Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle...

57
Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009

Transcript of Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle...

Page 1: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Bose-Einstein Condensationof Dark Matter Axions

Pierre Sikivie (U. of Florida)

Center for Particle Astrophysics

Fermilab, August 6, 2009

Page 2: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

The Dark Matter is Axions

based on arXiv: 0901.1106

with Qiaoli Yang

I’ll argue:

Page 3: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Outline• Review of axion properties

• Cold dark matter axions form a Bose-Einstein condensate

• Axion BEC differs from ordinary CDM

• Compare CDM and axion BEC density perturbations with observations in three arenas

1. upon entering the horizon 2. in the linear regime within the horizon 3. in the non-linear regime

CDMaxionBEC

Page 4: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

The Strong CP Problem

Because the strong interactions conserve P and CP, .

2

QCD 2...

32a ag

L G G

1010

The Standard Model does not provide a reason for to be so tiny,

but a relatively small modification of the model does provide a reason …

Page 5: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

If a symmetry is assumed,

relaxes to zero,

PQU (1)

and a light neutral pseudoscalar particle is predicted: the axion.

2

2

1... .

32 2a a

aa

gL G G

f

af

Page 6: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

f f

a

a

610 GeVeV

aa fm

= 0.97 in KSVZ model 0.36 in DFSZ model

g

5fa f fa

L i g f ff

aa

L g E Bf

����������������������������

Page 7: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

The remaining axion window

laboratory searches

510 15101010 (GeV)af

(eV)am 1 510 1010

stellar evolution

cosmology

Page 8: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

There are two axion populations: hot and cold.

When the axion mass turns on, at QCD time,

1T

1t

1 1 GeVT 71 2 10 sect

91

1

1) 3 10 eV(ap t

t

Page 9: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Axion production by vacuum realignment

GeVT GeVT

V

a

V

a

initialmisalignmentangle

2 2 21 1 1 1

1

1

2

1

2( ) ( ) ( ) ( )a a at t t t

tn m f

1

0

3 7

60 1( ) ( )a aa a

at t

am mn

Page 10: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Cold axion properties

• number density

• velocity dispersion

• phase space density

5 347 31

3 12

( )4 10( )

cm 10 GeV ( )af a t

n ta t

1

1

( )1

( )v( )

a

a t

m t a tt

83 3

6112

34

3

(2 )( ) 10

10 GeV( v)

a

a

fn t

m

N

ifdecoupled

Page 11: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

The cold axions thermalize and therefore form a BEC

22

0 4 5

6

cm10 eV

m m

f

a

a a

a

24

2...a

m

f

L

0( ) v( ) ( )n t t H t but …

Page 12: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

At high phase space density

D. Semikoz and I. Tkachev, 1995, 1997

2scatt 0 vn N

relax 0 vn N

scattering rate

thermalization rate

61( 10 )N

relax 1 1(t H t

Page 13: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

More generally, axion-like particles (ALPs) form a BEC

without relationship between and

ALP oscillations start at

ALP number density

ALP velocity dispersion

f m

11

mt

12( )t f mn

v

Page 14: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

ALP phase space density

ALP self-coupling strength

ALP scattering cross-section

Hence ALP thermalization rate

1 1 1 1 0 1( ) ( ) 2 ( ) v( )

(1)

/t H t t n t t

O

N

2 2

3 2

6

( v)

n f

m m

N

2m

f

0 2m

Page 15: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

A critical aspect of axion BEC phenomenology is whether the BEC continues to thermalize after it has formed.

Axion BEC means that almost all axions go to one state.

However, only if the BEC continually rethermalizes does the axion state track

the lowest energy state.

Page 16: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

After the thermalization rate due to self-interactions is

at time

2n m

3 1( )( ) / ( ) ( ) a tt H t t a t

Self-interactions are insufficient to rethermalize axion BEC after t1even if they cause axion BEC at t1.

