Biomedical Signal Processing Lectures 2011-12

509
7/23/2019 Biomedical Signal Processing Lectures 2011-12 http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 1/509 Biomedical  Signal  Processing Lecture 0 INTRODUCTION Dr.R.B.Ghongade Department  of  E&TC Vishwakarma Institute of  Information Technology, Pune INDIA

Transcript of Biomedical Signal Processing Lectures 2011-12

Page 1: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 1/509

Biomedical 

Signal 

Processing

Lecture 0

INTRODUCTIONDr.R.B.Ghongade

Department of  E&TC

Vishwakarma Institute of  Information Technology, Pune

INDIA

Page 2: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 2/509

Syllabus1)Introduction:   cell structure, basic cell function, origin of bio

‐potentials,

electric activity of cells.

2)Bio‐transducers: Physiological parameters and suitable transducers for its

measurements, operating principles and specifications for the transducers to

measure parameters like blood flow, blood pressure, electrode sensor,temperature, displacement transducers.

3)Cardiovascular system: Heart structure, cardiac cycle,   ECG

(electrocardiogram) theory (B.D.),   PCG   (phonocardiogram).EEG, X‐Ray,

Sonography, CT‐Scan, The nature of biomedical signals.

4)Analog signal processing of Bio‐signals, Amplifiers, Transient Protection,

Interference Reduction, Movement Artifact Circuits, Active filters, Rate

Measurement. Averaging and Integrator Circuits, Transient Protection

circuits.

5)Introduction to time‐frequency representations

‐  e.g. short

‐time Fourier

transform, spectrogram , wavelet signal decomposition.

6)Biomedical applications: Fourier, Laplace and z‐transforms,

autocorrelation, cross‐correlation, power spectral density.

7)Different sources of noise, Noise removal and signal compensation.

8)Software  based medical signal detection and pattern recognition.

Page 3: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 3/509

Texts/References

1. Handbook of Biomedical Instrumentation,secondedition,R S Khandpur,TMH Publication,2003

2. E. N. Bruce, Biomedical signal processing and

signal modelling, New York: John Wiley, 2001.

3. Wills J. Tompkins, biomedical digital signalprocessing, PHI.

4. M.Akay, Time frequency and wavelets in

biomedical signal processing, Piscataway, NJ:

IEEE Press, 1998.5. Biomedical instrumentation and measurements

by Cromwell, 2nd edition, Pearson education.

Page 4: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 4/509

 Additional  

Texts/References

1. Jaakko Malmivuo; Robert Plonsey; “Bioelectromagnetism : 

Principles and

 Applications

 of 

 Bioelectric

 and

 Biomagnetic

Fields”, Oxford University Press 

2. Antoun Khawaja ; “Automatic ECG Analysis using Principal 

Component Analysis and Wavelet Transformation”, Karlsruhe 

Transactions on Biomedical Engineering, 2006

3. John L. Semmlow; “Biosignal and Biomedical Image Processing: 

MATLAB‐Based Applications”, Marcel Dekker, Inc., 2004

4. Rezaul Begg; Joarder Kamruzzaman; Ruhul Sarker; “Neural 

networks in healthcare: potential and challenges”, Idea Group 

Publishing, 2006

5. Lief Sornmo; Pablo Laguna; “Bioelectrical Signal Processing in 

Cardiac and Neurological Applications”, Elsevier, 2005, First 

Edition

Page 5: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 5/509

Lecture Plan

Lecture 1: Introduction to Biomedical Instrumentation and  safety 

considerations

Lecture 2: Bio‐potentials 

Lecture 3:

 Bio

‐electrodes

 and

 Physical

 Measurements

Lecture 4a: Cardiovascular System

Lecture 4b:Phonocardiography, EEG 

Lecture 5: X‐Ray Imaging , Computed Tomography , Diagnostic Ultrasound 

ImagingLecture 6: Analog Signal Processing of  Bio‐signals (NO PPT)

Lecture 7: Digital signal processing of  Biosignals

Lecture 8: Software based medical signal detection and pattern recognition  –

Case Study (NO PPT)

Page 6: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 6/509

Assignments

PART I

Assig. 1: Survey of  Bio‐medical sensors

Assig.2: Design and simulation of  instrumentation amplifier

Assig.3: Design  and simulation of  Active Filters

PART II

Assig.4: MATLAB

 exercise

 ( basic

 operations,

 commands…)

Assig.5: ECG Signal processing using FFT and Wavelets

Assig. 6:ECG Pattern classification

Page 7: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 7/509

Lecture 1PART I:Introduction to Biomedical 

Instrumentation 

PART II: Safety considerations

Dr.R.B.Ghongade

Department of  E&TC,

V.I.I.T., Pune‐411048 

Page 8: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 8/509

Bio‐medical Instrumentation

•   A medical device is 

 –  “any item promoted for a medical purpose that does not rely on chemical action to achieve its intended effect”

•   Difference from any conventional instrument  –  source of  signals is living tissue

 –  energy is applied to the living tissue

•   How does this impact design requirements? –  Reliability, Reliability, Reliability !!!

Page 9: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 9/509

Timeline of  major inventions

Page 10: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 10/509

Generalized instrumentation system

Page 11: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 11/509

•   Physical quantity, property or condition that the 

system measures

•  Types of  measurands

•   Internal  –Blood pressure

•   Body surface  –ECG or EEG potentials

  Peripheral  –Infrared radiation•   Offline  –Extract tissue sample, blood or biopsy

•   Categories of  measurands

•   Bio‐potential, pressure, flow, dimensions 

(imaging), displacement (velocity, acceleration 

and force), impedance, temperature and 

chemical concentration

Measurand

Page 12: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 12/509

Page 13: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 13/509

Page 14: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 14/509

Page 15: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 15/509

Sensor•   A sensor converts physical measurand to an 

electrical output

•   Sensor requirements

•   Selective  – should respond to a specific form 

of  energy in the measurand

•   Minimally invasive  – should not affect the 

response of  the living tissue

•   Most important types of  sensors in biomedical 

systems•   displacement

•   pressure

Page 16: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 16/509

Signal Conditioning

•   Signal Conditioning: Amplification and filtering 

of  the signal acquired from the sensor to make it suitable for processing/display

•   General categories

•   Analog, digital or mixed‐signal•   Time domain processing

•   Frequency domain processing

  Spatial domain processing

Page 17: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 17/509

Operational Modes•

  Direct vs. Indirect•   Direct mode: measure desired measurand directly

•   if  the sensor is invasive, direct contact with the 

measurand is possible but expensive, risky and  least 

acceptable•   Indirect mode: measure a quantity that is accessible and 

related to the desired measurand

•   assumption: the relationship between the measurands is 

already known

•   often chosen when the measurand requires invasive 

procedures to measure directly

  Example indirect mode•   Cardiac output (volume of  blood pumped per minute by the 

heart)can be determined from measurement of  respiration, 

blood gas concentration & dye dilution

•   Organ morphology can be determined from x‐ray shadows

Page 18: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 18/509

Operational Modes

•   Sampling vs. Continuous mode•   Sampling: for slow varying measurands that are sensed 

infrequently like body temperature & ion concentrations

•   Continuous: for critical measurements requiring constant monitoring like electro‐cardiogram and respiratory gas 

flow

•   Generating vs. Modulating•   Generating: also known as self ‐powered mode derive 

their operational energy from the measurand itself 

•   Example: piezoelectric sensors, solar cells

  Modulating: measurand modulates the electrical signal which is supplied externally modulation affects output of  

the sensor

•   Example: photoconductive or piezoresistive sensor

Page 19: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 19/509

Measurement Constraints•   Other than device functionality, the signal to be measured

imposes constraints on how it should be acquired and 

processed

•   Measurement and frequency ranges

•   Most medical measurands are typically much lower than 

conventional sensing parameters (microvolts, mm Hg, low frequency)

•   Interference and cross‐talk

•   Not possible to isolate effects of  other measurands

•  Cannot measure EEG without interference from EMG

•   Placement of  sensors and compensation/calibration 

process play a key role in any bio‐instrumentation design

Page 20: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 20/509

Measurement Constraints•   Measurement variability is inherent at molecular, organ and body level

•   Primary cause

•   interaction between different physiological systems

  existence of  numerous feedback loops whose properties are poorly understood

•   Therefore evaluation of  biomedical devices rely on probabilistic/statistical 

methods (biostatistics)

•   SAFETY

•   Due to interaction of  sensor with living tissue, safety is a primary 

consideration in all phases of  the design & testing process the 

damage caused could be irreversible

•   In many cases, safe levels of  energy is difficult to establish

•  Safety of  medical personnel also must be considered

•   Operator constraints

•   Reliable, easy to operate, rugged and durable

Page 21: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 21/509

Classification of  biomedical instruments•   Quantity being sensed

•   pressure, flow or temperature

•   makes comparison of  different technologies easy

•   Principle of  transduction

•   resistive, inductive, capacitive, ultrasonic or 

electrochemical

  makes development of  new applications easy•   Organ systems

•   cardiovascular, pulmonary, nervous, endocrine

•   isolates all important measurements for specialists 

who need to know about a specific area•   Clinical specialties

•   pediatrics, obstetrics, cardiology or radiology

•   easy for medical personnel interested in specialized 

equipment.

Page 22: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 22/509

Measurement Input Sources•   Desired inputs

•   measurands that the instrument is 

designed to isolate

•   Interfering inputs

•   quantities that inadvertently affect the 

instrument as a consequence of  the 

principles used to acquire and process 

the desired inputs

•   Modifying inputs

•   undesired quantities that indirectly 

affect the output by altering the 

performance of  the instrument itself 

•   ECG example

•   Desired input  – ECG voltage

•   Interfering input  – 50 Hz noise voltage, 

displacement currents

•   Modifying input  – orientation of  the patient 

cables

•   when the plane of  the cable is 

perpendicular to the magnetic 

field the magnetic interference is 

maximal

•   Interfering inputs generally not 

correlated to measurand

•   often easy to remove/cancel

•   Modifying inputs may be correlated to 

the measurand•   more difficult to remove

Page 23: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 23/509

Design Criteria and Process

Page 24: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 24/509

Regulation of  Medical Devices•   Regulatory division of  medical devices: class I, II and III

•   more regulation for devices that pose greater risk

•   Class I (General controls)

•   Manufacturers are required to perform registration, 

premarketing notification, record keeping, labeling, 

reporting of  adverse experiences and good 

manufacturing practices•   Class II (Performance standards)

•   800 standards needed to be met!

•   Class III (Premarketing approval )

•   Manufacturers have to prove the safety of  these devices prior to market release

•   Implanted devices (pacemakers etc.) are typically 

designated class III

•   Investigational devices are typically exempt

Page 25: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 25/509

Compensation Techniques

•   Compensation: elimination or reduction of  interfering and 

modifying inputs

  Techniques•   Altering the design of  essential instrument components

•   simple to implement

•   Adding new components to offset the undesired inputs

•   Methods•   Reduce sensitivity to interfering and modifying inputs

•   Example: use twisted cables and reduce number of  

electrical loops

•   Signal Filtering•   temporal, frequency and spatial separation of  signal 

from noise

Page 26: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 26/509

Compensation: Negative Feedback•   When modifying input cannot be avoided, negative feedback is used 

to make the output less dependent on the transfer function of  the 

device

•   Feedback devices must be accurate and linear

Page 27: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 27/509

Feedback

Page 28: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 28/509

Other Compensation Techniques

•   Opposing inputs or noise cancellation•   When interfering and modifying inputs 

cannot be filtered •   additional inputs can be used to cancel 

undesired output components•   similar to differential signal representation

Page 29: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 29/509

Biostatistics•   Used to design experiments and clinical 

studies:•   To summarize, explore, analyze and present data

•   To draw inferences from data by estimation or by 

hypothesis testing

•  To evaluate diagnostic procedures

•   To assist clinical decision making

•   Medical research studies can be classified as:•   Observational studies: Characteristics of  one or more 

groups of  patients are observed and recorded.

•   Experimental intervention studies: Effect of  a medical 

procedure or treatment is investigated.

Page 30: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 30/509

Biostatistics Studies•   Observational studies  – case‐series studies

•   Case‐control studies

•  use of  individuals selected because they have some 

outcome or disease 

•   then look backward to determine possible causes

•   Cross‐sectional studies:•   Analyze characteristics of  patients at one particular time 

to determine the status of  a disease  or condition.

•   Cohort observational studies:•

  A particular characteristics is a precursor for an outcome or disease

•   Controlled studies:•   If  procedures compared to the outcome for patients 

given a placebo or other accepted treatment

Page 31: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 31/509

Biostatistics Studies II

•   Concurrent control:•   Patients are selected in the same way and for the same 

duration

•   Double‐blind study:•   Randomized selection of  patients to treatment options 

to minimize investigator or patient bias

Page 32: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 32/509

Biostatistics: Data Analysis•   Distributions of  data reflect the values of  a variable / 

characteristic and frequency of  occurrence of  those values

  Mean: (X )average of  N values (arithmetic or geometric mean)

•   Median: middle of  ranked values

•   Mode: most frequent value

Page 33: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 33/509

Biostatistics: Data Analysis

•   Standard deviation:(s) spread of  data

•   75% of  values lie between 

•   Coefficient of  Variation: (CV)

  permits comparison of  different scales

•   Percentile

•   Percentage of  distribution that is less than or 

equal to the percentile number

Page 34: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 34/509

More Biostatistics•  Correlation coefficient(r)

•   Measure of the relationship

between two numerical variables

for paired observations

•   values between +1 and   ‐1 (+1means strong correlation)

•   Estimation and Hypothesis Testing

•   Confidence intervals•   indicates the degree of  confidence that data contains the true mean

•   Hypothesis testing

•   reveals whether the sample gives enough evidence for us to reject the 

null hypothesis(statement expressing the opposite of  what we think is 

true)

•   P‐value:

•   how often the observed difference would occur by chance alone

Page 35: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 35/509

More Biostatistics•   Methods for measuring the accuracy of  a diagnostic 

procedure:

•   Sensitivity: probability of  the test yielding positive results in patients who actually have the disease

•   opposite: false‐negative rate

•   Specificity: probability of  the test yielding negative results in patients 

who do not have the disease

•   opposite: false‐positive rate

Page 36: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 36/509

Instrument Characterization•   Enable comparison of  available instruments

•   Permit evaluation of  new instrument designs

•   Generalized static characteristics•   Static characteristics:

•   performance of  instruments for dc or very low 

frequency inputs

•   some sensors respond only to time‐varying inputs and 

have no static characteristics

  Dynamic characteristics:•   require temporal relationships to describe the quality 

of  measurements

Page 37: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 37/509

Static Characteristics•   Accuracy

•   Difference between the true value and the measured value 

normalized by the magnitude of  the true value•   Several ways to express accuracy

•   most popular is in terms of  percentage of  full‐scale 

measurement

  Precision•   Expresses number of  distinguishable alternatives from which a given 

result is selected

•   High‐precision does not mean high accuracy.

  Resolution•   Smallest incremental quantity that can be measured with certainty

•   Reproducibility•   Ability of  an instrument to give the same output for equal inputs 

applied over some period of  time

Page 38: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 38/509

Statistical Control and Static Sensitivity

•   Measurement conditions have to take into account randomness introduced by 

environmental conditions

•   If  the source of  variation can not be removed, then use averaging

•   Statistic sensitivity (dc‐gain)

•   To perform calibration between output and input

•   For linear calibration

  A static calibration is performed by holding all inputs (desired, interfering, and modifying) constant except one

•   This one input is varied incrementally over 

the normal operating range, resulting in a 

range of  incremental outputs.

•   The static sensitivity of  an instrument or system is the ratio of  the incremental 

output quantity to the incremental input 

quantity

Page 39: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 39/509

Static Characteristics•   Zero drift (offset error)

•   When all measurements 

increases or decrease by the 

same absolute amount

•   Causes: manufacturing 

misalignment, variations in 

ambient temperature, 

hysteresis vibration, shock, dc‐

offset voltage at electrodes

•   Sensitivity drift (gain error)•   When the slope of  the 

calibration curve changes as a 

result of  interfering or 

modifying input•   Causes: manuf acturing 

tolerances, variations in power 

supply, non‐linearity

•   Example: ECG amplifier gain changes 

due to dc power‐supply variation

Page 40: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 40/509

Linearity•   Linearity: A system that demonstrates superposition principle

•   Measure of  linearity:a) maximal deviation of  points from the regression line 

expressed as percentage of  the full‐range or

b) harmonic distortion measure.

Page 41: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 41/509

More Static Characteristics•   Input ranges

•   Constraints on linearity imposes an operational range for the input 

parameters

•   Input range is also applicable to interfering inputs (used for shielding of  instruments)

•   Input impedance(Z)•   Measures the degree to which instruments 

disturb the quantity being measured 

•   effort variable: examples voltage, pressure, 

force

•   flow variable: examples current, flow, velocity

•   when measuring effort variables, input impedance 

should very large

•   when measuring flow variables, input impedance 

should very small

Page 42: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 42/509

Dynamic Characteristics•   Quantify response of  medical equipment with respect to 

time‐varying inputs

•  Many engineering instruments can be described by ordinary 

linear differential equations

•   Most practical instruments have a first or second order 

response

•   Practical evaluation of  a system

•   Apply input as a unit‐step function, sinusoidal function or 

white noise

Page 43: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 43/509

Dynamic Characteristics•   Operational transfer function:

•   Frequency response of  a system

•   For a sinusoidal input

•   the output is a sinusoid with different magnitude and 

phase

•   Magnitude:

  Phase:

Page 44: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 44/509

Zero‐order Instrument

•   Linear 

potentiometer is an 

example of  a zero 

order instrument

•   In practice, at high 

frequencies 

parasitic 

capacitance and 

inductance will 

cause distortion

Page 45: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 45/509

First‐order Instrument

•   First‐order instrument contains a single energy‐storage 

element

•   Static sensitivity (dc‐gain):

•   Time‐constant of  the system:

•  A frequency transfer function is given by

Page 46: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 46/509

First‐order Instrument

Page 47: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 47/509

Second‐order Instrument•   Second‐order instrument contains a minimum of  two 

energy‐storage element

•   Static sensitivity (dc‐gain):

•   Un‐damped natural frequency:

•   Damping ratio:

Page 48: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 48/509

Second‐order Instrument

Page 49: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 49/509

Medical Instrument Electrical Safety

Page 50: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 50/509

Significance of  safety•   Tens of  thousands device related patient 

injuries in U.S every year.•   Even a single harmful event can lead to 

significant damage in terms of  reputation and 

legal action.

•   Different level of  protection required as 

compared to household equipment.•   Minimum performance standards introduced 

in 1980s  –relatively new practice.

