Blood glucose control - Rensselaer Polytechnic...

26
Artificial Pancreas Improved blood glucose regulation using (i) frequent subcutaneous and (ii) infrequent blood glucose measurements B. Wayne Bequette, Sandra Lynch and Francis Moussy (U. Conn.) Presented at the Diabetes Technology Conference, San Francisco, November 2001

Transcript of Blood glucose control - Rensselaer Polytechnic...

Page 1: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

Artificial Pancreas

Improved blood glucoseregulation using

(i) frequent subcutaneous and

(ii) infrequent blood glucosemeasurements

B. Wayne Bequette, Sandra Lynchand Francis Moussy (U. Conn.)

Presented at the Diabetes Technology Conference, San Francisco, November 2001

Page 2: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Overview

l Motivationl Sensor/Pump/Control state of the artl Feedback control

Ø State estimation

Ø Model predictive control

l Simulation resultsØ Single-rate (subcutaneous glucose only)

Ø Multi-rate (s.c. & capillary blood glucose)

l Future work

Page 3: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Motivation

DCCT (1983-93) Intensive Therapy Regimen- 1400 IDDM volunteers

l Advantages - reduced risk of:Ø Eye disease by 76%

Ø Kidney failure by 50%

Ø Nervous disease by 60%

l DisadvantagesØ Three times risk of hypoglycemic

incidences

Page 4: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Feedback Control: Basic Idea

controller

desired glucoseconcentration

pump patient

insulinflowrate

pumpspeed

bloodglucoseconcentration

sensormeasured glucoseconcentration

Page 5: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Current Practice

l Patient serves as “feedback controller”

l Several “finger pricks”/day for capillaryblood glucose measurement

l Multiple injections/day, or continuousinfusion

Page 6: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Pump & Sensor Technology

l External (worldwide) & internal (Europe)pumps available

l Many sensors under developmentØ Glucose electrodes, microdialysis, non-

invasive

l Minimed - FDA approval for 3-day useØ Glucose electrode

Ø Re-calibrate daily w/blood glucose

Ø Return to physician for analysis

Page 7: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Control Background

l Many simulation studiesØ IV and s.c. (sensor and infusion)

l ExperimentsØ Human - s.c. sensor, s.c. & i.v. infusion, PD control

(Shimoda et al., 1997)

Ø Animal - venous blood, adaptive control (Fisher etal., 1987)

l Medical Research Group (Shah et al., 2000)Ø Animal - IV sensor and implantable pump

l Our focus - s.c. infusion, s.c. glucose sensor

Page 8: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Motivation for Our Multi-rate MPC Research

l Experience with anesthesia & classicalchemical process control

l New/improved sensors (Moussy)Ø Long-term implantable electrode

l State estimation-based model predictive controlØ Frequent samples - s.c. glucose

Ø Infrequent samples - capillary blood glucose

l Estimate blood glucose and meal disturbances(frequently), and s.c. sensor sensitivity(infrequently)

Page 9: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Subcutaneous measurements

l Subcutaneous glucose measurementavailable at frequent intervals

l Use model to:Ø Estimate meal disturbance

Ø Estimate blood glucose

Page 10: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Estimation - Basic Idea

Blood glucose

Measured subcutaneous glucose

Sensor

Insulin infusionrate

Meal disturbance

IDDMPatient

+_

PatientModel

ModelFeedback

SensorModel

Predicted subcutaneousglucose

Estimates: Blood glucose Subcutaneous glucose Glucose meal disturbance

Estimator

Page 11: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Discrete-time Model

xk +1 = Φxk + Γuk + Γdd k

dk +1 = dk + wk

yk = Cxk + vk

insulin glucose meal

disturbance

subcutaneous

glucose

glucose (blood and s.c.),

insulin states

zero-mean white noise

Form an augmented state description toperform disturbance estimation

Page 12: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Estimation: Basic idea of Kalman Filter

l Based on expected measurement andprocess noise, estimate the “maximumlikelihood” values for the state variables

l Original formulation is for perfectlymodeled systems

l Technique extended for parameter ordisturbance estimation (Extended KalmanFilter)

Page 13: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Kalman Filter w/Augmented States

xk +1

dk +1

xk +1a

1 2 3 =

Φ Γd

0 1

Φ a

1 2 4 3 4

xk

dk

x ka

{+

Γ0

Γ a{

uk +0

1

Γ a , w{

wk

yk = C 0[ ]Ca

1 2 3 xk

dk

x ka

{+ vk

Predictor-corrector equations:

ˆ x k |k−1a = Φa ˆ x k−1|k−1

a + Γauk −1

ˆ x k |ka = ˆ x k |k −1

a + Lk yk − Ca ˆ x k|k−1a( )

Kalman gain

Augmented state (includes mealdisturbance)

Measured s.c. glucose

Insulin infusion

Aug. state

estimate

Page 14: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Model Predictive Control

t kcurrent step

setpoint

y

actual outputs (past)

PPredictionHorizon

past controlmoves

u

max

min

MControl Horizon

past future

model prediction

t k+1current step

setpoint

yactual outputs (past)

PPredictionHorizon

past controlmoves

u

max

min

MControl Horizon

model predictionfrom k

new model prediction

Find current and future insulininfusion rates that best meet adesired future blood glucosetrajectory. Implement first “move.”

Correct for model mismatch(estimate states), thenperform new optimization.

Page 15: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Model Predictive Control

l SimulationØ Neural model - Trajonoski et al.

Ø Linear model (various) - Parker et al.n I.V. sensor and infusion

l ExperimentØ Linear (GPC) - Kan et al.

n Insulin & glucose infusion, venous blood sampling

Page 16: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Simulation Study Using S.C. Sensor

l Simulated Type I DiabeticØ 19 State (Sorenson, 1985)

Ø Also studied by Parker et al. (1999),among others

l Model for Estimator/ControllerØ Modified Bergman “minimal model”

Ø Parameters fit to Sorenson step response

Ø Augmented state for meal disturbance

Page 17: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Simulation Results: S.C. Sensor

0 50 100 150 200 250 300 350 40065

70

75

80

85

90

95

100

Blood Glucose concn, mg/

time, min

SetpointActualEstimated

0 50 100 150 200 250 300 350 40065

70

75

80

85

90

Sc Glucose concn, mg/dL

time, min

ActualEstimated

0 50 100 150 200 250 300 350 4000

10

20

30

40

50

60

insulin infusion rate, mU/min

time,min

50 g glucose mealdisturbance

5% measurementnoise (s.d. = 3.8 mg/dl)

Estimator modelassumes first-order lagbetween blood and s.c.glucose

Page 18: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Simulation Results - S.C. Sensor Degradation

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70Time (hours)

Actual Blood glucoseSetpointEstimated blood glucose

50

60

70

80

90

100

0 10 20 30 40 50 60 70

Time (hours)

Sc bloodglucose(actual)

Sc blood glucose(est.)

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70Time (hours)

Insu

lin in

fusi

on

rat

e (m

U/m

in)

00.05

0.10.15

0.20.25

0.3

0 10 20 30 40 50 60 70

Time (hours)

Va

ria

tio

n o

f S

en

so

r g

ain

A

50% sensorsensitivity decreaseover 3 days

Motivates additionalblood capillarymeasurement for s.c.sensor calibration

Page 19: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Estimation: Improved (Multi-Rate)

l Problem with s.c. glucose measurementØ Sensor sensitivity changes

l Solution: Incorporate infrequent bloodcapillary measurements

l Use model to:Ø Estimate meal disturbance (5 min)

Ø Estimate blood glucose (5 min)

Ø Update s.c. sensor sensitivity atinfrequent intervals (~4 times/day)

Page 20: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Simulation results:Multirate

0 10 20 30 40 50 60 7060

70

80

90

100

Blood Glucose concn, m

time,hours

SetpointActualEstimated

0 10 20 30 40 50 60 7060

70

80

90

Sc Glucose concn, mg/dL

time, hrs

ActualEstimated

0 10 20 30 40 50 60 700

20

40

60

insulin infusion rate, mU/min

time,hrs

0 10 20 30 40 50 60 700.245

0.25

0.255

Parameter A

estimateactual

5% s.c. noise

(s.d. = 3.8 mg/dl)

2% capillary blood noise

(s.d. =1.6 mg/dl)

Page 21: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Simulation results:Multirate

0 10 20 30 40 50 60 70 8060

70

80

90

100

Blood Glucose concn, m

time,hours

SetpointActualEstimated

0 10 20 30 40 50 60 70 8060

70

80

90

100

Sc Glucose concn, mg/dL

time, hrs

ActualEstimated

0 10 20 30 40 50 60 70 800

20

40

60

insulin infusion rate, mU/min

time,hrs

0 10 20 30 40 50 60 70 800.1

0.15

0.2

0.25

A

time,hrs

estimateactual

•Sensor degradation (50% over 3 days)

•Sensitivity estimate

5% s.c. noise

(s.d. = 3.8 mg/dl)

