Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete...

24
Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington Seattle, Washington 98195-1560. USA [email protected] Abstract This is the first of two papers presenting different versions of quasi-classical toy models for the non-singular evolution of the geometry and the associated effective stress-energy tensor for a spherically symmetric black hole that evolves into a white hole and eventually disappears after evaporating down to the Planck scale. The ansatz for the geometry is inspired by calculations of the semi-classical stress-energy tensor in the Schwarzschild background and ideas from loop quantum gravity for a nonsingular transition to the white hole. In this paper the main emphasis is on the evolution of the black hole, and the evolution of the white hole is assumed to be essentially the time reverse of that of the black hole. The negative energy of the Hawking "partners" flows out of the white hole to future null infinity. The white hole disappears when the matter and radiation that collapsed to form the black hole emerges. I discuss the compatibility of the model with some of the quantum energy conditions proposed in the literature, and, briefly, the implications for the interpretation of black hole entropy. The second paper considers how the evolution of the white hole can be modified to avoid prolonged emission of negative energy. I. INTRODUCTION The discovery of Hawking radiation from black holes 1 over 40 years ago led to the assertion 2 of a fundamental breakdown of predictability in the evolution of quantum fields following gravitational collapse to form a black hole. The argument was that the Hawking radiation is in a mixed state entangled with negative energy Hawking "partners" inside the black hole that decrease the mass of the black hole to compensate for the positive energy Hawking radiation going to future null infinity. If the black hole has an event horizon and evaporates completely, the result is apparently a loss of quantum information and a breakdown of unitarity for external observers. This "information paradox" is now widely considered an unacceptable conflict with fundamental quantum field theory, requiring drastic departures from the original semi-classical analysis of Hawking, though Unruh and Wald 3 have argued to the contrary. Complete evaporation of the black hole without release of the trapped quantum information does raise serious issues, particularly in the light of the AdS/CFT conjecture 4 , in which gravity in the bulk is supposed to be dual to a manifestly unitary conformal field theory on the AdS boundary.

Transcript of Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete...

Page 1: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

BlackholestowhiteholesI:Acompletequasi-classicalmodel

JamesM.Bardeen

PhysicsDepartment,Box1560,UniversityofWashingtonSeattle,Washington98195-1560.USA

[email protected]

Abstract

Thisisthefirstoftwopaperspresentingdifferentversionsofquasi-classicaltoymodelsforthenon-singularevolutionofthegeometryandtheassociatedeffectivestress-energytensorforasphericallysymmetricblackholethatevolvesintoawhiteholeandeventuallydisappearsafterevaporatingdowntothePlanckscale.Theansatzforthegeometryisinspiredbycalculationsofthesemi-classicalstress-energytensorintheSchwarzschildbackgroundandideasfromloopquantumgravityforanonsingulartransitiontothewhitehole.Inthispaperthemainemphasisisontheevolutionoftheblackhole,andtheevolutionofthewhiteholeisassumedtobeessentiallythetimereverseofthatoftheblackhole.ThenegativeenergyoftheHawking"partners"flowsoutofthewhiteholetofuturenullinfinity.Thewhiteholedisappearswhenthematterandradiationthatcollapsedtoformtheblackholeemerges.Idiscussthecompatibilityofthemodelwithsomeofthequantumenergyconditionsproposedintheliterature,and,briefly,theimplicationsfortheinterpretationofblackholeentropy.Thesecondpaperconsidershowtheevolutionofthewhiteholecanbemodifiedtoavoidprolongedemissionofnegativeenergy.

I.INTRODUCTION

ThediscoveryofHawkingradiationfromblackholes1over40yearsagoled

totheassertion2ofafundamentalbreakdownofpredictabilityintheevolutionofquantumfieldsfollowinggravitationalcollapsetoformablackhole.TheargumentwasthattheHawkingradiationisinamixedstateentangledwithnegativeenergyHawking"partners"insidetheblackholethatdecreasethemassoftheblackholetocompensateforthepositiveenergyHawkingradiationgoingtofuturenullinfinity.Iftheblackholehasaneventhorizonandevaporatescompletely,theresultisapparentlyalossofquantuminformationandabreakdownofunitarityforexternalobservers.This"informationparadox"isnowwidelyconsideredanunacceptableconflictwithfundamentalquantumfieldtheory,requiringdrasticdeparturesfromtheoriginalsemi-classicalanalysisofHawking,thoughUnruhandWald3havearguedtothecontrary.Completeevaporationoftheblackholewithoutreleaseofthetrappedquantuminformationdoesraiseseriousissues,particularlyinthelightoftheAdS/CFTconjecture4,inwhichgravityinthebulkissupposedtobedualtoamanifestlyunitaryconformalfieldtheoryontheAdSboundary.

Page 2: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

2

2

Thethermodynamicentropyofablackholeinteractingwithitssurroundings5isidentifiedwiththeBekenstein-Hawkingentropyproportionaltotheareaoftheeventhorizon.Inunitswith G = c = 1 , SBH = A / 4!( ) .Normallythethermodynamicentropyofaquantumsystemisidentifiedwithitstotalnumberofquantumdegreesoffreedom,whichinturnisthemaximumpossiblevalueoftheentanglement(vonNeumann)entropy SvN .IftheHawkingradiationisentangledwithdegreesoffreedominsidetheblackhole,asinthestandardsemi-classicaltheoryofHawkingradiation,Page6hasshownthat SvN becomesequalto SBH atthePagetime,whentheblackholehaslostonlyaboutonehalfofitinitialmass.IftheblackholecontinuesemittingHawkingradiationafterthePagetime,asonewouldexpectforanyblackholewithamassmuchgreaterthanthePlanckmass

mp ,either

SvN > SBH orthelateHawkingradiationmustbeentangledwiththeearlyHawkingradiation.Ifthelatter,bythemonogamyofentanglementthelateHawkingradiationcannotbeentangledwithHawking"partners"insidetheblackholehorizon,resultingina"firewall"ofhighlyexcitedquantapropagatingonorjustinsidetheblackholehorizon7.

Controversyovertheseissueshasragedrightuptothepresenttime.SeereviewsbyMarolf8andPolchinski9.Abigpartoftheproblemisthelackofawidelyacceptedtheoryofquantumgravity.Naively,forverylargeblackholesthesemi-classicaltheoryofquantumfluctuationspropagatingonaclassicalgeometryshouldbeanexcellentapproximation.TidalaccelerationsatthehorizonofaverylargeastrophysicalblackholearenolargerthanthoseinlaboratoriesontheEarth,wherequantumfieldtheoryhasbeentestedwithexquisiteprecision.Ihavearguedatlengthelsewhere10thatthesemi-classicalphysicsinthevicinityofthehorizonofalargeblackholeprecludesanysubstantialstorageofquantuminformationonornearthehorizon,andthatalmostallofthequantuminformationentangledwiththeHawkingradiationendsupinthedeepinterioroftheblackhole.

However,thatdoesnotmeanthequantuminformationisirretrievablyswallowedupbyasingularity.Theclassicalsingularitytheoremsrelyonenergyconditionsthatareviolatedinquantumfieldtheory.Variousmoreorlessadhocnonsingularblackholemodels,someinspiredbyloopquantumgravity(LQG)11,havebeenproposed.Onepossibilityisthatquantumbackreactionsimplystopscollapseshortofasingularity,whichrequiresaninnertrappinghorizon.Iftheinnerandoutertrappinghorizonseventuallymergeanddisappear,thequantuminformationcanescape,assuggestedbyHayward12.MoreorlesssimilarmodelshavebeenproposedbyHossenfelder,etal13,RovelliandVidotto14,Frolov15,DeLorenzo,etal16,andBardeen17.ReleaseofquantuminformationbythePagetimerequiresalargequantumbackreactioninregionsoflowcurvature.Thenegativesurfacegravityoftheinnertrappinghorizonraisesseriousquestionsaboutitsstabilityandtheviabilityofthesemodels.

Aninterestingalternativeistheconversionoftheblackholeintoawhitehole,asdiscussedingeneraltermsbyModesto18andbyAshtekarandBojowald19.Moreexplicitmodelsareinreferences[20,,21,22,23,24],amongothers.InsomeofthesethereisaCauchyhorizontothefutureoftheblackholeinterior,whichleavesthe

Page 3: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

3

3

unitarityissuesunresolved.WhatisrequiredisanonsingularquantumtransitionfromtheblackholetoawhiteholejnaspacetimewiththecausalstructureofMinkowskispacetime.Thetrappedquantuminformationescapesfromthewhiteholeandpropagatesouttofuturenullinfinity.Modelsthatinvokequantumtunnelingfromalargeblackholedirectlytoawhitehole,suchasthatofHaggardandRovelli22,Ifindlessconvincingthanthosewithasmoothtransitionofthegeometry,asinRef.[23].Ashtekar,Olmedo,andSingh24(AOS)adaptedproposalstoresolvecosmologicalsingularitiesinLQGtosuggestaparticulareffectivegeometryinwhichthe2-sphereareahasanonzerominimumonaspacelikehypersurfaceseparatingtheinterioroftheblackholefromtheinteriorofthewhitehole.However,theAOSmodelassumesafixedblackholemass,andhasnoprovisionfortheHawkingradiationthatshoulddominatequantumcorrectionsatlargeradii.Itisinconsistentwithsemi-classicalquantumtheoryatlargeradiiwherequantumcorrectionstothegeometryaresmall,asdiscussedinPartIIofthispaper.