Ph i l i l Eff t f El t i it

Page 51: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 51/509

Physiological Effects of  Electricity

•   Experiments from 160lb human with 60Hz current 

Page 52: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 52/509

Susceptibility Parameters

•   Mean “threshold of  perception”

 –    1.1mA for men

 –    0.7mA for women

•   Minimum threshold of  perception 500 μA

 –    80 μA with gel electrodes(reduces skin impedance)

•   Mean “let‐go current”

 –    16.5 mA for men

 –    10.5 mA for women

•   Let‐go current vs. frequency

 –    Minimal let‐go current occurs at commercial power‐line frequencies of  

50‐60 Hz 

Page 53: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 53/509

From experiments performed by Charles Dalziel (1940 to 1950

Page 54: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 54/509

Susceptibility Factors•   Shock (stimulation) duration

 –    Fibrillation current is inversely proportional to the shock pulse duration

 –    longer pulses ‐>lower current does damage

•   Body weight –    Fibrillation current increases with body weight

  50 mA RMS for 6 Kg dogs•   130 mA RMS for 24 Kg dogs

•   Points of  entry –    Skin impedance varies: 15 kΩ to 1 MΩ

•   Resistive barrier that limits current flow

 –    Tissue (beneath skin) has low impedance 

Macro vs Micro Shock

Page 55: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 55/509

Macro vs. Micro Shock •   Macroshock

 –    externally applied current

 –    spreads through the body so less concentrated

•   Microshock

 –    applied current is concentrated at an invasive point

 –    accepted safety limit is only 10 μA

 –    generally only dangerous if  current flows through the heart

Macroshock Hazards

Page 56: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 56/509

Macroshock Hazards•   Most probable cause of  death due to macroshock

 –    ventricular fibrillation

•   Factors

 –    skin/body resistance

 –    design of  electrical equipment

•   Skin and body resistance

 –    dry skin has high resistance (~15k‐1M ohm)

•   limits current through body

•   wet/broken skin has low resistance (~1% that of  dry skin)

 –    internal body resistance

 –    ~200 ohm for each limb

 – 

  ~100 ohm for trunk of  body –    resistance between two limbs = ~500 ohm

•   procedures that bypass skin resistance can be dangerous

•   example: gel electrodes, surgery, oral/rectal thermometers

Microshock Hazards

Page 57: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 57/509

Microshock Hazards

•   Main causes

 –    leakage currents in line‐operated equipment

•   undesired currents through insolated conductors at different 

potentials –    differences in voltage between grounded conductive surfaces

•   Leakage currents

 –    if  low resistance ground is available ‐>no problem

 –    if  ground is broken ‐>current flows through patient

Page 58: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 58/509

Conductive Paths•   Direct connection to an internal organ (during 

measurement or surgery) makes patients susceptible 

to mircoshock –   External electrodes of  temporary cardiac pacemakers

 –   Electrodes for intra‐cardiac measuring devices

 –  Liquid filled catheters placed in the heart•   liquid filled catheters have much greater resistance than 

electrodes

•   Worst ! danger! –    currents flowing through the heart

•   Electrode current density –    experiments suggest smaller electrode are more dangerous 

Page 59: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 59/509

Power Distribution •   Electrical power system in Healthcare Facility

 –    must control available power (fuse/breaker to set max current)

 –    must provide good ground

 –    Patient’s Electrical Environment  –Grounding

 –    NEC code: max potential between two surfaces

•   general care areas: 500mV under normal operation

•   critical care areas: 40mV under normal operation

•   Isolated Power Systems –    Ground fault

•   short circuit between hot conductor and ground

•   injects large current into grounding system

  can create hazardous potentials on grounded surfaces –    Isolation transformer

•   isolates conductors against ground faults

•   may include ground fault monitor/alarm

Ground Loops

Page 60: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 60/509

Ground Loops•   Differences in ground 

potential: major source of  

microshock

 –    all intensive care units must 

have single ground for each 

patient isolated from 

hospital ground

 –    40mV limit on potential of  

any conductive surfaces

•   Example: current due to 

ground loop flows through 

patient 

Electrical Isolation

Page 61: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 61/509

Electrical Isolation

•   Isolation amplifiers –    devices that break ohmic continuity of  

electric signals between input and 

output of  the amplifier

 –    different supply voltage sources and different grounds on each side of  the 

barrier

•   Barrier isolation

 – 

  transformer, optical or capacitive isolation

•   no current across barrier

•   Implants

 – 

  proper insulation required to prevent 

Page 62: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 62/509

Review questions1. Draw the block diagram of  a typical biomedical 

instrumentation system.

2. Enlist the design criteria for biomedical instrumentation 

system.

3. Classify biomedical instruments.

4. Enlist various physiological processes/parameters and their ranges.

5. What do you mean by “biostatistics”?

6. What are the characteristics of  a biomedical instrumentation system?

7. Comment on the safety aspects of  a biomedical system.

Page 63: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 63/509

Next Class Bio‐potentials

(It has a lot of  potential!)

Page 64: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 64/509

Lecture 2

Bio‐

potentials

Dr.R.B.Ghongade

Department 

of  

E&TC,V.I.I.T., Pune‐411048 

Cells

Page 65: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 65/509

•   Cell‐the basic unit of  living tissue 

•   Specialized in their anatomy and physiology to perform different 

tasks

•   All cells exhibit a voltage difference across the cell membrane.

•   Nerve cells and muscle cells are excitable•   Their cell membrane can produce electrochemical impulses and 

conduct them along the membrane.

•   In muscle cells, this electric phenomenon is also associated with the 

contraction of  the cell

•   In other cells, such as gland cells, it is believed that the membrane 

voltage is important to the execution of  cell function 

•   The 

origin 

of  

the 

membrane 

voltage 

is 

the 

same 

in 

nerve 

cells 

as 

in 

muscle cells.

•   In both cell types, the membrane generates an impulse as a 

consequence of  excitation.

•   This impulse propagates in both cell types in the same manner

Page 66: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 66/509

Structure of  Nerve Cell

Page 67: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 67/509

•   The body of a nerve cell is similar to that of all other cells.•   The cell body generally includes the nucleus, mitochondria, endoplasmic reticulum,

ribosomes, and other organelles.

•   Nerve cells are about 70   ‐ 80% water; the dry material is about 80% protein and 20% lipid.

•   The cell volume varies between 600 and 70,000 µm³

•   The short processes of the cell body, the dendrites, receive impulses from other cells andtransfer them to the cell body (afferent signals).

•   The effect of these impulses may be excitatory  or inhibitory .

•   A neuron  may receive impulses from tens or even hundreds of thousands of neurons

•   The long nerve fiber, the axon, transfers the signal from the cell body to another nerve or to a

muscle cell

•   Mammalian axons are usually about 1   ‐ 20 µm in diameter.

•   Some axons in larger animals may be several meters in length.

•   The axon may be covered with an insulating layer called the myelin sheath, which is formed

by   Schwann cells   (named for the German physiologist Theodor Schwann, 1810‐1882, who

first observed the myelin sheath in 1838).

•   The myelin sheath is not continuous but divided into sections, separated at regular intervals

by the nodes of Ranvier  (named for the French anatomist Louis Antoine Ranvier, 1834‐1922,

who observed them in 1878).

The Cell Membrane 

Page 68: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 68/509

•  The

 

cell 

is 

enclosed 

by 

cell 

membrane 

whose 

thickness 

is 

about 

7.5  ‐

 10.0 

nm•   Its structure and composition resemble a soap‐bubble film , since one of  its major 

constituents, fatty acids, has that appearance

•   The fatty acids that constitute most of  the cell membrane are called 

 phosphoglycerides

•   A phosphoglyceride consists of  phosphoric acid and fatty acids called glycerides

•   The head of  this molecule, the phosphoglyceride, is hydrophilic (attracted to 

water)

•   The fatty acids have tails consisting of  hydrocarbon chains which are hydrophobic

(repelled 

by 

water)•   If  fatty acid molecules are placed in water, they form little clumps, with the acid 

heads that are attracted to water on the outside, and the hydrocarbon tails that 

are repelled by water on the inside.

The Cell Membrane

Page 69: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 69/509

•   If  these molecules are very carefully placed on a water surface, they orient themselves so that all acid heads are in the water and all hydrocarbon tails protrude from it.

•   If  another layer of  molecules were added and more water put on top, the 

hydrocarbon tails would line up with those from the first layer, to form a double 

(two molecules thick) layer.

•   The acid heads would protrude into the water on each side and the hydrocarbons would fill the space between.

•   This bilayer is the basic structure of  the cell membrane.

•   From the bioelectric viewpoint, the ionic channels constitute an important part of  the cell membrane

•   These are macromolecular pores through which sodium, potassium, and chloride 

ions flow through the membrane.

•   The flow of  these ions forms the basis of  bioelectric phenomena.

The Cell Membrane

Page 70: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 70/509

•   The construction of  a cell membrane•   The main constituents are two lipid layers, with the hydrophobic tails pointing inside the 

membrane (away from the aqueous intracellular and interstitial mediums).

•   The macromolecular pores in the cell membrane form the ionic channels through which 

sodium, potassium, and chloride molecules flow through the membrane and generate the 

bioelectric phenomena

The Synapse•   The junction between an axon and the next cell with which it communicates is called the

Page 71: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 71/509

j

synapse.•   Information proceeds from the cell body uni‐directionally over the synapse, first along

the axon and then across the synapse to the next nerve or muscle cell.

•   The part of the synapse that is on the side of the axon is called the presynaptic terminal ;

that part on the side of the adjacent cell is called the postsynaptic terminal 

•   Between these terminals, there

exists a gap, the synaptic cleft, with a

thickness of 10   ‐ 50 nm

•   The fact that the impulse transfers

across the synapse only in onedirection, from the presynaptic

terminal to the postsynaptic

terminal, is due to the release of a

chemical transmitter by the

presynaptic cell•   This transmitter, when released,

activates the postsynaptic terminal

•   The synapse between a motor nerve and the muscle it innervates is called the 

neuromuscular  junction

Muscle Cell

Page 72: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 72/509

Muscle Cell

•   Three types of  muscles in the body

 –   smooth muscle

 –   striated muscle (skeletal muscle)

 –   cardiac muscle

•   Smooth 

muscles 

•   They are involuntary (i.e., they cannot be controlled voluntarily)

cells have a variable length but are in the order of  0.1 mm exist, for 

example, in the digestive tract, in the wall of  the trachea, uterus, 

and bladder

•   The contraction of  smooth muscle is controlled from the brain 

through the autonomic nervous system

•   Striated  muscles

 –   also called skeletal  muscles because of  their anatomical location, are formed from a 

large number of  muscle fibers, that range in length from 1 to 40 mm and in diameter 

Page 73: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 73/509

from 0.01 to 0.1 mm.

 –   Each fiber forms a (muscle) cell and is distinguished by the presence of  alternating dark 

and light bands. 

 –   The striated muscle fiber corresponds to an (unmyelinated) nerve fiber but is 

distinguished electrophysiologically from nerve by the presence of  a periodic transverse 

tubular system (TTS), a complex structure that, in effect, continues the surface 

membrane into the interior of  the muscle.

 –   Propagation of  the impulse over the surface membrane continues radially into the fiber 

via the TTS, and forms the trigger of  myofibrillar contraction.

 –   The presence of  the TTS affects conduction of  the muscle fiber so that it differs 

(although only slightly) from propagation on an (unmyelinated) nerve fiber.

 –   Striated muscles are connected to the bones via tendons.

 –   Such muscles are voluntary and form an essential part of  the organ of  support and 

motion.

•   Cardiac  muscle

 –   also striated, but differs in other ways from skeletal muscle

 –   Not only is it involuntary, but also when excited, it generates a much longer electric 

impulse than does skeletal muscle, lasting about 300 ms

 –   Correspondingly, the mechanical contraction also lasts longer

 –   cardiac muscle has a special property: The electric activity of  one muscle cell spreads to 

all other surrounding muscle cells, owing to an elaborate system of  intercellular 

 junctions.

Structure of Muscle Cell

Page 74: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 74/509

Structure of  Muscle Cell

Bio‐potentials

Page 75: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 75/509

Bio potentials

•   Certain systems of  the body create their own "monitoring" 

signals, which convey useful information regarding the 

functions they represent.

•   These signals are the Bio‐ potentials   “BP” associated with the 

conduction along the sensory and motor nervous system, 

muscular contractions, brain activity, heart contractions, etc. 

•   These potentials are a result of  the electrochemical activity 

occurring in certain classes of  cells within the body 

Excitable 

Cells.

•   Measurements of  these Bio‐potentials can provide clinicians 

with invaluable diagnostic information

Bio‐potentials

Page 76: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 76/509

•   From the biological cell, electrical potentials are generated due to the 

electrolytes inside and outside of  the cell

•   A bioelectric potential may be defined as the difference in potential 

between the inside and the outside of  a cell; there exists a difference in 

potential 

existing 

across 

the 

cell 

wall 

or 

membrane.•   A cell consists of  an ionic conductor separated from the outside 

environment by a semi permeable or selectively permeable cell 

membrane

•  Human

 

cells 

may 

vary 

from 

micron 

to 

100 

microns 

in 

diameter, 

from 

millimeter to 1 meter in length and have a typical membrane thickness of  

100 Angstrom units

•   Bioelectricity is studied both from the viewpoint of  the source of  electrical 

energy within the cell and also from the viewpoint of  the laws of  

electrolytic current flow relative to the remote ionic fields produced 

currents by the cell.

•   We make measurements external to a group of  cells while these cells are 

supplying electrolytic current flow.

Cell Potential Genesis

Page 77: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 77/509

Cell Potential Genesis•   Experimental investigations with microelectrodes have shown 

that the internal resting potential within a cell is  ‐60 mV to  ‐90 

mV (typically  ‐ 70 mV) with reference to the outside of  the cell

•   By convention, the outside is defined as 0mV (ground)

•   This potential changes to approximately + 20 mV for a short 

period during cell depolarisation

•   Cell activity results from some form of  stimulation

Cell Membrane Potentials

Page 78: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 78/509

•   Cell membranes in 

general, 

and 

membranes 

of  

nerve 

cells 

in 

particular, 

maintain a small voltage or "potential" across the membrane in its normal 

or resting state.

•   In the rest state, the inside of  the nerve cell membrane is negative with 

respect to the outside (typically about  ‐70 millivolts).

•   The voltage arises from differences in concentration of  the electrolyte 

ions K+ and Na+. 

•   There is a process which utilizes ATP (adenosine triphosphate   ‐ Active 

transport  of  ions against   an established  electrochemical  gradient  ) to 

pump out three Na+ ions and pump in two K+ ions. The collective action of  

these mechanisms leaves the interior of  the membrane about  ‐70 mV with 

respect to the outside.

•   If  the equilibrium of  the nerve cell is disturbed by the arrival of  a suitable 

stimulus  dynamic changes in the membrane potential in response to 

the stimulus is called an Action Potential. 

•   After the action potential the mechanisms described above bring the cell 

membrane back to its resting state

Excitable Cells

Page 79: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 79/509

•   Excitable cells are a class of  cells that produce bioelectric 

potentials as a result of  electrochemical  activity.

•   At any given time, these cells can exist in one of  two states, 

resting and active.

•  Chemical

 

and 

electrical 

stimuli 

can 

force 

an 

excitable 

cell 

from 

the resting to the active state.

•   While there are numerous ionic species present both inside 

and 

outside 

the 

cell, 

only 

three 

ions 

(for  

which 

the 

cell  

membrane in its resting state is  permeable) play a key role in 

the behavior of  these cells: K+, Na+ and Cl‐.

Resting Potential, Ionic Concentrations, and Channels

Page 80: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 80/509

•   The neuron cell membrane is approximately 10nm thick and, because it consists of  a lipid 

bilayer (i.e., two plates separated by an insulator), has capacitive properties.

•   The extracellular fluid is composed of  primarily Na+ and Cl‐, and the intracellular fluid 

(cytoplasm) is composed of  primarily K+ and A‐

•   The large organic anions (A) are primarily amino acids and proteins and do not cross the 

membrane.•   Almost without exception, ions cannot pass through the cell membrane except through a 

channel

•   Channels allow ions to pass through the membrane, are selective, and are 

either passive or active

Page 81: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 81/509

•   Passive channels are always open and are ion specific

•   A particular channel allows only one ion type to pass through the 

membrane and prevents all other ions from crossing the membrane 

through that channel.

•   Passive channels exist for Cl‐, K+, and Na+

•   Active channels, or gates, are either opened or closed in 

Page 82: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 82/509

response 

to 

an 

external 

electrical 

or 

chemical 

stimulation.•   The active channels are also selective and allow only specific 

ions to pass through the membrane.

•   Typically, active gates open in response to neurotransmitters 

and an appropriate change in membrane potential.

Active State

Page 83: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 83/509

•   If  adequately stimulated , either electrically or chemically, the excitable cell will enter into the active 

state. 

•   The trans‐membrane potential varies with time and 

position within the cell in this state, and is called an 

action 

 potential .•   The following sequence of  events occurs when the 

cell enters the active state: 

₋   The chemical or electrical stimuli increases the 

permeability of  the membrane to Na+

₋   Na+ rushes into the cell due to the large concentration 

gradient.

Active State (cont.)

Page 84: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 84/509

•   These positively charged ions entering the cell cause the 

trans‐membrane potential to become less negative, and 

eventually slightly positive

•   This change is often referred to as a depolarization•   A short time ( tenths of  microseconds) later the membrane’s 

permeability to K + increases, which results in an outflow of  K+

•   The outflow of  K + causes the trans‐membrane potential to 

decrease 

•   This decrease in potential causes the membrane’s permeability to both Na +, and eventually K +, to decrease to 

their resting levels

•   There is only a relatively small (immeasurable) net flow of  ions across the membrane during an action potential.

•   The Na‐K pump restores the concentrations (pumps Na out 

and K in) of  the ions to their resting levels.

•   The result of  the transition from the resting to the 

active state is the Action Potential

Page 85: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 85/509

•   In response to the appropriate stimulus, the cell 

membrane of  a nerve cell goes through a sequence of  

depolarization from its rest state to the active state 

followed by  repolarization to the rest state once again 

•   The cell membrane actually reverses its normal polarity 

for 

brief  

period 

before 

re‐

establishing 

the 

rest 

potential 

•   The action potential sequence is essential for neural 

communication.•   The simplest action in response to thought requires 

many such action potentials for its communication and 

performance

Page 86: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 86/509

Page 87: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 87/509

Page 88: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 88/509

Page 89: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 89/509

Page 90: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 90/509

Page 91: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 91/509

Page 92: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 92/509

Page 93: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 93/509

Page 94: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 94/509

Page 95: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 95/509

The process summary

Page 96: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 96/509

1. A stimulus is received by the dendrites of  a nerve cell. This causes the Na+ 

channels to open. If  the opening is sufficient to drive the interior potential from  ‐70 mV up to  ‐55 mV, the process continues. 

2. Having reached the action threshold, more Na+ channels (sometimes called 

voltage‐gated channels) open  The Na+ influx drives the interior of  the cell membrane up to about +30 mV. The process to this point is called 

DEPOLARIZATION. 

3. The Na+ channels close and the K+ channels open. Having both Na+ and K+ 

channels open at the same time would drive the system toward neutrality 

and prevent the creation of  the action potential. 

4. With the K+ channels open, the membrane begins to REPOLARIZE back 

toward its rest potential. 

5. The repolarization typically overshoots the rest potential to about  ‐90 mV. 

This 

is 

called 

hyperpolarization. Hyperpolarization prevents 

the 

neuron 

from 

receiving another stimulus during this time. 

6. After hyperpolarization, the Na+/K+ pumps eventually bring the membrane 

back to its resting state of   ‐70 mV .

Page 97: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 97/509

Absolute & Relative Refractory Period

ARP & RRP• During the initial portion of the Action potential

Page 98: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 98/509

•   During the initial portion of  the Action potential 

membrane does not respond  Absolute refractory 

period

•   During the Relative Refractory Period “RRP” the action 

potential takes action

•   The refractory   period  limits the frequency of  a 

repetitive excitation procedure

₋   e.g. ARP=1ms →   upper limit of  repetitive discharge

< 1000 impulses/s

Absolute & Relative Refractory Period

ARP & RRP (cont.)

Page 99: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 99/509

v : action pot.

Nernst equil. Pot for Na

Nernst equil. Pot for K

Electrical Circuit Model of  Nerve Membrane

Page 100: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 100/509

Alan Hodgkin and Andrew Huxley Neural Model

Nobel 

Prize 

in 

1963

Bioelectric phenomena

Page 101: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 101/509

Lecture 3

Page 102: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 102/509

Lecture 3Bio‐transducers

Part I: Bio‐ElectrodesPart II: Physical Measurements

Dr.R.B.Ghongade

Department of  E&TC,

V.I.I.T., Pune‐411048 

Introduction

Page 103: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 103/509

•   Biomedical sensors are used routinely in clinical medicine and biological research for measuring a 

wide range of  physiological variables•   Often called biomedical transducers and are the 

main building blocks of  diagnostic medical instrumentation

•   Used in vivo to perform continuous invasive and noninvasive monitoring of  critical physiological variables 

•   Also used in vitro to help clinicians in various diagnostic procedures

•   Some sensors are used primarily in clinical 

laboratories to measure in vitro physiological 

Page 104: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 104/509

laboratories to measure in vitro physiologicalquantities such as electrolytes, enzymes, and other biochemical metabolites in blood

•   Other biomedical sensors for measuring pressure, flow, and the concentrations of  

gases such as oxygen and carbon dioxide are used in vivo to follow continuously (monitor) the condition of  a patient

Requirements of  Biomedical Sensors•   Stringent requirements

Page 105: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 105/509

g q•   Assess in vitro the 

 –    accuracy, – 

  operating range –    response time –    Sensitivity –    Resolution – 

 Reproducibility•   Later, depending on the intended application, similar in 

vivo tests may be required to confirm the specifications of  the sensor and to assure that the measurement remains  –    Sensitive –    Stable –    Safe –    cost‐effective

Sensor Classifications

Page 106: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 106/509

•   Physical sensors –    Geometric –    Mechanical –    Thermal –    Hydraulic –    Electric –    Optical

•   Chemical sensors –    Gas –   Electrochemical –    Photometric –    Other physical chemical methods –    Bioanalytic

Sensor Classifications•   Classified according to the quantity to be measured and are 

typically categorized as physical, electrical, or chemical

Page 107: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 107/509

yp y g p y , ,depending on their specific applications

•   Biosensors are a special sub‐classification of  biomedical 

sensors•   They have two distinct components:

 –    a biological recognition element such as a purified enzyme, antibody, or receptor, (which  functions as a mediator  and   provides the selectivity  

that  

is 

needed  

to 

sense 

the 

chemical  

component  (usually referred to as the analyte) of  interest)

 –    a supporting structure, which also acts as a transducer and is in intimate contact with the biological component. (The  purpose of  the 

transducer  

is 

to 

convert  

the 

biochemical  

reaction 

into 

the 

 form 

of  

an 

optical, 

electrical, 

or  

 physical  

signal  

that  

is 

 proportional  

to 

the 

concentration 

of  

specific 

chemical)

Another way of  classifying biomedical transducers!

