BIOPOTENTIAL AMPLIFIERS

29
By: Engr. Hinesh Kumar Lecturer BIOPOTENTIAL AMPLIFIERS

description

BIOPOTENTIAL AMPLIFIERS. By: Engr. Hinesh Kumar Lecturer. Biopotential Amplifier. Amplifiers used to process biopotentials are called biopotential amplifier. Biopotential Signals (e.g., ECG, EMG, EEG, EOG, … etc .) - PowerPoint PPT Presentation

Transcript of BIOPOTENTIAL AMPLIFIERS

Page 1: BIOPOTENTIAL AMPLIFIERS

By:Engr. Hinesh Kumar

Lecturer

BIOPOTENTIAL AMPLIFIERS

Page 2: BIOPOTENTIAL AMPLIFIERS

Amplifiers used to process biopotentials are called biopotential amplifier.

Biopotential Signals (e.g., ECG, EMG, EEG, EOG, … etc.)

The basic function of biopotential amplifier is to increase the amplitude of a weak electric signal of biological origin.

Biopotential amplifiers typically process voltages, but in some cases they also process currents.

The frequency response of typical bioelectric amplifiers may be from dc (or near dc, i.e., 0.05 Hz) up to 100 kHz.

Biopotential Amplifier

Page 3: BIOPOTENTIAL AMPLIFIERS

Some biopotential amplifiers are ac-coupled, while some are dc-coupled.

The dc-coupling is required where input signals are clearly dc or changes very slowly.

At frequencies as low as 0.05Hz, the ac-coupling should be used instead of dc-coupling.

This is to overcome the electrode offset potential.

Also, the skin-electrode interface generates dc offsets.

The gain of biopotential amplifiers can be low, medium or high (x10, x100, x1000, x10000).

Cont…

Page 4: BIOPOTENTIAL AMPLIFIERS

Gain factors x1 and x10.

The unity-gain amplifier is mainly for isolation, buffering and possibly impedance transformation between signal source and readout device.

Used for measurement of action potentials and other relatively high-amplitude bioelectric events.

Low Gain Biopotential Amplifier

Page 5: BIOPOTENTIAL AMPLIFIERS

Gain factors x100 and x1000.

Used for recording of ECG waveforms and muscles potentials (EMG), etc.

Medium Gain Biopotential Amplifier

Page 6: BIOPOTENTIAL AMPLIFIERS

Gain factors over x1000.

Used in very sensitive measurement such as recording of brain potentials (EEG).

High Gain Biopotential Amplifier

Page 7: BIOPOTENTIAL AMPLIFIERS

The basic requirements that a biopotential amplifier has to satisfy are:1. Biopotential amplifiers should have high

input impedance i.e., greater than 10 MΩ.2. Safety: the amplifier should protect the

organism being studied.Careful design to prevent macro and micro

shocks.Isolation and protection circuitry to limit the

current through the electrode to safe level.3. Output impedance of the amplifier should

be low to drive any external load with minimal distortion

Typical Biopotential Amplifier Requirements

Page 8: BIOPOTENTIAL AMPLIFIERS

4. Gain of the amplifier is greater than x1000 as biopotentials are typically less than a millivolt.

5. Most biopotential amplifiers are differential amplifier as signals are recorded using a bipolar electrodes which are symmetrically located.

6. High Common Mode Rejection Ratio (CMMR): biopotentials ride on a large offset signals or noise.

7. Rapid calibration of the amplifier in laboratory conditions.

8. Adjustable Gains:Often the change in scale is automaticTherefore calibration of the equipment is very important

Cont…

Page 9: BIOPOTENTIAL AMPLIFIERS

10.The physiological process to be monitored should not be influenced in any way by the amplifier.

11.The measured signal should not be distorted.12.The amplifier should provide the best possible

separation of signal and interferences.13.The amplifier has to offer protection of the

patient from any hazard of electrical shock.14.The amplifier itself has to be protected against

damages that might result from high input voltages as they occur during the application of defibrillators or electrosurgical instrumentation

Cont….