InPartIIIIproposeablackholetoawhiteholemodelwithasmootheffectivegeometrythroughthetransition,somewhatsimilartothatoftheAOSmodelwhiletheblackholeislarge,butthatallowstheevaporationandeventualdisappearanceoftheblackholeatthePlanckscale.TherearenoCauchyhorizons,consistentwithunitaryevolutionforobserversatlargeradii.Themodelassumesaneffectivequasi-classicalmetricevenwherequantumfluctuationsinthegeometryareexpectedtobeverylarge,andthereforeshouldonlybeconsideredasuggestionofwhatmightbepossibleinquantumgravity.Theeffectivestress-energytensorderivedfromtheeffectivemetric,unlikethatoftheAOSmodel,isbroadlyconsistentwiththeformofthesemi-classicalstress-energytensor(SCSET)outsidetheblackholehorizon.APlanck-scalewhiteholeiscreated(foranexternalobserver)astheblackholedisappears,andgrowsbyemittingnegativeenergy.

Howtheeffectivestress-energytensorofthemodelrelatestocertainquantumenergyconditionsisdiscussedinPartIV.Itdoesseemtosatisfytheaveragednullenergycondition(ANEC)andrelatedquantumnullenergycondition(QNEC).However,therearecontentiousissuesrelatingtotheevolutionofthewhitehole.IpointoutreasonstodoubtthattheclaimofDeLorenzoandPerez25thatinstabilityassociatedwithexponentiallyincreasingblueshiftsalongthewhiteholehorizonimpliesaveryshortlifetimeforthewhitehole.Ontheotherhand,Ref.[23]arguedforaPlanck-scalewhiteholewithalifetimemuchlongerthanthatoftheblackhole.InthemodelIdescribeheretheevolutionofthewhiteholeisroughlythetime-reverseoftheevolutionoftheblackhole,withthenegativeenergyHawking"partners"flowingoutofthewhiteholetofuturenullinfinity.TheprolongedemissionofnegativeenergywouldseemtoviolatetheFord-Roman26theoremsonminimumaverageenergydensitiesforquantumfieldsinMinkowskispacetime.Alternativesfortheevolutionofthewhiteholewillbeconsideredinacompanionpaper.

PartVhasasummaryandfurtherdiscussionofsomekeyissues,suchaswhytheMinkowskiminimumenergydensitytheoremsmaynotapply,andwhytheentanglemententropyofablackholewithaPlanck-scaleareacangreatlyexceeditsBekenstein-Hawkingentropy.

Page 4: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

4

4

II.EFFECTIVEMETRICSFROMLQG

TworecentdiscussionsofquantummodificationstothegeometryofSchwarzschildblackholes,basedonslightlydifferentquantizationschemesinLQG,arethoseofAshtekarandOlmedo27(AO),extendingtheresultsofAOStotheblackholeexterior,andofGambini,Olmedo,andPullin28(GOP).InAOthesquareofpropercircumferentialradius R isexpressedintermsofacoordinate r as

R2 = r 2 + a2

4r 2 , (2.1)

whichhasaminimumvalueof a2 at r2 = a2 / 2 ,wherethereisasmoothtransition

fromtrappedsurfacesintheblackhole r 2 > a2 / 2( ) toanti-trappedsurfacesinthe

whitehole r 2 < a2 / 2( ) .AOSarguefromLQGthat

a2 = γ L0δ c M = 12

γ( )4/3Δ2/3 M 2/3

4π 2( )1/3 , (2.2)

Here γ = 0.2375 istheBarbero-ImmirziparameterofLQGandintermsofthefundamentalareagapparameter Δ = 5.17! ,

L0δ c =

12

γ Δ2

4π 2 M⎛⎝⎜

⎞⎠⎟

1/3

. (2.3)

Themassparameter M ≫ a isdefinedsuchthat r = 2M attheblackholehorizon.Insidetheblackholehorizon,where r istimelikeandtheKillingvector ∂/ ∂t

isspaceliketheAOquantum-modifiedmetriccanbewrittenas

ds2 = − R

r⎛⎝⎜

⎞⎠⎟

2 γ 2δ b2

sin2 δ bb( ) dr 2 + 2MR

⎛⎝⎜

⎞⎠⎟

2 sin2 δ bb( )γ 2δ b

2 1+sin2 δ bb( )γ 2δ b

2

⎣⎢⎢

⎦⎥⎥

−2

dt2 (2.4)

plustheangularpart R2dΩ2 ,with

cos δ bb( ) = b0

b0 +1( ) r / 2M( )b0 − b0 −1( )b0 +1( ) r / 2M( )b0 + b0 −1( )

, b0 ≡ 1+ γ 2δ b2 . (2.5)

Thecoordinate t issingularat r = 2M ,where cos δ bb( ) = 1 and sin δ bb( ) = 0 ,butthecontinuationto r > 2M istrivial,with

sin2δ bbγ 2δ b

2 →−sinh2δ bbγ 2δ b

2 =2M / r( )b0 −1⎡

⎣⎢⎤⎦⎥ b0 +1( )2

− b0 −1( )22M / r( )b0⎡

⎣⎢⎤⎦⎥

b0 +1+ b0 −1( ) 2M / r( )b0⎡⎣⎢

⎤⎦⎥

2 . (2.6)

TheAOSvalueof γδ b is γδ b = 0.5995 ! / M 2( )1/6,and

b0 −1≡ ε = 0.1800 ! / M 2( )1/3

.ChangingtoEddington-Finkelstein(EF)coordinates,withanadvancedtime

coordinate v ,constantoningoingradialnullgeodesics,resolvesthecoordinatesingularityonthefuturehorizonoftheblackhole,andthemetricbecomes

ds2 = −e2ψ grrdv2 + 2eψ dvdr + R2dΩ2 , (2.7)

Page 5: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

5

5

with

eψ = 1

4r

2M⎛⎝⎜

⎞⎠⎟

ε

2+ ε + ε 2Mr

⎛⎝⎜

⎞⎠⎟

1+ε⎡

⎣⎢⎢

⎦⎥⎥

2

≅ r2M

⎛⎝⎜

⎞⎠⎟

ε

(2.8)

and

grr = 1− 2Mr

⎛⎝⎜

⎞⎠⎟

1+ε⎡

⎣⎢⎢

⎦⎥⎥

r 2

R2

2+ ε( )2− ε 2 2M / r( )1+ε⎡

⎣⎢⎤⎦⎥

2+ ε + ε 2M / r( )1+ε⎡⎣⎢

⎤⎦⎥

2 . (2.9)

Thisgeometryhassomeverypeculiarproperties.Itisnotasymptoticallyflatintheconventionalsense,since eψ → ∞ as r →∞ .AOarguethatbychangingthecoordinate t to !t = eψ t andtaking r →∞ atconstant !t the(nownon-static)metricdoesbecomeinaweaksenseasymptoticallyflat,withawell-definedADMmass.However,theMisner-Sharpquasi-localmassiscoordinate-invariantandgoestozeroasymptotically.AspointedoutbyFaraoniandGiusti29,noinitiallyoutgoingtimelikegeodesicscanreachinfiniteradius.

ThequitedifferenteffectivemetricofGOPisbasedonaLQGspinnetworkwithevenspacingincircumferentialradius δ ∼ " ,whichischosenfor"simplicity".TheeffectivemetricinthecoordinatesofEq.(5.3)is

ds2 = − 1− 2Mr

+ Δ4π

2M( )4

r 4 r + 2M( )2

⎣⎢⎢

⎦⎥⎥

dv2 + 2 1+ δ2r

⎛⎝⎜

⎞⎠⎟

dvdr + r 2dΩ2. (2.10)

Theydonottrytomodelthetransitiontothewhitehole,andonlyconsidertheeffectivemetricat r > r0 ∼ "M( )1/3

.As r →∞ theenergydensityfallsoffas

δ 2M + 3δ / 4( ) / r 4 andtheradialandtransversestressesas δ / r3 .TheasymptoticMisner-Sharpmassisequalto M +δ .WhilemorereasonablethantheAOmetric,quantumcorrectionsinthesemi-classicalregimearestilllargerelativetothesemi-classicalfieldtheoryexpectationofquantumcorrectionsproportionalto ! .

BothAOS/AOandGOPcompletelyignoretheevolutionoftheblackholeduetotheemissionofHawkingradiation.Theanalysesarebasedindifferentwaysonsymmetry-reducedHamiltonians,whichIexpectareinherentlyincapableofproperlyaccountingforallquantumcorrectionstotheeffectivemetricandstress-energytensor.

