Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole...

75
Black Hole Thermodynamics Bert Janssen Dpto. de F´ ısica Te´ orica y del Cosmos Centro Andaluz de F´ ısica de Part´ ıculas Elementales B. Janssen (UGR) Granada, January 16th, 2015 1/28

Transcript of Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole...

Page 1: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Black Hole Thermodynamics

Bert JanssenDpto. de Fısica Teorica y del Cosmos

Centro Andaluz de Fısica de Partıculas Elementales

B. Janssen (UGR) Granada, January 16th, 2015 1/28

Page 2: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Outlook

1. General Relativity: a quick review

B. Janssen (UGR) Granada, January 16th, 2015 2/28

Page 3: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Outlook

1. General Relativity: a quick review

2. The Schwarzschild black hole

3. The Kerr black hole

B. Janssen (UGR) Granada, January 16th, 2015 2/28

Page 4: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Outlook

1. General Relativity: a quick review

2. The Schwarzschild black hole

3. The Kerr black hole

4. Penrose Process

5. The area theorem

B. Janssen (UGR) Granada, January 16th, 2015 2/28

Page 5: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Outlook

1. General Relativity: a quick review

2. The Schwarzschild black hole

3. The Kerr black hole

4. Penrose Process

5. The area theorem

6. The laws of black hole mechanics

B. Janssen (UGR) Granada, January 16th, 2015 2/28

Page 6: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Outlook

1. General Relativity: a quick review

2. The Schwarzschild black hole

3. The Kerr black hole

4. Penrose Process

5. The area theorem

6. The laws of black hole mechanics

7. Quantum black holes:

−→ Counting of microstates

−→ Information paradox

Disclaimer:Main goal of this talk is to expose open issues ,

not to propose concrete solutions...

B. Janssen (UGR) Granada, January 16th, 2015 2/28

Page 7: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

0. Selected bibliography

• T. Jacobson, Introductory Lectures on Black Hole Thermodynamics

• S. Mathur, The information paradox: a pedagogical introduction,

arXiv:0909.1038 [hep-th]

• Misner, Thorne & Wheeler, Gravitation, 1970

• E. Poisson, A Relativist’s Toolkit, Cambridge University Press, 2004

• P. Townsend, Black Holes, arXiv:gr-qc/9707012

• R. Wald, Quantum field theory in curved spacetime and black hole

theormodynamics, Bangalore Pres, 1994

• R. Wald, The Thermodynamics of Black Holes, arXiv:gr-qc/9912119

• Wikipedia (english): Black Hole thermodynamics, Information paradox,

Holographic Principle, ...

B. Janssen (UGR) Granada, January 16th, 2015 3/28

Page 8: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

1. General Relativity: a quick review

Gravity = manifestation of curved spacetime

John A. Wheeler: Matter says space how to curve

Space says matter how to move

B. Janssen (UGR) Granada, January 16th, 2015 4/28

Page 9: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

1. General Relativity: a quick review

Gravity = manifestation of curved spacetime

John A. Wheeler: Matter says space how to curve

Space says matter how to move

• Spacetime = 4-dim Lorentzian manifold, equiped with metric gµν and

Levi-Civita connection Γρµν .

gµν =⇒ Γρµν =⇒ Rµνρ

λ

B. Janssen (UGR) Granada, January 16th, 2015 4/28

Page 10: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

• Equivalence Principle: Weight can be locally gauged away

Inhomogeneities of gravitational field are shown in tidal effects

weight ∼ Γρµν , tidal forces ∼ Rµνρ

λ

B. Janssen (UGR) Granada, January 16th, 2015 5/28

Page 11: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

• Equivalence Principle: Weight can be locally gauged away

Inhomogeneities of gravitational field are shown in tidal effects

weight ∼ Γρµν , tidal forces ∼ Rµνρ

λ

• Einstein equations: relation between curvature and matter content

Rµν − 12gµν R = −κ

[

FµρFνρ − 1

4gµνFρλF

ρλ]

− κm

4πuµuνδ(x− x(τ))

∇µFµν = qxν δ(x− x(τ))

m(

xρ + Γρµν x

µxν)

= q xµFµρ

−→ system of 10 +N non-linear coupled 2nd order partial diff eqns

for gµν(x) and Aµ(x) and xµ(τ)

−→ in general extremely difficult to solve!