  One can also look at biomedical sensors from the standpoint of  their applications

Page 108: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 108/509

pp

•   These can be generally divided according to whether a sensor is used for 

 –  diagnostic 

 –  therapeutic *purposes 

•   Sensors for clinical studies such as those carried out in the 

clinical chemistry laboratory must be standardized in such a way that errors that could result in an incorrect diagnosis or inappropriate therapy are kept to an absolute minimum

•   These sensors must not only be reliable themselves, but appropriate methods must exist for testing the sensors that are a part of  the routine use of  the sensors for making biomedical measurements

*Having or exhibiting healing powers

One more way of  classifying biomedical transducers!

Page 109: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 109/509

•   Standpoint of  how they are applied to the patient or research subject

 –  Non‐contacting (noninvasive)

 –  Skin surface (contacting)

 – 

 Indwelling (minimally invasive) –  Implantable (invasive)

Page 110: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 110/509

Part I: Bio‐Electrodes

BIOPOTENTIAL MEASUREMENTS

Page 111: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 111/509

•  Biopotential measurements are made using different kinds of  specialized electrodes

•   The function of  these electrodes is to couple the ionic potentials generated inside the body 

to an electronic instrument•   Biopotential electrodes are classified either as

 –  noninvasive (skin surface) 

 –  invasive (e.g., microelectrodes or wire electrodes)

Bioelectric Signals Sensed by Biopotential Electrodesand Their Sources

Page 112: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 112/509

The Electrolyte/Metal Electrode 

Interface

Page 113: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 113/509

•   A metal when placed in an electrolyte (i.e., anionizable) solution, develops a charge distribution

is created next to the metal/electrolyte interface

•   This localized charge distribution causes an electric potential, called a half ‐cell   potential , to be developed across the 

interface between the metal and the electrolyte solution

Page 114: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 114/509

•   Biopotential measurements are made by utilizing two similar electrodes composed of  the same metal. 

  Therefore, the two half ‐cell potentials for these electrodes would be equal in magnitude. 

Page 115: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 115/509

•   For example, two similar biopotential electrodes can be taped to the chest near the heart to measure the electrical potentials generated by the heart (electrocardiogram, or ECG)

•   Ideally, assuming that the skin‐to‐electrode interfaces are electrically  identical , the differential amplifier attached to these two electrodes would amplify the biopotential (ECG) signal but the half ‐cell potentials would be canceled out

•   In practice disparity in electrode material or skin contact resistance could cause a significant DC of fset voltage that would cause a current to flow through the two electrodes.

•   This current will produce a voltage drop across the body

•   The offset voltage will appear superimposed at the output of  the amplifier and may cause instability  or  base line drift  in the recorded biopotential

Electrode – Electrolyte InterfaceGeneral Ionic Equations

a)

Page 116: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 116/509

a) If  electrode has same material as cation, then this material gets oxidized and enters the electrolyte as a cation and electrons remain at the electrode and flow in the external circuit.

b) If  anion can be oxidized at the electrode to form a neutral atom, one or two electrons are given to the electrode.

a)

b)

Current flow from electrode to electrolyte : Oxidation (Loss of  e‐)Current flow from electrolyte to electrode : Reduction (Gain of  e‐)

The dominating reaction can be inferred from the following :

Half Cell Potential

A characteristic potential difference established by the electrode and its 

Page 117: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 117/509

c a acte st c pote t a d e e ce estab s ed by t e e ect ode a d tssurrounding electrolyte which depends on the metal, concentration of  ions in solution and temperature (and some second order factors) .

Half  cell potential cannot be measured without a second electrode.

The half  cell potential of  the standard hydrogen electrode has been 

arbitrarily set to zero. Other half  cell potentials are expressed as a potential difference with this electrode.

Reason for Half  Cell Potential : Charge Separation at Interface

Oxidation or reduction reactions at the electrode‐electrolyte interface lead to a double‐

charge layer, similar to that which exists along electrically active biological cell membranes.

Measuring Half Cell Potential

Page 118: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 118/509

Note: Electrode material is metal + salt or polymer selective membrane

Polarization

If  there is a current between the electrode and electrolyte, the observed half  cell i l i f l d d l i i

Page 119: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 119/509

potential is often altered due to polarization.

OverpotentialDifference between observed and zero‐current half  cell 

potentials

Resistance

Current changes resistance of  electrolyte and thus, a voltage drop results.

Concentration

Changes in distributionof  ions at the electrode‐

electrolyte interface

ActivationThe activation energy 

barrier depends on the direction of  current and 

determines kinetics

Note: Polarization and impedance of  the electrode are two of  the most important electrode properties to consider.

Nernst Equation

When two aqueous ionic solutions of  different concentration are separated by an ion‐selective semi‐permeable membrane an electric potential exists across the membrane

Page 120: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 120/509

selective semi permeable membrane, an electric potential exists across the membrane.

For the general oxidation‐reduction reaction

The Nernst equation for half  cell potential is 

where E0 : Standard Half  Cell Potential  E : Half  Cell Potential

a  : Ionic Activity (generally same as concentration)

n  : Number of  valence electrons involved

Note: interested in ionic activity at the electrode

(but note temp dependence

Polarizable and Non-Polarizable

Electrodes

Use for recording

Page 121: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 121/509

Perfectly Polarizable Electrodes

These are electrodes in which no actual charge crosses the electrode‐electrolyte interface when a current is applied. The current across the interface is a displacement current and the electrode behaves like a capacitor. Example : Ag/AgCl Electrode

Perfectly Non‐Polarizable Electrode

These are electrodes where current passes freely across the electrode‐electrolyte interface, requiring no energy to make the transition. These electrodes see no overpotentials. Example : Platinum electrode

Example: Ag‐AgCl is used in recording while Pt is use in stimulation 

Use for stimulation

Ag/AgCl Electrode

Relevant ionic equations

Page 122: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 122/509

Ag

+

Cl

Cl2 Governing Nernst Equation

Solubility 

product of  AgCl

Fabrication of Ag/AgCl electrodes1. Electrolytic deposition of AgCl

2. Sintering process forming pellet electrodes

Equivalent Circuit

Page 123: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 123/509

Cd   : capacitance of  electrode‐eletrolyte interfaceRd   : resistance of  electrode‐eletrolyte interface

Rs  : resistance of  electrode lead wireEcell   : cell potential for electrode

Frequency Response

Corner frequencyRd+Rs

Rs

Electrode Skin Interface

Ehe

Page 124: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 124/509

Sweat glandsand ducts

Electrode

Epidermis

Dermis andsubcutaneous layer

Ru

Rs

RdCd

Gel

Re

Ese   EP

RPCPCe

Stratum Corneum

Skin impedance for 1cm2 patch:200kΩ @1Hz

200 Ω @ 1MHz

Alter skin 

transport (or deliver drugs) by:

Pores produced by 

laser, ultrasound or by iontophoresis

100 

100 

Nerve endings   Capillary

Motion Artifact

Why

Page 125: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 125/509

When the electrode moves with respect to the electrolyte, the distribution of  the double layer of  charge on polarizable electrode interface changes. This changes the half  

cell potential temporarily. 

What

If  a pair of  electrodes is in an electrolyte and one moves with respect to the other, a potential difference appears across the electrodes known as the motion artifact.

This is a source of  noise and interference in biopotential measurements

Motion artifact is minimal for non‐polarizable electrodes

Body Surface Recording ElectrodesElectrode metal

Electrolyte

Page 126: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 126/509

1. Metal Plate Electrodes (historic)

2. Suction Electrodes

(historic interest)

3. Floating Electrodes

4. Flexible Electrodes

Think of  the 

construction of  electrosurgical electrode

And, how does 

electro‐surgery work? 

Commonly Used Biopotential Electrodes

M t l l t l t d

Page 127: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 127/509

Metal plate electrodes

 –  Large surface: Ancient,

therefore still used, ECG

 –  Metal disk with stainless steel;

 platinum or gold coated

 – 

EMG, EEG –  smaller diameters

 –  motion artifacts

 –  Disposable foam-pad: Cheap!

(a) Metal‐plate electrode used for application to limbs. (b) Metal‐disk electrode applied with surgical tape. (c)Disposable foam‐pad electrodes, often used with ECG

Commonly Used  Biopotential 

ElectrodesSuction electrodes

Page 128: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 128/509

Suction electrodes

‐ No straps or adhesives required‐ precordial (chest) ECG‐ can only be used for short periods 

Floating electrodes

‐ metal disk is recessed‐ swimming in the electrolyte gel‐ not in contact with the skin 

‐ reduces motion artifact

Suction Electrode

Insulatingpackage

Metal disk

Commonly Used  Biopotential 

Electrodes

Page 129: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 129/509

Double‐sided

Adhesive‐tapering Electrolyte gel

in recess

(a) (b)

(c)

Snap coated with Ag‐AgCl   External snap

Plastic cup

Tack

Plastic disk

Foam padCapillary loops

Dead cellular material

Germinating layer

Gel‐coated sponge

Floating Electrodes

Reusable

Disposable

Commonly Used Biopotential Electrodes

Page 130: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 130/509

(a) Carbon‐filled silicone rubber electrode. (b) Flexible thin‐film neonatal electrode.(c) Cross‐sectional view of  the thin‐film 

electrode in (b).

Flexible electrodes

‐ Body contours are often irregular

‐ Regularly shaped rigid electrodesmay not always work.‐ Special case : infants ‐ Material : ‐ Polymer or nylon with silver 

‐ Carbon filled  silicon rubber(Mylar film)

Internal Electrodes

Needle and wire electrodes for 

Page 131: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 131/509

percutaneous measurement of  biopotentials

(a) Insulated needle electrode. (b) Coaxial needle electrode. (c) Bipolar coaxial electrode. 

(d) Fine‐wire electrode connected to hypodermic needle, before being inserted. 

(e) Cross‐sectional view of  skin 

and muscle, showing coiled fine‐wire electrode in place.

Biopotential microelectrodes:(a) capillary glass microelectrode(b) insulated metal microelectrode

(c) solid‐state multisite recording microelectrode

Page 132: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 132/509

Fetal ECG Electrodes

Page 133: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 133/509

Electrodes for detecting fetal electrocardiogram during labor, by means of  intracutaneous needles (a) Suction electrode. (b) Cross‐sectional view of  suction electrode in place, showing penetration of  probe through epidermis. (c) Helical electrode, which is attached to fetal skin by corkscrew type action.

Electrode Arrays

ContactsInsulated leads

 Ag/AgCl electrodes

 Ag/AgCl electrodesContacts

Page 134: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 134/509

Examples of  microfabricated electrode arrays. (a) One‐dimensional plunge electrode array, (b) Two‐dimensional array, and (c) Three‐dimensional array

(b)

Base

BaseInsulated leads

(a)

(c)

 Tines

Base

Exposed tip

Microelectrodes

Why

M t ti l diff ll b

Page 135: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 135/509

Measure potential difference across cell membrane

Requirements –  Small enough to be placed into cell

 –  Strong enough to penetrate cell membrane

 – 

Typical tip diameter: 0.05 – 10 micronsTypes

 –  Solid metal -> Tungsten microelectrodes

 –  Supported metal (metal contained within/outside glass needle)

 –  Glass micropipette -> with Ag-AgCl electrode metal

Intracellular

Extracellular

Metal Microelectrodes

C

Page 136: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 136/509

Extracellular recording – typically in brain where you are interested in recording the firing of  neurons (spikes).

Use metal electrode+insulation ‐> goes to high impedance amplifier…negative capacitance amplifier!

Microns!

R

Metal Supported Microelectrodes

Page 137: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 137/509

(a) Metal inside glass (b) Glass inside metal

Glass Micropipetteheat

pull

Ag‐AgCl wire+3M 

KCl has very low  junction potential and hence very accurate for dc 

measurements (e.g. action potential)

Page 138: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 138/509

A glass micropipet electrode filled with an electrolytic solution (a) Section of  fine‐bore glass capillary. 

(b) Capillary narrowed through heating and stretching. (c) Final structure of  glass‐pipet microelectrode.

Intracellular recording – typically for recording from cells, such as cardiac myocyteNeed high impedance amplifier…negative capacitance amplifier!

Fill with intracellular fluid or 3M KCl

Electrical Properties of

MicroelectrodesMetal Microelectrode

Page 139: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 139/509

Metal microelectrode with tip placed within cell

Equivalent circuitsUse metal electrode+insulation ‐> goes to high impedance amplifier…negative capacitance amplifier!

Electrical Properties of  Glass Intracellular 

Microelectrodes

Glass Micropipette Microelectrode

Page 140: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 140/509

Stimulating Electrodes

 – Cannot be modeled as a series resistance and capacitance (there is no single useful model)

Features

Page 141: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 141/509

(there is no single useful model) – The body/electrode has a highly nonlinear response to

stimulation – Large currents can cause

 – Cavitation – Cell damage – Heating

Types of stimulating electrodes

1. Pacing

2. Ablation3. Defibrillation

Platinum electrodes:Applications: neural stimulation

Modern day Pt‐Ir and other exotic metal combinations to reduce polarization, improve conductance and long life/biocompatibility

Steel electrodes for pacemakers and defibrillators

Intraocular Stimulation Electrodes

Page 142: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 142/509

Microelectronic technology

for MicroelectrodesBonding pads

SiO2   insulatedAu probes

Exposed

Insulatedlead vias

Page 143: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 143/509

Si substrateExposed tips

Lead viaChannels

Electrode

Silicon probe

Silicon chip

Miniatureinsulatingchamber

Contactmetal film

Hole

Silicon probe

electrodes

(b)

(d)

(a)

(c)

Different types of  microelectrodes fabricated using microfabrication/MEMS technology

Beam‐lead multiple electrode.   Multielectrode silicon probe

Multiple‐chamber electrode Peripheral‐nerve electrode

•   Ensure that all parts of  a metal electrode that will touch the 

electrolyte 

are 

made 

of  

the 

same 

metal. 

 – Dissimilar metals have different half ‐cell potentials making an electrically unstable, noisy  junction.

– If the lead wire is a different metal, be sure that it is well insulated.

Practical Hints in Using ElectrodesPractical Hints in Using Electrodes

Page 144: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 144/509

  If  the lead wire is a different metal, be sure that it is well insulated.

 – Do not let a solder  junction touch the electrolyte.  If  the  junction must touch the electrolyte, fabricate the  junction by welding or mechanical clamping or crimping.

•   For differential measurements,  use the same material for each electrode. 

 – If  the half ‐cell potentials are nearly equal, they will cancel and minimize the saturation effects of  high‐gain, dc coupled amplifiers.

•   Electrodes attached to the skin frequently fall off.

 – Use very flexible lead wires arranged in a manner to minimize the force 

exerted on the electrode. – Tape the flexible wire to the skin a short distance from the electrode, 

making this a stress‐relief  point.

Practical Hints in Using ElectrodesPractical Hints in Using Electrodes

•   A common failure point in the site at which the lead wire is attached to the 

electrode. – Repeated flexing can break the wire inside its insulation.

 – Prove strain relief  by creating a gradual mechanical transition between the wire and the electrode.

Page 145: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 145/509

 – Use a tapered region of  insulation that gradually increases in diameter from that 

of  the wire towards that of  the electrode as one gets closer and closer to the electrode.

•   Match the lead‐wire insulation to the specific application.

 – If  the lead wires and their  junctions to the electrode are soaked in extracellular fluid or a cleaning solution for long periods of  time, water and other solvents can 

penetrate the polymeric coating and reduce the effective resistance, making the lead wire become part of  the electrode.

 – Such an electrode captures other signals introducing unwanted noise.

•   Match your amplifier design to the signal source.

 – Be sure that your amplifier circuit has an input impedance that is much greater than the source impedance of  the electrodes.

Page 146: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 146/509

Part II: Physical Measurements

Primary Transducers

•   Conventional Transducers –   large, but generally reliable, based on older technology

Page 147: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 147/509

•   thermocouple: temperature difference•   compass (magnetic): direction

•   Microelectronic Sensors•   millimeter sized, highly sensitive, less robust

 –  photodiode/phototransistor: photon energy (light)•   infrared detectors, proximity/intrusion alarms

 –  piezoresisitve pressure sensor: air/fluid pressure –   microaccelerometers: vibration, Δ‐velocity (car crash)

 –  chemical sensors: O2, CO2, Cl, Nitrates (explosives)

 –  DNA arrays: match DNA sequences

Direct vs. Indirect Measurement

•   Direct Measurement:  –  When sensor directly measures parameter of  interest

Page 148: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 148/509

 – 

 Example, displacement sensor measuring diameter of  blood vessel

•   Indirect Measurement:  –  When sensor measures a parameter that can be 

translated into the parameter of  interest –  Example, displacement sensor measuring movement 

of  a microphone diaphragm to quantify blood movement through the heart

Physical Variables and Sensors

Page 149: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 149/509

Displacement Measurements

•   Many biomedical parameters rely on measurements of  size, shape, and position of  organs, tissue, etc.– require displacement sensors

Page 150: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 150/509

 –    require displacement sensors

•   Examples(direct) diameter of  blood vessel –    (indirect) movement of  a microphone diaphragm to quantify 

blood movement through the heart

•   Primary Transducer Types –    Resistive Sensors (Potentiometers & Strain Gages) –    Inductive Sensors –    Capacitive Sensors –   Piezoelectric Sensors

Displacement Sensors

Page 151: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 151/509

Variable Resistance Sensor(Potentiometer)•   A potentiometer is a resistive‐type transducer that converts either 

linear or angular displacement into an output voltage by moving a 

sliding contact along the surface of  a resistive element

•   Potentiometers produce output potential (voltage) change in response to input ( d l ) h

Page 152: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 152/509

(e.g., displacement) changes•   typically formed with resistive 

elements e.g. carbon/metal film•   ΔV = I ΔR

•   produce linear output in response to 

displacement•   Example potentiometric displacement 

sensors•   Translational: small (~mm) linear 

displacements•   Vo increases as xi increases

•   Single‐Turn: small (10‐50º) rotational displacements

•   Vo increases as φ   increases

xi

•   Strain gauges are displacement‐type transducers that measure changes in the length of  an object as a result of  an applied force

•   These transducers produce a resistance change that is proportional to the fractional change in the length of the object also called strain

Variable Resistance Sensor(Strain Gauge)

Page 153: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 153/509

fractional change in the length of  the object, also called strain•   The relative sensitivity of  this device is given by its gauge factor, γ

Where ΔR is the change in resistance when the structure is stretched by an amount Δl 

(a)Bonded‐type strain gauge transducer

Page 154: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 154/509

(b) Resistive strain gauge (un‐bonded type) blood pressure transducer

Strain gauges on a cantilever structure to provide temperature compensation

(a) cross‐sectionalview of  the cantilever

Page 155: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 155/509

(b) placement of  the strain gauges in a half  bridge or full bridge for temperature compensation and enhanced sensitivity

Liquid metal strain gauge•   Instead of  using a solid electric conductor such as the wire or metal foil, 

mercury confined to a compliant, thin wall, narrow bore elastomeric tube 

is used –    The compliance of  this strain gauge is determined by the elastic 

properties of  the tube

– Since only the elastic limit of the tube is of concern this sensor can be

Page 156: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 156/509

  Since only the elastic limit of  the tube is of  concern, this sensor can be 

used to detect much larger displacements than conventional strain gauges

 –    Its sensitivity is roughly the same as a foil or wire strain gauge, but it is not as reliable

•   Elastic‐resistance strain gages are extensively used in biomedical applications, especially in cardiovascular and respiratory dimensional and plethysmographic (volume‐measuring) determinations

•   Elastic strain gage is typically linear with 1% for 10% of  maximal extension thus, strain gages are only good measuring small displacements

Mercury‐in‐rubber strain‐gage plethysmography

Page 157: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 157/509

(a) Four‐lead gage applied to human calf (b) Bridge output for venous‐occlusion plethysmography(c)  Bridge output for arterial‐pulse plethysmography

Semiconductor strain gauge

 –  These devices are frequently made out of  pieces of  silicon with strain gauge patterns formed using 

Page 158: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 158/509

semiconductor microelectronic technology. –  The principal advantage of  these devices is that 

their gauge factors can be more than 50 times 

greater than that of  the solid and liquid metal devices

Page 159: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 159/509

Strain Gauge:

 Materials

Page 160: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 160/509

•   G for semiconductor materials ~ 50‐70 x that of  metals due to stronger piezo‐resistive effect

•   semiconductors have much higher TCR, requires temperature compensation in strain gauge

Disposable blood‐pressure sensor

Page 161: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 161/509

•   Made of  clear plastic so that air bubbles can be seen•   Saline flows from intravenous bag through clear IV tube and the sensor to 

the patient•   This flushes blood out of  the tip of  the catheter to prevent clotting•

  A lever can open or close the flush valve•   The silicon chip has silicon diaphragm with four‐resistor Wheatstone bridge 

diffused to it•   Its is isolated electrically by a silicone elastomer gel

Inductive Sensors

•   An inductance L can be used to measure displacement by varying any three of  the coil 

Page 162: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 162/509

parameters:

where

n = number of  turns of  coilG= geometric form factorµ = effective permeability of  the 

medium

•   Each of  these parameters can be changed by mechanical means

Inductive displacement sensors

Page 163: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 163/509

(a) self ‐inductance, (b) mutual inductance, (c) differential transformer

LVDT

•   The linear variable differentialtransformer (LVDT) is widely used inphysiological research and clinicalmedicine to measure pressure,

Page 164: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 164/509

displacement, and force•   The LVDT is composed of a primary coil

and two secondary coils connected inseries

•   The coupling between these two coils ischanged by the motion of a high‐permeability alloy slug between them

•   The two secondary coils are connectedin opposition in order to achieve awider region of linearity

•   The primary coil is sinusoidally excited,with a frequency between 60 Hz and 20kHz.