III.MODELINGANEVAPORATINGBLACKHOLE

Inconstructingamodelfortheevolutionofthegeometryofanevaporating

blackholeandthetransitiontoawhitehole,assumingsphericalsymmetry,itishighlyadvantageoustoworkinEFcoordinates.Theadvancedversionwithadvancetime v isregularontheblackholetrappinghorizon.Theretardedversion,withretardedtime u constantonoutgoingradialnullgeodesics,isregularonthewhiteholeanti-trappinghorizon.Furthermore,aspointedoutbyBardeen30,theEinsteinequationsforageneralsphericallysymmetricmetricinthesecoordinatesare

Page 6: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

6

6

remarkablysimple.Theadvancedversionwiththecircumferentialradiusasacoordinate,fromnowonjustdenotedby r is

ds2 = −e2ψ grrdv2 + 2eψ dvdr + r 2dΩ2 , (3.1)Theretardedversiondiffersonlyinthesignof gur .TheMisner-Sharpmassfunction

m hasthecoordinate-independentdefinition .TheEinstein

equationsthatdeterminetheeffectivestress-energytensorfrom and

ψ v,r( ) are

4πTv

v = − 1r 2

∂m∂r

⎛⎝⎜

⎞⎠⎟ v

, 4πTvr = 1

r 2

∂m∂v

⎛⎝⎜

⎞⎠⎟ r

, 4πTrv = 1

r∂e−ψ

∂r⎛⎝⎜

⎞⎠⎟ v

, (3.2)

with Tθ

θ = Tϕϕ from

Tr ;α

α ≡ 0 .TheretardedversionofEqs.(3.2),with v → u ,isexactly

thesame.Thephysicalstress-energytensorcomponents(e.g., e−ψTv

r and eψTr

v )areinvariantunder r -independentrescalingsof v (or u ).

Somemodelsforblackholeinteriorshavesuggestedamassfunction m similartothatofHayward12,

m = Mr3

r3 + 2Ma2 . (3.3)

IntheHaywardnonsingularmodelofanevaporatingblackholethemassparameter

M = M v( ) intheblackholeinterior, eψ = 1 inadvancedEFcoordinates,and a isaconstant.Thestress-energytensorcurvatureinvariantsareregularat r = 0 ,whichisjusttheoriginofasphericalcoordinatesysteminalocallyflatgeometry.Howeveranon-singulartransitiontoawhiteholerequiresaminimumvalueof r > 0 .

Iassumeatransitiontothewhiteholeataminimumradius r = a similartothatofAOSandAO.WhilethemetricofEq.(3.1)issingularthere,thecoordinatesingularitycanberesolvedbychangingtheradialcoordinatefrom r to z suchthat

r2 = z2 + a2. (3.4)

ThisisequivalenttoEq.(2.1),buthasasimplerform.Thecoordinate z ,definedtobenegativeintheblackholeandpositiveinthewhitehole,increasestothefutureinsideboththeblackholeandwhiteholehorizonsandiszeroatthetransition.However,foranevaporatingblackhole,an a2 proportionalto M 2/3 ,asinAOSandAO,wouldbetime-dependent.Instead,Iwillmakethemuchsimplerassumptionthat a2 isaPlanck-scaleconstant,perhapsrelatedtotheareagapparameterofLQG.

With z insteadof r asacoordinateand a2 aconstant,theadvancedEFmetricgiveninEq.(3.1)becomes

ds2 = −e2ψ v g zzdv2 − 2eψ v dvdz + r 2dΩ2 , g zz = r 2

z2 grr , eψ v = − zr

eψ v ,r( ). (3.5)

Theretardedformis

ds2 = −e2ψ u g zzdu2 − 2eψ u dudz + r 2dΩ2 , g zz = r 2

z2 grr , eψ u = + zr

eψ u,r( ). (3.6)

∇αr∇αr = 1− 2m / r

m v,r( )

Page 7: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

7

7

Inasmoothtransitionfromtheblackholetothewhitehole, gzz , ,and vary

smoothly,implying grr = 1− 2m / r = 0 and eψ → ∞ at z = 0 .Eqs.(3.2)become

4πTv

v = − 1zr

∂m∂z

⎛⎝⎜

⎞⎠⎟ v

, 4πTvz = 1

r 2

∂m∂v

⎛⎝⎜

⎞⎠⎟

, 4πeψ vTzv = a2

r 2 −zr 2

∂ψ v

∂z⎛⎝⎜

⎞⎠⎟ z

, (3.7)

with

2m = r 1− z2

r 2 g zz⎛⎝⎜

⎞⎠⎟

. (3.8)

Justreplace v by u togettheexpressionsinretardedEFcoordinates.ThecausalrelationshipsinmymodelareillustratedinthePenrosediagram

ofFig.1.Theblackholeisformedbyaninfluxofmatter/radiationalongradialnullgeodesicsina"thick"nullshellofmass betweenadvancedtimes and .AninfinitesimallythinshellisnotphysicallyrealisticwhenconsideringgeometryatclosetothePlanckscale.TheblackholeevaporatesslowlybyemittingHawkingradiationfor 0 > v > v2 ,witha"horizon"(notaneventhorizon)definedasthe"outgoing"nullhypersurface,bydefinitionat u = 0 ,whoseradiusfor v > v2 slowlydecreasesuntiltrappedsurfacesdisappearandtheblackholeendsatthe2-surfacewhere g

zz = 0 at r = a .The"ingoing"nullhypersufaceatthis2-surface,bydefinitionat v = 0 ,becomesthewhiteholehorizonfor z > 0 .Theblackholeapparent(trapping)horizonisthetimelikehypersurfaceonwhich g

zz = 0 justoutsidetheblackholehorizon.Thewhiteholeapparent(anti-trapping)horizonisthehypersurfaceonwhich, g

zz = 0 ,justoutsidethewhiteholehorizonandtimelikeifthewhiteholemassisincreasingorjustinsidethewhiteholehorizonifthewhiteholemassisdecreasing..Intheinteriorofthecollapsingshellthereisaspacelikeoutertrappinghorizonindicatedbythelowerblueline.Thewhiteholeendsinthereboundingshellbetween u2 and u1 .

InthemodelconsideredinthispapertheHawking"partners"areassumedtopropagatealongingoingradialnullgeodesicsintheblackholeandalongoutgoingnullgeodesicsinthewhiteholeandouttofuturenullinfinity,asindicatedbytheblackarrows.Analternatepictureofpartnerpropagationinsidetheblackholeispropagationalong"outward"radialnullgeodesics(stillingoingincircumferentialradius),butthiswouldmakelittledifferenceinhowtheblackholetransitionstothewhitehole.Ifanything,itwouldevenmorestronglysupporttheassumptionthattheHawking"partners"shouldpropagatealongoutgoingradialnullgeodesicsinthewhitehole.

Imakenoattempttoexplicitlymodelthedynamicsoftheradiationandevolutionofthegeometryintheinterioroftheshell,excepttonotethatinsidetheshellthegeometryshouldbeMinkowski(regionM1).However,whentheinneredgereaches ,quantumbackreactionmustgenerateaspacelikeinnertrappinghorizon,indicatedbytheupperblueline,thatconnectswiththeinneredgeofthe

transitionhypersurfaceattheouteredgeoftheshell,asindicatedbytheupperblueline.Potentialinstabilityduetonegativesurfacegravityoftheinner

ψ v ψ u

M0 v1 v2

r = 0

r = a

Page 8: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

8

8

trappinghorizonshouldnotbeaproblem,sinceitdoesn'tneedtolastlong.ThereisanotherMinkowskiregionM2tothefutureofthereboundingshell.

Figure1.APenrosediagramshowingathicknullshellcominginfrompast

nullinfinitytoformablackholethattransitionsintoawhitehole.Seethetextfordetails.

APenrosediagramcanbeverymisleadingastowhateventsarecloseto

otherevents.Theadvancedtime overwhichtheblackholeevaporatesis,enormouslygreaterthantherangeofadvancedtime overwhichthe

blackholeforms,andthebounceofthecollapsingshellpresumablytakesplace.Also,theHawkingradiationreachesfuturenullinfinityoverwhatappearsasaninfinitesimalrangeofretardedtimeinthediagram,butwhichisactuallycomparableto asmeasuredbyadistantobserversousidetheblackhole.

Myansatzesforthemetricfunctions and eψ v intheregionoutsidethe

shellareinthespiritofEq.(3.3),butwithaddedflexibilitytobettermatchtheform

v = 0

u = 0

r = a

v0

u2

M1

M2

BH

WH

v1

v2

r =

0

u1

−v2

∼M03 / " ∼ M0

−v2

gzz

Page 9: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

9

9

oftheSCSETintheexterioroftheblackholesuggestedbynumericalcalculationsforspin0andspin1fields10.Unfortunately,theunknownspin2(graviton)contributiontotheSCSETpresumablydominates,sincethespin2traceanomalyismorethan10timesthespin1traceanomalyinmagnitude.Bothmetricfunctionsshouldberegularfunctionsof z2 (i.e., r )at ,implying there.

Myexpressionfor is

g zz = 1− 2Mr 2 +αa2r

r3 + βa2r + γ 2M( )a2 . (3.9)

Foralarge( M ≫ a )slowlyevaporatingblackhole,themetricisSchwarzschildin

thelimit r ≫ Ma2( )1/3

and M istheblackholemass.CalculationsoftheSCSETshow10thatclosetotheblackholehorizonthereisaninflowofnegativeenergy,balancingtheoutwardflowofpositiveenergyHawkingradiationatlargeradii.Justhowthisnegativeenergypropagatesinsidetheblackholeissomewhatuncertain.Iwillassumethat M = M ′t( ) ,where ′t = v forall r < 2M insidetheblackholeandshouldbecomearetardedtimeatlargeradiioutsidetheblackhole.