B. Janssen (UGR) Granada, January 16th, 2015 5/28

Page 12: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

2. The Schwarzschild black hole

Metric of static spherically symmetric vacuum solution [Schwarzschild, 1916]

ds2 =(

1− 2M

r

)

dt2 −(

1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2)

• (External region of) spherically symmetric object with mass m =M/G

In GR, mass is only asymptotically defined: gtt ≈ 1 +Gmr−1 + ...

• Singular for r = 0 and r = 2M :

B. Janssen (UGR) Granada, January 16th, 2015 6/28

Page 13: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

2. The Schwarzschild black hole

Metric of static spherically symmetric vacuum solution [Schwarzschild, 1916]

ds2 =(

1− 2M

r

)

dt2 −(

1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2)

• (External region of) spherically symmetric object with mass m =M/G

In GR, mass is only asymptotically defined: gtt ≈ 1 +Gmr−1 + ...

• Singular for r = 0 and r = 2M :

Curvature invariante RµνρλRµνρλ = 48G2m2 r−6

−→ r = 0 is a physical singularity

is point of infinite tidal forces

B. Janssen (UGR) Granada, January 16th, 2015 6/28

Page 14: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

2. The Schwarzschild black hole

Metric of static spherically symmetric vacuum solution [Schwarzschild, 1916]

ds2 =(

1− 2M

r

)

dt2 −(

1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2)

• (External region of) spherically symmetric object with mass m =M/G

In GR, mass is only asymptotically defined: gtt ≈ 1 +Gmr−1 + ...

• Singular for r = 0 and r = 2M :

Curvature invariante RµνρλRµνρλ = 48G2m2 r−6

−→ r = 0 is a physical singularity

is point of infinite tidal forces

−→ r = 2M is a coordinate singularity

−→ Schwarzschild radius

• Eddington-Finkelstein coordinates: t = t + 2M log(r − 2M)

ds2 =(

1− 2M

r

)

dt2 − 4M

rdtdr −

(

1 +2M

r

)

dr2 − r2dΩ22

B. Janssen (UGR) Granada, January 16th, 2015 6/28

Page 15: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

r

t

RS0

−→ Lightcones incline towards singularity

−→ r = 2M : surface of infinite redshift

−→ r = 2M point of no return: light and matter end inevitably in singularity

B. Janssen (UGR) Granada, January 16th, 2015 7/28

Page 16: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

r

t

RS0

−→ Lightcones incline towards singularity

−→ r = 2M : surface of infinite redshift

−→ r = 2M point of no return: light and matter end inevitably in singularity

−→ No causal influences can travel from r < 2M to r > 2M [Finkelstein, 1958]

−→ r = 2M is an event horizon: one-dimensional causal membraneB. Janssen (UGR) Granada, January 16th, 2015 7/28

Page 17: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

3. The Kerr solution

Metric of stationary axially symmetric vacuum solution [Kerr, 1963]

ds2 =r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θdt2 +

4Mar sin2 θ

r2 + a2 cos2 θdtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2dr2

− (r2 + a2 cos2 θ) dθ2 −[

r2 + a2 +2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Rotating, axially symmetric object with mass m =M/G and angular

momentum J = a/M

• Unique solution with these characteristics!

B. Janssen (UGR) Granada, January 16th, 2015 8/28

Page 18: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

3. The Kerr solution

Metric of stationary axially symmetric vacuum solution [Kerr, 1963]

ds2 =r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θdt2 +

4Mar sin2 θ

r2 + a2 cos2 θdtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2dr2

− (r2 + a2 cos2 θ) dθ2 −[

r2 + a2 +2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Rotating, axially symmetric object with mass m =M/G and angular

momentum J = a/M

• Unique solution with these characteristics!

Kerr-Newmann (idem with charge Q) is unique solution of stationary black

hole! −→ Uniqueness theorems [Israel; Hawking; Carter; 1965-1975]

• stationary =⇒ axially symmetric =⇒ Kerr-Newmann

• static =⇒ spherically symmetric =⇒ Reissner-Nordstrom

Black hole have no hair: completely determined by M , Q and J !

B. Janssen (UGR) Granada, January 16th, 2015 8/28

Page 19: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

ds2 =r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θdt2 +

4Mar sin2 θ

r2 + a2 cos2 θdtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2dr2

− (r2 + a2 cos2 θ) dθ2 −[

r2 + a2 +2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Physical singularity at r = a and θ = 0 −→ ring singularity!