•   The alternating magnetic field induces nearly equal voltages and  in the secondary coils

•   The output voltage  =  ‐

•   When the slug is symmetrically placed, the two secondary voltages are equal and the output signal is zero

•   Linear variable differential transformer characteristics 

Page 165: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 165/509

include linearity•   over a large range, a change of  phase by 180° when the 

core passes through the center position, and saturation on the ends

•   Specifications of  commercially available LVDTs include sensitivities on the order of  0.5 to 2 mV  for a displacement of  0.01 mm/V  of  primary voltage, full‐scale displacement of  0.1 to 250 mm, and linearity of  0.25%

  Sensitivity for LVDTs is much higher than that for strain gauges

(a) As  moves through the null position, the phase changes 180°,while the magnitude of   is proportional to the 

Page 166: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 166/509

magnitude of  (b) An ordinary rectifier demodulator cannot distinguish between (a) and (b), so a phase‐sensitive 

demodulator is required

Electromagnetic blood‐flow transducer

•   Blood flow through an exposed vessel can 

be measured by means of  an electromagnetic flow transducer

•   Consider a blood vessel of  diameter  filled with blood flowing with a uniform velocity 

Page 167: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 167/509

 •   Blood vessel is placed in a uniform 

magnetic field   that is perpendicular to the direction of  blood flow

•   Negatively charged anion and positively charged cation particles in the blood will 

experience a force    that is normal to both the magnetic field and blood flow 

directions      )

•   where q is the elementary charge (1.6 x 10 C)

•   These charged particles will be deflected in opposite directions and will move along the diameter of  the blood vessels according to the direction of  the force 

vector   

•   This movement will produce an opposing force   

which is equal to

Page 168: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 168/509

•   where  is the net electrical field produced by the displacement of  the charged particles and  is the potential 

produced across the blood vessel•   At equilibrium, these two forces will be equal, hence the 

potential difference  is given by

•   is proportional to the velocity of  blood through the vessel

 

 

Electromagnetic flowmeter

Page 169: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 169/509

Capacitive Sensors•   The capacitance between two parallel plates of  area A separated by 

distance  is  

 

Where  is the dielectric constant of  free space and  is the relative dielectric constant of  the insulator

….(1)

Page 170: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 170/509

•   The sensitivity K  of  a capacitive sensor to changes in plate separation  is found by differentiating (1)

 

 

Note that the sensitivity increases as the plate separation decreases

•   The percent change in C about any neutral point is equal to the per‐unit change in  for small displacements is

 

Capacitance sensor for measuring dynamic displacementchanges and pressure

Page 171: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 171/509

•   Compliant plastics of  different dielectric constants may 

be placed between foil layers to form a capacitive mat to be placed on a bed

•   Patient movement generates charge, which is amplified and filtered to display respiratory movements from the 

lungs and ballistographic movements from the heart 

Piezoelectric Sensors

•   Piezoelectric sensors are used to measure physiological displacements and record heart sounds

•   Piezoelectric materials generate an electric potential when 

Page 172: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 172/509

mechanically strained, and conversely an electric potential can cause physical deformation of  the material•   The principle of  operation : when an asymmetrical crystal 

lattice is distorted, a charge reorientation takes place, causing a relative displacement of  negative and positive charges

•   The displaced internal charges induce surface charges of  opposite polarity on opposite sides of  the crystal

•   Surface charge can be determined by measuring the difference in voltage between electrodes attached to the surfaces

•   Assume infinite leakage resistance, the total induced charge is directly proportional to the applied force  

Where  is the piezoelectric constant, /

•   The change in voltage can be found by assuming that the 

Page 173: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 173/509

system acts like a parallel‐plate capacitor where the voltage across the capacitor is charge  divided by capacitance 

 

 

 

•   Typical values for  are 2.3 pC/N for quartz and 140 pC/N for barium titanate

•   For a piezoelectric sensor of  1 cm area and 1 mm thickness 

with an applied force due to a 10 g weight, the output voltage v is 0.23 mV and 14 mV for the quartz and barium titanatecrystals, respectively

•   There are various modes of  operation of  piezoelectric sensors, depending on the material and the crystallographic orientation of  the plate 

•   These modes include the thickness or longitudinal compression, transversal compression, thickness‐shear action, and face‐shear action

Al il bl i l t il i fil h

Page 174: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 174/509

  Also available are piezoelectric polymeric films, such as polyvinylidene fluoride (PVDF)

•   These films are very thin, lightweight and pliant(easily flexed or bent), and they can be cut easily 

and adapted to uneven surfaces

(a) Equivalent circuit of  piezoelectric sensor, where Rs = sensor leakage resistance, Cs = 

sensor capacitance, Cc = cable capacitance, Ca = amplifier input capacitance, Ra = amplifier input resistance, and q = charge generator

(b) Modified equivalent circuit with current generator replacing charge generator

Temperature Measurements

•   Temperature is extremely important to human physiology 

l l i di f

Page 175: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 175/509

 –  example: low temperature can indicate onset of  problems, e.g., stroke 

 –  example: high temperature can indicate infection

•   Temperature sensitive enzymes and proteins can be destroyed by adverse temperatures

  Temperature measurement and regulation is critical in many treatment plans

Temperature Sensor Options•   Thermoelectric Devices 

 –    most common type is called Thermocouple –    can be made small enough to place inside catheters or hypodermic needles

•   Resistance Temperature Detectors (RTDs) –    metal resistance changes with temperature

 –    Platinum, Nickel, Copper metals are typically used

ff

Page 176: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 176/509

 –    positive temperature coefficients

•   Thermistors(“thermally sensitive resistor”) –    formed from semiconductor materials, not metals

 –    often composite of  a ceramic and a metallic oxide (Mn, Co, Cu or Fe)

 –    typically have negative temperature coefficients

•   Radiant Temperature Sensors –    photon energy changes with temperature

 –    measured optically (by photo detector)

•   Integrated Circuit(IC) Temperature

 Sensors

 –    various temperature effects in silicon manipulated by circuits

 –    proportional to absolute temperature (PTAT) circuit: Si bandgap=  

Properties of  Temperature Sensors

Page 177: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 177/509

Metallic Resistance Thermometers

•   The electric resistance of  a piece of  metal or wire generally increases as the temperature of  that electric conductor increases

• A linear approximation to this relationship is given by

Page 178: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 178/509

•   A linear approximation to this relationship is given by

 

Where 

 is the resistance at temperature 

,   is the temperature coefficient of  resistance, and  is the temperature at which the resistance is being measured

•   It is important to make sure that the electronic circuit does 

not pass a large current through the resistance thermometer to provide self ‐heating due to the Joule conversion of  electric energy to heat

Temperature Coefficient of  Resistance for Common Metals and Alloys

Page 179: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 179/509

Thermocouples•   Thermoelectric thermometry is based on the discovery of  

Seebeck –    dissimilar metals at diff. temps. ‐>signal

 –    electromotive force (emf) is established by the contact of  two dissimilar metals at different temperatures

• Empirical calibration data are usually curve fitted with a

Page 180: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 180/509

  Empirical calibration data are usually curve fitted with a power series expansion that yields the Seebeck voltage

 

 

where  is in degrees Celsius and the reference  junction is maintained at 0°

•   Thermocouple features:•   rugged and good for very high temperatures•   not as accurate as other Temp sensors (also non‐linear and drift)

Thermocouple Circuits

Page 181: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 181/509

(a) Peltier emf 

(b)The first law, homogeneous 

circuits, states that in a circuit  composed  of  a single homogeneous metal, one cannot  maintain an 

electric  current  by  the application of  heat  alone

•   In (b) the net emf at c–d is the same as in (a), regardless of  the fact that a temperature distribution (T3) exists along one of  the wires (A)

Page 182: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 182/509

•   The second law, intermediate metals, states that the 

net  emf in a circuit  consisting of  an interconnection of  a number  of  unlike metals, maintained  at  the same 

temperature, is

  zero

•   The practical implication of  this principle is that lead wires may be attached to the thermocouple without 

affecting the accuracy of  the measured emf, provided that the newly formed  junctions are at the same temperature 

Page 183: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 183/509

•   The third law, successive or  intermediate temperatures, is illustrated in (d), where emf E1 is generated when two dissimilar metals have  junctions at 

temperatures T1 and T2 and emf E2 results for temperatures T2 and T3.•   It follows that an emf E1 + E2 results at c–d when the  junctions are at 

temperatures T1 and T3•   This principle makes it possible for calibration curves derived for a given 

reference‐ junction temperature to be used to determine the calibration 

curves for another reference temperature

•   The thermoelectric sensitivity α (also called the thermoelectric power or the Seebeck coefficient) is

  ⋯

Page 184: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 184/509

•   Using thermocouple with cold  junction compensator LT1025

Common Thermocouples

Page 185: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 185/509

Thermistors

•   Heavily used in biomedical applications

 –  base resistivity: 0.1 to 100 ohm‐meters

 –  can be made very small  ~500um diameter

Page 186: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 186/509

 can be made very small, 500um diameter –  large sensitivity to temperature (3‐4% / ºC)

 –  excellent long‐term stability

•   Resistance vs. temperature

 –  keep current low to avoid self ‐heating

Page 187: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 187/509

  The diagonal lines with a positive slope give linear resistance values and show the degree of  thermistor linearity at low currents.•   The intersection of  the thermistor curves and the diagonal lines with negative slope 

give the device power dissipation

Semiconductor Thermometers•   The 

PTAT  

Voltage 

and  

Electronic 

Thermometry 

 –  The well‐defined temperature dependence of  the diode voltage is actually used as the basis for most digital thermometers

 –  We can build a simple electronic thermometer in 

which two identical diodes are biased by current sources and

Page 188: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 188/509

ysources   and 

•   If  we calculate the difference between the diode voltages using 

we discover a voltage that is directly  proportional t o absolute t emperature (PTAT), referred to as the PTAT voltage V PTAT

Page 189: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 189/509

•   The PTAT voltage has a temperature coefficient given by

•   By using two diodes, the temperature dependence of   has been eliminated from the equation

•   For example, suppose T = 295 K, 

 = 250 µA, and 

 = 50 µA , then VPTAT = 40.9 mV with a temperature coefficient of  +0.139 mV/K.

Electromagnetic Radiation

 Spectrum

  Visible light wavelength –    ~400‐700nm

•   Shorter wavelengths 

 –    ultraviolet, ~100nm

 –    x‐ray, ~1nm~0 1 ( 1Å)

Page 190: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 190/509

 –    gamma rays, ~0.1nm (=1Å)

•   Longer wavelengths

 –    infrared IR: broad spectrum

•   near IR, ~1000nm = 1μm

•   thermal IR, ~100μm

•   far IR, ~1mm

•   microwave, ~1cm

•   radar, ~1‐10cm

•   TV & FM radio, ~1m

•   AM radio, ~100m 

Radiation Thermometry•   There is a known relationship between the surface temperature of  

an object and its radiant power•   possible to measure the temperature of  a body without physical 

contact with it•   At body temperatures, radiant spectrum in far infrared

  Medical thermography is a technique whereby the temperature distribution of  the body is mapped with a sensitivity of  a few tenths 

Page 191: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 191/509

y pp yof  a kelvin.

•   It is based on the recognition that skin temperature can vary from place to place depending on the cellular or circulatory processes 

occurring at each location in the body.•   Thermography has been used for the early detection of  breast 

cancer, but the method is controversial•   It has also been used for determining the location and extent of  

arthritic disturbances, for gauging the depth of  tissue destruction from frostbite and burns, and for detecting various peripheral circulatory disorders (venous thrombosis, carotid artery occlusions)

Page 192: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 192/509

(a) Spectral radiant emittance versus wavelength for a blackbody at 300 K on the left 

vertical axis; percentage of  total energy on the right vertical axis(b) Spectral transmission for a number of  optical materials(c) Spectral sensitivity of  photon and thermal detectors

Human Temperature Measurement

•   Radiation thermometry is good for determining internal (core body) temperature

―measures magnitude of  infrared radiation from tympanic 

membrane & surrounding ear canal• tympanic membrane is perfused by the same vasculature as the

Page 193: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 193/509

  tympanic membrane is perfused by the same vasculature as the hypothalamus, the body’s main thermostat

 –  advantages over thermometers, thermocouples or 

thermistors•   does not need to make contact to set temperature of  the sensor

•   fast response time, ~0.1sec

•   accuracy ~ 0.1°C

  independent of  user technique or patient activity•   requires calibration target to maintain accuracy

Page 194: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 194/509

•   radiation thermometry is an instrument that determines the internal or core body temperature of  the human by measuring the magnitude of  infrared radiation emitted from the tympanic membrane and surrounding ear canal

Fiber‐optic Temperature Sensor

•   Sensor operation –    small prism‐shaped sample of  single‐crystal undoped GaAs attached to 

ends of  two optical fibers –    light energy absorbed by the GaAs crystal depends on temperature

 –    percentage of  received vs. transmitted energy is a function of  temperature

Page 195: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 195/509

•   Can be made small enough for biological implantation

Optical Measurement

•   Widely used in medical diagnosis –    clinical‐chemistry lab: blood and tissue analysis –    cardiac catheterization: measure oxygen saturation of  hemoglobin

•   Optical system components –    source

 –    filter –    detector

C i l i l

Page 196: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 196/509

•   Conventional optical system

•   Solid‐state (semiconductor) optical system –    miniaturize and simplify

Optical/Radiation Sources

•   Tungsten lamp

 –    very common radiation source

 –    emissivity is function of  wavelength, λ

•   ~40% for λ< 1μm (1000nm)

 –    output varies significantly with temperature

•   note 2000K and 3000K spectra on next slide

•   higher temperature shortens life of  lamp filament

•   Arc discharge lamps

fl l fill d i h b di

Page 197: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 197/509

 –    fluorescent lamps filled with, e.g., carbon, mercury, sodium, xenon

 –    more compact w/ high output per unit area

•   Light emitting diodes (LED)

 –    silicon band gap ~1.1eV not very efficient for detection

 –    GaAs, higher energy (lower wavelength), fast (~10ns) switching

 –    GaP & GaAsP have even higher energy

•   LASER

 –    common lasers: He‐Ne, Argon (high power, visual spectrum), CO2 –    semiconductor laser not preferred; energy too low (infrared)

 –    lasers also used to mend tears, e.g., in retina

Spectral characteristics of  sources, filters, detectors

(a) Light sources: 1. tungsten (W) at 3000 K has a broad 

spectral output. At 2000 K, output is lower at all wavelengths and peak output shifts to longer wavelengths

2. Light‐emitting diodes yield a narrow 

spectral output with GaAs in the infrared, GaP in the red, and GaAsP in the green

3. Monochromatic outputs from common lasers are shown by dashed lines

Page 198: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 198/509

(b) Filters1. A Corning 5‐56 glass filter passes a 

blue wavelength band

2. A Kodak 87 gelatin filter passes infrared and blocks visible wavelengths. 

3. Germanium lenses pass long wavelengths that cannot be passed by glass

4. Hemoglobin Hb and Oxyhemoglobin HbO pass equally at 805 nm and have maximal difference at 660 nm

Spectral characteristics of  sources, filters, detectorsc) Detectors

1. The S4 response is a typical 

phototube response. 2. The eye has a relatively 

narrow response, with colors indicated by VBGYOR. 

3. CdS plus a filter has a 

response that closely matches that of  the eye.

4 Si p n junctions are widely

Page 199: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 199/509

4. Si p–n  junctions are widely used.

5. PbS is a sensitive infrared detector.

6. InSb is useful in far infrared

d) Combination

Indicated curves from (a), (b), and 

(c) are multiplied at each 

wavelength to yield (d), which shows how well source, filter, and detector are matched

Optical Transmitter & Filters

•   Geometrical Optics: Lenses –    focus energy from source into smaller area

 –    placed to collimate radiation (rays are parallel)

 –    focus energy from target into detector

•   Fiber Optics– efficient transmission of optical signals over

Page 200: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 200/509

  efficient transmission of  optical signals over distance

 –    example medical application: endoscope

•   Filters –    control transmitted power

 –    determine wavelengths (colors) transmitted

 –    produce wavelength spectrum (diffraction grating)

Radiation Sensors

•   Spectral response

 –    Si, no response above 1100nm

 –    special materials (InSb)

•   monitor skin radiation (300K)

•   Thermal sensors

 –    transforms radiation into heat

 –    flat spectral response but slow

 –    subject to error from changes in ambient temperature

– example thermal sensors: thermistors thermocouples

Page 201: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 201/509

 –    example thermal sensors: thermistors, thermocouples

•   Quantum sensors

 –    transform photon energy into electron release

 –    sensitive over a limited spectrum of  wavelengths

 –    example quantum sensors: eye, photographic emulsion, sensors below

 –    Photoemissive sensors, e.g. phototube

 –    Photoconductive cells

 –    Photojunction sensors –    Photovoltaic sensors

Photoemissive Sensors•   Construction & Operation

 –    photocathode coated with alkali metal –    incoming photons (with enough energy, >1eV or 1200nm) release 

electrons from photocathode –    released electrons attracted to anode and form a current proportional 

to incoming photon energy

•   Example: phototube, like the S4 in the spectrum plots•   Photomultiplier: phototube combined with electron amplifier

– very (the most?) sensitive photodetector

Page 202: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 202/509

  very (the most?) sensitive photodetector•   cooled to prevent thermal excitation of  electrons•   can count individual photons

 – 

  fast response, ~10ns –    compare to the eye, which can detect ~6photons within 100ms

Solid‐State

 Photoelectric

 Sensors

•   Photoconductive cells

 –    Photoresistor

•   photosensitive crystalline material such as CdS or PbS•   incoming radiation causes electrons to  jump band gap and 

produce electron‐hole pairs ‐>lower resistance

•   Photojunction sensors

 –    incoming radiation generates electron‐hole pairs in diode depletion region

Page 203: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 203/509

 –    minimum detectable energy based on band gap of  the diode substrate (e.g., Si)

 –    can be used in photovoltaic modechange in open‐circuit voltage is monitored

•   Photon coupler

 –    LED‐photodiode combination

•   used to isolate electrical circuits•   prevent current from leaking out of  equipment and into the heart 

of  a patient

MEMS Transducers

•   MEMS = micro‐electro‐mechanical system –    miniature 

transducers created using IC fabrication processes

  Microaccelerometer –    cantilever beam– suspended mass

Page 204: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 204/509

 –    suspended mass

•   Rotation –    gyroscope

•   Pressure

Sensor Calibration

•   Sensors can exhibit non‐ideal effects –    offset: nominal output ≠ nominal parameter value

 –    nonlinearity: output not linear with parameter changes

 –    cross parameter sensitivity: secondary output variation with, e.g., 

temperature•   Calibration= adjusting output to match parameter

– analog signal conditioning

Page 205: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 205/509

 –    analog signal conditioning

 –    look‐up table

 –    digital calibration

•   T = a + bV +cV2, T= temperature; V=sensor voltage;

•   a,b,c = calibration coefficients

•   Compensation

 –    remove secondary sensitivities

 –    must have sensitivities characterized

 –    can remove with polynomial evaluation

 –    P = a + bV + cT + dVT + e V2, where P=pressure, T=temperature

End of  Lecture 3

Page 206: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 206/509

Lecture 

aCardiovascular System

I. Heart structure & Cardiac Cycle

II. Heart

 conduction

 system

 &

 ECG

Page 207: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 207/509

Dr.R.B.Ghongade

Department of  E&TC,

V.I.I.T., Pune

‐411048

 

The Cardiovascular System

•   Heart: One of  the most important organ in the 

human body

•   Function:– Supply oxygen to all the parts (cells , tissues ,

Page 208: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 208/509

 Supply oxygen to all the parts (cells , tissues , 

muscles ,vital organs) of  the human body

 –  Collect the

 excreted

 CO2 

from the

 organs

•   Described mostly by comparing it with a fluid 

pump

Motivation

•   Heart disease

 –   Major cause of  deaths in developed and developing 

countries

  Use 

of  

engineering 

methods 

and 

the 

development 

of  

instrumentation have contributed substantially to 

progress made in recent years in reducing death from

Page 209: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 209/509

progress made in recent years in reducing death from 

heart diseases

  Blood pressure , flow , and volume are measured byusing engineering techniques

•   The electrocardiogram , echocardiogram and 

phonocardiogram are measured and recorded with 

electronic instruments

 

The Heart and the cardiovascular system

•   A functional cardiovascular system is vital for supplyingoxygen and nutrients to tissues and removing wastesfrom them.