Consideraslowlyevaporatingblackhole,withHawkingluminosity

LH = −dM / d ′t ≪1 .Slowevaporationisplausiblethroughoutthelifetimeoftheblackhole,with LH → 0 attheendoftheblackhole.Thegeometryisquasi-staticSchwarzschildfor r > 2M aslongaslongas 2M / a≫1 and r ≪ M / LH .Fortheinterpolationbetweenadvancedandretardedtime,Idefine ′t implicitlyby ′t = v − 2r +12M −16M 2 / r − 4M ln r / 2M( ). (3.10)Tofirstorderin LH ,

∂ ′t∂v

⎛⎝⎜

⎞⎠⎟ r

= 1− 4LH ln r2M

− 4+ 8Mr

⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥

−1

(3.11)

and

∂ ′t∂r

⎛⎝⎜

⎞⎠⎟ v

= −2− 4Mr

+ 16M 2

r 2

⎛⎝⎜

⎞⎠⎟

∂ ′t∂v

⎛⎝⎜

⎞⎠⎟ r

(3.12)

Byconstruction ′t anditsfirstderivativesarecontinuousacross r = 2M .TheansztzofEq.(3.10)doesnotaccountforHawkingradiationemittedwhen M and

LH werelargerinthepast,butthisisirrelevantforthecurrentevolutionoftheblackhole.Forsimplicity,theparameters , ,and willjustbetakentobeconstants.

Themetricfunction ψ v controlshowthecoordinateadvancedtime v isrelatedtoalocalproperdistancesandtimes.Howitvariesfromoneingoingradialnullgeodesictoanotherisagaugechoice,butfromEqs.(3.7)howitvariesalongthesegeodesicsisrelatedtothe Tz

v componentofthestress-energytensor.Theexpectationisthatgravitationaltimedilationcouldbecomeimportantduetoquantumbackreactioninthedeepinterioroftheblackhole,correspondingto e

ψ v

z = 0 1− 2m / r = 0

gzz

α β γ

Page 10: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

10

10

becomingsmallrelativetoitsasymptoticvalue,whichItaketobeone.Myansatzfortheinterioroftheblackhole,consistentwiththeformofthesemi-classicalstress-energytensor,hasthreeadditionalparametersδ ,ε ,andφ :

e−ψ v = 1+δ a2

2Mr+ ε a2

r 2 +φ2Ma2

r3

⎣⎢

⎦⎥. (3.13)

Intheexterior, r > 2M ,thedominantcontributiontothestress-energytensoratlarge r istheHawkingradiation,andinretardedEFcoordinatesthedominantcomponentis

Tu

r = −LH / 4πr 2( ) .TransformingtoadvancedEFcoordinates,

Tv

r = ∂u∂v

⎛⎝⎜

⎞⎠⎟ r

Tur = Tu

r , Trv = ∂v

∂r⎛⎝⎜

⎞⎠⎟ u

∂u∂r

⎛⎝⎜

⎞⎠⎟ v

Tur = −4Tu

r 1+O 2Mr

⎛⎝⎜

⎞⎠⎟

⎛⎝⎜

⎞⎠⎟

. (3.14)

Thenatlarge r

∂ψ v

∂r⎛⎝⎜

⎞⎠⎟ v

= 4πrTrv ⇒ψ v = 4LH ln r

2M⎛⎝⎜

⎞⎠⎟+O LH

2Mr

⎛⎝⎜

⎞⎠⎟

. (3.15)

Thiscanbeaccommodatedbymodifyingtheansatz(3.13)for r > 2M to

e−ψ v = 1− 4LH ln r

2M− 4+ 8M

r⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥ 1+δ a2

2Mr+ ε a2

r 2 +φ2Ma2

r3

⎣⎢

⎦⎥ , (3.16)

consistentwithcontinuityof Trv at r = 2M .Theaddedfactorisjust

∂ ′t / ∂v( )r

−1.

Afterthe transitiontothewhiteholeIswitchtoretardedEddington-FinkelsteincoordinatesandthemetricofEq.(3.6),regularatthewhiteholeapparenthorizon,andmakethesimple,butquestionable,assumptionthatthenegativeenergyassociatedwiththeHawking"partners"afterflowingatconstant v insidetheblackholeflowsoutthroughthewhiteholeatconstantretardedtime u .Thismeans ′t = ′t u( ) for z > 0 ,with u definedinrelationtotheadvancedtimefor

z < 0 by u = −v at z = 0 .Since ′t = v intheblackhole,inthewhitehole ′t = −u .Theexpressionfor g

zz inEq.(3.9)remainsthesame,butwith M = M u( ) = M − ′t( ) .Then

∂M / ∂u( )r

= −dM / d ′t = +LH , ∂M / ∂r( )u= 0. (3.17)

Eq.(3.13)for e−ψ u alsoremainsthesame.The z = 0 hypersurfacemustbe

spacelike, ,with gzz → 0 attheendoftheblackholeandthebeginningofthe

whiteholeat u = v = 0 .The2-surfaceswith gzz < 0 onthewhiteholesideareanti-

trappedsurfaces,with r increasingtothefutureon"ingoing"aswellasoutgoingradialnullgeodesics.

Attheevaporationendpointthemassparameter Mmin is,fromEq.(3.9),

2Mmin

a= 1+ β −α

1−γ. (3.18)

z = 0

gzz < 0

Page 11: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

11

11

Amodestrestrictionontheparametersthatconsiderablysimplifiesthecalculationsandinterpretationofthemodelistotakeα = β + γ ,giving 2Mmin / a = 1.Then g

zz becomes

g zz = 1−γ a2

r 2

⎛⎝⎜

⎞⎠⎟

1− 2Mr

⎛⎝⎜

⎞⎠⎟

/ 1+ β a2

r 2 + γ2Ma2

r3

⎛⎝⎜

⎞⎠⎟

. (3.19)

Aphysicallysensiblemodelrequires 0 < γ <1 , β + γ > −1.Withtheserestrictionsthereisonlyoneapparenthorizonfortheblackholeandoneforthewhitehole,bothat r = 2M everywhereoutsidethemattershell.TheexistenceofHawkingradiationrequirestheexistenceofatrappinghorizonfortheblackhole,soIassumethattheHawkingluminosity LH smoothlygoestozeroas M → Mmin and v → 0 .

Themassfunction m fromEq.(3.8)canbeinsertedintothefirstofEqs.(3.7),usingEq.(3.19)for g

zz ,withtheresultfor r ≤ 2M

8πTvv = a2

r 4 1−1+ a2

r 2

⎛⎝⎜

⎞⎠⎟β + γ( ) + 2 2M

r⎛⎝⎜

⎞⎠⎟

− z2

r 2 2γ − 3γ 2Mr

+ g zz 2β + 3γ 2Mr

⎛⎝⎜

⎞⎠⎟

⎛⎝⎜

⎞⎠⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

1

1+ β a2

r 2 + γ2Ma2

r3

⎢⎢⎢⎢

⎥⎥⎥⎥

⎪⎪

⎪⎪

⎪⎪

⎪⎪

. (3.20)

Also,

4πTvz = 4π r

z⎛⎝⎜

⎞⎠⎟

Tvr = −LH

zr

∂ ′t∂v

⎛⎝⎜

⎞⎠⎟ r

r 4 + βr 2a2 −αγ a4⎡⎣ ⎤⎦r3 + βra2 + γ 2M( )a2⎡⎣ ⎤⎦

2 . (3.21)

Thevanishingof Tvz at z = 0 isconsistentwithasmoothtransitionfrominflowof

(negative)energyintheblackholetooutflowofnegativeenergyatconstant u inthewhitehole.

The Rzv = 8πTz

v Einsteinequationgivesinsidetheblackhole

4πeψ vTzv = a2

r 4 1− z2δ / 2Mr( ) + 2ε / r 2 + 3φ 2M / r3( )⎡⎣

⎤⎦

1+δa2 / 2Mr( ) + εa2 / r 2 +φ 2Ma2 / r3( )⎡⎣

⎤⎦

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪. (3.22)

Then Tzz canbefoundfromtheidentity

Tzz = −eψ vT zv = Tv

v − g zzeψ vTzv . (3.23)

Afterthetransitiontothewhitehole, z ispositive.Iassumethattheonlychangeintheexpressionsfor g

zz and e−ψ u from e

−ψ v isthat M = M u( ) .Derivativesof M areevaluatedusingEqs.(3.17).Theexpressionsfor , ,and Tz

u arethesameasEq.(3.20),Eq.(3.21),and(3.22). Tu

z like Tvz ispositive.