B. Janssen (UGR) Granada, January 16th, 2015 9/28

Page 20: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

ds2 =r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θdt2 +

4Mar sin2 θ

r2 + a2 cos2 θdtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2dr2

− (r2 + a2 cos2 θ) dθ2 −[

r2 + a2 +2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Physical singularity at r = a and θ = 0 −→ ring singularity!

• grr = 0: Inner and outer horizon at r =M ±√M2 − a2 ≡ R±

−→ limit of static region

t

rR+R_

B. Janssen (UGR) Granada, January 16th, 2015 9/28

Page 21: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

ds2 =r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θdt2 +

4Mar sin2 θ

r2 + a2 cos2 θdtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2dr2

− (r2 + a2 cos2 θ) dθ2 −[

r2 + a2 +2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Physical singularity at r = a and θ = 0 −→ ring singularity!

• grr = 0: Inner and outer horizon at r =M ±√M2 − a2 ≡ R±

−→ limit of static region

• gtt = 0: Surfaces of infinite redshift at r =M ±√M2 − a2 cos2 θ ≡ S±

−→ limit of stationary region

−→ Effects of frame dragging

y

x

S+

+R−

R

S−

I

IIIII

z

B. Janssen (UGR) Granada, January 16th, 2015 10/28

Page 22: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Frame dragging: [Lense & Thirring, 1918]

General axially symmetric stationary metric:

ds2 = gtt dt2 + 2gtϕ dtdϕ + grr dr

2 + gθθ dθ2 + gϕϕ dϕ

2

Stationary observer: rotation with constant velocity in equatorial plane

B. Janssen (UGR) Granada, January 16th, 2015 11/28

Page 23: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Frame dragging: [Lense & Thirring, 1918]

General axially symmetric stationary metric:

ds2 = gtt dt2 + 2gtϕ dtdϕ + grr dr

2 + gθθ dθ2 + gϕϕ dϕ

2

Stationary observer: rotation with constant velocity in equatorial plane

−→ Angular velocity: Ω = dϕ

dt= ϕ

t

−→ Angular momentum: L = −gϕµpµ = −m0 (gtϕ t + gϕϕ ϕ)

B. Janssen (UGR) Granada, January 16th, 2015 11/28

Page 24: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Frame dragging: [Lense & Thirring, 1918]

General axially symmetric stationary metric:

ds2 = gtt dt2 + 2gtϕ dtdϕ + grr dr

2 + gθθ dθ2 + gϕϕ dϕ

2

Stationary observer: rotation with constant velocity in equatorial plane

−→ Angular velocity: Ω = dϕ

dt= ϕ

t

−→ Angular momentum: L = −gϕµpµ = −m0 (gtϕ t + gϕϕ ϕ)

Zero angular momentum observer: dragged along with rotation

L = 0 =⇒ Ω0 = − gtϕgϕϕ

6= 0

Lense-Thirring effect for Earth:

Prediccion: −39, 2 mili-arcsec/year

GPB: −37, 2 ± 7, 2 mili-arcsec/year

[Gravity Probe B, 2011]

B. Janssen (UGR) Granada, January 16th, 2015 11/28

Page 25: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Ergoregion: Frame dragging limits velocities of stationary observers

Ω± = − gtϕgϕϕ

±

(

gtϕgϕϕ

)2

− gttgϕϕ

= 2Mar3+a2r+2Ma2

±√

4M2a2

(r3+a2r+2Ma2)2+ r−2M

r3+a2r+2Ma2(Kerr)

1

1/2

−1

r

+

v0

v

v_

R+ S+

III II I

• Region I (gtt > 0 ): both co-rotation and counter-rotation possible

• Region II (gtt < 0, grr > 0): only co-rotation possible

• Region III (grr < 0 ): no stable rotation

B. Janssen (UGR) Granada, January 16th, 2015 12/28

Page 26: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Equatorial plane:

... . ..

singularidad

ergosfera

horizonte

.III III

Ergoregion is not trapped surface!

