchemicals;(2)decreasecostsandimproveenzymeactivitiesthatconvertcomplexbiomasspolymersintofermentablesugars;(3)developmicrobesthat

    canefficientlyconvertall5- and6-carbonsugarsreleasedfromthebreakdownofcomplexbiomasspolymers;and(4)consolidateallsaccharificationandfermentationcapabilitiesintoasinglemicrobeormixed,stableculture.

    AcommercialindustrybasedoncellulosicbiomassbioconversiontoethanoldoesnotyetexistintheUnitedStates,butseveralprecommercialfacilitiesareindevelopment.TeCanadiancompany,IogenCorporation,aleadingproducerofcellulaseenzymes,operatesthelargestdemonstrationbiomass-to-ethanolfacility,withacapacityof1Mgal/year;productionofcellulosicethanolfromwheatstrawbeganatIogeninApril2004.OBPhasissuedasolicitationfordemonstrationofcellulosicbiorefineries(U.S.Congress2005,Section932)aspartofthepresidentialBiofuelsInitiative.

    DOEOfficeofScienceProgramsTeDOEOfficeofScience(SC)playskeyrolesinU.S.research,includingthecontributionofessentialscientificfoundationstoDOEsnationalenergy,environment,andeconomicsecuritymissions(seeFig.8.DOEOfficeofScienceProgramsandGoalsasTeyRelatetoDevelopmentofBiofuels,p.20).Otherrolesaretobuildandoperatemajorresearchfacilitieswithopenaccessbythescientificcommunityandtosupportcorecapabilities,theories,experiments,andsimulationsattheextremelimitsofscience.AnSCgoalfortheOfficeofBiologicalandEnvironmentalResearch(OBER)istoharnessthepowerofourlivingworldandprovidethebiologicalandenvironmentaldiscoveriesnecessarytocleanandprotect

    ourenvironmentandoffernewenergyalternatives.SCsgoalforitsOfficeofAdvancedScientificComputingResearch(OASCR)istodelivercomputingforthefrontiersofscience(U.S.DOE2004).

    oaddressthesepriorities,OBERandOASCRaresponsoringtheGenomics:GenomestoLife(GL)program.Establishedin2002,GLusesgenomedataastheunderpinningsforinvestigationsofbiologicalsystemswithcapabilitiesrelevanttoDOEenergyandenvironmentalmissions.TeGLscientificprogramwasdevelopedwithinputfromhundredsofscientistsfromuniversities,privateindustry,otherfederal

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    30/218

    INTRODUCTION

    Fig. 8. DOE Office of Science Programs and Goals as Tey Relate to Development of Biofuels.[DerivedfromOfficeofScienceStrategicPlanandGenomics:GLRoadmap]

    agencies,andDOEnationallaboratories.Providingsolutionstomajornationalproblems,biologyandindustrialbiotechnologywillserveasanengineforeconomiccompetitivenessinthe21stCentury.DOEmissionsinenergysecurityaregrandchallengesforanewgenerationofbiologicalresearch.SCwillworkwithEEREtobringtogetherbiology,computing,physicalsciences,bioprocessengineering,andtechnologydevelopmentforthefocusedandlarge-scaleresearcheffortneededfromscientificinvestigationstocommercializationinthemarketplace.ResearchconductedbythebiofuelR&DcommunityusingSCprogramsandresearchfacilities

    willplayacriticalroleindevelopingfuturebiorefineriesandensuringthesuccessofEEREOBPsplans.

    Tenationsinvestmentingenomicsoverthepast20yearsnowenablesrapiddeterminationandsubsequentinterpretationofthecompleteDNAsequenceofanyorganism.Becauseitrevealstheblueprintforlife,genomicsisthelaunchingpointforanintegratedandmechanisticsystemsunderstandingofbiologicalfunction.Itisanewlinkbetweenbiologicalresearchandbiotechnology.