Tofurtherclarifytheblackholetowhiteholetransition,project ontoan

orthonormaltetradwithfuture-directed4-velocity andradialunitvector pointingawayfromtheshell.Where insidetheblackholeandwhitehole

Tuu

Tuz

Tαβ

uα nα

gzz < 0

Page 12: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

12

12

apparenthorizons,andparticularlyinthevicinityof z = 0 ,itisnaturaltoset uv = 0 ,sothe4-velocityisorthogonaltoaspacelikedisplacementatconstant z .Since uz > 0 ,theremainingcomponentsinadvancedcoordinatesare

uv = e−ψ v / −g zz , uz = −g zz , uz = −1/ −g zz . (3.24)

Theradialbasisvectorhas nv > 0 so n

v = e−ψ v / −g zz , nz = 0, nv = eψ v −g zz , nz = −1/ −g zz . (3.25)Theenergydensity ,theenergyflux ,andtheradialstress are

E = −Tz

z − −g zz( )−1e−ψ vTv

z = −Tzz − F , Pr = Tv

v − F. (3.26)Inretardedcoordinatesinsidethewhiteholeapparenthorizon,

uu = e−ψ u / −g zz , uz = −g zz , uz = −1/ −g zz , (3.27)

nu = −e−ψ u / −g zz , nz = 0, nu = −eψ u −g zz , nz = −1/ −g zz . (3.28)

Theenergydensity,energyflux,andradialstressare

E = −Tz

z − −g zz( )−1e−ψ uTu

z = −Tzz + F , Pr = Tu

u + F. (3.29)

Since e−ψ uTu

z and e−ψ vTv

z areidenticalfunctionsof z andtheblackholeandwhite

holeframesareidenticalat z = 0 ,theenergyfluxgoessmoothly C1( ) frompositive

intheblackholetonegativeinthewhitehole.Theenergyfluxissingularat g

zz = 0 ,becausethe uv = 0 frameisinfinitelyboostedrelativetoanylocalinertialframe.Asimplechoiceofframevalidwhere

isthestaticframe,definedby .Thenoutsidetheblackhole

E = −Tv

v − g zz( )−1e−ψ vTv

z = −Tvv − F , Pr = Tz

z − F. (3.30)Outsidethewhitehole

E = −Tu

u − g zz( )−1e−ψ uTu

z = −Tuu + F , Pr = Tz

z + F. (3.31)

Takingintoaccountthechangeinframeacross gzz = 0 ,thesignsof F and E + Pr do

notchangeacrossanapparenthorizon, E ≅ Pr ≅ −F fortheblackhole,and

E ≅ Pr ≅ +F forthewhitehole.Thereisnosingularityin F inafree-fallframe.

The componentoftheEinsteintensorisrathercomplicated,and Tθ

θ = Tϕϕ

canmosteasilybefoundfromthe conservationequation.Inadvancedcoordinatesfortheblackhole,

2Tθ

θ = 1r

r 2Tzz( )

,r+ re−ψ v eψ vTr

v( ),v− rψ v ,r g

zz + r2

g zz,r

⎛⎝⎜

⎞⎠⎟

eψ vTzv , (3.32)

andsimilarlyforthewhitehole. isfiniteat z = 0 inspiteofasingulartermin

,becausethesingulartermdoesnotdependon .

E F Pr

gzz > 0 uz = 0

Gθθ

Tr ;µ

µ = 0

Tθθ

Trv = r / z( )Tz

v v

Page 13: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

13

13

At z = 0 ,

g zz = 1−γ( ) 1− 2M / a( ) / 1+ β + γ 2M / a( )( ), (3.33)

Thestress-energytensorreducesto

a2Tv

v = −1+ 2g zz( ) / 8πa2( ), Tvz = 0, eψ vTz

v = −2 8πa2( ), (3.34)

Theenergydensityisthesameandpositive, E = −Tz

z = +1/ 8πa2( ) ,everywhereonthetransitionhypersurface.However,

E + Pr = g zz / 4πa2( ) isnegative.The

expressionfor Tθθ israthercomplicatedingeneral,butinthelimit 2M / a≫1 at

z = 0 , 8πa2Tθθ = 10−11/ γ .

At r ≫ 2Ma2( )1/3

,inthesemi-classicalregimewherequantumcorrectionstothegeometryaresmall,theSCSETisfirst-orderin ! ,i.e.,first-orderinanexpansioninpowersof a2 .Inthislimit

2m = 2M + 1+α( ) a2

r− β 2Ma2

r 2 −γ2M( )2

a2

r3 . (3.35)

ThecomponentsoftheSCSETarepolynomialsin .Hawkingradiation

termsonlypresentfor r > 2M areenclosedincurlybrackets.With LH = q a / 2M( )2

,

8πTvv = a2

2M( )4 q −4− 4x +8x2{ }x2 + 1+α( )x4 − 2 1+ β( )x5 − 3γ x6⎡⎣ ⎤⎦ , (3.36)

8πTvr = −8πTv

z = −2qa2

2M( )4 x2 , (3.37)

8πTzv = −2 a2

2M( )4 q 4− 4x{ }x2 +δ x3 + 2ε −1( )x4 + 3φx5⎡⎣ ⎤⎦ , (3.38)

8πTzz = a2

2M( )4

q 4− 20x +16x2{ }x2 + 2δ x3 + α − 2δ + 4ε −1( )x4

− 2β + 4ε − 6φ( )x5 − 3γ + 6φ( )x6

⎣⎢⎢

⎦⎥⎥, (3.39)

16πTθθ = a2

2M( )4

q 24x − 36x2{ }x2 − 2δ x3 − 2α −5δ +8ε − 2( )x4

+ 6β +14ε −1−18φ( )x5 + 12γ + 27φ( )x6

⎣⎢⎢

⎦⎥⎥. (3.40)

Thereisasmalldiscontinuityin Tθθ at x = 1 .ThetraceoftheSCSETis

8πTµµ = a2

2M( )4

−12qx4{ }+ 3δ − 4ε + 2( )x4

+ 2β +10ε − 3−12φ( )x5 + 6γ + 21φ( )x6

⎣⎢⎢

⎦⎥⎥. (3.41)

NumericalcalculationsoftheUnruhstateSCSETintheexteriorofaSchwarzschildblackholehavebeencarriedoutformassless,conformallycoupledscalarandvectorfields31andmasslessminimallycoupledscalarfields32.Thesecan

x ≡ 2M / r

Page 14: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

14

14

befit10withintheirnumericalaccuracyby6thorderpolynomialsin .Theyallhavepositivecoefficientsforthe x6 termin Tv

v ,correspondingtoanegativecontributiontoγ ,inapparentconflictwithmymodel'srequirementthat γ > 0 .However,theasyetunknowncontributiontotheSCSETfromspin2gravitonsshoulddominate.Additionaltypesifquantumfieldswillcontributeforblackholeswithmassessmallcomparedwiththoseofknownastrophysicalblackholes.

Figure2.TheenergydensityandradialstressfortheSetAparameterswhen

inthecoreoftheblackholeforthelocalframedefinedbyEqs.(3.24)-(3.26).

AllthatisknownaboutthecontributionstotheSCSETfromquantumfluctuationsinthegravitationalfieldistheHawkingluminosityandthespin2traceanomaly.AstheHawkingtemperatureincreasesmorequantumfieldswillcontributetotheSCSET.Ifallthequantumfieldsareconformallycoupled,onlythe x6 terminthetraceisnonzero.Intheblackholeinterior,thecorrespondingconstraintsfromEq.(3.41)onthecoefficientsinmymodelare

ε = 1/ 2+ 3δ / 4, β +1+ 2δ − 6φ = 0. (3.42)Asetofmodelparameters(SetA)consistentwiththeseis

(3.43)

Intheinterioroftheblackhole,with and negligible,theenergydensityandradialstressintheorthonormalframewithradialbasisvectoratconstant are and (seeEq.(3.26)).TheseareplottedinFig.2fortheSetAparametersattheadvancedtimeforwhich .Quantummodificationstothegeometrystartbecomingunimportantat z / a ∼ −20 .

2M / r

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

a2 (E + Pr)

- a2 Pr

z/a

2M / a = 8000

α = 0.4, β = 0.2, γ = 0.2, δ = 0, ε = 0.5, φ = 0.2.

gzz < 0 F

z Pr = Tvv

E + Pr = g zzeψ vTzv

2M / a = 8000

Page 15: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

15

15

E + Pr isnegative,dueto becomingpositiveclosetothetransitiontothewhitehole,for −0.6 < z / a < 0.6 .

Arbitrarilysetting ,about70timesthevalueforphotonsplusgravitons33if ,theenergyfluxinthecoreoftheblackholeforsameSetAparametersasinFig.2isplottedinFig.3.Evenwith q = 1 theenergyfluxissmaller

thanthedominanttermsinthestress-energytensorbyafactoroforder .OncetheblackholehasevaporateddowntoclosetothePlanckscale,thereis

nosemi-classicalregimeinsidethehorizonandtheverynotionofaquasi-classicalevolutionishardtojustify.Still,themodeldoesdemonstratethepossibilityofanevolutioninwhichtheblackholeendsandthewhiteholebeginswithoutanysingularityandwithoutanyneedforquantumtunneling.

Figure3.Theenergyflux inthecoreofablackholefortheSetA

parameterswhen ,with .ComparewithFig.2,

notingthat issmallerthan and byafactortheorderof .

Forwhatitisworth,IplotinFig.4 E + Pr and Pr fortheSetAstress-energytensorfortheSetAparameterswhen 2M / a = 3 .Quantumcorrectionsaresignificantthroughthewholeblackholeinterior,andthereisnodistinct"core"inwhichthemagnitudeoftheeffectivestress-energytensorisslowlyvarying.Theblackholetrappinghorizonisat , .Thesurfacegravityofthetrappinghorizonatthispointisjustabitsmallerthantheclassicalvalueof .

Tzv

q = 0.001

a2 = !

a / 2M( )4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

1018

a2 F

z/a

F

2M / a = 8000 LH = 0.001 a / 2M( )2

F E Pr 1018

r / a = 3 z / a ≅ −2.83 1/ 4M

Page 16: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

16

16

Figure4.Thedominantcomponentsofthestress-energytensorforSetA

parameterswhen .Theblackholeapparenthorizonisat ..

IV.QUANTUMENERGYCONDITIONSAninterestingquestiontoaskofthemodeliswhetheritisconsistentwith

quantumenergyconditionsthathavebeenproveninsomegeneralityinasemi-classicalcontest.Onesuchconditionistheachronalaveragednullenergycondition34(ANEC).Thisstatesthat

(4.1)

wheretheintegralisoveracompleteachronal(notwopointsconnectedbyatimelikecurve)nullgeodesicwithaffineparameter andtangentvector

.Ifirstconsiderradialnullgeodesicscrossingtheblackholeandwhiteholehorizonsandthenthenullgeneratorsoftheblackholeandwhiteholehorizons.