• Region I: static observers; escape to infinity

• Region II: stationary non-static observers; escape to infinity

• Region III: non-stationary, trapped observers

B. Janssen (UGR) Granada, January 16th, 2015 13/28

Page 27: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

4. The Penrose process

Energy at infinity (seen by asymptotic observer)

E = tµ pµ = gtµ p

µ = gtt pt + gtϕ p

ϕ

B. Janssen (UGR) Granada, January 16th, 2015 14/28

Page 28: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

4. The Penrose process

Energy at infinity (seen by asymptotic observer)

E = tµ pµ = gtµ p

µ = gtt pt + gtϕ p

ϕ

In ergoregion: gtt < 0:

E < 0 ⇐⇒ pϕ < − gttgtϕ

pt

−→ opposing frame dragging as much as possible

1

1/2

−1

rS++R

v+

v*

v_

NB: E < 0 only for asymptotic observer. Local observer sees E > 0!

B. Janssen (UGR) Granada, January 16th, 2015 14/28

Page 29: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Penrose process: extracting energy from black hole! [Penrose, 1969]

Energy and angular momentum conservation: A −→ B + C

EA = EB + EC , LA = LB + LB

B. Janssen (UGR) Granada, January 16th, 2015 15/28

Page 30: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Penrose process: extracting energy from black hole! [Penrose, 1969]

Energy and angular momentum conservation: A −→ B + C

EA = EB + EC , LA = LB + LB

Launch particle such that EB < 0:

∆M = EB = EA − EC < 0 ∆J = LB = LA − LC < 0

A

B

C

E

E

ergosfera

horizonte

E • EC > EA:

Black hole delivers work on

particle!

• ∆M < 0, ∆J < 0:

Black hole loses mass and

angular momentum!

−→ black holes are not just the

sinks of the universe!

B. Janssen (UGR) Granada, January 16th, 2015 15/28

Page 31: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Misner, Thorme & Wheeler: Advanced society’s recycling scheme

B. Janssen (UGR) Granada, January 16th, 2015 16/28

Page 32: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Misner, Thorme & Wheeler: Advanced society’s recycling scheme

−→ CT12: Sensibilidad hacia temas medioambientales

B. Janssen (UGR) Granada, January 16th, 2015 16/28

Page 33: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

5. The area theorem

The area A of the horizon of a black hole never decreases in a physical

process, not even in a Penrose process [Hawking, 1971]

A = 4π[

2M2 + 2M√M2 − a2

]

(Kerr)

B. Janssen (UGR) Granada, January 16th, 2015 17/28

Page 34: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

5. The area theorem

The area A of the horizon of a black hole never decreases in a physical

process, not even in a Penrose process [Hawking, 1971]

A = 4π[

2M2 + 2M√M2 − a2

]

(Kerr)

The irreducible mass M∗ of a black hole never decreases in a physical proces,

not even in a Penrose process [Christodoulou & Ruffini, 1971]

M2 = M2∗ +

J2

4M2∗

(Kerr)

withM2

∗ = 14

[

2M2 + 2M√M2 − a2

]

(Kerr)

B. Janssen (UGR) Granada, January 16th, 2015 17/28

Page 35: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

5. The area theorem

The area A of the horizon of a black hole never decreases in a physical

process, not even in a Penrose process [Hawking, 1971]

A = 4π[

2M2 + 2M√M2 − a2

]

(Kerr)

The irreducible mass M∗ of a black hole never decreases in a physical proces,

not even in a Penrose process [Christodoulou & Ruffini, 1971]

M2 = M2∗ +

J2

4M2∗

(Kerr)

withM2

∗ = 14

[

2M2 + 2M√M2 − a2

]

(Kerr)

In Penrose process: ∆M ≤ ΩH∆J

• non-optimal process: ∆M < ΩH∆J =⇒ ∆M∗ > 0 (irreversable)

• optimal process: ∆M = ΩH∆J =⇒ ∆M∗ = 0 (reversable)

B. Janssen (UGR) Granada, January 16th, 2015 17/28

Page 36: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

So far...

• No-hair theorems: unique 3-parameter family of stationary black hole

solutions, completely characterised by M , Q and J

• Penrose process: possible to extract (certain amount of) work from black

holes ∆M ≤ ΩH∆J

• Area theorem: area A = 16πM2∗ never descreases in physical processes,

and only constant in reversable processes.

B. Janssen (UGR) Granada, January 16th, 2015 18/28

Page 37: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

So far...

• No-hair theorems: unique 3-parameter family of stationary black hole

solutions, completely characterised by M , Q and J

• Penrose process: possible to extract (certain amount of) work from black

holes ∆M ≤ ΩH∆J

• Area theorem: area A = 16πM2∗ never descreases in physical processes,

and only constant in reversable processes.