•   The heart

 is

 the

 strongest

 muscle

 in

 the

 body

•   The heart must pump blood throughout the body day 

Page 210: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 210/509

& night

  The heart

 is

 2 pumps

 working

 side

 by

 side;

 on

 your

 right side is the heart that pumps blood to your lungs 

where it picks up O2; on your left side is the heart that pumps this O2‐soaked blood out to your body; pumps 

45 million

 gallons

 blood

 in

 a lifetime

Location of 

 the

 Heart

•   The heart is located in the chest 

between the lungs behind the 

sternum 

and 

above 

the 

diaphragm

•   It is surrounded by the 

pericardium

•   Its size is about that of  a fist, and 

its weight

 is

 about

 250

‐300

 g

•   Located above the heart are the 

great vessels:

Page 211: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 211/509

great vessels: 

•   the superior 

  inferior 

vena 

cava•   the pulmonary artery 

•   the pulmonary vein, a

•   the aorta

•   The aortic

 arch

 lies

 behind

 the

 heart

•   The esophagus and the spine lie further behind the heart

Anatomy of 

 the

 Heart

•   The walls of the heart are composed of 

cardiac muscle, called myocardium

•   It also has   striations   similar to skeletal

muscle

•   It consists of four compartments:

the right  and left atria and ventricles

•   The heart is oriented so that the anterior

aspect is the right ventricle while the

posterior aspect shows the left atrium

•   The atria form one unit and the

ventricles another

Page 212: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 212/509

•   This has special importance to the

electric function of the heart

•   The left ventricular free wall andthe   septum   are much thicker than the

right ventricular wall

•   This is logical since the left ventricle

pumps blood to the systemic circulation,

where the pressure is considerablyhigher than for the pulmonary

circulation, which arises from right

ventricular outflow

Anatomy of 

 the

 Heart

•   The cardiac muscle fibers are oriented spirally and are divided into four groups

•   Two groups of  fibers wind around the outside of  both ventricles

•   Beneath these fibers a third group winds around both ventricles

•   Beneath these fibers a fourth group winds only around the left ventricle

•   The fact that cardiac muscle cells are oriented more tangentially than radially, 

and that the resistivity of  the muscle is lower in the direction of  the fiber has 

importance in electrocardiography

•   The heart has four valves

 –    Tricuspid  valve: between the right atrium and ventricle lies 

Page 213: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 213/509

 –    Mitral  valve : between the left atrium and ventricle 

 –    Pulmonary  valve : between the right ventricle and the pulmonary artery, 

 –    Aortic valve lies in

 the

 outflow

 tract

 of 

 the

 left

 ventricle

 (controlling

 flow

 to

 the

 aorta)

•   The blood returns from the systemic circulation to the right atrium and from 

there goes through the tricuspid valve to the right ventricle

•   It is ejected from the right ventricle through the pulmonary valve to the lungs

•   Oxygenated blood

 returns

 from

 the

 lungs

 to

 the

 left

 atrium,

 and

 from

 there

 

through the mitral valve to the left ventricle

•   Finally blood is pumped through the aortic valve to the aorta and the systemic 

circulation

Anatomy of 

 the

 Heart

Page 214: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 214/509

Path of 

 Blood

 through

 the

 Heart

•   Blood that is low in O2 and high in CO2 enters the right atrium through 

the venae cavae & coronary sinus

  next 

is 

pumped 

into 

the 

pulmonary 

circulation 

after 

blood 

is 

oxygenated 

in the lungs & some of  the CO2 is removed, it returns to the left side of  

the heart through the pulmonary veins from the left ventricle

•   it moves into the aorta

•   gas exchanges occur between the blood in the capillaries and the air in 

the alveoli

 of 

 the

 lungs

•   ORDER IN WHICH BLOOD FLOWS:

1. venae cavae & coronary sinus

Page 215: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 215/509

1. venae cavae & coronary sinus

2. right atrium ‐> tricuspid valve

3. right 

ventricle ‐

pulmonary 

valve ‐

pulmonary 

trunk4. pulmonary artery

5. pulmonary vein

6. left atrium ‐> bicuspid (mitral) valve

7. left ventricle ‐> aortic valve

8. aorta

•   Both pumps are divided into two spaces called 

chambers so your heart is actually a 2‐barreled, 4‐

chambered pumper

•   The two

 sides

 do

 not

 work

 independently;

 they

 are

 precisely timed as a team to make the best use of  their pumping power (quite efficient!)

•   As the heart pumps it makes a variety of clicks and

thumps; these are the sounds of the heart valves asthey click open & shut; each sound has a specialmeaning

Page 216: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 216/509

meaning –   (lubb‐dupp)

•   lubb is the

 sound

 of 

 the

 tricuspid

 &

 mitral

 (bicuspid)

 heart

 valves

 (on the top chambers) shutting; 

•   dupp is the sound of  the semi‐lunar heart valves closing (these 

heart valves shut off  the big vessels leaving the heart)

•   The heart hangs in the center of  the chest (mediastinum)

The cardiovascular

 system

Page 217: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 217/509

The 

cardiovascular 

system

Page 218: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 218/509

syste

Terminology

•   Pulmonary circulation

 –   The circulatory path for blood‐flow through the lungs 

(function of  right side heart)

 –   Pressure difference between the arteries and the veins is 

small, low

 resistance

 –   Can be considered as volume pump

S t i i l ti

Page 219: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 219/509

•   Systemic circulation – 

  The 

circulatory 

system 

that 

supplies 

oxygen 

and 

nutrients 

to the cells of  the body (function of  left side of  the heart)

 –   This system is a high resistance circuit with a large pressure 

gradient between the arteries and veins

 –   Can be considered as a pressure pump

•   The muscle contraction of  the left heart is larger and 

stronger than the right heart, because of  the greater 

pressures 

required 

for 

systemic 

circulation•   However the volume of  the blood delivered per unit time 

by the two sides is same when measured over a sufficiently 

long interval of  time

  The 

left 

heart 

develops 

pressure 

head 

sufficient 

to 

cause 

blood flow to all extremities of  the body

•   The pumping action itself  is performed by contraction of  th h t l di h h b f th h t

Page 220: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 220/509

the heart muscles surrounding each chamber of  the heart

  These 

muscles 

receive 

their 

own 

blood 

supply 

from 

the 

coronary  arteries , which surround the heart like a crown( corona)

•   The coronary arterial system is a special branch of  the 

systemic circulation

Pitfall!

•   Why we

 cannot

 indiscriminately

 approximate

 the

 system

 

with a pump and a hydraulic system? –    The pipes, the arteries and the veins are not rigid but flexible

 –    They are capable of  helping and controlling blood circulation by 

their own

 muscular

 action

 and

 their

 own

 valve

 and

 receptor

 system

 –    Blood is not a pure Newtonian fluid; rather it possesses 

ti th t d t l ith th l i h d li

Page 221: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 221/509

properties that do not comply with the laws governing hydraulic 

motion

 –    Also the

 blood

 requires

 help

 from

 the

 lungs

 for

 O2 and

 it

 

interacts with the lymphatic system

 –    Many chemicals and hormones affect the operation of  the 

system

Cardiovascular 

circulation

Page 222: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 222/509

Functioning

•   Blood enters the heart on the right side through

 –  Superior  vena cava (coming from upper body 

extremities)

 –  Inferior  vena cava (coming from lower body 

extremities)

Page 223: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 223/509

•   Incoming blood fills the storage chamber, right  

atrium

•   Coronary  sinus also empties into right atrium 

(blood 

that 

circulates 

through 

the 

heart 

itself)

•   When right atrium is full, it contracts and 

forces blood through the tricuspid  valve into 

right  ventricle•   Right ventricle contracts to pump blood into 

pulmonary circulation system

•   Tricuspid valve closes when pressure in 

ventricle exceeds atrial pressure

Page 224: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 224/509

ventricle exceeds atrial pressure

•   Semi ‐lunar  valve opens and

 blood

 is

 forced

 

into pulmonary artery and into the two lungs

•   In the alveoli  of  lungs red blood cells are 

recharged with

 O2 

and CO2 is

 expelled

•   Pulmonary artery divides many times into 

smaller arteries (arterioles), which supply 

blood to

 alveolar

 capillaries,

 where

 the

 exchange of  O2 

and CO2 takes place

•   On the other side of  the lung mass is a similar 

construction where

 capillaries

 feed

 into

 tiny

 

veins (venules), which in turn form larger veins 

Page 225: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 225/509

and ultimately terminate into  pulmonary  vein

•   This pulmonary vein returns the oxygenated 

blood to the heart

Page 226: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 226/509

Heart’s pumping Cycle

  Systole –   Is defined as the 

period of  

contraction of  the 

heart muscles, specifically the 

t i l

Page 227: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 227/509

ventricular 

muscles, at

 which

 

time, blood is 

pumped into the 

pulmonary 

artery 

and the aorta

Heart’s pumping Cycle

•   Diastole

 –  Period of  

dilation of  

the heart 

cavities as 

Page 228: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 228/509

they fill will 

blood

•   Once the blood has been pumped into the 

arterial system, the heart relaxes, pressure in 

chambers 

decreases, 

the 

outlet 

valve 

close 

and in a short time the inlet valves open again 

to restart the diastole and initiate new cycle in 

the heart

•   After passing through many bifurcations of  arteries, the blood reaches vital organs, the 

Page 229: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 229/509

brain 

and 

the 

extremities•   The last stage of  arterial system divides into 

smallest arterioles

•   These arterioles

 feed

 into

 capillaries

 where

 O2

 

is supplied to cells and CO2 

is received

•   In turn capillaries  join into venules and these 

finally form inferior and superior vena cava

•   Blood supply to the heart itself  is from aorta 

through coronary arteries into a similar 

capillary system

 to

 the

 cardiac

 veins

•   This blood returns to heart chambers by the 

way of coronary sinus

Page 230: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 230/509

way of  coronary sinus 

Some facts!

•   Average heart

 beat

 rate

 

 –  75 bpm

 –  May vary from 60 to 85 (sitting , standing position)

 –   Infant heart rate may be as high as 140 bpm

 –  HR increases with heat exposure , physiological and 

Page 231: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 231/509

psychological factors

•   Heart pumps about 5 liters of  blood per minute

•   75 to 80 % of  blood volume in veins, 20% in 

arteries , remaining

 in

 capillaries

Blood Supply to the Heart

•   Heart muscle

 (myocardium)

 needs

 blood

•   Coronary arteries branch off  from systemic 

circulation &

 feed

 capillaries

 that

 permeate

 the heart muscle (myocardium)

• When blockage of to heart muscles occur

Page 232: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 232/509

•   When blockage of    to heart muscles occur 

cardiac muscles

 begin

 to

 die

 &

 a heart

 attack

 

(myocardial infarction) can occur if  blockage is 

extensive

Page 233: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 233/509

The Conduction System of  the Heart

•   Electrical stimulus

 needed

 to

 cause

 heart

 

muscle contractions (systole)

Page 234: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 234/509

Page 235: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 235/509

ECG Summary

Page 236: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 236/509

Although representation of  an ECG recording as a scalar trace is illustrated in 

Figure , several

 other

 techniques

 for

 cardiac

 electrical

 representation,

 usually

 

closely linked to the recording technique, exist

Various Components of  the ECG Waveform

•   Genesis of  ECG 

waveform and 

timing of 

 

different action 

potentials from 

different regions 

and specialized

 cells of  the heart and the 

corresponding 

d l f

Page 237: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 237/509

cardiac cycle of  the

 ECG

 as

 

measured on the 

body surface 

manifest as 

P,Q,R,S and T 

points

The Application

 Areas

 of 

 ECG

 Diagnosis

1. The electric axis of  the heart 

2. Heart rate monitoring 

3. Arrhythmias 

a. Supraventricular arrhythmias 

b. Ventricular arrhythmias 

4. Disorders in the activation 

sequence 

a. Atrioventricular conduction 

defects (blocks) 

b. Bundle‐branch block 

c. Wolff‐Parkinson‐White

6. Myocardial ischemia and infarction

a. Ischemia 

b. Infarction 

7. Drug effect 

a. Digitalis 

b. Quinidine 

8. Electrolyte imbalance 

a. Potassium 

b. Calcium 

9. Carditis

i di i

Page 238: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 238/509

c. Wolff  Parkinson White 

syndrome 

5. Increase in wall thickness or size 

of  the atria and ventricles

a. Atrial enlargement 

(hypertrophy) 

b. Ventricular enlargement (hypertrophy) 

a. Pericarditis 

b. Myocarditis 

10. Pacemaker monitoring 

The Application

 Areas

 of 

 ECG

 Diagnosis

Page 239: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 239/509

ECG Lead Systems

•   The Conventional

 12

‐lead

 System

 –  Bipolar Limb Leads

 – 

 Wilson 

Central 

Terminal 

(WCT) –  Goldberger Augmented Leads

 –  Precordial Leads

Page 240: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 240/509

 –  Mason and

 Likar Lead

 System

 (Modified

 leads)

•   The Corrected Orthogonal Leads (Frank lead 

system)

Bipolar Limb

 Leads

•   Force vectors: –   The major sequences of  depolarization of  the heart and 

the relative

 voltages

 encountered

 can

 be

 explained

 by

 drawing a series of  summation vectors 

 –   It is also useful to describe the direction in which these 

vectors are traveling by superimposing our drawing on a 

360‐degree

 compass

 rose

There are there important things that are the

underlying concepts of the lead systems:

1 The principle that impulses coming toward

Page 241: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 241/509

1. The principle that impulses coming toward 

an electrode produce positive deflections,whereas impulses going away from an

electrode produce negative deflections.

2. The positions from which the various

electrodes “look” at the heart.

3. The sequence, direction, and relativemagnitude of the four major vectors of 

cardiac depolarization and repolarization.

Einthoven limb

 leads

 and

 Einthoven

 

triangle

•   In the

 year

 1913,

 Einthoven

 et

 al.

 developed

 a method

 

of  studying the electrical activity  of  the heart by 

representing it graphically in a two‐dimensional geometric figure, namely, an equilateral triangle

•   Based on several oversimplifying assumptions

 –   The body is a homogeneous volume conductor

– The mean of all electrical forces can be considered as

Page 242: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 242/509

  The mean of  all electrical forces can be considered as 

originating in

 an

 imaginary

 dipole

 located

 in

 the

 electrical

 

center of  the heart

 –  Electrodes placed on the right arm (RA), left arm (LA) and 

left foot (LF) are used to pick up the potential variations on 

these extremities

 to

 form

 an

 equilateral

 triangle

Einthoven triangle

•   The Einthoven limb leads

(standard 

leads) 

are 

defined in the following 

way

where,

V I= voltage of  lead I

Page 243: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 243/509

V II= 

voltage 

of  

lead 

IIV III= voltage of  lead III

φL=potential of  left arm

φR=potential of  right arm

φF =potential of  left foot

•   The limb

 leads

 describe

 the

 cardiac

 

electrical activity in three different 

directions of  the frontal plane

Wilson Central

 Terminal

 (WCT)

•   Frank Norman Wilson (1890‐1952) investigated 

how electrocardiographic  unipolar potentials 

could be defined

•   Measured with respect to a remote reference 

(infinity)

•   Formed by connecting a 5 k resistor from each 

terminal of  the limb leads to a common point called the central terminal

•   Wilson suggested that unipolar potentials 

should be

 measured

 with

 respect

 to

 this

 terminal which approximates the potential at infinity

•   The Wilson central terminal is the average of  the limb potentials

Page 244: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 244/509

  The 

total 

current 

into 

the 

central 

terminal 

from 

the limb leads must add to zero to satisfy the 

conservation of  current (KCL)

Hence,

Circuit of  WCT and the location image space and the 

location of  WCT

Page 245: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 245/509

Goldberger Augmented

 Leads

•   Three additional limb leads, VR, VL, and VF are obtained by measuring the 

potential between each limb electrode and the Wilson central terminal

•  For

 instance,

 the

 measurement

 from

 the

 left

 foot

 gives

•   Goldberger observed that these signals can be augmented by omitting 

that resistance from the Wilson central terminal, which is connected to 

the measurement electrode

•   Three leads may be replaced with a new set of  leads that are called 

augmented  leads because of  the augmentation of  the signal 

Page 246: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 246/509

•   The equation

 for

 the

 augmented

 lead

 aVF is

•   Augmented signal to be 50% larger than the signal with the Wilson central 

terminal chosen

 as

 reference

Goldberger Augmented

 Leads

•   Note that the three augmented leads, aVR, aVL, and aVF, are fully 

redundant with respect to the limb leads I, II, and III

Page 247: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 247/509

Page 248: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 248/509

Precordial Leads

•   For measuring the potentials close to 

the heart, Wilson introduced the 

precordial 

leads 

(chest 

leads) 

in 

1944•   These leads, V1‐V6 are located over 

the left chest 

•   The points V1 and V2 are located at the fourth intercostal space on the 

right and left side of  the sternum

•   V4 is located in the fifth intercostal space at the midclavicular line

•   V3 is located between the points V2 

and V4

Page 249: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 249/509

  V5 

is 

at 

the 

same 

horizontal 

level 

as 

V4 but on the anterior axillary line

•   V6 is at the same horizontal level as 

V4 but at the midline

Precordial  chest  leads are used to record the voltage difference 

between these electrodes and Wilson’s Central Terminus

Page 250: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 250/509

Mason and

 Likar Lead

 System

 (Modified

 leads)

•   Mason and Likar recommended moving 

the limb electrodes used to record the 12‐

lead ECG from the limbs to the thorax for 

exercise electrocardiography

 (1966)

•   The 12 lead system is usually used  for  just long enough to record a few heart cycles or beats (10‐15)  seconds

•   The recorded information is represented as 

12 scalar

 traces

 depicting

 the

 heart’s

 electrical activity at the various sample 

sites.

•   Interpretation of  the 12‐lead ECG is based 

upon examination of  the shape and size, or 

Page 251: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 251/509

amplitude and

 duration,

 of 

 the

 various

 components of  each scalar trace

•   The increased number of  sample sites, six 

of  which are on the chest close to the 

heart, allows an expert to not only 

determine the

 presence

 of 

 disease,

 but

 also the chambers or areas of  the heart that are affected

The Corrected

 Orthogonal

 Leads

•   This lead system is known also as Frank 

lead system

•   Seven electrodes placed on the chest,back, 

neck and

 left

 foot

 are

 used

 to

 view

 the

 

heart from the left side, from below and 

from the front

•   This kind of  lead system reflects the 

electrical activity in the three perpendicular 

directions 

X, 

Y, 

and 

and 

traces 

out 

three‐

dimensional loop for every cardiac cycle by 

means of  the time‐variant cardiac 

dominant vector

•   The three projections of  this loop onto XY, 

XZ and YZ planes are also recorded

Page 252: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 252/509

•   The morphology of  the loops, their direction of  rotation and their areas are the 

main spatial quantities that improve ECG‐

based diagnosis of  some cardiac 

pathologies, like myocardial infarction

•   This particular

 type

 of 

 recording

 is

 referred

 

to as a vectorcardiogram (VCG).

Electrocardiograph Block

 Diagram   Right

 leg

electrode

Microcomputer

Operatordisplay

Drivenright legcircuit

Amplifierprotection

circuit

Leadselector

Sensingelectrodes

Lead‐faildetect

Preamplifier

Autocalibration

Baselinerestoration

Isolatedpower

supply

Isolationcircuit

Driveramplifier

Recorder‐printer

ADC Memory

Parallel circuits for simultaneous recordings from different leads

•   Sensing electrodes

•   Lead fail

 detect

•   Amplifier protection 

circuit

•   Lead selector

•   Auto calibration

•   Preamplifier

•   Baseline restoration

•   Driven right leg circuit

•   Isolation circuit

Page 253: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 253/509

Controlprogram

ECG analysisprogram

Keyboard

  ADC 

Memory 

system•   Driver amplifier

•   Recorder‐printer

•   Microcomputer

•   Control software

Frequent Problems

•   Frequency distortion

 –    High‐frequency loss rounds the sharp edges of  the QRS complex.

 –    Low‐frequency loss can distort the baseline (no longer horizontal) or cause 

monophasic waveforms to

 appear biphasic.