1t

1t

Page 17: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

However, the thermalization rate due to gravitational interactions

at time

2

3

12

2 2

10 GeV

g

f

G n m l

1t

-1with v)l m

1 ( )( ) / ( ) ( )g a tt H t t a t

Page 18: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Gravitational interactions thermalize the axions and cause them to form a BEC when the photon temperature

After that

1

2

12eV

10 GeV

fT

1v

m t

3 3( ) / ( ) ( )g t H t t a t

Page 19: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

axion BEC

Except for a tiny fraction, all axions are in the same state

2( ) [ ] ( ) ( )D x g x m xD

†( ) [ ( ) ( ) ]x a x a x

0†1

| (!

) | 0NNN

a

( 0)

N is the number ofaxions

Page 20: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

in a homogeneous and isotropic space-time.

0 3

2( )

im tA

a t

e

0 0 0 0

20 0 0 0

|

( )]

| [N T

g m

N N

Page 21: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

In Minkowski space-time

Let

then

Let

then

0 ( ) ( )imtx e x

21

2ti m

for non -relativisticmotion

( , )1( , ) ( , )

2i x tx t B x t

mNe

200 ( , ) ( , ) ( , )( )T x t x t m B x t

Page 22: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

hence

20 vj j jT B

1v( , ) = ( , )x t x t

m

22

1 1

4v v ( )j jjk k k jkT

m

stresses related to the Heisenberg uncertaintyprinciple tend to homogenize the axion BEC

Page 23: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

We have

and

with

( v) 0t ����������������������������

( )v v vt q ����������������������������������������������������������������������

2

2

1

2mq

To recover CDM, let m go to infinity

Page 24: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

In the linear regime, within the horizon,

axion BEC density perturbations obey

Jeans’ length

42

0 2 4( , ) 2 ( , ) 4 ( , ) 0

4t tk

k t H k t G k tm a

1 1

1 -5 292 42 144

J10 eV 10 g/cc

16 1.02 10 cmG mm

Page 25: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

In the linear regime within the

horizon, axion BEC and CDM are

indistinguishable on all scales

of observational interest,

but

axion BEC differs from CDM

in the non-linear regime &

upon entering the horizon

Page 26: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

CMBmultipoles

are aligned

quadrupole:

octupole: M. Tegmark, A. de Oliveira-CostaA. Hamilton, 2003

C. CopiD. HutererD. SchwarzG. Starkman, 2006

Page 27: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Upon entering the horizon

CDM density perturbations evolve linearly

the density perturbations in the axion BEC

evolve non-linearly because the axionBEC

rethermalizes

axion BEC provides a possible mechanism for

the alignment of CMBR multipoles through the

ISW effect.

Page 28: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

x

x.

DM particles in phase space

DM forms caustics in the non-linear regime

x

xx

.x

Page 29: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Phase space distribution of DM in a homogeneous universe

z

z.

ztHz )(v

-1210v

for WIMPs

Page 30: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

The dark matter particles lie on a 3-dimensional sheet in

6-dimensional phase space

the physical density is the projection of the phase space sheet onto position space ( , t) = t) ( , t)r r rv v

����������������������������������������������������������������������

z

z.

Page 31: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

The cold dark matter particles lie on a 3-dimensional sheet in

6-dimensional phase space

the physical density is the projection of the phase space sheet onto position space ( , t) = t) ( , t)r r rv v

����������������������������������������������������������������������

z

z.

Page 32: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Phase space structure of spherically symmetric halos

Page 33: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

(from Binney and Tremaine’s book)

Page 34: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.
Page 35: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Phase space structure of spherically symmetric halos

Page 36: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Galactic halos have inner caustics as well as outer caustics.

If the initial velocity field is dominated by net overall rotation, the inner caustic is a ‘tricusp ring’.

If the initial velocity field is irrotational, the inner caustic has a ‘tent-like’ structure.

(Arvind Natarajan and PS, 2005).

Page 37: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

simulations by Arvind Natarajan

Page 38: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

The caustic ring cross-section

an elliptic umbilic catastrophe

D-4

Page 39: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Galactic halos have inner caustics as well as outer caustics.

If the initial velocity field is dominated by net overall rotation, the inner caustic is a ‘tricusp ring’.

