Bioretention rainwater treatment – technical design by ASLA

15
9/6/2012 1 Jim Schuessler, ASLA James Urban, FASLA Kevin Robert Perry, ASLA JIM SCHUESSLER ASLA associate | landscape architecture BNIM berkebile nelson immenschuh mcdowell 106 West 14th Street Suite 200 Kansas City Missouri 64105 816.783.1608 American Society of Landscape Architects 2012 Annual Meeting Bio-retention Rain Water Management: Technical Design 2009 ASLA Honor Award James Urban, FASLA, ISA Urban Tree + Soils [email protected] Issues Introduction – The new rain water paradigm is a significant change in the way we view water and cities. Do we know what we are doing? Are we “experts” at this? Since ancient times, we have: Slowly evolved solutions to conflicts between rain water and human development. Any new water paradigm we must be sure to understand these conflicts and not reintroduce an old problem. Old paradigm Get the water away fast…… New paradigm Hold the water here for as long as possible……….. Steep slopes good Flat slopes bad Steep slopes bad Flat slopes good Minimum and maximum slope tolerance Slope tolerance 2 – 15% in planted areas Slope tolerance 0 – 1.5% in planted areas

Transcript of Bioretention rainwater treatment – technical design by ASLA

Page 1: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

1

Jim Schuessler, ASLAJames Urban, FASLAKevin Robert Perry, ASLA

JIM SCHUESSLER  ASLA associate | landscape architecture BNIM berkebile nelson immenschuhmcdowell 106 West 14th Street Suite 200 Kansas City Missouri 64105 816.783.1608

American Society of Landscape Architects2012 Annual Meeting

Bio-retention Rain Water Management:Technical Design

2009 ASLA Honor Award

James Urban, FASLA, ISAUrban Tree + [email protected]

gIssues

Introduction – The new rain water paradigm is a significant change in the way we view water and cities.  

Do we know what we are doing?  Are we “experts” at this?

Since ancient times, we have: Slowly evolved solutions to conflicts between rain water and human development.  

Any new water paradigm we must be sure to understand these conflicts and not reintroduce an old problem. 

Old paradigmGet the water away fast……

New paradigmHold the water here for as long as possible………..

Steep slopes goodFlat slopes bad

Steep slopes badFlat slopes good

Minimum and maximum slope tolerance

p

Slope tolerance 2 – 15% in planted areas 

p g

Slope tolerance 0 – 1.5% in planted areas  

Page 2: Bioretention rainwater treatment – technical design by ASLA

I. Why are stormwater bioretention facilities important? x Infiltrate and Reduce Runoff x Filter Pollutants x Restore Ecological Function (Create Habitat) x Integrate Stormwater into the Landscape - Turn Problems into Beauty

II. How well do these facilities work?

x Design Components x Expectations of performance for stormwater bioretention facilities

Water Quality Value

Volume Reduction

Temperature Reduction

Oils/Floatables Reduction

Rain Garden <10 mg/l Significant Decrease Significant Infiltration Basin/Trench <10 mg/l Significant Decrease Significant Bioretention <10 mg/l Moderate Decrease Significant Pervious/Porous Pavement

10-20 mg/l Moderate Decrease Significant

Extended Detention Wetland

<10 mg/l Significant Unchanged Moderate

Vegetated Swales (Bioswale)

10-20 mg/l Moderate Unchanged Significant

Rain Garden Infiltration Basin/Trench Bioretention *Source: California Stormwater Quality Association, BMP Handbook, 2003/2009

Page 3: Bioretention rainwater treatment – technical design by ASLA

Pervious/Porous Pavement Extended Detention Wetland Vegetated Swales (Bioswale)

*Source: California Stormwater Quality Association, BMP Handbook, 2003/2009 III. Measured Findings

x USGBC Stormwater Monitoring Research Results x Lessons learned from failures or under performance

1. Preservation of the existing landscape 2. Reducing disruption of site soils 3. How site characteristic inform design 4. Cost/stormwater benefit 5. Size and the problems of undersized systems 6. Mimicking Mother Nature 7. Plant selection 8. Design complexity 9. Low Cost Can Still be Effective 10) Stormwater Management Can be Beautiful

