Born Haber L4

22
Born-Haber Cycle

description

Born Haber L4

Transcript of Born Haber L4

Page 1: Born Haber L4

Born-Haber Cycle

Page 2: Born Haber L4

Born-Haber Cycles

• The Born–Haber cycle is an approach to analyzing reaction energies.

• It was named after and developed by the two German scientists Max Born and Fritz Haber.

• Born–Haber cycles are used primarily for calculating lattice enthalpies which cannot otherwise be measured directly.

• The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions. 

Page 3: Born Haber L4

For an ionic compound the lattice enthalpy is the enthalpy change when one mole of solid in its standard state is formed from its ions in the gaseous state.

The lattice enthalpy cannot be measured directly and so we make use of other known enthalpies and link them together with an enthalpy cycle.

This enthalpy cycle is the Born-Haber cycle.

What do we mean by lattice enthalpy?

- -

-

--

-

-

-

For an ionic compound the lattice enthalpy is the enthalpy change when one mole of solid in its standard state is formed from its ions in the gaseous state.

Page 4: Born Haber L4

http://www.tes.co.uk/teaching-resource/Lattice-Enthalpy-6354465/

Page 5: Born Haber L4
Page 6: Born Haber L4

1 Sublimation of Sodium

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

kJmol-1

-400

-300

-200

-100

H = +107kJmol-1 θS

Born-Haber Cycle for Sodium Chloride

Page 7: Born Haber L4

2 Bond Dissociation of Chlorine

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

H = +121kJmol-1θD½

Born-Haber Cycle for Sodium ChloridekJmol-1

Page 8: Born Haber L4

e-e-

e-

e-e-

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na+(g) + Cl(g)

H = +502kJmol-1θI

Born-Haber Cycle for Sodium Chloride

3 First Ionisation of Sodium

kJmol-1

Page 9: Born Haber L4

4 Electron Affinity of Chlorine

e-Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na+(g) + Cl(g)

Na+(g) + Cl-(g)

H = -355kJmol-1θE

Born-Haber Cycle for Sodium ChloridekJmol-1

-

Page 10: Born Haber L4

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

NaCl(s)

Born-Haber Cycle for Sodium Chloride

H = -411kJmol-1θF

Na+(g) + Cl(g)

kJmol-1

- -

-

--

5 Formation of Sodium Chloride

Na+(g) + Cl-(g)

Page 11: Born Haber L4

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

NaCl(s)

Lattice Enthalpy for Sodium Chloride

Na+(g) + Cl-(g)

H = -786 kJmol-1θL

Na+(g) + Cl(g)

Born-Haber Cycle for Sodium Chloride

- -

-

--

kJmol-1

Page 12: Born Haber L4

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

Na(s) + 1/2 Cl2(g)

Na(g) + 1/2 Cl2(g)

Na(g) + Cl(g)

0

+100

+200

+300

+400

+500

+600

+700

+800

-400

-300

-200

-100

NaCl(s)

Na+(g) + Cl-(g)

H = -786 kJmol-1θL

Na+(g) + Cl(g)

Born-Haber Cycle for Sodium Chloride

- -

-

--

kJmol-1

H = -411kJmol-1θF

H = -355kJmol-1θEH = +502kJmol-1

H = +121kJmol-1

H = +107kJmol-1

= -1141kJmol-1

Page 13: Born Haber L4

Born-Haber Cycle

Max Born 1882-1970 German physicist and mathematician who was instrumental in the development of quantum mechanics

Fritz Haber 1868-1934 German chemist. Nobel Prize winner in Chemistry in 1918 for synthesis of ammonia.

Page 14: Born Haber L4

Born-Haber Cycle - NaCBorn-Haber Cycle - NaCll

1

6

54

3

2

Na(s) + ½Cl2(g)

NaCl(s)

Na(g) + ½Cl2(g)

Na(g) + Cl(g)

Na+(g) + Cl(g)

Na+(g) + Cl–(g)

Enthalpy of formation of NaCl

Na(s) + ½Cl2(g) ——> NaCl(s)

Enthalpy of sublimation of sodium

Na(s) ——> Na(g)

Enthalpy of atomisation of chlorine

½Cl2(g) ——> Cl(g)

Ist Ionisation Energy of sodium

Na(g) ——> Na+(g) + e¯

Electron Affinity of chlorine

Cl(g) + e¯ ——> Cl¯(g)

Lattice Enthalpy of NaCl

Na+(g) + Cl¯(g) ——> NaCl(s)

1

2

3

4

5

6

Lattice Enthalpy is exothermic. Oppositely charged ions are attracted to each other.

Lattice Enthalpy is exothermic. Oppositely charged ions are attracted to each other.

