Breaching the Eddington Limit in the Most Massive, Most Luminous Stars Stan Owocki Bartol Research...

43
Breaching the Eddington Limit in the Most Massive, Most Luminous Stars Stan Owocki Bartol Research Institute University of Delaware Collaborators: Nir Shaviv Hebrew U. Ken Gayley U. Iowa Rich Townsend U. Delaware Asif ud-Doula U. Delaware
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of Breaching the Eddington Limit in the Most Massive, Most Luminous Stars Stan Owocki Bartol Research...

Breaching the Eddington Limitin the Most Massive, Most Luminous Stars

Stan Owocki

Bartol Research Institute

University of Delaware

Collaborators:Nir Shaviv Hebrew U.Ken Gayley U. IowaRich Townsend U. DelawareAsif ud-Doula U. DelawareLuc Dessart U. Arizona

Massive Stars in “Pillars of Creation”

Massive Stars in the Whirlpool Galaxy

Wind-Blown Bubbles in ISM

Some key scalings:

WR wind bubble NGC 2359 Superbubble in the

Large Magellanic Cloud

Henize 70: LMC SuperBubble

Pistol Nebula

Eta Carinae

Massive Stars are Cosmic Engines

• Help trigger star formation

• Power HII regions

• Explode as SuperNovae

• GRBs from Rotating core collapse Hypernovae

• “First Stars” reionized Universe after BB

& Cosmic Beacons

Q: So, what limits the mass & luminosity of stars?

A: The force of light!

– light has momentum, p=E/c

– leads to “Radiation Pressure”

– radiation force from gradient of Prad

– gradient is from opacity of matter

– opacity from both Continuum or Lines

Continuum opacity fromFree Electron Scattering

Thompson Cross Section

th

e-

Th= 8/3 re2

= 2/3 barn= 0.66 x 10-24 cm2

Eddington limitEddington limit

The Eddington limit is when the radiative force on free electronsjust balances the gravitational force.

SUPER-Eddington: radiative force exceeds the force of gravity

Gravitational Force Radiative Force

Radiative force

grad = dν0

∫ κ ν Fν /c

~

e.g., compare electron scattering force vs. gravity

gel

ggrav

eL4GMc

r

L4 r2c

Th

e

GM2

• For sun, O ~ 2 x 10-5

• But for hot-stars with L~ 106 LO ; M=10-50 MO

.. .

if gray

=F /c

Mass-Luminosity Relation

dPgas

dr= −ρg

T ~M

R=>

ρT

R~

ρM

R2=>

L ~R4T 4

κM=>

T 4

κM /R2~

L

R2=>

Hydrostatic equilibrium (<<1):

dPrad

dτ=

F

c

Radiative diffusion:

L ~M 3

κ

~ M 2

(1− Γ)4

Mass-Luminosity Relation

Key point

• Stars with M ~ 100 Msun have L ~ 106 Lsun

=> near Eddington limit!

• Provides natural explanation why we don’t

see stars much more luminous (& massive)

than this.

Line-Driven Stellar Winds

• Stars near but below the Edd. limit have

“stellar winds”

• Driven by line scattering of light by

electrons bound to metal ions

• This has some key differences from free

electron scattering...

Q~ ~ 1015 Hz * 10-8 s ~ 107

Q ~ Z Q ~ 10-4 107 ~ 103

Line Scattering: Bound Electron Resonance

lines~QTh

glines~103g el

LLthin} iflines

~103

el 1

for high Quality Line Resonance,

cross section >> electron scattering

Optically Thick Line-Absorption in an Accelerating Stellar Wind

gthick~gthin

τ~

dvdr

≡ρ vth

dv /dr

LsobFor strong,

optically thick

lines:

~vth

v∞

R*

<< R*

CAK model of steady-state wind

inertia gravity CAK line-force

Solve for:

˙ M ≈Lc2

Q−⎛

⎝⎜

⎠⎟

α

−Mass loss rate

˙ M v∞ ∝ L1

αWind-Momentum

Luminosity Law

α ≈0.6€

v(r) ≈ v∞(1− R∗ /r)1/ 2

Velocity law

~vesc

Equation of motion:

v ′ v ≈ −GM(1− Γ)

r2+

Q L

r2

r2v ′ v ˙ M Q

⎝ ⎜

⎠ ⎟α α< 1

CAK ensemble ofthick & thin lines

Summary: Key CAK Scaling Results

˙ m ~F1/α

g1/α −1

~F 2

g

e.g., for α1/2

~ g

Mass Flux:

Wind Speed:

V∞ ~ Vesc

How is such a wind affected by (rapid) stellar rotation?

Vrot (km/s) = 200 250 300 350 400 450

Hydrodynamical Simulations of Wind Compressed Disks

But caution: These assume purely radial driving of wind

WCD Inhibition

• Net poleward line-force inhibits WCD

• Stellar oblateness => poleward tilt in radiative flux

r

Flux

N

Gravity Darkening

increasing stellar rotation

Non-radial line-force + gravity dark.:

Effect of gravity darkening on line-driven mass flux

~F 2(θ)

geff (θ)

α =1/2e.g., for

w/o gravity darkening, if F()=const.

~1

geff (θ)

˙ m (θ) highest at equator

~ F(θ)w/ gravity darkening, if F()~geff()

˙ m (θ) highest at pole

˙ m (θ) ~F(θ)1/α

geff (θ)1/α −1

Recall:

Effect of rotation on flow speed

V∞(θ) ~ Veff (θ) ~ geff (θ)

ω ≡Ω /Ωcrit

*€

ω =1

ω =0.9

geff (θ) ~ 1−ω2 Sin 2θ

Smith et al. 2002

Eta Car’s Extreme PropertiesPresent day:

1840-60 Giant Eruption:

=> Mass loss is energy or “photon-tiring” limited

Super-Eddington Continuum-Driven Winds

moderated by “porosity”

Porosity

• Same amount of material

• More light gets through

• Less interaction between matter and light

Incident light

Monte Carlo

Monte Carlo results for eff. opacity vs. density in a porous medium

Log(average density)

~1/ρLog(eff. opacity)

blobsopt. thin

blobsopt. thick

“critical densityρc

Pure-abs. model for “blob opacity”

eff ≈ l 2 [1− e−τ b ]

l

b ≡ κρ bl = κρl / f

eff ≡σ eff

mb

= κ1− e−τ b

τ b

≈ b

; τ b >>1

l

l

Key Point

eff ~1

ρFor optically thick blobs:

b = κρ cl / f ≡1

Blobs become opt. thick for densities above critical density ρc, defined by:

ρc =f

κl

volume filling factor

G. DindermanSky & Tel.

Shaviv 2001

Power-law porosity

Power-law porosity

M•

= 4πR*2ρ Sa

At sonic point:

≈L*

acΓ−1+1/α

eff (rS ) = Γρ c

ρ S

⎝ ⎜

⎠ ⎟

α

≡1

M•

CAK ≈L*

c 2QΓ( )

−1+1/α

Results for Power-law porosity model

Effect of gravity darkening on porosity-moderated mass flux

˙ m ≡˙ M

4πR2

~ F(θ)F(θ)

geff (θ)

⎝ ⎜ ⎜

⎠ ⎟ ⎟

−1+1/α

˙ m (θ)

~ F(θ)w/ gravity darkening, if F()~geff()

˙ m (θ) highest at pole

v∞(θ) ~ vgeff (θ) ~ geff (θ) highest at pole

Eta Carinae

Summary Themes

• Continuum vs. Line driving

• Prolate vs. Oblate mass loss

• Porous vs. Smooth medium

Future Work• Radiation hydro simulations of porous driving

• Cause of L > LEdd?

– Interior vs. envelope; energy source

• Cause of rapid rotation

– Angular momentum loss/gain

• Implications for:

– Collapse of rotating core, Gamma Ray Bursts

– Low-metalicity mass loss, First Stars