    20 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    31/218

    Fig. 9. Understanding Biological Capabilities at All Scales Needed to Support Systems Biology Investigations of Cellu-

    losic Biomass. Capabilitiesareneededtobringtogetherthebiological,physical,computational,andengineeringsciences

    tocreateanewinfrastructureforbiologyandtheindustrialbiotechnologyinthe21stCentury.Tisfiguredepictsthefocus

    ofGLonbuildinganintegratedbodyofknowledgeaboutbehavior,from

    ing.DOE

    genomicinteractionsthroughecosystemchanges.Simultaneouslystudying

    multiplesystemsrelatedtovariousaspectsofthebiofuelproblemispower-

    fullysynergisticbecauseenduringbiologicalthemesaresharedandgeneralprinciplesgoverningresponse,structure,andfunctionapply

    throughout.Accumulatingdataastheyareproduced,theGL

    KnowledgebaseandGLcomputationalenvironmentwill

    interactivelylinkthecapabilitiesandresearchefforts,allowing

    thisinformationtobeintegratedintoapredictiveunderstand-

    stechnologyprogramscanwork

    withindustrytoapplysuchcapabilities

    andknowledgetoanewgenerationofproc-

    esses,products,andindustries.

    GLsgoalissimpleinconceptbutchallenginginpracticetorevealhowthestaticinformationingenomesequencesdrivestheintricateanddynamicprocessesoflife.Troughpredictivemodelsoftheselifeprocessesandsupportingresearchinfrastructure,GLseekstoharnessthecapabilitiesoflivingsystems.GLwillstudycriticalpropertiesandprocessesonfoursystemslevelsmolecular,cellular,organismal,andcommunityeachrequiringadvancesinfundamentalcapabilitiesandconcepts.Tesesameconceptsandcapabilitiescanbeemployedbybioprocessengineerstobringnewtechnologiesrapidlytothemarketplace.

    AchievingGLgoalsrequiresmajoradvancesintheabilitytomeasurethephenomenologyoflivingsystemsandtoincorporatetheiroperatingprinciplesintocomputationalmodelsandsimulationsthataccuratelyrepresentbiologicalsystems.omakeGLscienceandbiologicalresearchmorebroadlytractable,timely,andaffordable,GLwilldevelopcomprehensivesuitesofcapabilitiesdeliveringeconomiesofscaleandenhancedperformance(seeFig.9.UnderstandingBiologicalCapabilitiesatAllScalesNeededtoSupportSystemsBiologyInvestigationsofCellulosicBiomass,thispage).In

    verticallyintegratedbioenergyresearchcenters,thesecapabilitieswillincludetheadvancedtechnologiesandstate-of-the-artcomputingneededtobetter

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

    http:///reader/full/systems.Tohttp:///reader/full/systems.To
  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    32/218

    INTRODUCTIONFig. 10. Creating a

    Common Research

    Agenda.TeEERE

    OfficeoftheBio

    massProgramsMulti

    Year Program Plan

    20072012 containsaroadmapforbiofuel

    developmentthat

    identifiestechnological

    barrierstoachieving

    goalsdefinedinFig.7,

    p.18.Tesechal

    lengesincludetheneed

    fornewfeedstocks,

    theirdeconstruc

    tiontofermentable

    sugars,andfermentationofallsugars

    toethanol.Within

    theDOEOfficeof

    Science,OBERand

    OASCRsroadmapfor

    theGenomics:GL

    programoutlinesscientificgoals,technologies,computingneeds,andaresourcestrategytoachievetheGLgoalof

    apredictiveunderstandingofbiologicalsystems.Tisdocumentisaroadmapthatlinksthetwoplans.

    understandgenomicpotential,cellularresponses,regulation,andbehaviorsofbiologicalsystems.ComputingandinformationtechnologiesarecentraltotheGLprogramssuccessbecausetheywillallowscientiststosurmountthebarrierofcomplexitynowpreventingthemfromdeducingbiologicalfunctiondirectlyfromgenomesequence.GLwillcreateanintegratedcomputationalenvironmentthatwilllinkexperimentaldataofunprecedentedquantityanddimensionalitywiththeory,modeling,andsimulationtouncoverfundamentalbiologicalprinciplesandtodevelopandtestsystemstheoryforbiology.

    BiomasstoBiofuelsWorkshop:CreatingaCommonResearchAgendatoOvercomeTechnologyBarriers

    AproductoftheBiomasstoBiofuelsWorkshop,thisroadmapanalyzesbarrierstoachievingOBPgoals(asdescribedherein)anddeterminesfundamentalresearchandcapabilities(asdescribedintheGLRoad-map)thatcouldbothaccelerateprogressinremovingbarriersandallowamorerobustsetofendpoints(seeFig.10.CreatingaCommonResearch

    Agenda,thispage).Relatinghigh-leveltopicalareasandtheirgoalstokeyscientificmilestonesidentifiedbyworkshopparticipantscouldhelpachieveprogresstowardOBPgoalsincollaborationwithSC(seeable2.OvercomingBarrierstoCellulosicEthanol:OBPBiologicalandechnologicalResearchMilestones,p.23).