•   Saturation/cutoff  distortion

 –    Combination of  input amplitude & offset voltage drives amplifier into 

saturation

 –    Positive case: clips off  the top of  the R wave

 –    Negative case:

 clips

 off 

 the

 Q,

 S,

 P and

 T waves

•   Ground loops

 –    Patients are connected to multiple pieces of  equipment; each has a ground 

(power line or common room ground wire)

 –    If  more that one instrument has a ground electrode connected to the patient,                            

Page 254: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 254/509

a ground loop exists. Power line ground can be different for each item of equipment, sending current through the patient and introducing common‐

mode noise.

•   Open lead wires

 –    Can be detected by impedance monitoring.

Artifacts

Effect of  a voltage transient on an 

ECG recorded on an 

electrocardiograph in which the 

transient causes the amplifier to 

, and a finite period of  

•   Unwanted voltage

 transients

 –    Patient movement

 –    Electrical stimulation 

signals, like defibrillation

l f

Page 255: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 255/509

saturatetime is required for the charge to 

bleed off  enough to bring the ECG 

back into the amplifier’s active 

region of  operation. This is 

followed 

by 

 first ‐

order  

recovery  

of  the system.

•   Amplifier saturates

•   First‐order recovery to 

baseline

 –    Recovery time set by low‐

frequency corner of 

 the

 

bandpass amplifier

Artifacts

•U fi li f 50H /60 H li i

Page 256: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 256/509

  Upper figure:

 coupling

 of 

 50Hz/60

 Hz

 power

 line

 noise

 –    Electric‐field coupling between power grid, instrument, patient, and 

wiring.

•   Lower figure:  coupling of  electromyographic (EMG) noise

 –    Example of  tensing chest muscles while ECG is being recorded.

Power‐Line

 Coupling

Electro-

cardiograph

 A

Power line 230 V

 B

G

C 3

C 1

 Z 1

 Z 2

 Z G

C 2

 I d1

 I d2

 I d1+  I d2

•   Small   parasitic capacitors connect the 

power line to the RA and LA leads, 

and the

 grounded

 instrument

 case

•   Small  ac displacement  currents Id1 and 

Id2 are generated

•   The body impedance is about 500 

and can be neglected

vA ‐ vB   = id1 Z1 ‐ id2 Z2 (6.3)

•   If  Id1 and  Id2 are approximately  equal:

vA ‐ vB =  id1 (Z1 ‐ Z2)  (6.4)

= (6 nA) (20 K )

= 120 µV

•   Remedies

– Shield electrodes & connect to

Page 257: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 257/509

A mechanism of  electric‐field pickup of  an 

electrocardiograph resulting from the power 

line. Coupling capacitance between the hot 

side of 

 the

 power

 line

 and

 lead

 wires

 causes

 current to flow through skin‐electrode 

impedances on its way to ground.

G –    Shield electrodes

 &

 connect

 to

 

electrocardiograph (grounding 

tree) to reduce id

 –    Reduce or match the electrode 

skin impedances (minimize Z1 ‐ Z2 

)

Power‐Line Coupling

Electrocardiograph

Power line   230V

 A

 Z in

 Z 1

C  b

idb

 Z 2

cm

 B

G

 Z in

cm

cm

•   Power  line is coupled into the body

•   Small  ac displacement  current   Idb is 

generated, which produces  a common 

mode voltage 

vcm   =  idb ZG   (6.6)

=  (0.2 µA) (50 K )

10 mV

•   At  the amplifier  inputs:

vA ‐ vB =  vcm (Z1 ‐ Z2)/ Zin   (6.9)

=  (10 mV) (20 K / 5 M

40 µV

Page 258: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 258/509

Current flows from the power line through the body 

and ground impedance, thus creating a common‐

mode 

voltage 

everywhere 

on 

the 

body. 

 Z in is 

not 

only 

resistive but, as a result of  RF bypass capacitors at 

the amplifier input, has a reactive component as 

well. 

 Z G idb

40 µV

•   Remedies:

 – Reduce or match the electrode skin 

impedances (minimize Z1 ‐ Z2 

)

 – Increase Zin

Magnetic Field

 Coupling

•   Sources

 –    Power lines

 –    Transformers 

and ballasts

 in

 fluorescent lights

•   Remedies

 –    Shielding

 – 

Route 

leads 

fM i fi ld i k b h l di h ( ) L d

Page 259: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 259/509

  Route leadsaway from 

potential sources

 –    Reduce the 

effective area of  

the single

‐turn

 coil (twist the 

lead wires)

Magnetic‐field pickup by the elctrocardiograph (a) Lead 

wires make a closed loop (shaded area) when patient and 

electrocardiograph are considered in the circuit. The 

change in magnetic field passing through this area induces 

a current in the loop. 

(b) This effect can be minimized by twisting the lead wires 

together and keeping them close to the body in order to 

subtend a much smaller area.

Lecture 4 bCardiovascular System

III. Phonocardiogram (PCG)

IV. Electroencephalogram(EEG)

D R B Gh d

Page 260: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 260/509

Dr.R.B.GhongadeDepartment of  E&TC,

V.I.I.T., Pune‐411048 

Introduction•   Heart sounds result from the interplay of  the dynamic events associated 

with the contraction and relaxation of  the atria and ventricles, valve 

movements, and blood flow.

•   Can be heard from the chest through a stethoscope, a device commonly used for screening and diagnosis in primary health care

•   Auscultation is the term for listening to the external sounds of  the body, 

usually using a stethoscope

•  The art of  evaluating the acoustic properties of  heart sounds and 

murmurs, including the intensity, frequency, duration, number, and quality 

of  the sounds, are known as cardiac  auscultation.

•   One of  the oldest means for assessing the heart condition, especially the 

function 

of 

heart 

valves

Page 261: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 261/509

function of heart valves•   The stethoscope (from the Greek word stethos, meaning "chest" and 

skopein, meaning "to examine") invented during the early twentieth 

century, was one of  the most primitive devices designed to aid a doctor in 

listening to heart sounds

•   Traditional auscultation involves subjective  judgment by the clinicians, 

which introduces variability in the perception and interpretation of  the 

sounds, thereby affecting diagnostic accuracy

PHONOCARDIOGRAPHY ‐

 TECHNIQUE

•   The auscultation of  the heart gives the clinician valuable 

information about the functional integrity of  the heart

•   Additional details can be gathered when the temporal 

relationships between the heart sounds and the electrical 

and mechanical events of  the cardiac cycle are compared

•   This approach to the analysis of  heart sounds using a 

study of  the frequency spectra is known as 

 phonocardiography 

The 

phonocardiogram is 

device 

capable 

of 

obtaining 

h l h b l h

Page 262: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 262/509

  The  phonocardiogram is a device capable of obtainingheart sounds and displaying the obtained signals in the 

form of  a graph drawn with the signal amplitude in one 

axis and with time in the other

Block diagram of  the general biomedical signal processing and analysis, as an integrative

approach for computer‐aided diagnosis system

Page 263: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 263/509

CARDIOVASCULAR PHYSIOLOGY (revisited)

•   The heart can be classified from a  hemodynamics point of  view as a simple reciprocating pump

•   The pumping chambers have a variable volume and input and output ports

•   A one‐way valve in the input port is oriented such that it opens only when 

the pressure in the input chamber exceeds the pressure within the pumping chamber

•   Another one‐way valve in the output port opens only when pressure in 

the pumping chamber exceeds the pressure in the output chamber

•The rod and crankshaft will cause the diaphragm to move back and forth

Page 264: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 264/509

  The rod and crankshaft will cause the diaphragm to move back and forth•   The chamber’s volume changes as the piston moves, causing the pressure 

within to rise and fall

•   In the heart, the change in volume is the result of  contraction and 

relaxation of  the cardiac muscle that makes up the ventricular walls

Page 265: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 265/509

•   The mechanical activity of  the heart involves contraction of  myocardial cells, opening/closing of  valves, and flow of  blood to and from the heart chambers

  This 

activity 

is 

modulated 

by 

changes 

in 

the 

contractility 

of  

the heart, the compliance of  the chamber walls and 

arteries and the developed pressure gradients

•   The mechanical activity can be also examined using ultrasound imaging

•   The peripheral blood flows in the arteries and veins is also 

modulated by mechanical properties of  the tissue

•   The flow of  blood can be imaged by Doppler‐echo, and the pulse‐wave can be captured in one of  the peripheral arteries

Page 266: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 266/509

arteries

•   The dif ferent types of  signals give us various pieces of  information about the cardiac activity. Integrating this information may yield a better ability to assess the 

condition of  the cardiovascular system

Cardiac Sounds•   Audible sounds are produced from the opening and the closing of  

the heart valves, the flow of  blood in the heart, and the vibration of  heart muscles

•   Heart sounds are short‐lived bursts of  vibrational energy having a transient character

•   They are primarily associated with valvular and/or ventricular 

vibrations•   Both their site of  origin and their original intensity governs the 

radiation of  the heart sounds to the surface of  the chest

•   There are four separate basic sounds that occur during the 

sequence 

of  

one 

complete 

cardiac 

cycle

Page 267: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 267/509

q p y

Cardiac Murmurs

  Murmurs are vibrations caused by turbulence in the blood as it flows through some narrow orifice or tube.

•   A murmur is one of  the more common abnormal phenomena that can be detected with a stethoscope  ‐a somewhat prolonged 'whoosh' that can be described as blowing, rumbling, soft, harsh, and so on

  Murmurs 

are 

sounds 

related 

to 

the 

non‐

laminar 

flow 

of  

blood 

in 

the 

heart 

and the great vessels

•   They are distinguished from basic heart sounds in that they are noisy and 

have a longer duration

•   While heart sounds have a low frequency range and lie mainly below 200 

Hz, 

murmurs 

are 

composed 

of  

higher 

frequency 

components 

extending 

up 

to 1000 Hz

Page 268: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 268/509

p g q y p g p

•   Most heart murmurs can readily be explained on the basis of  high velocity flow or abrupt changes in the caliber (the diameter of  the inside)of  the vascular channels

•   Typical conditions in the cardiovascular system, which cause blood flow 

turbulence, are local obstructions, shunts, abrupt changes in diameter, and valve insufficiency(valve is not strong enough to prevent backflow )

S1•   The first heart sound (S1) occurs at the onset of  ventricular systole

•   It can be most clearly heard at the apex and the fourth intercostal spaces along the left sternal border

  It is characterized by higher amplitude and longer duration in comparison with other heart sounds

•   It has two major high frequency components that can be easily heard at bedside

•   Although controversy exists regarding the mechanism of  S1, the most compelling evidence indicates that the components result from the closure of  the mitral and 

tricuspid valves and the vibrations set up in the valve cusps, chordate, papillary, muscles, and ventricular walls before aortic ejection 

•   S1 lasts for an average period of  100–200ms

•   Its frequency components lie in the range of  10‐200 Hz

•   The acoustic properties of  S1 are able to reveal the strength of  the myocardial 

systole and the status of the atrioventricular valves’ function• As a result of the asynchronous closure of the tricuspid and mitral valves the

Page 269: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 269/509

             •   As a result of  the asynchronous closure of  the tricuspid and mitral valves, the 

two components of  S1 are often separated by a time delay of  20‐30 ms

•   This delay is known as the (split) in the medical community and is of  significant diagnostic importance

•   An abnormally large splitting is often a sign of  heart problem

S2•   The second heart sound (S2) occurs within a short period once the ventricular diastole starts.

•   It coincides with the completion of  the T‐wave of  the electrocardiogram (ECG)

•   S2 consists of  two high‐frequency components, one because of  the closure of  the aortic valve and the other because of  the closure of  the pulmonary valve

•   At the onset of  ventricular diastole, the systolic ejection into the aorta and the pulmonary artery declines and the rising pressure in these vessels exceeds the pressure in the respective ventricles, thus reversing the flow and causing the closure of  their valves.

•   The second heart sound usually has higher‐frequency components as compared with the 

first 

heart 

sound•   As a result of  the higher pressure in the aorta compared with the pulmonary artery, the 

aortic valve tends to close before the pulmonary valve, so the second heart sound may have an audible split

•   In normal individuals, respiratory variations exist in the splitting of  S2

•   During expiration phase, the interval between the two components is small (less than 30 

ms)H d i i i ti th litti f th t t i id t

Page 270: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 270/509

•   However, during inspiration, the splitting of  the two components is evident

•   Clinical evaluation of  the second heart sound is a bedside technique that is considered to 

be a most valuable screening test for heart disease

•   Many heart diseases are associated with the characteristic changes in the intensities of  

or the time relation between the two components of  S2•   S1 and S2 were basically the main two heart sounds that were used for most of  the 

clinical assessment based on the phonocardiography auscultation procedure

S3 &S4•   The third and fourth heart sounds, also called gallop sounds, are low‐

frequency sounds occurring in early and late diastole, respectively, under highly variable physiological and pathological conditions

•   Deceleration of  mitral flow by ventricular walls may represent a key mechanism in the genesis of  both sounds 

•   The third heart sound (S3) occurs in the rapid filling period of  early diastole

•   It is produced by vibrations of  the ventricular walls when suddenly distended by the rush of  inflow resulting from the pressure difference 

between ventricles and atria

•   The audibility of  S3 may be physiological in young people or in some adults, but it is pathological in people with congestive heart failure or ventricular dilatation

•   The fourth heart sound (S4) occurs in late diastole and  just before S1

•   It is produced by vibrations in expanding ventricles when atria contract.

Page 271: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 271/509

•   Thus, S4 is rarely heard in a normal heart

•   The abnormally audible S4 results from the reduced distensibility (the capability of  being stretched under pressure ) of  one or both ventricles

  As a result of  the stiff  ventricles, the force of  atrial contraction increases, causing sharp movement of  the ventricular wall and the emission of  a prominent S4

Page 272: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 272/509

LUPP   DUBBLUPP

DUBBMURMUR

Page 273: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 273/509

Cardiac cycle events occurring in the left ventricle 

Pressure profile of  the 

ventricle andatrium

Volume profile of  the 

left ventricle

Phonocardiographgy

signals

Page 274: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 274/509

•   The ECG, PCG (low and high 

filtered), carotid pulse, 

apexcardiogram, and logic states 

(high = open) of  left heart valves, 

mitral and aortic valve, and right 

heart valves, tricuspid and 

pulmonary 

valve•   Left heart mechanical intervals 

are indicated by vertical lines: 

isovolumic contraction (1), 

ejection (2), isovolumic relaxation 

(3), and filling (4) (rapid filling, 

slow filling, atrial contraction)•   The low frequency PCG shows the 

four normal heart sounds (I, II, III, 

and IV)

•   In the high frequency trace III and 

IV have disappeared and splitting 

is visible in I [Ia and Ib (and even a 

small Ic due to ejection)] and in II

Page 275: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 275/509

small Ic due to ejection)] and in II 

[IIA (aortic valve) and IIP 

(pulmonary valve)]

•   Systolic intervals LVEP (on carotid 

curve) and Q ‐IIA (on ECG and PCG) are indicated

Page 276: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 276/509

Phonocardiography trace with 8 successive S1–S2 waveform.

Page 277: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 277/509

PCG signal recording with different filtering coefficient for different 

corresponding heart sound class

Page 278: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 278/509

PCG SIGNAL SPECTRAL ANALYSIS

  Heart sounds are complex and highly non‐stationary signals in their nature and have been known to be quasi‐stationary signals for a long time

•   The “heart beats” associated with these sounds are reacted 

in the signal by periods of  relatively high activity and 

rhythmic energy style, alternating with comparatively intervals of  low activity

•   Accordingly, PCG Spectrometric properties can be extracted 

by different methods using (e.g., Short‐Time Fourier Transformation (STFT)), as it estimates the power spectral density (PSD) of successive waveform and computed these

Page 279: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 279/509

density (PSD) of  successive waveform and computed these transformation will lead to periodic estimation of  energy spikes within the acoustical waveform

Classes of  spectral analysis used•   Two broad classes of  spectral analysis approaches

 –    nonparametric methods 

 –    parametric (model‐based) methods.

•   The nonparametric methods—such as periodogram, Blackman‐

Tukey, and minimum variance spectral estimators—do not impose any model assumption on the data, other than wide‐sense stationarity

•   The parametric spectral estimation approaches, on the other hand, 

assume that the measurement data satisfy a generating model by which the spectral estimation problem is usually converted to that of  determining the parameters of  the assumed signal model

•   Two kinds of  models are widely assumed and used within the parametric methods, according to different spectral characteristics of  the signals: the rational transfer function (RTF) model and the sinusoidal signal model

Page 280: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 280/509

sinusoidal signal model

•   The RTF models, including autocorrelation (AR),moving average (MA), and autocorrelation moving average (ARMA) types are 

usually 

used 

to 

analyze 

the 

signals 

with 

continuous 

spectra, 

while 

the sinusoidal signal model is a good approximation of  signals with 

discrete spectral patterns

Page 281: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 281/509

ELECTROENCEPHALOGRAM(EEG)

• The electroencephalogram (EEG) measures the activity of

large numbers (populations) of neurons.

• First recorded by Hans Berger in 1929.

• EEG recordings are noninvasive, painless, do not interfere

much with a human subject’s ability to move or perceivestimuli, are relatively low-cost.

• Electrodes measure voltage-differences at the scalp in themicrovolt (μV) range.

• Voltage-traces are recorded with millisecond resolution

Page 282: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 282/509

EEG 

•   Spontaneous activity  is measured on the scalp or on the brain and is called the electroencephalogram

  The 

amplitude 

of  

the 

EEG 

is 

about 

100 

µV 

when 

measured 

on 

the 

scalp, and about 1‐2 mV when measured on the surface of  the brain

•   The bandwidth of  this signal is from under 1 Hz to about 50 Hz

•   As the phrase "spontaneous activity" implies, this activity goes on 

continuously in the living individual

•   Evoked   potentials are those components of  the EEG that arise in 

response to a stimulus (which may be electric, auditory, visual, etc.) 

•   Such signals are usually below the noise level and thus not readily 

distinguished, 

and 

one 

must 

use 

train 

of  

stimuli 

and 

signal 

averaging to improve the signal‐to‐noise ratio

Page 283: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 283/509

•   Single‐neuron behavior can be examined through the use of  microelectrodes which impale the cells of  interest. Through studies 

of  the single cell, one hopes to build models of  cell networks that will reflect actual tissue properties

Frequency spectrum of  normal EEG

Page 284: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 284/509

EEG 

LEAD 

SYSTEMS•   The internationally standardized 10‐20 system is usually employed to record the spontaneous 

EEG

•   In this system 21 electrodes are located on the surface of  the scalp

•   The positions are determined as follows

 –    Reference points are nasion, which is the delve at the top of  the nose, level with the eyes; 

 –    inion, which is the bony lump at the base of  the skull on the midline at the back of  the head

•   From these points, the skull perimeters are measured in the transverse and median planes

•   Electrode locations are determined by dividing these perimeters into 10% and 20% intervals

  Three 

other 

electrodes 

are 

placed 

on 

each 

side 

equidistant 

from 

the 

neighboring 

points

Page 285: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 285/509

•   In addition to the 21 electrodes of  the international 10‐20 system, intermediate 10% electrode positions are also used

•   The locations and nomenclature of  these electrodes are standardized by the American Electroencephalographic Society 

•   In this recommendation, four electrodes have different names compared 

to the 10‐20 system; these are T7, T8, P7, and P8. These electrodes are drawn black with white text in the figure

Page 286: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 286/509

EEG

Page 287: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 287/509

Standard placements of electrodes on the human scalp: A, auricle; C, central;F, frontal; Fp, frontal pole; O, occipital; P, parietal; T, temporal.

EEG

Page 288: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 288/509

EEG

Page 289: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 289/509

EEG

Page 290: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 290/509

Many  neurons need  to sum their  activity  in order  to be detected  by  EEG electrodes. 

The timing

 of 

 their 

 activity 

 is

 crucial.

 Synchronized 

 neural 

 activity 

  produces

 larger 

 

signals.

