Botany:(PartIII...

45
Botany: Part III Plant Nutri0on

Transcript of Botany:(PartIII...

Page 1: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Botany:    Part  III  Plant  Nutri0on  

Page 2: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Figure 36.2-1

H2O and minerals

H2O

Plant  Nutri+on  and    Transport  

Water  and  minerals  in  the  soil  are  absorbed  by  the  roots.  

Transpira+on,  the  loss  of  water  from  leaves  (mostly  through  stomata),  creates  a  force  within  leaves  that  pulls  xylem  sap  upward.  

Page 3: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Transpira0on  

3  

Page 4: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

4  

GeDng  Water  Into  The  Xylem  Of  The  Root  

Page 5: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

5  

Genera+on  of  Transpira+onal  Pull  

In  addi+on  to  apoplas+c  and  symplas+c  movement,  there  are  newly  discovered  channels  called  aquaporins  that  allow  only  water  to  move  across  the  membrane.    Water  movement  through  aquaporins  is  quicker  since  no  lipids  are  involved.    

Page 6: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

6  

Movement  of  Minerals    Into  The  Root  

Plants  need  minerals  to  synthesize  organic  compounds  such  as  amino  acids,  proteins  and  lipids.    

Plants  obtain  these  minerals  from  the  soil  and  are  transported  by  various  transport  proteins.      

Page 7: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Macro-­‐  and  Micro-­‐  Nutrients  

Macronutrients  are  required  by  plants  in  rela+vely  large  amounts  and  compose  much  of    the  plant’s  structure.  

(C,  N,  O,  P,    S,  H,  K,  Ca,    Mg,  Si,  etc.  )  

Micronutrients  are  needed  in  very  small  quan++es.  Typically  func+on  as  cofactors.  

7  

Page 8: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Roots

Fungus

Mycorrhizae:  A  Mutualis+c  Rela+onship  

Page 9: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Figure 36.2-2

H2O and minerals

O2

CO2

CO2 O2

H2O •  Gas  exchange  occurs  

through  the  stomata.    

•  CO2  is  required  for  photosynthesis  and  O2  is  released  into  the  atmosphere.  

•  Roots  exchange  gases  with  the  air  spaces  in  the  soil,  taking  in  O2  and  releasing  CO2.  

Page 10: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Figure 36.2-3

H2O and minerals

O2

CO2

CO2 O2

H2O

Light

Sugar •  Sugars  are  produced  by  

photosynthesis  in  the  leaves.  

•  Phloem  sap(green  arrows)  can  flow  both  ways.  

•  Xylem  sap(blue  arrows)  transport  water  and  minerals  upward  from  roots  to  shoots.  

Page 11: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

•  Root  pressure  is  caused  by  ac+ve  distribu+on  of  mineral  nutrient  ions  into  the  root  xylem.    

•  Without  transpira+on  to  carry  the  ions  up  the  stem,  they  accumulate  in  the  root  xylem  and  lower  the  water  poten+al.    

•  At  night  in  some  plants,    root  pressure  causes    guZa+on  or  exuda+on    of  drops  of  xylem  sap    from  the  +ps  or  edges    of  leaves  as  pictured  here.  

11  

Water  Is  In  The  Root,  So  Now  What?  

Page 12: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

•  Water  then  diffuses  from  the  soil  into  the  root  xylem  due  to  osmosis.    

•  Root  pressure  is  caused  by  this  accumula+on  of  water  in  the  xylem  pushing  on  the  rigid  cells.    

•  Root  pressure  provides  a  force,  which  pushes  water  up  the  stem,  but  it  is  not  enough  to  account  for  the  movement  of  water  to  leaves  at  the  top  of  the  tallest  trees.  

12  

Water  Is  In  The  Root,  So  Now  What?  

Page 13: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

13  

Let’s  Apply  Some  TACT  To  The  Situa+on!  

A  more  likely  scenario  involves  the  Cohesion-­‐Tension  Theory  (also  known  as  Tension-­‐Adhesion-­‐Cohesion-­‐Transpira1on  or  TACT  Theory)  

Tension:  Water  is  a  polar  molecule.    !  When  two  water  molecules  approach  one  

another  they  form  an  intermolecular  aZrac+on  called  a    hydrogen  bond.    

!  This  aZrac+ve  force,  along  with  other  intermolecular  forces,  is  one  of  the  principal  factors  responsible  for  the  occurrence  of  surface  tension  in  liquid  water.    

!  It  also  allows  plants  to  draw  water  from  the  root  through  the  xylem  to  the  leaf.  

Page 14: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

14  

Let’s  Apply  Some  TACT  To  The  Situa+on!  

•  Adhesion  occurs  when  water  forms  hydrogen  bonds  with  xylem  cell  walls.      