Page 15: Born Haber L4

Born-Haber Cycle - NaCBorn-Haber Cycle - NaCll

1

6

54

3

2

Na(s) + ½Cl2(g)

NaCl(s)

Na(g) + ½Cl2(g)

Na(g) + Cl(g)

Na+(g) + Cl(g)

Na+(g) + Cl–(g)

CALCULATING THE LATTICE ENTHALPY CALCULATING THE LATTICE ENTHALPY

Apply Hess’s Law

16 5 4 3 2 = - - - - +

The minus shows you are going in the opposite direction to the definition

= - (-355) - (+502) - (+121) - (+107) + (-411)= - 786 kJ mol-1

Page 16: Born Haber L4

Born-Haber Cycle - NaCBorn-Haber Cycle - NaCll

1

6

54

3

2

Na(s) + ½Cl2(g)

NaCl(s)

Na(g) + ½Cl2(g)

Na(g) + Cl(g)

Na+(g) + Cl(g)

Na+(g) + Cl–(g)

CALCULATING THE LATTICE ENTHALPY CALCULATING THE LATTICE ENTHALPY

Apply Hess’s Law

16 5 4 3 2 = - - - - +

The minus shows you are going in the opposite direction to the definition

= - (-364) - (+500) - (+121) - (+108) + (-411)= - 786 kJ mol-1

OR…

Ignore the signs and just use the values;

If you go up you add, if you come down you subtract the value

= - - - -

= (355) - (502) - (121) - (107) - (411)= - 786 kJ mol-1

16 5 4 3 2

Page 17: Born Haber L4

Your Task: Your Task: Draw the Born-Haber cycle for - MgCl2

Enthalpy of formation of MgCl2

Mg(s) + Cl2(g) ——> MgCl2(s)

Enthalpy of sublimation of magnesium

Mg(s) ——> Mg(g)

Enthalpy of atomisation of chlorine

½Cl2(g) ——> Cl(g) x2

Ist Ionisation Energy of magnesium

Mg(g) ——> Mg+(g) + e¯

2nd Ionisation Energy of magnesium

Mg+(g) ——> Mg2+(g) + e¯

Electron Affinity of chlorine

Cl(g) + e¯ ——> Cl¯(g) x2

Lattice Enthalpy of MgCl2

Mg2+(g) + 2Cl¯(g) ——> MgCl2(s)

Page 18: Born Haber L4

1

65

4

3

2

Mg(s) + Cl2(g)

MgCl2(s)

Mg(g) + Cl2(g)

Mg(g) + 2Cl(g)

Mg2+(g) + 2Cl–(g)

7

Mg+(g) + 2Cl(g)

Mg2+(g) + 2Cl(g)

Enthalpy of formation of MgCl2

Mg(s) + Cl2(g) ——> MgCl2(s)

Enthalpy of sublimation of magnesium

Mg(s) ——> Mg(g)

Enthalpy of atomisation of chlorine

½Cl2(g) ——> Cl(g) x2

Ist Ionisation Energy of magnesium

Mg(g) ——> Mg+(g) + e¯

2nd Ionisation Energy of magnesium

Mg+(g) ——> Mg2+(g) + e¯

Electron Affinity of chlorine

Cl(g) + e¯ ——> Cl¯(g) x2

Lattice Enthalpy of MgCl2

Mg2+(g) + 2Cl¯(g) ——> MgCl2(s)

1

2

3

4

5

7

6

Born-Haber Cycle - MgCBorn-Haber Cycle - MgCll22

Page 19: Born Haber L4

Value ∆Ho (kJmol-1)

Enthalpy of sublimation of Magnesium 148

Ist Ionisation energy of magnesium 738

2nd Ionisation energy of magnesium 1451

Enthalpy of atomisation of chlorine gas 244

1st electron affinity of chlorine -364

Lattice energy of MgCl2 -2526

Determine the enthalpy of formation of MgCl2

Page 20: Born Haber L4

1

65

4

3

2

Mg(s) + Cl2(g)

MgCl2(s)

Mg(g) + Cl2(g)

Mg(g) + 2Cl(g) Mg2+(g) + 2Cl–(g)

7

Mg+(g) + 2Cl(g)

Mg2+(g) + 2Cl(g)

Enthalpy of formation of MgCl2

Mg(s) + Cl2(g) ——> MgCl2(s)

Enthalpy of sublimation of magnesium

Mg(s) ——> Mg(g)

Enthalpy of atomisation of chlorine

½Cl2(g) ——> Cl(g) x2?

Ist Ionisation Energy of magnesium

Mg(g) ——> Mg+(g) + e¯

2nd Ionisation Energy of magnesium

Mg+(g) ——> Mg2+(g) + e¯

Electron Affinity of chlorine

Cl(g) + e¯ ——> Cl¯(g) x2

Lattice Enthalpy of MgCl2

Mg2+(g) + 2Cl¯(g) ——> MgCl2(s)

1

2

3

4

5

7

6

Born-Haber Cycle - MgCBorn-Haber Cycle - MgCll22

148

244

738

1451 -364 x 2

-2526

-673

Page 21: Born Haber L4

http://www.tes.co.uk/teaching-resource/Born-Haber-Cycle-6354470/

Page 22: Born Haber L4