THE BEHAVIOR OF THE EEG SIGNAL

  It 

is 

possible 

to 

differentiate 

alpha 

), 

beta 

( ), 

delta 

(), and theta () waves as well as spikes associated with 

epilepsy

•   The alpha waves have the frequency spectrum of  8‐13 

Hz and can be measured from the occipital region in an awake person when the eyes are closed

•   The frequency band of  the beta waves is 13‐30 Hz; these are detectable over the parietal and frontal lobes

•   The delta waves have the frequency range of  0.5‐4 Hz and are detectable in infants and sleeping adults

Page 291: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 291/509

•   The theta waves have the frequency range of  4‐8 Hz and are obtained from children and sleeping adults

Page 292: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 292/509

EEG and the Brain State

EEG potentials are good indicators of global brain state. Theyoften display rhythmic patterns at characteristic frequencies

Page 293: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 293/509

EEG 

EEG suffers from poor current source localization and the “inverse problem” 

Page 294: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 294/509

EEG 

Power spectrum:

Page 295: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 295/509

•   Schematic of  amplifier inputs for analog EEG for a longitudinal bipolar montage

•   One additional electrode input—the ground—is omitted for simplicity

•   Since an EEG voltage signal represents a difference between the voltages at two 

Page 296: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 296/509

electrodes, the display of  the EEG for the reading encephalographer may be set up in 

one of  several ways

•   The representation of  the EEG channels is referred to as a montage•   A typical adult human EEG signal is about 10µV to 100 µV in amplitude when measured 

from the scalp 

EEG OF A

NORMAL 

HUMAN 

ADULT

Page 297: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 297/509

EEG OF A 

HUMAN 

ADULT 

SUFFERING 

FROM 

EPILEPSY

Page 298: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 298/509

Lecture 5I.X

‐Ray

 Imaging

II. Computed Tomography

III. Diagnostic Ultrasound Imaging

Dr.R.B.GhongadeDepartment of  E&TC,

Page 299: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 299/509

V.I.I.T., Pune‐411048 

I.X‐Ray Imaging

Page 300: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 300/509

INTRODUCTION TO X‐RAY IMAGING

•  X‐ray imaging is a well‐known imaging modality that has 

been used

 for

 over

 100

 years

 since

 Roentgen

 discovered

 X‐

rays based on his observations of  fluorescence

•   X‐rays are high‐energy photons

•  Their generation creates incoherent beams that experience 

insignificant scatter

 when

 passing

 through

 various

 media

•   As a result, X‐ray imaging is based on through transmission 

and analysis of  the resulting X‐ray absorption data

•   X‐

rays 

are 

detected 

through 

combination 

of  

phosphor 

screen and

 a light

‐sensitive

 film

Page 301: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 301/509

Page 302: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 302/509

Typical Imaging Chain forMedical X‐ray Systems

X-ray source

Collimator

Object Film

processing

Image

Page 303: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 303/509

Electromagnetic Radiation

•   EM radiation can be thought of  as oscillating electric field 

which generates oscillating magnetic field which generates 

oscillating electric

 field…and

 so

 on.

 

•   Can also be thought of  as photons (particles), as in CCD 

d i f i ibl li h

Page 304: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 304/509

detection of  visible light.

•   This is

 called

 the

 “wave

‐particle

 duality”

 of 

 EMR.

Wavelength•   (lambda) is called wavelength, the 

distance between two identical points 

on a wave

•   =

, where v  is called the phase 

speed (magnitude of  the phase 

velocity) of  the wave and  f  is the 

wave's frequency

•   In the case of  EM radiation, the 

equation becomes =

 , where c is

the speed of light: 3 x 108m/s

•   (nu) is called frequency, the number of  cycles per unit of  time.

Page 305: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 305/509

•   It is inversely proportional to the wavelength.

Photons: review

•   Photons are

 little

 “packets”

 of 

 energy.

•   Each photon’s energy is proportional to its 

frequency.

•   A photon’s

 energy

 is

 represented

 by

 “h”

E = hEnergy = (Planck’s constant) x (frequency of photon)

Page 306: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 306/509

X‐Rays

• Usually detected as particles of energy (photons).

10-9 m (1 nm)10-11 m (0.01 nm)

“soft”“hard”

Page 307: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 307/509

• Discovered in 1895 by Wilhelm Conrad Roentgen.

X‐Ray Production

•   Electrons are

 accelerated

 from

 cathode

 to

 anode.

•   When high energy electrons hit atoms of  heavy 

metals, the atoms produce X‐ray photons.

e-

e-

h

Anode (+)

Cathode(-)

h

Page 308: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 308/509

metals, the atoms produce X ray photons.

X‐Ray

 Tube

Page 309: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 309/509

Generation 

of  

X‐

rays 

•   Depends on thermionic emission and acceleration of  electrons from 

a heater filament

•   During that process, electrons emitted from cathode are 

accelerated by anode voltage

•   Kinetic energy loss at an anode is converted to X‐rays

•   The relative position of  an electron with respect to the nucleus determines the frequency and energy of  the emitted X‐ray

•   X‐rays produced in an X‐ray tube contain two types of  radiation

 –   Bremsstrahlung –   characteristic radiation

•   The word Bremsstrahlung is retained from the German language to 

describe the radiation that is emitted when electrons are 

decelerated

•   It is characterized by a continuous distribution of  X‐ray intensity and 

shifts toward higher frequencies when the energy of  the 

bombarding electrons is increased

Page 310: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 310/509

•   Characteristic X‐rays, on the other hand, produce peaks of  intensity 

at particular

 photon

 energies

Generated 

X‐

Ray 

spectrum•   In practice, emitted radiation is filtered, intentionally or not, producing high‐pass filter response as low‐energy 

radiation is  completely attenuated

•   As a result,

 the

 final

 X‐ray

 spectrum

 has

 band

‐pass

 type characteristics with several local peaks 

superimposed on it

Page 311: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 311/509

Schematic representation

 of 

 a standard X‐ray system

Page 312: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 312/509

Object

• What can happen to an X-ray when itencounters the object to be imaged?

  Passes right through the object.

  Absorbed completely by the object.

  Scattered by the object

Page 313: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 313/509

Attenuation Coefficient

5

10 50 100 150

1

0.1

Attenuation

Coefficient

Photon Energy (keV)

500

Bone

MuscleFat

Page 314: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 314/509

Attenuation coefficients tell you the “x-ray blocking power” of a material.

Photon Energy (keV)

Attenuation Coefficient

•   Coefficient depends

 on

 the

 property

 of 

 the

 material.

 – Density (Bone has a high density compared to soft 

tissues) – Chemical Make‐up (Lead blocks x‐rays; lead 

screening used to protect patient & technicians)

Page 315: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 315/509

Detector

•   A special

 photographic

 film

 is

 used

 to

 

capture the x‐ray photons which passed 

through the object.

•   The film is then processed.

•   Film turns dark where it was exposed to x‐

Exposure

(Capture)Processing Image

Page 316: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 316/509

p

ray photons.

 

Typical X‐Ray

 Images

X-ray image of hand 

Dental X-ray

Page 317: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 317/509

Mammogram

Image Quality

 Factors

•   Source 

 –  Energy of 

 the

 photons

 –  Collimation

•   Object

 –  Attenuation coefficient

 –  Source‐object geometry

•   Detector

 –  Object‐

detector 

geometry –  Efficiency

Page 318: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 318/509

Advantages of 

 Standard

 Diagnostic

 

Medical X‐ray Imaging Systems

•   Readily available

•   Reasonably cheap

•   Simple systems to maintain

•   Many experienced and trained personnel due 

to the fact that technology has existed for a 

while

Page 319: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 319/509

Disadvantages of 

 Diagnostic

Medical X‐ray Imaging Systems

•   Exposure to

 harmful

 radiation.

•   Not much contrast between different soft 

tissues.

•   Image is

 a shadowgram

 (projection

 image)

 

with no depth information.

Page 320: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 320/509

II. Computed Tomography

Page 321: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 321/509

Basic Concepts•   All x‐ray imaging systems consist of  an x‐ray source, a collimator, and an x‐ray 

detector

•   Diagnostic medical x‐ray systems utilize externally generated x‐rays with energies 

of  20–150 keV

•   The “shadow graph” images obtained  are the results of  the variations in the 

intensity of 

 the

 transmitted

 x‐ray

 beam

 after

 it

 has

 passed

 through

 tissues

 and

 body fluids of  different densities

•   Advantages –   high‐resolution

 –   high‐contrast images

 –   relatively small patient exposure 

 –   permanent record

 of 

 the

 image

•   Disadvantages –   significant geometric distortion

 –   inability to discern depth information

 –   incapability of  providing real‐time imagery

•   Conventional radiography

 (X

‐Ray

 imaging)

 is

 the

 imaging

 method

 of 

 choice

 for

 such tasks as dental, chest, and bone imagery

•   When this procedure is used to project three‐dimensional objects into a two‐

dimensional plane, however, difficulties are encountered

•   Structures represented on the film overlap, and it becomes difficult to distinguish 

b t ti th t i il i d it

Page 322: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 322/509

between tissues that are similar in density. 

•   Conventional x‐ray

 techniques

 are

 unable

 to

 obtain

 distinguishable/

 interpretable

 

images of  the brain, which consists primarily of  soft tissue

X‐

ray 

technique 

for 

visualizing 

three‐

dimensionalstructures

•   Known as plane tomography

•   The imaging of  specific planes or cross sections within the body became 

possible

•   The x‐ray source is moved in one direction, while the photographic film 

(which is placed on the other side of  the body and picks up the x‐rays) is 

simultaneously moved in the other direction

•   X‐rays

 travel

 continuously,

 changing

 paths

 through

 the

 body,

 each

 ray

 

passes through the same point on the plane or cross section of  interest 

throughout the exposure

•   Structures in the desired plane are brought sharply into focus and are 

displayed on

 film,

 whereas

 structures

 in

 all

 the

 other

 planes

 are

 obscured

 and show up only as a blur

•   Better than conventional methods in revealing the position and details of  

various structures and in providing three dimensional information by such 

Page 323: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 323/509

a two‐dimensional presentation

Tomography•   Limitations –   does not really localize a 

single plane, since there is 

some error in

 –   the depth

 perception

 

obtained

 –   large contrasts in radio 

density are usually 

required in order to obtain 

high‐quality

 images

 that

 

are easy to interpret

 –   x‐ray doses for tomography are higher 

than 

routine 

radiographs, 

and because the 

exposures are longer, patient motion may 

degrade the image 

•   A tomogram is made by having the x‐ray 

source move in one direction during the 

exposure 

and 

the 

film 

in 

the 

other 

direction•   In the projected image, only one plane in 

the body remains stationary with respect to 

the moving film

•   In the picture, all other planes in the body 

Page 324: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 324/509

content are blurred

Computerized Tomography•   Consists

 of 

 a scanning

 and

 detection

 

system, a computer, and a display 

medium

•   Combines image‐reconstruction 

techniques with x‐ray absorption 

measurements in

 such

 a way

 as

 to

 facilitate the display of  any internal organ in two‐dimensional axial slices 

or by reconstruction in the Z axis in 

three dimensions

•   A collimated

 beam

 of 

 x‐rays

 is

 directed through the section of  body 

being scanned to a detector that is 

located on the other side of  the 

patient

•   With a narrowly

 collimated

 source

 and

 detector

 system,

 it

 is

 possible

 to

 send

 a 

narrow beam of  x‐rays to a specific detection site

•   Some of  the energy of  the x‐rays is absorbed, while the remainder continues to 

the detector and is measured

I i d h h d ll i f l

Page 325: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 325/509

•   In computerized tomography, the detector system usually consists of  a crystal 

(such as cesium iodide or cadmium tungstate) that has the ability to scintillate 

or emit light photons when bombarded with x‐rays

•   The intensity of  these light photons or “bundles of  energy” is in turn 

measured by

 photo

‐detectors

 and

 provides

 a measure

 of 

 the

 energy

 

absorbed (or transmitted) by the medium that is penetrated by the x‐

ray beam

•   Since the x‐ray source and detector system are usually mounted on a 

frame or

 “scanning

 gantry,”

 they

 can

 be

 moved

 together

 across

 and

 

around the object being visualized

•   In early designs, for example, x‐ray absorption measurements were 

made and

 recorded

 at

 each

 rotational

 position

 traversed

 by

 the

 source and detector system creating  an absorption profile for that 

angular position

•   To obtain another absorption profile, the scanning gantry holding the 

x‐ray

 source

 and

 detector

 was

 then

 rotated

 through

 a small

 angle

 and

 

an additional set of  absorption or transmission measurements was 

recorded

• Each x‐ray profile or projection obtained in this fashion is basically

Page 326: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 326/509

•   Each x‐ray profile or projection obtained in this fashion is basically 

one‐dimensional

•   It is as wide as the body but only as thick as the cross section

Example 160 x 160 picture matrix•   Exact

 number

 of 

 these

 equally

 spaced

 

positions determines the dimensions to 

be represented by the picture elements 

that constitute the display

•   Absorption measurements from 160 

equally 

spaced 

positions 

in 

each 

translation are required

•   Each one‐dimensional array constitutes 

one x‐ray profile or projection

•   To obtain the next profile, the scanning 

unit is rotated a certain number of  

degrees around

 the

 patient,

 and

 160

 

more linear readings are taken at this 

new position

•   Process is repeated again and again 

until the unit has been rotated a full 

180°•   When all the projections have been 

collected, 160 x 180, or 28,800, 

individual x‐ray intensity measurements 

are available to form a reconstruction 

•   Each of  the measurements obtained by the 

preceding procedure enters the resident 

computer and

 is

 stored

 in

 memory

•   Once all the absorption data have been 

obtained and located in the computer’s 

memory, the software packages developed to 

analyze the data by means of  image‐

Page 327: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 327/509

of  a cross

 section

 of 

 the

 patient’s

 head

 or body

y y g

reconstruction algorithms

 are

 called

 into

 

action

Image reconstruction•   Computer

 initially

 establishes

 a grid

 consisting

 of 

 a number

 of 

 small

 

squares for the cross section of  interest, depending on the size of  the 

desired display

•   Since the cross section of  the body has thickness, each of  these squares 

represents 

volume 

of  

tissue, 

rectangular 

solid 

whose 

length 

is 

determined by the slice thickness and whose width is determined by the 

size of  the matrix

•   Such a three‐dimensional block of  tissue is referred to as a “voxel” (or “volume element”) and is on the display in two dimensions as a “pixel” 

(or “picture

 element”)

•   During the scanning process, each voxel is irradiated by a narrow beam 

of  x‐rays up to 180 times

•   The absorption caused by that voxel contributes to up to 180 absorption 

measurements, each measurement part of  a different projection

•   Each voxel

 affects

 a unique

 set

 of 

 absorption

 measurements

 to

 which

 it

 

has contributed, the computer calculates the total absorption due to 

that voxel

•   Using the total absorption and the dimension of  the voxel, the average 

Page 328: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 328/509

absorption 

coefficient 

of  

the 

tissues 

in 

that 

voxel 

is 

determined 

precisely 

and displayed

 in

 a corresponding

 pixel

 as

 a shade

 of 

 grey

•   The cross section of  interest can be considered to be 

made up of  a set of  blocks of  material

•   Each block has an attenuating effect upon the 

passage of  the x‐ray energy or photons, absorbing 

some of  the incident energy passing through it

•   The first block absorbs a fraction A1 of  the incident 

photons, the

 second

 a fraction

 A2,

 and

 so

 on,

 so

 that

 the n‐th block absorbs a fraction An

•   The total fraction “A” absorbed through all the blocks 

is the  product  of  all  the  fractions, while the 

logarithm of  this total  absorption  fraction is defined  

as the

 measured 

 absorption

•   Only the measured absorption factors A(1), A(2), A(3), 

and A(4) would be known, but this can be solved since 

4 simultaneous equations and 4 unknowns

•   To reconstruct a cross section containing n rows of  

Page 329: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 329/509

blocks and

 n columns,

 it

 is

 necessary

 to

 makeat least

 n individual absorption measurements from at least n 

directions

“Back‐projection” method of  Image Reconstruction•   A parallel beam of  x‐rays is directed past and 

through a cylinder

‐absorbing

 substance

•   a shadow of  the cylinder is cast on the x‐ray film

•   density of  the exposed and developed film along the 

line AA can be regarded as a projection of  the object

•   If  

series 

of  

such 

radiographs 

are 

taken 

at 

equally 

spaced angles around the cylinder, these 

radiographs then constitute the set of  projections 

from which the cross section has to be 

reconstructed

•   An 

approximate 

reconstruction 

can 

be 

reproduced 

by directing parallel beams of  light through all the 

radiographs in turn from the position in which they 

were taken

•   The correct cross section can be reconstructed by 

back‐projecting the original shadow and subtracting 

the result of  back‐projecting two beams placed on 

either side of  the original shadow 

•   Mathematically, this is the equivalent of  taking each 

transmission value in the projection and subtracting 

from it a quantity proportional to adjacent values

Page 330: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 330/509

from it a quantity proportional to adjacent values

•   This process is called convolution and is actually used 

to modify projections

Back‐projection

Page 331: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 331/509

•   A file, usually known as the picture file, 

is 

created 

in 

the 

computer 

memory•   Contains an absorption coefficient or density reading for each element of  the 

final picture

•   Resultant absorption coefficients for 

each element

 of 

 the

 image

 calculated

 in

 this manner can then be displayed as 

gray tones or color scales on a visual display

•   Each element or “pixel” of  the picture 

file has

 a value

 that

 represents

 the

 

density (or more precisely the relative 

absorption coefficient) of  a volume in 

the cross section of  the body being 

examined

•   The scale developed by Hounsfield 

demonstrates the values of  absorption 

coefficients that range from air (–1,000) at the bottom of  the scale to bone at 

Page 332: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 332/509

the 

top

CT Technology

•   CT scanners are usually integrated units consisting of  

three major elements:

1. The scanning

 gantry ,

 which

 takes

 the

 readings

 in

 a suitable form and quantity for a picture to be 

reconstructed

2. The 

data‐

handling 

unit , 

which 

converts 

these 

readings 

into intelligible picture information, displays this picture 

information in a visual format, and provides various 

manipulative aids to enhance the image and thereby 

assist the

 physician

 in

 forming

 a diagnosis

3. A storage  facility , which enables the information to be 

examined or reexamined at any time after the actual 

Page 333: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 333/509

scan

The Scanning Gantry•   The

 objective

 of 

 the

 scanning

 system

 is

 to

 obtain

 enough

 information

 to

 

reconstruct an image of  the cross section of  interest

•   CT scanners have undergone several major gantry design changes

•   Four generations

 of 

 

scanning gantry designs. 