    22 BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    33/218

    Table2.OvercomingBarrierstoCellulosicEthanol:OBPBiologicalandTechnologicalResearchMilestones

    Office of the Biomass

    Program (OBP) Barrier TopicTechnology Goals Science Research Milestones

    Feedstocks Better compositions and structures for sugars Cell-wallarchitectureandmakeuprelativetoprocessability

    Developsustainable production Genomesequenceforenergycrops

    technologiestosupplybiomasstobiorefineries

    Domestication:Yield,tolerance

    Betteragronomics

    Sustainability

    Domesticationtraits:Yield,tolerance

    Cell-wallgenes,principles,factors

    Newmodelsystemstoapplymodernbiologytools

    Soilmicrobialcommunitydynamicsfordeterminingsustainability

    Feedstock Pretreatment Enzymes Cell-wallstructurewithrespecttodegradation

    Deconstruction to

    SugarsReducedseverity

    Reducedwaste

    Modificationofthechemicalbackboneofhemicellulosematerialstoreducethenumberofnonfermentableandderivatizedenzymes

    Developbiochemicalconversion Highersugaryields Cell-wallcomponentresponsetopretreatments

    technologiesto Reducedinhibitors Principlesforimprovedcellulases,ligninases,

    producelow-costsugarsfrom Reductioninnonfermentablesugars hemicellulases

    lignocellulosicbiomass Enzyme Hydrolysis to Sugars

    Higherspecificactivity

    Higherthermaltolerance

    Reducedproductinhibition

    Broadersubstraterange

    Cellulasesandcellulosomes

    Understandingofcellulosomeregulationandactivity

    Actionofenzymesoninsolublesubstrates(fundamentallimits)

    Fungalenzyme-productionfactors

    Nonspecificadsorptionofenzymes

    Originofinhibitors

    Sugar Fermentation to Cofermentation of Sugars Fullmicrobialsystemregulationandcontrol

    Ethanol C-5andC-6sugarmicrobes Rapidtoolsformanipulationofnovelmicrobes

    Developtechnologies

    toproducefuels,chemicals,and

    Robustprocesstolerance

    Resistancetoinhibitors

    Utilizationofallsugars

    Sugartransporters

    powerfrombiobasedsugarsandchemical

    Marketableby-products Responseofmicroorganismstostress

    buildingblocks Newmicrobialplatforms

    Microbialcommunitydynamicsandcontrol

    Consolidated Processing Enzyme Production, Hydrolysis, and Fundamentalsofmicrobialcelluloseutilization

    Reduceprocesssteps Cofermentation Combined in One Reactor Understandingandcontrolofregulatoryprocessesandcomplexitybyintegratingmultipleprocessesinsingle

    Productionofhydrolyticenzymes

    Fermentationofneededproducts(ethanol)

    Engineeringofmultigenictraits

    Processtolerancereactors Processtolerance

    Stableintegratedtraits

    Allprocessescombinedinasinglemicrobeorstableculture

    Improvedgene-transfersystemsformicrobialengineering

    Understandingoftransgenichydrolysisandfermentationenzymesandpathways

    Teworkshopwasorganizedunderthefollowingtopicalareas:FeedstocksforBiofuels(p.57);DeconstructingFeedstockstoSugars(p.85);SugarFermentationtoEthanol(p.119);andCrosscutting21stCenturyScience,

    echnology,andInfrastructureforaNewGenerationofBiofuelResearch(p.155).AcriticaltopicdiscussedinseveralworkshopgroupswasLignocellulosicBiomassCharacteristics(p.39).Tesefivetopicsandplanswould

    BiofuelsJointRoadmap,June2006 OfficeofScienceandOfficeofEnergyEfficiencyandRenewableEnergy U.S.DepartmentofEnergy

  • 8/6/2019 Breaking the Biological Barriers to Celluloic Ethanol: A Joint Research Agenda

    34/218

    INTRODUCTION

    tiethetwoofficesroadmapstogetherandalsoserveasakeydriverforimplementingthecombinedroadmapsinpursuitofahigh-levelnationalgoal:Createaviablecellulosic-biofuelindustryasanalternativetooilfortransportati