•  Cohesion  occurs  when  water  molecules  hydrogen  bond  with  each  other.      

Page 15: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

15  

Let’s  Apply  Some  TACT  To  The  Situa+on!  

•  Transpira0on:    Water  is  constantly  lost  by  transpira+on  in  the  leaf.    

•  When  one  water  molecule  is  lost  another  is  pulled  along  by  the  processes  of  cohesion  and  adhesion.    

•  Transpira+on  pull,  u+lizing  capillary  ac+on  and  the  inherent  surface  tension  of  water,  is  the  primary  mechanism  of  water  movement  in  plants.    

Page 16: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

16  

Genera+on  of  Transpira+on  Pull  

Page 17: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Ode  To  The  Hydrogen  Bond  

Page 18: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Water  Poten0al  

•  Water  poten+al  quan1fies  the  tendency  of  free  (not  bound  to  solutes)  water  to  move  from  one  area  to  another  due  to  osmosis,  gravity,  mechanical  pressure,  or  matrix  effects  such  as  surface  tension.    

•  Water  poten+al  has  proved  especially  useful  in  understanding  water  movement  within  plants,  animals,  and  soil.    

•  Water  poten+al  is  typically  expressed  in  poten1al  energy  per  unit  volume  and  very  o`en  is  represented  by  the  Greek  leZer  psi,  ψ  .  (pronounced  as  “sigh”  )  

Page 19: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Water  Poten0al  

•  The  addi%on  of  solutes  to  water  lowers  the  water's  poten%al  (makes  it  more  nega+ve),  just  as  the  increase  in  pressure  increases  its  poten+al  (makes  it  more  posi+ve).  

•  Pure  water  is  usually  defined  as  having  an  osmo+c  poten+al  (ψ)  of  zero,  and  in  this  case,  solute  poten+al  can  never  be  posi+ve.  

•  Free  water  moves  from  regions  of  higher  water  poten0al  to  regions  of  lower  water  poten0al  if  there  is  no  barrier  to  its  flow.  

Page 20: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Water  Poten0al  •  The  word  “poten+al”  refers  to  water’s  poten1al  energy  which  is  water’s  capacity  to  perform  work  when  it  moves  from  a  region  of  higher  water  poten0al  to  a  region  of  lower  water  poten0al.    

•  The  water  poten+al  equa+on  is    ψ  =  ψS  +  ψP  where  ψ  is  the  water  poten+al,  ψS  is  the  solute  poten+al  (directly  propor+onal  to  its  molarity  and  some+mes  called  the  osmo+c  poten+al  and  the  ψS    of  pure  water  is  zero)    and    ψP  is  the  pressure  poten+al.    

Page 21: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Water  Poten0al  

•  ψP  is  the  physical  pressure  exerted  on  a  solu+on.  •  It  can  be  either  posi+ve  or  nega+ve  rela+ve  to  the  atmospheric  pressure.  

•  Water  in  a  nonliving  hollow  xylem  cells  is  under  a  nega+ve  poten+al  (tension)  of  less  than    −2  MPa.  

•  BUT  the  water  in  a  living  cell  is  usually  under  posi+ve  pressure  due  to  the  osmo+c  uptake  of  water.      

Page 22: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Solutes have a negative effect on ψ by binding water molecules.

Pure water at equilibrium

H2O

Adding solutes to the right arm makes ψ lower there, resulting in net movement of water to the right arm:

H2O

Pure water

Membrane Solutes

Positive pressure has a positive effect on ψ by pushing water.

Pure water at equilibrium

H2O

H2O

Positive pressure

Applying positive pressure to the right arm makes ψ higher there, resulting in net movement of water to the left arm:

Solutes and positive pressure have opposing effects on water movement.

Pure water at equilibrium

H2O

H2O

Positive pressure

Solutes

In this example, the effect of adding solutes is offset by positive pressure, resulting in no net movement of water:

Negative pressure (tension) has a negative effect on ψ by pulling water.

Pure water at equilibrium

H2O

H2O

Negative pressure

Applying negative pressure to the right arm makes ψ lower there, resulting in net movement of water to the right arm:

"

Page 23: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Solutes have a negative effect on ψ by binding water molecules.

Pure water at equilibrium

H2O

Adding solutes to the right arm makes ψ lower there, resulting in net movement of water to the right arm:

H2O

Pure water

Membrane Solutes

Positive pressure has a positive effect on ψ by pushing water.

Pure water at equilibrium

H2O

H2O

Positive pressure

Applying positive pressure to the right arm makes ψ higher there, resulting in net movement of water to the left arm:

Solutes and positive pressure have opposing effects on water movement.