−→ smells like mechanical system!

−→ A = 16πM 2

∗ smells like entropy...

B. Janssen (UGR) Granada, January 16th, 2015 18/28

Page 38: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

So far...

• No-hair theorems: unique 3-parameter family of stationary black hole

solutions, completely characterised by M , Q and J

• Penrose process: possible to extract (certain amount of) work from black

holes ∆M ≤ ΩH∆J

• Area theorem: area A = 16πM2∗ never descreases in physical processes,

and only constant in reversable processes.

−→ smells like mechanical system!

−→ A = 16πM 2

∗ smells like entropy...

−→ The analogy goes even further...

B. Janssen (UGR) Granada, January 16th, 2015 18/28

Page 39: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

6. The laws of black hole mechanics [Bardeen, Carter, Hawking; 1973]

• Zeroth law: In stationary black holes, the surface gravity κH is constant

along the horizon.

NB: Surface gravity κH = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

B. Janssen (UGR) Granada, January 16th, 2015 19/28

Page 40: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

6. The laws of black hole mechanics [Bardeen, Carter, Hawking; 1973]

• Zeroth law: In stationary black holes, the surface gravity κH is constant

along the horizon.

NB: Surface gravity κH = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• First law: In quasi-stationary processes, M , A, J and Q vary like

dM =κH

8πGN

dA + ΩH dJ + ΦHdQ

B. Janssen (UGR) Granada, January 16th, 2015 19/28

Page 41: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

6. The laws of black hole mechanics [Bardeen, Carter, Hawking; 1973]

• Zeroth law: In stationary black holes, the surface gravity κH is constant

along the horizon.

NB: Surface gravity κH = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• First law: In quasi-stationary processes, M , A, J and Q vary like

dM =κH

8πGN

dA + ΩH dJ + ΦHdQ

• Second law: The area A of the black hole horizon never descreases in

physical processes.

B. Janssen (UGR) Granada, January 16th, 2015 19/28

Page 42: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

6. The laws of black hole mechanics [Bardeen, Carter, Hawking; 1973]

• Zeroth law: In stationary black holes, the surface gravity κH is constant

along the horizon.

NB: Surface gravity κH = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• First law: In quasi-stationary processes, M , A, J and Q vary like

dM =κH

8πGN

dA + ΩH dJ + ΦHdQ

• Second law: The area A of the black hole horizon never descreases in

physical processes.

• Third law: It is not possible to reduce the surface gravity κH to zero by

physical processes in a finite time.

B. Janssen (UGR) Granada, January 16th, 2015 19/28

Page 43: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Compare with laws of thermodynamics: [Clausius; Kelvin; Gibbs; Nernst]

• Zeroth law: In systems in thermodynamic equilibrium, the temperature

T is constant throughout the system.

• First law: In quasi-stationary processes, E, S, V and N vary like

dE = kBT dS − P dV + µ dN,

• Second law: The entropy of a closed system never descreases in physical

processes.

• Third law: It is not possible to reduce the temperature T to zero by

physical processes in a finite time.

B. Janssen (UGR) Granada, January 16th, 2015 20/28

Page 44: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Compare with laws of thermodynamics: [Clausius; Kelvin; Gibbs; Nernst]

• Zeroth law: In systems in thermodynamic equilibrium, the temperature

T is constant throughout the system.

• First law: In quasi-stationary processes, E, S, V and N vary like

dE = kBT dS − P dV + µ dN,

• Second law: The entropy of a closed system never descreases in physical

processes.

• Third law: It is not possible to reduce the temperature T to zero by

physical processes in a finite time.

Suggests:

M ∼ E relativistic mass en energy

ΩHdJ ∼ −PdV work done by system

A ∼ S ↔ uniqueness theorems: S = 0

κH ∼ T ↔ black hole emits nothing: T = 0

B. Janssen (UGR) Granada, January 16th, 2015 20/28

Page 45: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

7. Quantum black holes

Bardeen, Carter, Hawking: Pure analogy, no physical connection

B. Janssen (UGR) Granada, January 16th, 2015 21/28

Page 46: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

7. Quantum black holes

Bardeen, Carter, Hawking: Pure analogy, no physical connection

Bekenstein: Deep relation between black holes and thermodynamics!