Intheblackholeregionan"ingoing"radialnullgeodesichas

and kz = −e−ψ v kv > 0 ,so

Tαβkαk β = −e−ψ vTz

v kv( )2. (4.2)

FromEq.(3.22)withtheSetAparameters, isnegativeandslowlyvaryinginmostofthecoreoftheblackhole,butitmustbecomespositiveclosetothetransitionwhere z / a <1 .Theevaporationtimescaleismuchlongerthana

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

a2 (E + Pr)

- a2 Pr

a2 (E +

Pr)

z/a

2M / a = 3 z / a = −2.83

Tαβkαk β dλ

−∞

∫ ≥ 0,

λ

kα = dxα / dλ

kv = 0⇒ kz = 0

eψ vTz

v

Page 17: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

17

17

dynamicaltimescale,andtoagoodapproximation kv < 0 isconstantalongthetrajectory.Theintegralasthegeodesicgoesfrom to is

Tαβkαk β k z( )−1dz = +

−∞

0

∫ e−ψ v eψ vTzv( )kv dz

−∞

0

∫ . (4.3)

Because e−ψ v fallsoffquiterapidlyfor r > a when 2M / a≫1 ,thenetresultforthe

integralofEq.(4.3)istypicallynegative.Aslongas ,asassumed,thecontinuationofthe"ingoing"null

geodesicintothewhiteholeregionstaysinsidetheanti-trappinghorizonwhere

gzz = 0 .Thegeodesicequationfortheingoingtangentvectorintheretarded

Eddington-Finkelsteincoordinatesgives

d eψ u ku( ) / du = eψ u g zz( )

,zeψ u ku( ) / 2. (4.4)

Once r / a≫1 eψ u ku growsexponentially,andinthesemi-classicalregimewitha

timeconstant ≅ 4M .Theintegralofthenullenergycanbewrittenas

− dz / du( )2Tz

u −Tuz⎡

⎣⎢⎤⎦⎥eψ u ku∫ du. (4.5)

Duringthegrowthofthewhitehole,correspondingtotheevaporationoftheblackhole, and .Thefirsttermispositiveexceptcloseto r = a ,butissuppressedasthegeodesicapproachesthewhiteholehorizonand dz / du becomesverysmall.ThesecondterminEq.(4.5)isnegative,andwhileinitiallysmallcomparedtothefirstterm,itquicklybecomesdominant.Thesecondtermdoesbecomepositivewhenthematterandradiationthatcollapsedtoformtheblackholestartsescapingfromthewhiteholeand .Theexponentialgrowthoff e

ψ u ku meansthatonlythelaste-foldingofthenegativecontributionsissignificant,andthisissmallcomparedwiththepositivecontributionasthegeodesiccrossesthemattershell.Thesamereasoningappliesinreversesequenceappliestoradially"outgoing"nullgeodesicspassingthroughthecollapsingmatter,theinterioroftheblackhole,andexitingacrossthewhiteholehorizon.

TheANECisalsosatisfiedforthenullgeneratorsoftheblackholeandwhiteholehorizons,sincetheintegralsarealsodominatedbythepositivecontributionsastheypassthroughthecollapsingmatter/radiationshellastheblackholeformsandtheexpandingshellasthewhiteholedisappears.

Thequantumnullenergycondition35(QNEC)isaquasi-locallowerlimitonthenullenergybasedonthevonNeumannentropy SvN oftheregionoutsideazero-expansionnullhypersurface,

Tαβkαk β ≥ !2π A

d 2SvN

dλ 2 , (4.6)

where A istheareaofacross-section.Inthepresentcontext,thiscanbeappliedattheblackholeandwhiteholehorizons,withthecross-sectionatwo-surfaceofconstant r and,respectively,ofconstant v or u .Whileneitherhorizonisexactly

z = −∞ z = 0

!M u( ) ≥ 0

!M u( ) > 0 Tu

z > 0

!M u( ) < 0

Page 18: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

18

18

zero-expansion,theyarecloseenough,atleastwhile 2M / a≫1 .Then SvN v( ) isslowlyincreasingontheblackholehorizon,andslowlydecreasingonthewhiteholehorizon.Toagoodapproximationwhen M ≫ a ,andwithsurfacegravity

κ = 1/ 4M v( )⎡⎣ ⎤⎦ ontheblackholehorizon,

d 2SvN

dλ 2 = ddλ

dSvN

dvk v⎛

⎝⎜⎞⎠⎟≅ −κ

dSvN

dvk v( )2

, (4.7)

since k v ∝ e−κ v and

d 2SvN / dv2( ) / dSvN / dv( ) ≪ − dk v / dv( ) / k v ≅κ . (4.8)

Onthewhiteholehorizonat u ≅ −v , ku ≅ eκu and

d 2SvN

dλ 2 ≅ ddλ

dSvN

duku⎛

⎝⎜⎞⎠⎟≅ +κ

dSvN

duku( )2

, κdSvN

du≅ −κ

dSvN

dv. (4.9)

Onbothhorizonsaslongas 2M / a≫1 ,

Tαβkαk β = −LH

4πr 2 . (4.10)

UsingtheHawkingluminosityand dSvN / dv ascalculatedinasemi-classicalapproximationbyPage36forphotonsandgravitons,onecanconfirmthattheQNECissatisfiedwhilethesemi-classicalapproximationisvalid,consistentwiththerecentclaimofaquitegeneralproofoftheQNECinasemi-classicalcontextbyCeyhanandFaulkner37.

Acontroversialaspectofthemodelasformulatedinthispaperisthenegativeenergypropagatingouttofuturenullinfinityfromthewhitehole.TheasymptoticgeometryisMinkowski,andformasslessquantumfieldsinMinkowskispacetimeFordandRoman27haveestablishedthatalowerboundtoenergydensitymeasuredbyaninertialobserveraveragedoverapropertime is .Withamass ,ataradius thetimeoverwhichtidalaccelerationscanbeneglectedmeans canbeaslargeas ,correspondingtoaminimum

averagedenergydensity .Thenegativeenergydensityassociatedwiththenegativeenergyfluxfromthewhiteholeinmymodel,fallsoffroughlyas

! / M 2r 2( ) ,stronglyviolatingtheFord-Romanboundonce r ≫ M .AnyleakageofnegativeenergyfromthewhiteholelastingmuchlongerthanseveralPlancktimeshasthisproblem.

BianchiandSmerlak38havemadearguments,basedona2Dapproximationtoblackholeevaporation,thatanepisodeofnegativeenergyoutflowtofuturenullinfinityisrequiredinanyunitaryblackholeevaporationscenario.Theirresultisanecessaryconditionforunitaryevolutionoftheblackhole,inwhichthevonNeumannentropyoftheexteriorisinitiallyandfinallyzero,

(4.11)

t0 Emin ∼ −mp

2 / t04

M r

t0 r3/2 / M 1/2

Emin ∼ −"M2 / r6

!M u( )

−∞

∫ exp 6SvN u( )⎡⎣ ⎤⎦du = 0.

Page 19: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

19

19

Thisconditionistriviallysatisfiedformymodel,butitcanalsobesatisfiedbyabriefepisodeofemissionofnegativeenergywhentheentropyisnearitsmaximum,inthiscasejustafterformationofthewhitehole,thatwouldnotviolatetheFord-Romanbound.

Prolongedemissionofthenegativeenergyaccumulatedbytheblackholetolargeradiicanavoided,ifalmostallofitendsuppropagatingalong"ingoing"nullgeodesicsinsideoronthewhiteholehorizon,orontimelikegeodesicsthatfallbacktowardthewhiteholehorizonwithoutreachinglargeradii.Thenthenegativeenergycouldeventuallybeabsorbedbythereboundingmattershellthatcollapsedtoformtheblackhole.Otherwise,theFord-Romanboundwillbeviolated.Suchanalternativescenariofortheevolutionofthewhiteholeisdiscussedinthecompanionpaper.Notethatthechangeinsignofthelocalenergyfluxfrompositiveintheblackholetonegativeinthewhiteholeimpliedbytheenergyfluxintheblackholegoingtozeroat z = 0 ,togetherwithpropagationalong"ingoing"ratherthan"outgoing"radialnullgeodesicsimpliesapositiveenergydensityassociatedwiththeenergyflowasmeasuredbylocalobservers.However,"ingoing"radialnullgeodesicsinthewhitehole,like"outgoing"nullgeodesicsintheblackhole,havenegativeKillingenergyrelativetoinfinity,duetodominanceofnegativegravitationalpotentialenergy,sothecontributiontothemassofthewhiteholeisstillnegative.

Whileitmayseemplausiblethattheinflowalong"ingoing"radialnullgeodesicsintheblackholejustcontinuesacrossthetransitiontothewhitehole,thisisnotnecessarilythecase.TheHawking"partners"arenotpointparticlesfollowinggeodesics.TheyarewavepacketsofvacuumfluctuationswithatleastaPlanckscalesize.AstronglydynamicPlanck-scaletransitiontothewhiteholecanquiteplausiblycausealargedeviationfromgeodesicpropagation,andconvertan"ingoing"nulltrajectorytoan"outgoing"nulltrajectory.