Page 4: Bioretention rainwater treatment – technical design by ASLA

References

x California Stormwater Quality Association, BMP Handbook, 2003/2009 x APWA/MARC Best Management Practices Manual, 2009 x Hinman, C., “Bioretention Soil Mix Review and Recommendations for Western Washington”,

2009. x Hsieh, C., and A. P. Davis, “Multiple-Event Study of Bioretention for Treatment of Urban

Storm Water Runoff”, Diffuse Pollution Conference, Dublin, 2003. x Hunt, W.F., and W.G. Lord, “Bioretention Performance, Design, Construction, and

Maintenance”, North Carolina State Cooperative Extension Service, 2006.

Page 5: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

2

1. Water Into the System

2. Clogging at the Entry Point

3. Water Movement thru the soil

4 Areas of common mistakes in bioretention design

4. Water Out of the System

1. Water Into the SystemGrading toward the water access points

We assume this is the way the grades will fall…… But the grades do not always do that

Fall line

1. Water Into the SystemTurning the water into the catchment basin

Water does not want to turn 90°

Use gravity and or laminar flow to get water around the corner.  Higher water velocity in the gutter will easily overcome laminar flow and gravity, letting the water flow past the entry.

Cheater curbs

Larger radius better

Too narrow

Too low and narrow 

Making a better entry

1000 cf of loam soil treats 2,000 sf of paved surface (1.25 P storm) 

1. Water Into the SystemSizing the system

1. Water Into the SystemSizing the system

Rain water systems are taking up increasingly larger amounts of urban space

Layered systems to improve land use ratio

1. Water Into the SystemSizing the system

Layered systems to improve land use ratio

Page 6: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

3

Perforated distribution pipe is installed to bring water from the catch basin through the Silva Cell system

Catch Basin

Queensway InstallationPutting the entire bioretention system under pavement

2. Clogging at the Entry PointFloatables and silt

2. Clogging at the Entry PointFloatables and silt

Rip rap caused clogged catchment

Steeper entry slope and larger unplanted fore bay needed.

Rip rap over opening to prevent velocity blow out

2. Clogging at the Entry PointDesigning for Maintenance

No covers over access channels

Thin, small cover over large opening 

No tree at opening

No planting at water access zone for cleaning

Macro-pores

Micro-pores3. Water Movement thru the soilCapillary vs gravity water

Saturation Point Field Capacity Wilt Point

Gravity Water

20-25% of soil volume

Capillary Water

20-25% of soil volume

3. Water Movement thru the soilInfiltration rates are set by:

Soil type    andSoil structure / preserved peds  andSoil compaction

Unscreened sandy loam soil

Plants will grow best in unscreened sandy loam soils.  Sandy loam soil with plants best captures pollutants.

Screened sandy loam soil mixSand/compost bio‐retention soil mix

Page 7: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

4

Fine grained soilInterface

3. Water Movement thru the soilSoil interface and water

Interface

Soil interface slowing the flow of water.

Upper layer must become saturated before water moves into lower layer.  

Drainage rate in lower soil sets the total drainage rate for the two soils.

Coarse grained soil or compacted soil layer

3. Water Movement thru the soilWater drains too slow

Drains too slow!Too much water in?Too slow water out?Bio‐retention soil and still clogged?

3. Water Movement thru the soilWater drains too fast

Drains too fast!Piping and fine particle migration?Bio‐retention soil drains too fast?

Rain

Runoff RAISED overflow invert

Water head above soil

Soil

4. Water Out of the System

Stand Pipe Concept

Retention

Detention

To outfall

Perforatedsub drain line

Small amounts of Infiltration

Solid stand pipe

Page 8: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

1

Page 9: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

2

Page 10: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

3

Page 11: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

4

Page 12: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

5

Page 13: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

6

Page 14: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

7

Page 15: Bioretention rainwater treatment – technical design by ASLA

9/6/2012

8