Pure water at equilibrium

H2O

H2O

Positive pressure

Solutes

In this example, the effect of adding solutes is offset by positive pressure, resulting in no net movement of water:

Negative pressure (tension) has a negative effect on ψ by pulling water.

Pure water at equilibrium

H2O

H2O

Negative pressure

Applying negative pressure to the right arm makes ψ lower there, resulting in net movement of water to the right arm:

#

Page 24: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Solutes have a negative effect on ψ by binding water molecules.

Pure water at equilibrium

H2O

Adding solutes to the right arm makes ψ lower there, resulting in net movement of water to the right arm:

H2O

Pure water

Membrane Solutes

Positive pressure has a positive effect on ψ by pushing water.

Pure water at equilibrium

H2O

H2O

Positive pressure

Applying positive pressure to the right arm makes ψ higher there, resulting in net movement of water to the left arm:

Solutes and positive pressure have opposing effects on water movement.

Pure water at equilibrium

H2O

H2O

Positive pressure

Solutes

In this example, the effect of adding solutes is offset by positive pressure, resulting in no net movement of water:

Negative pressure (tension) has a negative effect on ψ by pulling water.

Pure water at equilibrium

H2O

H2O

Negative pressure

Applying negative pressure to the right arm makes ψ lower there, resulting in net movement of water to the right arm:

$

Page 25: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Solutes have a negative effect on ψ by binding water molecules.

Pure water at equilibrium

H2O

Adding solutes to the right arm makes ψ lower there, resulting in net movement of water to the right arm:

H2O

Pure water

Membrane Solutes

Positive pressure has a positive effect on ψ by pushing water.

Pure water at equilibrium

H2O

H2O

Positive pressure

Applying positive pressure to the right arm makes ψ higher there, resulting in net movement of water to the left arm:

Solutes and positive pressure have opposing effects on water movement.

Pure water at equilibrium

H2O

H2O

Positive pressure

Solutes

In this example, the effect of adding solutes is offset by positive pressure, resulting in no net movement of water:

Negative pressure (tension) has a negative effect on ψ by pulling water.

Pure water at equilibrium

H2O

H2O

Negative pressure

Applying negative pressure to the right arm makes ψ lower there, resulting in net movement of water to the right arm:

%

Page 26: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Water  Poten+al  vs.  Tonicity  

26  

Page 27: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Water  Poten+al  and  Plant  Vocabulary  

27  

Page 28: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Once  More  With  Feeling!  Ini+al  condi+ons:  cellular  ψ  greater  than  environmental  ψ  

0.4 M sucrose solution:

Initial flaccid cell:

Plasmolyzed cell at osmotic equilibrium with its surroundings

ψP = 0

ψ S = −0.7

ψ P = 0 ψ S = − 0.9

ψ P = 0 ψ S = − 0.9

ψ = − 0.9 MPa

ψ = − 0.7 MPa

ψ = − 0.9 MPa

Page 29: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Ini+al  condi+ons:  cellular  ψ  less  than  environmental  ψ  

Distilled water:

Initial flaccid cell:

Turgid cell at osmotic equilibrium with its surroundings

ψ P = 0 ψ S = − 0.7

ψ P = 0 ψ S = 0

ψ P = 0.7 ψ S = − 0.7

ψ = − 0.7 MPa

ψ = 0 MPa

ψ = − 0 MPa

Last  Time,  I  Promise!  

Page 30: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Wil0ng  

•  Turgor  loss  in  plants  causes  wil+ng  – Which  can  be  reversed  when  the  plant  is  watered  

Page 31: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Ascent  of  Xylem  Sap  

31  

Page 32: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Stomata  Regulate  Transpira+on  Rate  

32  

•  When  water  moves  into  guard  cells  from  neighboring  cells  by  osmosis,  they  become  more  turgid.      

•  The  structure  of  the  guard  cells’  wall  causes  them  to  bow  outward  in  response  to  the  incoming  water.      

•  This  bowing  increases  the  size  of  the  pore  (stomata)  between  the  guard  cells  allowing  for  an  increase  in  gas  exchange.  

Page 33: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Homeostasis  and  Water  Regula+on  

33  

•  By  contrast,  when  the  guard  cells  lose  water  and  become  flaccid,  they  become  less  bowed  ,  and  the  pore  (stomata)  closes.  

•  This  limits  gas  exchange.  

Page 34: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Role  Of  Potassium  Ion  In    Stomatal  Opening  And  Closing  

34  

H2O

H2O

H2O H2O

H2O

K+

H2O H2O

H2O

H2O H2O

The  transport  of  K+  (potassium  ions,  symbolized    here  as  red  dots)  across  the  plasma  membrane  and  vacuolar  membrane  causes  the  turgor  changes  of    guard  cells.  