TheadvancedEFcoordinatesintheblackholecannotbecontinuedintothewhitehole.Considertheequationforan"outgoing"radialnullgeodesicintheadvancedcoordinates,

∂z / ∂v( )u

= −eψ v g zz / 2. (4.12)

Startingfrom z justgreaterthanzero, isinitiallynegativeandbecomespositivecrossingthewhiteholeapparenthorizon.However,atthesamepoint

∂z / ∂v( )u

mustremainpositive,whichrequiresthat eψ v →∞ andchangesignattheapparent

horizon.WhathappensatthewhiteholehorizonoftheSchwarzschildgeometry,with e

ψ v ≡ 1,isthat v (ifdefinedasheretoincreasetothefuture)goesfrom+∞ to−∞ .WhileintheBHtoWHscenariothegeometryinthevicinityoftheWHhorizonwellafterthetransitionfromtheBHmaybeSchwarzschildtoagoodapproximation,globallytheSchwarzschildWHhorizonisaCauchyhorizon.ThetransformationtoKruskalcoordinates,whichremovestheSchwarzschildcoordinatesingularities,isincompatiblewithasmoothBHtoWHtransition.

IwillshowinthecompanionpaperthatasmoothtransitionfromtheBHrequiresinitialoutflowofnegativeofnegativeenergyacrosstheWHhorizon,but

gzz

Page 20: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

20

20

thatitispossibletoconstructscenariosfortheevolutionoftheWHinwhichthisislimitedtoarelativelyshortPlanck-scaleintervalofretardedtimeanddoesnotconflictwiththeFord-Romanenergydensitybound.AlmostallofthenegativeenergyoftheHawkingpartnersthenremainsinsideasmallPlanck-scalewhiteholeuntilthematter/radiationshellemerges.

Finally,theexponentiallyincreasingblueshiftofanyexternalenergypropagatingalongthewhiteholehorizonshouldnotbeaproblem.Thereisnoreasonforasubstantialamountofsuchenergyinthecontextofmymodel,sincetheonlysourceforanisolatedwhiteholeisthebackscatteroffofthebackgroundcurvatureoftheoutgoingHawkingradiationfromtheblackholeandoftheoutgoingnegativeenergyradiationfromthewhitehole.Thestress-energytensorofanullfluidis T

αβ =σ kαk β ,where kα isanulltangentvectorobeyingthegeodesicequation.IntheretardedcoordinateswhenthegeometryisclosetoSchwarzschildthegeodesicequationgives

dku / du ≅ M / r 2( )ku ≅κ ku closetothehorizon,withthe

solution ku ≅ ku( )

0eκu .Then k

r = − 1− 2M / r( )ku / 2 ,fromwhich

r − 2M ≅ r − 2M( )0

e−κu , ku ≅ −κ r − 2M( )0

ku( )0and kr ≅ −ku .Conservationofthe

stress-energygives dσ / du +σ k ;α

α / ku = 0 .Since k;αα = 2 / r( ) dr / du( )k u

,

dσ / du = r − 2M( )σ / r 2 ∝ e−κu and σ →σ 0 ,aconstant.Thecontributiontothemassfunction m fromthestress-energytensoronthehorizonis

Δm ∼ −16π M 2σ 0 kuku dr∫ ∼ +2π Mσ 0 r − 2M( )2

ku( )2, (4.13)

whichisconstantinspiteoftheexponentialblueshift,asisrequiredbyenergyconservation,Thechangein e

−ψ u acrossthehorizonisalsounaffectedbytheblueshift.Ofcourse,theseareclassicalestimatesthatdonotprecludequantuminstabilities.Actually,theblueshiftislocallyjustanartifactofevaluatingtheenergyinframesacceleratingintheoppositedirectionfromthedirectionoftheflowofenergyalongthehorizon.TotheextentthatthequantumtheoryisinvariantunderlocalLorentztransformations,suchquantuminstabilitiesshouldnotbepresent.

Inthemodelpresentedinthispaper,theconcernexpressedinRef.[25]thatpositiveenergypropagatingalongthewhiteholehorizonwouldcauseconversionofthewhiteholeintoablackholewhenitintersectstheoutgoingshellofreboundingradiation(at u = u2 inFig1)isnotanissueforthecurrentmodel,sinceatthatpointthebackscattershouldbepredominantlyoriginatefromnegativeenergypropagatingoutofthewhitehole.

V.DISCUSSION

Atbestthetoymodelofthispaperisperhapsrepresentativeofthedominant

quasi-classicalhistoriescontributingtoaquantumpathintegralforevolutionoftheblackhole.Afullquantumgravitytreatmentisrequiredforanyfinalresolutionofthefateofablackholeandtheinformationproblem.ThemodelisnotconsistentwiththeexistingframeworkforLQGcalculationsdevelopedtoresolvecosmological

Page 21: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

21

21

singularities.Withmychoiceofparameters,theminimumtwo-sphereareaintheblackholeinteriorisaPlanckscaleconstantperhapsrelatedtothefundamental"areagap"parameterofLQGandisindependentofthemassoftheblackhole.WhiledirectquantumtunnelingfromtheblackholetothewhiteholeatthepointthespacetimecurvaturebecomesPlanckian,asarguedinRef.[23],mightbepossible,Iwouldexpectthequantumamplitudewouldbeverysmallcomparedtothatofnonsingularquasi-classicalevolution.

Iarguethatitisreasonabletoconsiderthequantumgeometryassmallfluctuationsaboutaquasi-classicalgeometryaslongas r ≫ a ,evenifthisbackgroundgeometryissubstantiallymodifiedfromaclassicalsolutionofthevacuumEinsteinequationsbyquantumbackreaction.Theeffectivestress-energytensorinthisquasi-classicalgeometryisderivedfromtheEinsteintensorcalculatedfromthemodelmetrictensorandisconsideredtoincludethemacroscopiceffectsofquantumfluctuationsinthegravitationalfieldaswellasthoseofnon-gravitationalfields.Thiscanmakesenseaslongasindividualmodesofthequantumfieldsaresmallperturbationsofabackgroundgeometry,eventhoughthecumulativeeffectofalargenumberofthesemodesmaysubstantiallymodifythegeometry.InthecontextofSchwarzschild,thesemi-classicalapproximationofquantumfieldsonafixedclassicalbackgroundgeometryshouldbevalidwherethespacetimecurvature

isverysub-Planckian, M / r3 ≪ mp

−2 ,or r ≫ Mmp

2( )1/3.

Whilemyguessattheformofthemetricinthequasi-classicalregimeisquiteadhoc,itdoesmatchthegeneralformoftheSCSETasfoundbynumericalcalculationsintheliteratureforspin0andspin1fieldsintheUnruhstate30asextrapolatedtotheblackholeinterior,butnotnecessarilytheparticularvaluesofthecoefficients.Thegeometryinthemodelvariessmoothlyinthetransitionbetweentheblackholeandthewhiteholethroughouttheblackholeevaporation,evenwhentheblackholehorizonareaisclosetothePlanckscale.Ofcourse,oneexpectslargequantumfluctuationsinthegeometrywhere r / a isoforderone.ItwouldnotbesurprisingiftheQNECwereviolatedthere,sinceitisbasicallyasemi-classicalresult.Themodelrequiresthatthequantumfocusingconjecture39isnotvalidinthevicinityofthetransitiontothewhitehole.

Thedisturbingfeatureofthismodelisthatthewhiteholeevolvesformostofitslifetimebyemittingnegativeenergy.Thisisthesamenegativeenergythatflowedintotheblackholeduringitsevaporation.Thisnegativeenergymustgosomewhere.Withoutprolongedemissionofnegativeenergy,theinitiallyPlanckscalewhiteholeremainsnearthePlanckscale,andthenegativeenergyiseventuallyabsorbedbythereboundingmatterandradiationthatformedtheblackhole..Iwillconsiderthispossibilityinacompanionpaper.

Istheresomewaytorationalizetheextendedoutflowofnegativeenergyfromthewhitehole?ThegenerationofHawkingradiationshouldbethoughtofasthetidaldisruptionofvacuumfluctuationsinthevicinityoftheblackholehorizon,partofwhichpropagatetofuturenullinfinitydirectlywithpositiveenergyandpartofwhichendupinsidetheblackholewithnegativeenergy.Thesepartsarenotindependentofeachother.Theyarestronglyentangledandcorrelated.Ifthepartinsidetheblackholelaterpropagatesoutofthewhiteholetofuturenullinfinity,it

Page 22: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

22

22

doesnotdosoasnormal"particles",whichmusthavepositiveenergyrelativetoasymptoticMinkowskivacuum.ThenegativeenergyemissionstogetherwiththeearlierHawkingradiationarestillpartsofvacuumfluctuations,albeitveryhighlydistortedbytheblackholegeometry.

Asomewhatsimilarsituationarisesforazero-energyvacuumfluctuationstraddlingandpropagatingalonganullhypersurfaceinMinkowskispacetime.AuniformlyacceleratingobserverforwhomthathypersurfaceisaRindlerhorizonbecomesinfinitesimallyclosetothehorizonintheoriginalinertialframeandonlypartofthefluctuationisaccessibletohim.Ifheeventuallystopsaccelerating,hewillgainaccesstothehiddenpartofthefluctuationandbeabletoverifythattheenergyoftheentirefluctuationiszero,butuntilthentheparthecanobservemayhaveasmallnon-zeroenergy.ImportantdifferencesfromtheblackholehorizonarenosystematicpreferenceinthesignoftheenergyaveragedovermanysuchfluctuationsandnoconflicttheFord-Romanbound,whichappliestoinertialobservers.TheUnruhthermalradiationmeasuredbyanacceleratingparticledetectorisnotrelevanthere,sincethisisapropertyofthedetectorinteractingwiththevacuum,andhasnothingtodowiththestress-energytensorthatisthesourceintheEinsteinequations.