2% capillary blood noise

(s.d. =1.6 mg/dl)

Page 22: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Proposed Work

l Additional simulation-based studiesl Develop sensor/computer/pump

interconnectionsØ Glucose sensor

Ø Estimation/control algorithms

Ø External insulin infusion pump

l Experimental studiesØ Dogs

Page 23: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Implantable Sensor

WC- -

ORKING ELECTRODE:oiled Pt wire coated with:poly(o-phenylenediamine) filmGO/albumin/glutaraldehyde

REFERENCE ELECTRODE:Coiled Ag/AgCl wire

0.5 mm

glucose

oxygen

Platinum electrode PPD Nafion

Glucose oxidase/albumin/glut.

e-

negat.

+

Schematic diagram of the sensor's membranes with their functions. Not to scale.

H 2O2

Figure 4: Implantable Glucose Sensor

small electrochem.interferences

entire sensor coated with Nafion

mol.large

Page 24: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Summary

l State estimation-based model predictivecontrol

l Frequent s.c. glucose measurementsØ Estimate blood glucose and meal

disturbance

l Infrequent blood capillary glucosemeasurementsØ Estimate (update) s.c. sensor sensitivity

l Simulation resultsl Future experimental work

Page 25: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

Acknowledgments

l Brian AufderheideØ Model development

Page 26: Blood glucose control - Rensselaer Polytechnic Instituterpi.edu/.../faculty/bequette/presentations/bwb_glucose.pdf · 2002-01-18 · Artificial Pancreas Improved blood glucose regulation

B. Wayne Bequette

References

The Diabetes Control and Complications Trial Research Group “The Effect of Intensive Treatment of Diabetes on theDevelopment and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus,” N. Eng. J. Med.,329:977-986 (1993).

Fisher, U., W. Schenk, E. Salzsieder, G.Albrecht, P. Abel and E.J. Freyse “Does Physiological Blood Glucose ControlRequire an Adaptive Control Strategy?,” IEEE Trans. Biomed. Eng., 34(8):575-582 (1987).

Gross, T.M., B.W. Bode, D. Einhorn, D.M. Kayne, J.H. Reed, N.H. White and J.J. Mastrototaro “PerformanceEvaluation of the MiniMed Continuous Glucose Monitoring System During Patient Home Use,” Diabetes Technologyand Therapeutics, 2(1), 49-56 (2000).

Jaremko, J. and O. Rorstad “Advances Toward the Implantable Artificial Pancreas for Treatment of Diabetes,” DiabetesCare, 21(3):444-450 (1998).

Kan, S., et al. “Novel Control System for Blood Glucose Using a Model Predictive Method,” ASAIO J. 657-

Mercado, R.C. and F. Moussy “In Vitro and In Vivo Mineralization of Nafion Membrane Used for Implantable GlucoseSensors,” Biosensors and Bioelectronics, 13(2):133-145 (1998).

Parker, R.S., F.J. Doyle, III and N.A. Peppas “A Model-Based Algorithm for Blood Glucose Control in Type I DiabeticPatients,” IEEE Trans. Biomed. Eng., 46(2), 148-157 (1999).

Parker, R.S., F.J. Doyle, III and N.A. Peppas “The Intravenous Route to Blood Glucose Control,” IEEE Engineering inMedicine and Biology Magazine, 20(1), 65-73 (Jan/Feb, 2001).

Shah, R., M. Miller, Y. Zhang, T. Bordeaux, K. Torres, B. Moran and R. Lebel “Glucose Sensor Control of anImplantable Insulin Pump,” presented at the American Diabetes Association Conference (abstract 509), June (2000).

Shichiri, M., M. Sakakida, K. Nishida and S. Shimoda “Enhanced, Simplified Glucose Sensors: Long-Term ClinicalApplication of Wearable Artificial Endocrine Pancreas,” Artificial Organs, 22(1):32-42 (1998).

Sorensen, J.T. A Physiologic Model of Glucose Metabolism in Man and Its Use to Design and Assess Improved InsulinTherapies for Diabetes,” Ph.D. Thesis, Dept. Chem. Eng., MIT, Cambridge, MA (1985).

Trajanoski, Z. and P. Wach “Neural Predictive Controller for Insulin Delivery Using the Subcutaneous Route,” IEEETrans. Biomed. Eng., 45(9):1122-1134 (1997).

Valdes, T.I. and F. Moussy “A Ferric Chloride Pre-treatment to Prevent Calcification of Nafion Membrane Used forImplantable Biosensors,” Biosensors and Bioelectronics, 14:579-585 (1999).