B. Janssen (UGR) Granada, January 16th, 2015 21/28

Page 47: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

7. Quantum black holes

Bardeen, Carter, Hawking: Pure analogy, no physical connection

Bekenstein: Deep relation between black holes and thermodynamics!

S>0

S = 0S < 0?D

Black holes must have non-trivial

entropy, in order to satisfy Second

Law of Thermodynamics

−→ Entropy is real and huge! S ∼ A/ℓ2P [Bekenstein, 1973]

−→ Black hole = maximal entropy object: S ≤ 2π~kBER0

B. Janssen (UGR) Granada, January 16th, 2015 21/28

Page 48: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

7. Quantum black holes

Bardeen, Carter, Hawking: Pure analogy, no physical connection

Bekenstein: Deep relation between black holes and thermodynamics!

S>0

S = 0S < 0?D

Black holes must have non-trivial

entropy, in order to satisfy Second

Law of Thermodynamics

−→ Entropy is real and huge! S ∼ A/ℓ2P [Bekenstein, 1973]

−→ Black hole = maximal entropy object: S ≤ 2π~kBER0

Question: How can black holes have temperature,if they do not emit anything?

−→ Look at quantum character...

B. Janssen (UGR) Granada, January 16th, 2015 21/28

Page 49: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Hawking radiation [Hawking, 1974]

QFT in curved spacetime: black hole behaves like black body

t

R

r

+

Schwinger pair creation near horizon

=⇒ thermal radiation with

T =~κH2πkB

=⇒ identify entropy as

S =A

4GN~

B. Janssen (UGR) Granada, January 16th, 2015 22/28

Page 50: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Hawking radiation [Hawking, 1974]

QFT in curved spacetime: black hole behaves like black body

t

R

r

+

Schwinger pair creation near horizon

=⇒ thermal radiation with

T =~κH2πkB

=⇒ identify entropy as

S =A

4GN~

Two big problems:

• Counting of microstates: what is nature of entropy?

• Information paradox: is time evolution unitary?

B. Janssen (UGR) Granada, January 16th, 2015 22/28

Page 51: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Counting of microstates

Boltzmann: S = lnN [Boltzmann, 1877]

Shannon: S =∑

i pi log2 pi

M = m⊙ =⇒ S ∼ 1077

−→ What are these microstates?

B. Janssen (UGR) Granada, January 16th, 2015 23/28

Page 52: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Counting of microstates

Boltzmann: S = lnN [Boltzmann, 1877]

Shannon: S =∑

i pi log2 pi

M = m⊙ =⇒ S ∼ 1077

−→ What are these microstates?

• # ways matter can collaps to form Kerr-Newmann with M , Q and J?

−→ agreement in string theory for D = 5 extremal black holes

gsgkaoo [Strominger & Vafa, 1996]

B. Janssen (UGR) Granada, January 16th, 2015 23/28

Page 53: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Counting of microstates

Boltzmann: S = lnN [Boltzmann, 1877]

Shannon: S =∑

i pi log2 pi

M = m⊙ =⇒ S ∼ 1077

−→ What are these microstates?

• # ways matter can collaps to form Kerr-Newmann with M , Q and J?

−→ agreement in string theory for D = 5 extremal black holes

gsgkaoo [Strominger & Vafa, 1996]

• Holographic Principle? S ∼ A ∼ R2, S ≁ V ∼ R3[’t Hooft, 1993]

B. Janssen (UGR) Granada, January 16th, 2015 23/28

Page 54: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Counting of microstates

Boltzmann: S = lnN [Boltzmann, 1877]

Shannon: S =∑

i pi log2 pi

M = m⊙ =⇒ S ∼ 1077

−→ What are these microstates?

• # ways matter can collaps to form Kerr-Newmann with M , Q and J?

−→ agreement in string theory for D = 5 extremal black holes

gsgkaoo [Strominger & Vafa, 1996]

• Holographic Principle? S ∼ A ∼ R2, S ≁ V ∼ R3[’t Hooft, 1993]

Degrees of freedom of gravitational system in

volume V is described by quantum field theory

on boundary ∂V

−→ not just for black holes

(AdS/CFT, cosmology, ...)

B. Janssen (UGR) Granada, January 16th, 2015 23/28

Page 55: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

• Entanglement entropy?