If the initial velocity field is irrotational, the inner caustic has a ‘tent-like’ structure.

(Arvind Natarajan and PS, 2005).

Page 40: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.
Page 41: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

On the basis of the self-similar infall model(Filmore and Goldreich, Bertschinger) with angular momentum (Tkachev, Wang + PS), the caustic rings were predicted to be

in the galactic plane

with radii

was expected for the Milky Way halo from the effect of angular momentum on the inner rotation curve.

1,2,3...n

maxj 0.18

rot max40kpc v j

220km/s 0.18n

na

Page 42: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Effect of a caustic ring of dark matter upon the galactic rotation curve

Page 43: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Composite rotation curve(W. Kinney and PS, astro-ph/9906049)

• combining data on

32 well measured

extended external

rotation curves

• scaled to our own galaxy

Page 44: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Inner Galactic rotation curveInner Galactic rotation curve

from Massachusetts-Stony Brook North Galactic Pane CO Survey (Clemens, 1985)

Page 45: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Outer Galactic rotation curve

R.P. Olling and M.R. Merrifield, MNRAS 311 (2000) 361

Page 46: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Monoceros Ring of stars

H. Newberg et al. 2002; B. Yanny et al., 2003; R.A. Ibata et al., 2003; H.J. Rocha-Pinto et al, 2003; J.D. Crane et al., 2003; N.F. Martin et al., 2005

in the Galactic planeat galactocentric distance appears circular, actually seen forscale height of order 1 kpcvelocity dispersion of order 20 km/s

may be caused by the n = 2 caustic ring of dark matter (A. Natarajan and P.S. ’07)

20 kpcr 0 0100 270l

Page 47: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

from L. Duffy and PS, Phys. Rev. D78 (2008) 063508

Page 48: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Tidal torque theory with CDM

The velocity field remains irrotational

v 0 ����������������������������

neighboringprotogalaxy

Page 49: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.
Page 50: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Tidal torque theory with axion BEC

Net overall rotation is produced because, in the lowest energy state, all axions fall with the same angular momentum

v 0 ����������������������������

Page 51: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.
Page 52: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Summary

• axion BEC and CDM are indistinguishable in the

linear regime inside the horizon on all scales of

observational interest.

• axion BEC may provide a mechanism for net

overall rotation in galactic halos.

• axion BEC may provide a mechanism for the

alignment of CMBR multipoles.

Page 53: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Implications:

1. At every point in physical space, the distribution of velocities is discrete, each velocity corresponding to a particular flow

at that location .

2. At some locations in physical space, where the number of flows changes, there is a caustic, i.e. the density of dark matter is very high there.

Page 54: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

- the number of flows at our location in the Milky Way halo is of order 100

- small subhalos from hierarchical structure formation produce an effective velocity dispersion

but do not destroy the sheet structure in phase space

- the known inhomogeneities in the distribution of matter are insufficient to diffuse the flows by gravitational scattering

- present N-body simulations do not have enough particles to resolve all the flows and caustics (see however: Melott and Shandarin, Stiff and Widrow, Shirokov and Bertschinger, and more recently: White and Vogelsberger, Diemand and Kuhlen.)

effv 30 km/s

Page 55: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Hierarchical clustering introduces effective velocity dispersion

effv

effv 30 km/s

Page 56: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

The Big Flow

• density

• velocity

• velocity dispersion

24 35 1.7 10 gr/cmd

previous estimates of the total local halo density range from 0.5 to 0.75 10 gr/cm-24 3

in the direction of galactic rotation

in the direction away from the galactic center

5v m/s

r

km/s)ˆ100ˆ470(v5 r

Page 57: Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.

Experimental implications

• for dark matter axion searches

- peaks in the energy spectrum of microwave photons

from conversion in the cavity detector

- high resolution analysis of the signal yields a more sensitive search (L. Duffy and ADMX collab.)

• for dark matter WIMP searches

- plateaux in the recoil energy spectrum from elastic WIMP collisions with target nuclei

- the total flux is largest around December

(Vergados; Green; Gelmini and Gondolo; Ling, Wick &PS)

a