Page 10: BIOPOTENTIAL AMPLIFIERS

Circuit Model of Operational Amplifier

Operational Amplifier

Page 11: BIOPOTENTIAL AMPLIFIERS

Operational AmplifiersDual Power Supply Configuration for

Operational Amplifiers

Page 12: BIOPOTENTIAL AMPLIFIERS

Operational AmplifiersDual Power Supply Connections for

Operational Amplifiers

Page 13: BIOPOTENTIAL AMPLIFIERS

Operational AmplifiersTypical Signal Voltage Sources for

Operational Amplifiers

Page 14: BIOPOTENTIAL AMPLIFIERS

Operational AmplifiersThere are many circuit configurations

using op amps as the active device, but only three basic classes of voltage amplifiers exist:

1. Inverting Amplifier2. Non-inverting Amplifier3. Unity Gain Non-inverting Amplifier

Page 15: BIOPOTENTIAL AMPLIFIERS

Inverting amplifier consists of an op-amp, an input resistor (R1), and a feedback resistor (R2).

The noninverting input is grounded in this circuit.

The point A, the junction of the two resistors and the operational amplifier's inverting input, is properly called the summing junction, or summation node.

Inverting Amplifier

Page 16: BIOPOTENTIAL AMPLIFIERS

DerivationCont…

Page 17: BIOPOTENTIAL AMPLIFIERS

The quantity R2/R1 gives us the magnitude of the voltage gain for this amplifier configuration, and the minus sign tells us that a 180-deeree phase inversion takes place. The voltage amplification or gain expression is represented by the symbol Av

The equation is also frequently seen in two alternative but equivalent form.

Cont…

Page 18: BIOPOTENTIAL AMPLIFIERS

Calculate the gain of an inverting amplifier if the feedback resistor (i,e., R2) is 120 kΩ. and the input resistor (R1) is 5.6 k Ω

Solution

Av= -R2/R1Av= -(120 k Ω / 5.6 k Ω)Av= 21

Example

Page 19: BIOPOTENTIAL AMPLIFIERS

In the non-inverting amplifier input voltage is applied directly to the non inverting input terminal of the operational amplifier .

Feedback resistor R2, and input resistor R1, are the same as in the inverting follower, except that the other end of R1, is grounded.

Non-inverting Amplifier

Page 20: BIOPOTENTIAL AMPLIFIERS

DerivationCont…

Page 21: BIOPOTENTIAL AMPLIFIERS

Calculate the voltage gain of a “non-inverting amplifier if R2, = 10 k Ω and R1, = 2.2 k Ω.

Solution

Example

At high gains, the gains of the inverting and non-inverting amplifier are very nearly equal but, at low gains, a difference is noted.

Page 22: BIOPOTENTIAL AMPLIFIERS

In the unity Gain non-inverting amplifier the resistor network is not used in this circuit, and the output is connected directly to the inverting input, resulting in 100%.

Av= R2/R1+1Av= 0+1Av= 1

Unity Gain Non-inverting Amplifier

Page 23: BIOPOTENTIAL AMPLIFIERS

More than one input network may be used in an op-amp network, and the output voltage represents the summation of the respective input currents.

Three input networks are used in this circuit, and there are three input sources: E1, through E3.

Multiple Input Circuits

Page 24: BIOPOTENTIAL AMPLIFIERS

Find the output voltage in a circuit, such as one in fig, if R1, = R2, = R3, = 10 k Ω , R4 = 22 k Ω, E1, = 100 mV, E2, = 500 mV, and E3, = 75 mV.

Solution:

Example

Page 25: BIOPOTENTIAL AMPLIFIERS

A differential amplifier produces an output voltage that is proportional to the difference between the voltage applied to the two input terminals.

The voltage gain for the differential signals is the same as for the inverting followers, provided the ratio equality of R2/R1 = R4/R3 is maintained.

Differential amplifiers are useful because it rejects common voltages while amplifying the differential signal of interest.

Differential Amplifier

Page 26: BIOPOTENTIAL AMPLIFIERS

This circuit uses three operational amplifiers, A1, through A3,.

The two input amplifiers (i.e., A1, and A2,) are connected in the non-inverting amplifier configuration, while the third amplifier is connected in the simple dc differential amplifier.

Simplify circuit analysis by setting the gain of A3, equal to unity (i.e.. R4, = R5, = R6, = R7,).

let us assume E1, is applied to the non-inverting input of amplifier A1, and that E2, is applied to the non-inverting input of amplifier A2.

Additionally, E3 is the output of A2,, and E4 is the output of A1,.

Voltages E1, and E2 are also shown at the inverting inputs of A1 and A2.

Instrumentation Amplifier

Page 27: BIOPOTENTIAL AMPLIFIERS

There are two contributing sources to E3, and E4. In the case of E3:

If we set R2=R3

Cont….

Page 28: BIOPOTENTIAL AMPLIFIERS

The gain of instrumentation Amplifier is

Cont…..

Page 29: BIOPOTENTIAL AMPLIFIERS