Page 35: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Homeostasis  and  Water  Balance  

35  

•  Trees  that  experience  a  prolonged  drought  may  compensate  by  losing  part  of  their  crown  as  a  consequence  of  leaves  dying  and  being  shed.  

•  Resources  may  be  reallocated  so  that  more  energy  is  expended  for  root  growth  in  the  “search”  for  addi+onal  water.      

Page 36: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Natural  Selec+on  and  Arid  Environments  

36  

Page 37: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Natural  Selec+on  and  Arid  Environments  

37  

Plants  that  have  adapted  to  arid  environments  have  the  following  leaf  adapta+ons:  

1.  Leaves  that  are  thick  and  hard  with  few  stomata  placed  only  on  the  underside  of  the  leaf  

2.  Leaves  covered  with  trichomes  (hairs)  which  reflect  more  light  thus  reducing  the  rate  of  transpira+on  

3.  Leaves  with  stomata  located  in  surface  pits  which  increases  water  tension  and  reduces  the  rate  of    transpira+on    

4.  Leaves  that  are  spine-­‐like  with  stems  that  carry  out  photosynthesis  (cac+)  and  store  water.  

Page 38: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Natural  Selec+on  and  Flooding  

38  

•  Plants  that  experience  prolonged  flooding  will  have  problems.      

•  Roots  underwater  cannot  obtain  the  oxygen  needed  for  cell  respira+on  and  ATP  synthesis.  

•  As  a  result,  leaves  may  dry  out  causing  the  plant  to  die.      

•  Addi+onally,  produc+on  of  hormones  that  promote  root  synthesis  are  suppressed.    

Page 39: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Adapta+ons  to  Water  Environments  

39  

Page 40: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Adapta+ons  to  Water  Environments  

40  

Plants  that  have  adapted  to  wet  environments  have  the  following  adapta+ons:  

1.  Forma+on  of  large  len+cels  (pores)  on  the  stem.  2.  Forma+on  of  adven++ous  roots  above  the  water  

that  increase  gas  exchange.    3.  Forma+on  of  stomata  only  on  the  surface  of  the  

leaf  (water  lilies).  4.  Forma+on  of  a  layer  of  air-­‐filled  channels  called  

aerenchyma  for  gas  exchange  which  moves  gases  between  the  plant  above  the  water  and  the  submerged  +ssues.  

Page 41: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Bulk  Flow  of  Photosynthe+c  Products  

41  

Vessel (xylem)

H2O

H2O

Sieve tube (phloem)

Source cell (leaf)

Sucrose

H2O

Sink cell (storage root)

1

Sucrose

Loading of sugar (green dots) into the sieve tube at the source reduces water potential inside the sieve-tube members. This causes the tube to take up water by osmosis.

2

4 3

1

2 This uptake of water generates a positive pressure that forces the sap to flow along the tube.

The pressure is relieved by the unloading of sugar and the consequent loss of water from the tube at the sink.

3

4 In the case of leaf-to-root translocation, xylem recycles water from sink to source.

Tran

spir

atio

n st

ream

Pres

sure

flow

Page 42: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Nutri+onal  Adapta+ons  in  Plants  

•  Epiphytes-­‐  grow  on  other  plants,  but  do  not  harm  their  host  

•  Parasi0c  Plants-­‐absorb  water,  minerals,  and  sugars  from  their  host  

•  Carnivorous  Plants-­‐photosynthe+c  but  supplement  their  mineral  diet  with  insects  and  small  animals;  found  in  nitrogen  poor  soils  

42  

Page 43: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Halophytes  

43  

Page 44: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Adapta0ons  of  Plants:  Saline  Environments  

44  

•  Soil  salinity  around  the  world  is  increasing.      •  Many  plants  are  killed  by  too  much  salt  in  the  soil.    •  Some  plants  are  adapted  to  growing  in  saline  

condi+ons  (halophytes)  •  Have  spongy  leaves  with  water  stored  that  

dilutes  salt  in  the  roots  •  Ac+vely  transport  the  salt  out  of  the  roots  or  

block  the  salt  so  that  it  cannot  enter  the  roots  •  Produce  high  concentra+ons  of  organic  

molecules  in  the  roots  to  alter  the  water  poten+al  gradient  of  the  roots  

Page 45: Botany:(PartIII PlantNutrion(brannellybiology.weebly.com/uploads/.../botany_part_iii_plant_nutrtio… · Figure 36.2-1 H 2O and minerals H 2O PlantNutri+on&and&& Transport& Water&and&minerals&in&

Created  by:  

Jackie  Snow  AP  Biology  Teacher  and  Instruc+onal  Facilitator,  Belton  ISD  Belton,  TX