Myscenarioisincomplete,sincethereisnoexplicitmodelingofhowthecollapseofthemattershellisreversed.The r = a minimumradiusoutsidetheshelldoesnotapplyinitsinterior,asinceatitscenter r = 0 isjusttheoriginofthesphericalcoordinatesinalocallyflatregion,assumingthebouncecanoccurwithoutacurvaturesingularity.WhatisdepictedinFig.1isnothingmorethanacrudeandveryschematicguess.

IftheblackholedoesevaporatedowntothePlanckscale,withnosignificantreleaseofquantuminformationacrosstheblackholehorizon,asIassume,itis

apparentthattheBekenstein-Hawkingentropy5 SBH = A / 4!( ) = 4π M / mp( )2

should

notbeinterpretedasameasureofthetotalnumberofquantumdegreesoffreedomassociatedwiththeblackhole.The"partners"oftheHawkingradiationquantasimplycrossfromtheblackholeregiontothewhiteholeregionasinFig.1andthenflowoutwardacrossthewhiteholehorizon.Neartheendoftheblackholeevaporation SBH istinycomparedwiththeentropyoftheHawkingradiationandthevonNeumannentropyoftheblackholeexterior.Itisamistaketothinkoftheblackholeinteriordegreesoffreedomasbeinginanykindofthermalequilibrium.Thedegreesoffreedomofthebouncingshellandentangledvacuummodescrossingthe z = 0 spacelikehypersurfacearecompletelyoutofcausalcontactwiththehorizondegreesoffreedomofthelatestagesoftheblackholeevaporation.While

SBH ispresumablyameasureofthemaximumnumberofquantumdegreesoffreedomassociatedwiththeblackholehorizonatanyonetime,quantumfluctuationsonthehorizondonotstayonthehorizon.TheyenduppartiallyintheHawkingradiationandpartiallyafterfallingdeepinsidetheblackholeinwhatemergesfromthewhitehole.SimilarviewshavebeenexpressedbyGarfinkle40andRovelli41.Thiscontradictsthe"centraldogma"behindmostpapersontheblack

Page 23: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

23

23

holeinformationproblem,asreviewedrecentlybyAlmheiri,etal42.Thecompanionpaperwillhaveamoreextensivediscussionofblackholeentropy.

Finally,theassumptionofsphericalsymmetryisunrealistic.Anysmalldeviationsfromsphericalsymmetryinthecollapsethatformstheblackholeareamplifiedasthecollapseproceeds,andclassicallythesingularitystructureofaKerrblackholewithanynonzeroangularmomentumistimelike,ratherthanthespacelikesingularityofaSchwarzschildblackhole.Sodoestheblackholetowhiteholetransitiondiscussedherehaveanyrelevancetoanevenslightlygenericblackholes?BianchiandHaggard43havemadeaninitialattempttoaddressthisquestion.Theyarguethatatleasttheinitialbreakdownofthesemi-classicalapproximationinblackholesisonaspacelikehypersurfaceforquantumgeometrieswithsmallnonzeroangularmomentumfromquantumfluctuations.AblackholetowhiteholetransitionwiththeblackholedisappearingatafiniteadvancedtimeavoidshavingtodealwithaCauchyhorizonanditsassociatedinstabilities,aspresentintheinteriorofaclassicalKerrblackhole,andwhichwouldpotentiallymakeunitarityforexternalobserversimpossible.

ACKNOLEDGEMENTS

ThisoriginalinspirationforthispapercamefromdiscussionswithHalHaggardwhilewewerebothvisitingthePerimeterInstitute.ResearchatthePerimeterInstituteissupportedbytheGovernmentofCanadathroughtheDepartmentInnovation,Science,andEconomicDevelopment,andbytheProvinceofOntariothroughtheMinistryofResearchandInnovation.IalsothankAmosOriandTommasoDeLorenzoforcommentsonanearlierversion.REFERENCES1S.W.Hawking,Nature248,30(1974);Commun.Math.Phys.43,199(1975).2S.W.Hawking,Phys.Rev.D14,2460(1976).3W.G.UnruhandR.M.Wald,Rep.Prog.Phys.80,092002(2017)

[arXiv:1703.02140].4J.Maldacena,AdvancesinTheoreticalandMathematicalPhysics2,231(1998)

[arXiv:hep-th/9711200].5seeR.M.Wald,Liv.Rev.Rel.4,6(2001)[arXiv:gr-qc/9912112].6seeD.N,Page,JCAP1406,051(2014)[arXiv:1306.0562].7A.Almeiri,D.Marolf,J.PolchinskiandJ.Sully,JHEP1302,062(2013)

[arXiv:1207.3123];A.Almeiri,D.Marolf,J.Polchinski,D.StanfordandJ.Sully,JHEP1309,018(2013)[arXiv:1304.6483].

8D.Marolf,Rep.Prog.Phys.80,092001(2017)[arXiv:1703.02143].9J.Polchinski,notesfromlecturesatthe2015JerusalemWinterSchoolandthe

2015TASI[arXiv:1609.04036].10J.M.Bardeen,[arXiv:1808.08638].11A.AshtekarandJ.Lewandowski,Class.Quant.Grav.21:R53(2004)[arXiv:gr-

qc/0404018].

Page 24: Black holes to white holes I: A complete quasi …Black holes to white holes I: A complete quasi-classical model James M. Bardeen Physics Department, Box 1560, University of Washington

24

24

12S.A.Hayward,Phys.Rev.Lett.96,031103(2006)[arXiv:gr-qc/0506126].13S.Hossenfelder,L.ModestoandI.Premont-Schwarz,Phys.Rev.D81,44036

(2010)[arXiv:0912.1823].14C.RovelliandF.Vidotto,Int.J.Mod.Phys.D23,1443036(2014)

[arXiv:1401.6562].15V.P.Frolov,JHEP1405,049(2014)[arXiv:1402.5446v3].16T.DeLorenzo,C.Pacilio,C.RovelliandS.Speziale,Gen.Rel.Grav.47:41(2015)

[arXiv:1412.1015].17J.M.Bardeen,[arXiv:1706.09204].18L.Modesto,Phys.Rev.D70,124009(2004)[arXiv:gr-qc/0407097].19A.AshtekarandM.Bojowald,Class.Quant.Grav.22,339(2005)[arXiv:gr-

qc/0504029].20V.P.FrolovandG.A.Vilkovisky,Phys.Lett.106B,307(1981).21L.Modesto,[arXiv:gr-qc/0612.084].22H.M.HaggardandC.Rovelli,Phys.Rev.D92,104020(2015)[arXiv:1407.0989].23E.Bianchi,M.Christodoulou,F.D'Ambrosio,H.M.HaggardandC.Rovelli,Class.

QuantumGrav.35,225003(2018)[arXiv:1802.04264].24A.Ashtekhar,J.OlmedoandP.Singh,Phys.Rev.D98,126003(2018)

[arXiv:1806.00648].25T.DeLorenzoandA.Perez,Phys.Rev.D93,124018(2016)[arXiv:1512.04566].26L.H.FordandT.A.Roman,Phys.Rev.D55,2082(1996)[arXiv:gr-qc/9607003].27A.AshtekarandJ.Olmedo,[arXiv:2005.02309].28R.Gambini,J.OlmedoandJ.Pullin,[arXiv:2006.01513].29V.FaraoniandA.Giusti,[arXiv:2006.12577].30J.M.Bardeen,Phys.Rev.Lett.46,382(1981).31B.P.Jensen,J.G.McLaughlinandA.C.Ottewill,Phys.Rev.D43,4142(1991).32A.LeviandA.Ori,Phys.Rev.D91,104028(2015)[arXiv:1503.02810].33D.N.Page,Phys.Rev.D13,198(1976).34N.GrahamandK.D.Olum,Phys.Rev.D76,064001(2007)[arXiv:0705.3193].35R.Bousso,Z.Fisher,J.Koeller,S.LeichenauerandA.C.Wall,Phys.Rev.D93,

024017(2016)[arXiv:1509.02542].36D.N.Page,Phys.Rev.D13,208(1976);JCAP1309,028(2013)

[arXiv:1301.4995].37F.CeyhanandT.Faulkner,[arXiv:1812.04683].38E.BianchiandM.Smerlak,Gen.Rel.andGrav.46,1809(2014)[arXiv:1405.5235].39e.g.,A.C.Wall,Class.Quant.Grav.30,165003(2013)[arXiv:1010.5513];R.

Bousso,Z.Fisher,J.Koeller,S.LeichenaurandA.C.Wall,Phys.Rev.D93,064044(2016)[arXiv:1509.02669].

40D.Garfinkle,[arXiv:1901.01902].41C.Rovelli,[arXiv:1902.03631].42A.Almheiri,T.Hartman,J.Maldacena,E.ShaghoulianandA.Tajdini,

[arXiv:2006.06872].43E.BianchiandH.M.Haggard,NewJ.Phys.20,103028(2018)[arXiv:1803.10858].