State of Hawking pair:

|ψtot〉 = 1√2

(

|0int〉 ⊗ |0ext〉 + |1int〉 ⊗ |1ext〉)

Internal part inaccessable −→ description in terms of density matrix

ρext =∑

int

〈ψint|(

|ψtot〉〈ψtot|)

|ψint〉

Entanglement entropy:

S = −Tr(

ρext ln ρext

)

= ln 2

B. Janssen (UGR) Granada, January 16th, 2015 24/28

Page 56: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

• Entanglement entropy?

State of Hawking pair:

|ψtot〉 = 1√2

(

|0int〉 ⊗ |0ext〉 + |1int〉 ⊗ |1ext〉)

Internal part inaccessable −→ description in terms of density matrix

ρext =∑

int

〈ψint|(

|ψtot〉〈ψtot|)

|ψint〉

Entanglement entropy:

S = −Tr(

ρext ln ρext

)

= ln 2

State of N Hawking pairs:

|ψtot〉 = 1√2

(

|0int 1〉 ⊗ |0ext 1〉 + |1int 1〉 ⊗ |1ext 1〉)

⊗ ... ⊗ 1√2

(

|0int N〉 ⊗ |0ext N〉 + |1int N〉 ⊗ |1ext N〉)

S = N ln 2

B. Janssen (UGR) Granada, January 16th, 2015 24/28

Page 57: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Information paradox

Where goes information about collapsing matter?

• Classically: inside de black hole, unaccessable...

B. Janssen (UGR) Granada, January 16th, 2015 25/28

Page 58: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Information paradox

Where goes information about collapsing matter?

• Classically: inside de black hole, unaccessable...

• Quantum mechanically: black hole evaporation −→ dispersion problem

In-state = (sum of) pure states; Out-state = thermal state

−→ Violates unitarity of Quantum Mechanics!

B. Janssen (UGR) Granada, January 16th, 2015 25/28

Page 59: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Open Questions...

• Are the basic principles of QM (linearity, unitarity, ...) valid to describe a

quantum-gravitational system?

B. Janssen (UGR) Granada, January 16th, 2015 26/28

Page 60: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Open Questions...

• Are the basic principles of QM (linearity, unitarity, ...) valid to describe a

quantum-gravitational system?

• Is Hawking radiation really thermal, or only in semi-classical

approximation? Does it contain information in subtil correlations?

B. Janssen (UGR) Granada, January 16th, 2015 26/28

Page 61: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Open Questions...

• Are the basic principles of QM (linearity, unitarity, ...) valid to describe a

quantum-gravitational system?

• Is Hawking radiation really thermal, or only in semi-classical

approximation? Does it contain information in subtil correlations?

• What is the end-point of Hawking radiation? A remnant? A naked

singularity?

B. Janssen (UGR) Granada, January 16th, 2015 26/28

Page 62: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Open Questions...

• Are the basic principles of QM (linearity, unitarity, ...) valid to describe a

quantum-gravitational system?

• Is Hawking radiation really thermal, or only in semi-classical

approximation? Does it contain information in subtil correlations?

• What is the end-point of Hawking radiation? A remnant? A naked

singularity?

• Do black holes really exist, or are they a (semi-)classical approximation of

states in quantum gravity? Black hole complementarity? Firewalls?

Fuzzballs?

B. Janssen (UGR) Granada, January 16th, 2015 26/28

Page 63: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Open Questions...

• Are the basic principles of QM (linearity, unitarity, ...) valid to describe a

quantum-gravitational system?

• Is Hawking radiation really thermal, or only in semi-classical

approximation? Does it contain information in subtil correlations?

• What is the end-point of Hawking radiation? A remnant? A naked

singularity?

• Do black holes really exist, or are they a (semi-)classical approximation of

states in quantum gravity? Black hole complementarity? Firewalls?

Fuzzballs?

Problem:Incompatibility between Equivalence Principle, unitarity or locality?

−→ which one shall we sacrifice?

B. Janssen (UGR) Granada, January 16th, 2015 26/28

Page 64: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Conclusions:

• General relativity is coarse-grained, (semi-)classical description of an

underlying quantum system!

−→ Not just black holes: same in cosmic horizons, Rindler horizons,...

B. Janssen (UGR) Granada, January 16th, 2015 27/28

Page 65: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Conclusions:

• General relativity is coarse-grained, (semi-)classical description of an

underlying quantum system!

−→ Not just black holes: same in cosmic horizons, Rindler horizons,...

• Holographic Principle: information storage is proportional to A, not V

B. Janssen (UGR) Granada, January 16th, 2015 27/28

Page 66: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Conclusions:

• General relativity is coarse-grained, (semi-)classical description of an

underlying quantum system!

−→ Not just black holes: same in cosmic horizons, Rindler horizons,...

• Holographic Principle: information storage is proportional to A, not V

• Ultimate Question: What are degrees of freedom of quantum gravity?

B. Janssen (UGR) Granada, January 16th, 2015 27/28

Page 67: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Thank you!

B. Janssen (UGR) Granada, January 16th, 2015 28/28

Page 68: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

gtt = 1− 2Mr

changes sign at r = 2M : t and r interchange roles

t

r

2M

Dis

tanc

ia

Tiempo

Tie

mpo

Distancia

• r > 2M : t is timelike, r is spacelike: asymptotically flat region

• r < 2M : t is spacelike, r is timelike: non-static region

−→ r = 0 is spacelike singularity in future

B. Janssen (UGR) Granada, January 16th, 2015 29/28

Page 69: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

t

rR+R_

• R+ < r: t is timelike, r is spacelike: asymptotically flat region

• R− < r < R+: t is spacelike, r is timelike: non-stationary region

• r < R−: t is timelike, r is spacelike: inner region

−→ ring singularity is timelike and localised

B. Janssen (UGR) Granada, January 16th, 2015 30/28

Page 70: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Analogue for Schwarzschild black hole:

Energy at infinity of particle at position r:

E(r) = gtµ pµ = m0

1− 2M

r

−→ E = m0 at r = ∞−→ E = 0 at r = 2M

B. Janssen (UGR) Granada, January 16th, 2015 31/28

Page 71: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Analogue for Schwarzschild black hole:

Energy at infinity of particle at position r:

E(r) = gtµ pµ = m0

1− 2M

r

−→ E = m0 at r = ∞−→ E = 0 at r = 2M

m0

W = m0

−→ Possible to extract all energy of infalling particle and convert to work

=⇒ ∆M = 0

−→ No energy extracted from black hole, but no energy added either

B. Janssen (UGR) Granada, January 16th, 2015 31/28

Page 72: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Analogue for charged black holes:

Canonical momentum of charged particle: pµ = m0 xµ + qAµ

−→ E < 0 if Aµ sufficiently negative

+Q

W > m 0q

−→ Possible to extract energy from black hole and convert to work

∆E = E(∞) − E(R+)

= m0 − qQ

R+

(Reissner-Nordstrom)

−→ Extra work done by electromagnetic field of black hole...

... untill black hole is neutralised

B. Janssen (UGR) Granada, January 16th, 2015 32/28

Page 73: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Euclidean Path Integral [Gibbons, Hawking, 1977]

QFT in euclidean space: periodic time t = t+ β

finite temperature T = 1/β

Path integral:

Z(β) =

Dφ e−SE [φ]

B. Janssen (UGR) Granada, January 16th, 2015 33/28

Page 74: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Euclidean Path Integral [Gibbons, Hawking, 1977]

QFT in euclidean space: periodic time t = t+ β

finite temperature T = 1/β

Path integral:

Z(β) =

Dφ e−SE [φ]

Being (very) bold:

Z(β) =

Dg e−SE [g]

−→ Saddle point approximation, background subtraction, ...

B. Janssen (UGR) Granada, January 16th, 2015 33/28

Page 75: Black Hole Thermodynamics - UGRbjanssen/text/BHtermodyn.pdf · 2015. 1. 17. · Black Hole Thermodynamics Bert Janssen Dpto. de F´ısica Teo´rica y del Cosmos Centro Andaluz de

Euclidean Path Integral [Gibbons, Hawking, 1977]

QFT in euclidean space: periodic time t = t+ β

finite temperature T = 1/β

Path integral:

Z(β) =

Dφ e−SE [φ]

Being (very) bold:

Z(β) =

Dg e−SE [g]

−→ Saddle point approximation, background subtraction, ...

Z(β) ∼ Tr e−βH

−→ Interpret as opartition function in canonical ensemble:

E = M S =A

4GN~T =

~κH2πkB

−→ Assuming thermodynamic description of some microscopic system:

Same results as geometrical approach!

B. Janssen (UGR) Granada, January 16th, 2015 33/28