With modern slip ring 

technology, third‐ or 

fourth‐generation 

geometry allows spiral 

volumetric scanning using 

slice widths from 1 to 10 

mm and pixel matrixes to 

10,242•   Typically, a 50‐cm volume 

can be imaged with a 

single breath hold

Page 334: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 334/509

CT scanner

Page 335: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 335/509

Mathematical algorithms for taking the 

attenuation projection

 data

•   Can be classified into two categories: –   iterative 

 –   Analytic 

•   The iterative

 techniques

 (also

 known

 as

 the

 algebraic

 reconstruction

 

technique [ART]), such as the one used by Hounsfield in the first‐generation scanner, require an initial guess of  the two‐dimensional pattern of  x‐ray absorption

•   The attenuation projection data predicted by this guess are then 

calculated and

 the

 results

 compared

 with

 the

 measured

 data

•   The difference between the measured data and predicted values is used in 

an iterative manner so the initial guess is modified and that difference 

goes to zero

•   In general, a large number of  iterations are required for convergence, with 

the process

 usually

 halted

 when

 the

 difference

 between

 the

 calculated

 and the measured data is below a specified error limit

•   A number of  different versions of  the ART were developed and used with 

first‐ and second‐generation CAT scanners

•   Later‐generation scanners used analytic reconstruction techniques, since 

Page 336: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 336/509

the iterative

 methods

 were

 computationally

 slow

 and

 had

 convergence

 problems in the presence of  noise

Analytic Algorithm

•   Analytic techniques

 include

 the

 Fourier

 transform,

 back

‐projection,

 filtered

 back

‐projection, and convolution back‐projection approaches

•   All of  the analytic methods differ from the iterative methods in that the image is 

reconstructed directly from the attenuation projection data

•   Analytic techniques

 use

 the

 central

 section

 theorem

 and

 the

 two

‐dimensional

 Fourier transform

Given an image  , , a single projection is taken along the  direction, forming a 

projection  described by

This projection represents an array of  line integrals 

The two dimensional Fourier transform of   , is 

given by

In the Fourier domain, along the line  0, this 

transform becomes

Page 337: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 337/509

•   which can be rewritten as

where 1 represents a one‐dimensional Fourier transform

•   It can

 be

 shown

 that

 the

 transform

 of 

 each

 projection

 forms

 a radial

 line

 in

 

, , and therefore , can be determined by taking projections at many 

angles and taking these transforms

•   When , is completely described, the reconstructed image can be found 

by 

taking 

the 

inverse 

Fourier 

transform 

to 

obtain 

 ,

Page 338: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 338/509

CT scanners may be compared with one another by considering 

the following

 ten

 factors:

1. Gantry design, which affects scan speed, patient processing time, and cost‐effectiveness

2. Aperture size, which determines the maximum size of  the patient along with the weight 

carrying capacity of  the couch

3. The type of  x‐ray source, which affects the patient radiation dose and the overall life of  the scanning device

4. X‐ray fan beam angle and scan field, which affects resolution

5. The slice thickness, as well as the number of  pulses and the angular rotation of  the 

source, which are important in determining resolution

6. The number and types of  detectors, which are critical parameters in image quality

7. The type of  minicomputer employed, which is important in assessing system capability 

and flexibility

8. The type of  data‐handling routines available with the system, which are important user 

and reliability considerations

9. The storage capacity of  the system, which is important in ascertaining the accessibility of  

the stored data

10. Upgradeability and connectivity—that is, they should be capable of  modular 

upgradeability and should communicate to any available network

Page 339: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 339/509

III. Diagnostic

 Ultrasound

 Imaging

Page 340: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 340/509

Introduction

• Ultrasound is a non-ionizing method which uses sound waves of

frequencies (2 to 10 MHz) exceeding the range of human hearing for

imaging

• Medical diagnostic ultrasound uses ultrasound energy and the

acoustic properties of the body to produce an image from stationary

and moving tissues

• Ultrasound is used in pulse-echo format, whereby pulses of

ultrasound produced over a very brief duration travel through various

tissues and are reflected at tissue boundaries back to the source• Returning echoes carry the ultrasound information that is used to

create the sonogram or measure blood velocities with Doppler

frequency techniques

•  Along a given beam path, the depth of an echo-producing structure

is determined from the time between the pulse-emission and the

echo return, and the amplitude of the echo is encoded as a gray-

scale value

• In addition to 2D imaging, ultrasound provides anatomic distance

d l t ti t di bl d l it

Page 341: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 341/509

and volume measurements, motion studies, blood velocitymeasurements, and 3D imaging

• Returning echoes carry the ultrasound information that is used to

create the sonogram or measure blood velocities with Doppler

frequency techniques

•  Along a given beam path, the depth of an echo-producing structure

is determined from the time between the pulse-emission and the

echo return, and the amplitude of the echo is encoded as a gray-

scale value

• In addition to 2D imaging, ultrasound provides anatomic distance

and volume measurements, motion studies, blood velocity

measurements, and 3D imaging

Page 342: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 342/509

Characteristics of SoundFrequency

Frequency (f) is the number of times the wave oscillates

through a cycle each second (sec) (Hertz: Hz or cycles/sec)Infra sound < 15 Hz

 Audible sound ~ 15 Hz - 20 kHzUltrasound > 20 kHz; for medical usage typically 2-10 MHz withspecialized ultrasound applications up to 50 MHz

period () - the time duration of one wave cycle: = 1/f

Page 343: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 343/509

Characteristics of Sound Speed

The speed or velocity of sound is the distance traveled by the wave

per unit time and is equal to the wavelength divided by the period

(1/f)speed = wavelength / period

speed = wavelength x frequency

c = f

c [m/sec] = [m] * f [1/sec]

Speed of sound is dependent on the propagation medium and varieswidely in different materials

Page 344: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 344/509

Characteristics of Sound

Speed

•  A highly compressible medium such as air, has a low speed of

sound, while a less compressible medium such as bone has ahigher speed of sound

• The difference in the speed of sound at tissue boundaries is a

fundamental cause of contrast in an ultrasound image

Page 345: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 345/509

fundamental cause of contrast in an ultrasound image

Characteristics of Sound Wavelength, Frequency

and Speed• The ultrasound frequency is unaffected by

changes in sound speed as the acousticbeam propagates through various media

• Thus, the ultrasound wavelength isdependent on the medium (c = f )

•  A change in speed at an interface betweentwo media causes a change in wavelength

• Higher frequency sound has shorterwavelength

• Ultrasound wavelength determines thespatial resolution achievable along thedirection of the beam

•  A high-frequency ultrasound beam (smallwavelength) provides superior resolutionand image detail than a low-frequency beam

• However, the depth of beam penetration isreduced at high frequency and increased atlow frequencies

• For thick body parts (abdomen), a lowerfrequency ultrasound wave is used (3.5 to 5 MHz)to image structures at significant depth

• For small body parts or organs (thyroid breast) a

Page 346: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 346/509

For small body parts or organs (thyroid, breast), ahigher frequency is employed (7.5 to 10 MHz)

Characteristics of SoundPressure, Intensity and the dB scale

• The amplitude of a wave is the size of the wave displacement

• Larger amplitudes of vibration produce denser compression bands and,hence, higher intensities of sound

• Intensity of ultrasound is the amount of power (energy per unit time)

per unit area proportional to the square of the pressure amplitude, I

P2

units of milliwatts/cm2

or mW/cm2

• Measured in decibels (dB) as a relative intensity

dB = 10 log10 (I2/I1) or dB = 20 log10 (P2/P1) since I P2

I1 and I2 are intensity values

P1 and P2 are pressure or amplitude variations

(1 B = 10 dB where B is bels)

Page 347: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 347/509

Page 348: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 348/509

Interactions of Ultrasound with Matter 

• Ultrasound interactions are determined by the acoustic properties ofmatter

•  As ultrasound energy propagates through a medium, interactionsthat occur include

• reflection• refraction

• scattering

•  Absorption (attenuation)

•  Acoustic Impedance, Zis equal to density of the material times speed of sound in thematerial in which ultrasound travels, Z = c

= density (kg/m3) and c = speed of sound (m/sec)measured in rayl (kg/m2sec)

•  Air and lung media have low values of Z, whereas bone and metalhave high values• Large differences in Z (air-filled lung and soft tissue) cause

reflection, small differences allow transmission of sound energy• The differences between acoustic impedance values at an interface

determines the amount of energy reflected at the interface

Page 349: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 349/509

determines the amount of energy reflected at the interface

Reflection

•  A portion of the ultrasound beam is reflected at tissue interface• The sound reflected back toward the source is called an echo and

is used to generate the ultrasound image

• The percentage of ultrasound intensity reflected depends in part onthe angle of incidence of the beam

•  As the angle of incidence increases, reflected sound is less likely toreach the transducer

Page 350: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 350/509

• Sound reflection occurs at tissue boundaries with differences inacoustic impedance

• The intensity reflection coefficient, R = Ir /Ii = ((Z2 – Z1)/(Z2 + Z1))2

• The subscripts 1 and 2 represent tissues proximal and distal to theboundary.

• Equation only applies to normal incidence• The transmission coefficient = T = 1 – R

T = (4Z1Z2)/(Z1+Z2)2

Page 351: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 351/509

Tissue reflections

•  Air/tissue interfaces reflect virtually all of the incident ultrasound beam

• Gel is applied to displace the air and minimize large reflections• Bone/tissue interfaces also reflect substantial fractions of the incidentintensity

• Imaging through air or bone is generally not possible• The lack of transmissions beyond these interfaces results in an

area void of echoes called shadowing• In imaging the abdomen, the strongest echoes are likely to arise from

gas bubbles• Organs such as kidney, pancreas, spleen and liver are comprised of

sub-regions that contain many scattering sites, which results in a

speckled texture on images• Organs with fluids such as bladder, cysts, and blood vessels have

almost no echoes (appear black)

Page 352: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 352/509

Refraction

• Refraction is the change in direction of an ultrasoundbeam when passing from one medium to anotherwith a different acoustic velocity

• Wavelength changes causing a change inpropagation direction (c = f)

• sin(t) = sin(i) * (c2/c1), Snell’s law;for small ≤ 15o: t = i * (c2/c1)

• When c2 > c1, t > i , When c1 > c2, t < i

• Ultrasound machines assume straight linepropagation, and refraction effects give rise toartifacts

Page 353: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 353/509

Scatter 

•  Acoustic scattering arises from objects within a tissue that are about

the size of the wavelength of the incident beam or smaller, and

represent a rough or nonspecular reflector surface•  As frequency increases, the non-specular (diffuse scatter)

interactions increase, resulting in an increased attenuation and lossof echo intensity

• Scatter gives rise to the characteristic speckle patterns of variousorgans, and is important in contributing to the gray-scale range in theimage

Page 354: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 354/509

 Attenuation

• Ultrasound attenuation, the loss of energy with distance

travelled, is caused chiefly by scattering and tissueabsorption of the incident beam (dB)

• The intensity loss per unit distance (dB/cm) is theattenuation coefficient

• Rule of thumb: attenuation in soft tissue is approx. 1dB/cm/MHz

• The attenuation coefficient is directly proportional toand increases with frequency

•  Attenuation is medium dependent

Page 355: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 355/509

Transducers

•  A transducer is a device that can

convert one form of energy intoanother

• Piezoelectric transducers convert

electrical energy into ultrasonicenergy and vice versa

(Piezoelectric means pressure

electricity )

• High-frequency voltage

oscillations are produced by a

pulse generator and are sent to

the ultrasound transducer by atransmitter

• The electrical energy causes thepiezoelectric crystal to

momentarily change shape

(expand and contract dependingon current direction)

Page 356: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 356/509

• This change in shape of the crystal increases and decreases

the pressure in front of the transducer, thus producingultrasound waves

• When the crystal is subjected to pressure changes by the

returning ultrasound echoes, the pressure changes are

converted back into electrical energy signals• Return voltage signals are transferred from the receiver to a

computer to create an ultrasound image

• Transducer crystals do not conduct electricity but are coated

with a thin layer of silver which acts as an electrode• The piezoelectric effect of a transducer is destroyed if

heated above its curie temperature limit

• Transducers are made of a synthetic ceramic

(peizoceramic) such as lead-zirconate-titanate (PZT) orplastic polyvinylidence difluoride (PVDF) or a composite

•  A transducer may be used in either pulsed or continuous-wave mode

•  A transducer can be used both as a transmitter and receiverof ultrasonic waves

Page 357: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 357/509

of ultrasonic waves

• The thickness of apiezoelectric crystal

determines the resonant

frequency of the

transducer

• The operating resonant

frequency is determined

by the thickness of thecrystal equal to ½

wavelength (t=/2) of

emitted sound in the

crystal compound• Resonance transducers

transmit and receive

preferentially at a single

“centre frequency”

Page 358: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 358/509

Damping Block

• The damping block absorbs the backward directed ultrasoundenergy and attenuates stray ultrasound signals from the housing

• It also dampens (ring-down) the transducer vibration to create an

ultrasound pulse with a short spatial pulse length, which is

necessary to preserve detail along the beam axis (axial resolution)

Page 359: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 359/509

Q factor 

• The Q factor is related to thefrequency response of the crystal

• The Q factor determines thepurity of the sound and length of

time the sound persists, or ringdown time

• Q = operating frequency (MHz) /bandwidth (width of thefrequency distribution)

• Q = f 0/BW

• High-Q transducers produce a

relatively pure frequencyspectrum

• Low-Q transducers produce awider range of frequencies

Page 360: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 360/509

Matching Layer 

•  A matching layer of material is placed on the front surface of the

transducer to improve the efficiency of energy transmission into thepatient

• The material has acoustic properties intermediate to those of soft

tissue and the transducer material

• The matching layer thickness is equal to ¼ the wavelength of sound

in that material (quarter-wave matching)

•  Acoustic coupling gel is used to eliminate air pockets that could

attenuate and reflect the ultrasound beam

Page 361: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 361/509

Non-resonance (Broad-Bandwidth) “Multi-frequency” Transducers

Page 362: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 362/509

Transducer Arrays

• Linear or curvilinear arraytransducers

• 256 to 512 elements

• Simultaneous firing of

a small group ofapprox. 20 elements

produces theultrasound beam

• Rectangular field of

view produced for

linear and trapezoidal

for curvilinear arraytransducers

• Phased array transducers

• 64 to 128 elements

•  All are activated simultaneously

• Using time delays can steer and focus beam electronically

Page 363: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 363/509

Page 364: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 364/509

Ultrasound Beam Properties: Near Field and Far

Field

• Near (parallel) Field “Fresnelzone”

• Is adjacent to thetransducer face and has aconverging beam profile

• Convergence occursbecause of multipleconstructive anddestructive interferencepatterns of the ultrasoundwaves (pebble dropped ina quiet pond)

• Near Zone length = d2/4 =r 2/(d=transducer diameter,r=transducer radius )

Page 365: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 365/509

• Unfocused transducer, Near Zone

length = d2/4 = r 2/•  A focused single element

transducer uses either a curvedelement or an acoustic lens:

• Reduce beam diameter

•  All diagnostic transducers arefocused

• Focal zone is the region overwhich the beam is focused

•  A focal zone describes the

region of best lateral resolution

Page 366: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 366/509

• The far field or Fraunhofer

zone is where the beamdiverges

•  Angle of divergence

for non-focused

transducer is given by• sin() = 1.22 /d

• Less beam divergence

occurs with high-

frequency, large-

diameter transducers

Page 367: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 367/509

Ultrasound Beam Properties - Side Lobes

• Side lobes are unwanted emissions of ultrasound energy directed

away from the main pulse

• Caused by the radial expansion and contraction of the transducerelement during thickness contraction and expansion

• Lobes get larger with transducer size• Echoes received from side lobes are mapped into the main beam,

causing artifacts

Page 368: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 368/509

• For multielement arrays, side lobe emission occurs in a forward

direction along main beam• Grating lobes result when ultrasound energy is emitted far off-axis

by multielement arrays, and are a consequence of thenoncontinuous transducer surface of the discrete elements

• results in appearance of highly reflective, off-axis objects in

the main beam

Page 369: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 369/509

Image Data Acquisition

Page 370: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 370/509

Page 371: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 371/509

Page 372: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 372/509

Page 373: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 373/509

Pulse Echo OperationPulse Repetition Frequency (PRF)

• Diagnostic ultrasound utilizes a pulse-echo format using a single

transducer to generate images• Most ultrasound beams are emitted in brief pulses (1-2 s duration)•

• For soft tissue (c = 1540 m/s or 0.154 cm/sec), the time delaybetween the transmission pulse and the detection of the echo is

directly related to the depth of the interface as• c = 2D / time• Time ( sec) = 2D (cm) / c (cm/ sec) = 2D/0.154• Time ( sec) = 13 sec x D (cm)• Distance (cm) = [c (cm/ sec) x Time ( sec)] / 2

• Distance (cm) = 0.077 x Time ( sec)

Page 374: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 374/509

Spatial Resolution

Spatial resolution has 3 distinct measures: axial, lateral and slice

thickness (elevational)

Page 375: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 375/509

Page 376: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 376/509

Spatial Resolution - Axial

•  Axial resolution (linear, range,

longitudinal or depth resolution) isthe ability to separate two objects

lying along the axis of the beam

•  Achieving good axial resolution

requires that the returning echoesbe distinct without overlap

• The minimal required separation

distance between two boundaries

is ½ SPL (about ½ ) to avoid

overlap of returning echoes

Page 377: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 377/509

Spatial Resolution - Lateral

• Lateral resolution - the ability

to resolve adjacent objectsperpendicular to the beam

direction and is determined by

the beam width and line

density

• Typical lateral resolution

(unfocused) is 2 - 5 mm, and is

depth dependent• Single focused transducers

restrain the beam to withinnarrow lateral dimensions at aspecified depth using lenses atthe transducer face

Page 378: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 378/509

Spatial Resolution - Slice thickness (Elevational)

• Elevational resolution is dependent on the transducer element

height

• Perpendicular to the image plane

• Use of a fixed focal length lens across the entire surface of the arrayprovides improved elevational resolution at the focal distance,however partial volume effects before and after focal zone

Page 379: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 379/509

Display

• Ultrasound scanners use time

gain compensation (TGC) to

compensate for increasedattenuation with depth

• TGC is also known as depth

gain compensation, time

varied gain, and swept gain• Images are normally displayed

on a video monitor or stored in acomputer

• Generally 512 x 512 matrix size

images, 8 bits deep allowing 256gray levels to be displayed, 0.25MB data

Page 380: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 380/509

Display Modes: A-mode

•  A-mode “amplitude” mode:

displays echo amplitude vs. time

(depth)

• One “A-line” of data per pulserepetition

•  A-mode used in ophthalmology

or when accurate distance

measurements are required

Page 381: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 381/509

Display Modes: B-mode

• B-mode (B for brightness) isthe electronic conversion of the

 A-mode and A-line information

into brightness-modulated dots

on a display screen• In general, the brightness of

the dot is proportional to the

echo signal amplitude• Used for M-mode ad 2D gray-

scale imaging

Page 382: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 382/509

Display Modes: M-mode

• M-mode (“motion” mode) or T-

M mode (“time-motion” mode):

displays time evolution vs.

depth

• Sequential US pulse lines are

displayed adjacent to each

other, allowing visualization of

interface motion

• M-mode is valuable forstudying rapid movement, suchas mitral valve leaflets

Page 383: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 383/509

Scan Converter 

• The function of the scan converter is to create 2D images from echo

formation received and to perform scan conversion to enable imagedata to be viewed on video display monitors

• Scan conversion is necessary because the image acquisition and

display occur in different formats

• Modern scan converters use digital methods for processing andstoring data

• For color display, the bit depth is often as much as 24 bits or 3 bytesof primary color 

Page 384: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 384/509

Page 385: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 385/509

Lecture 7Digital signal processing of  Biosignals

Dr.R.B.Ghongade

Department of  E&TC,

V.I.I.T., Pune‐411048 

Page 386: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 386/509

Objectives

•   Noise removal

•   Clearly  understand the nature (analysis)

•   Diagnosis of  the underlying pathology

•   Aid in treatment (specific instances)

Page 387: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 387/509

SOURCES OF VARIABILITY: NOISE

•   Noise is a very general and somewhat relative 

term: noise is what you do not want and signal is what you do want

•   Noise is inherent in most measurement 

systems and often the limiting factor in the performance of  a medical instrument

•   Many signal processing techniques are motivated by the desire to minimize the variability  in the measurement

Page 388: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 388/509

VARIABILITY

•   In biomedical measurements, variability has four different 

origins

(1) physiological variability

(2) environmental noise or interference(3) transducer artifact

(4) electronic noise

•   Physiological variability is due to the fact that the information 

you desire is based on a measurement subject to biological 

influences other than those of  interest

 –   For example, assessment of  respiratory function based on 

the measurement of  blood pO2could be confounded by other physiological mechanisms that alter blood pO2 

 –   can be a very difficult problem to solve, sometimes 

requiring a totally different approach

Page 389: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 389/509

•   Environmental noise can come from sources 

external or internal to the body

 –  example is the measurement of  fetal ECG where the desired signal is corrupted by the mother’s ECG

 –  not possible to describe the specific characteristics of  

environmental noise, typical noise reduction techniques such as filtering are not usually successful

 –  can be reduced using adaptive techniques

 – 

 techniques do not require prior knowledge of  noise characteristics

Page 390: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 390/509

  Transducer artifact is produced when the transducer responds to energy modalities 

other than that desired

 –  For example, recordings of  electrical potentials using electrodes placed on the skin are sensitive 

to motion artifact , where the electrodes respond 

to mechanical movement as well as the desired electrical signal

 –  Transducer artifacts can sometimes be 

successfully addressed by modifications in transducer design

Page 391: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 391/509

•   Electronic noise has well‐known sources and 

characteristics

•   Electronic noise falls into two broad classes

 – 

  thermal  

or  Johnson 

noise,  –  shot  noise

•   Johnson noise is produced primarily in resistor or 

resistance materials •   Shot  noise is related to voltage barriers associated 

with semiconductors

•   Both sources produce noise with a broad range of  frequencies often extending from DC to 1012 –1013 Hz

•   Such a broad spectrum noise is referred to as white 

noise since it contains energy at all frequencies

Page 392: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 392/509

Page 393: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 393/509

Johnson Noise•   Johnson or thermal noise is produced by resistance 

sources, and the amount of  noise generated is related to the resistance and to the temperature:

where R is the resistance in ohms, T the temperature in degrees Kelvin, and k

is Boltzman’s constant (k = 1.38 × 10−23 J/°K).* B is the bandwidth, or range of 

frequencies, that is allowed to pass through the measurement system(The system bandwidth is determined by the filter characteristics in the system, usually

the analog filtering in the system)

•   If  noise current is of  interest, the equation for Johnson noise 

current can be obtained as:

Page 394: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 394/509

  Since Johnson noise is spread evenly over all frequencies, it is not possible to calculate a noise voltage or current without specifying B, the frequency range

•   Since the bandwidth is not always known in advance, it is common to describe a relative 

noise; specifically, the noise that would occur if  the bandwidth were 1.0 Hz

•   Such relative noise specification can be 

identified by the unusual units required: or 

Page 395: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 395/509

Shot noise

•   Shot noise is defined as a current noise and is 

proportional to the baseline current through a 

semiconductor  junction

where q is the charge on an electron (1.662 × 10−19 coulomb), and Id is the

baseline semiconductor current

(In photo‐detectors, the baseline current that generates shot noise is termed the dark current, hence, the symbol Id)

•   Noise is spread across all frequencies, the 

bandwidth, BW, must be specified to obtain a specific value, or a relative noise can be specified in 

Page 396: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 396/509

Multiple Noise Sources

•   When multiple noise sources are present, as is 

often the case, their voltage or current contributions to the total noise add as the square root of  the sum of  the squares, 

assuming that the individual noise sources are independent

Page 397: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 397/509

Signal‐to‐Noise Ratio•   Most waveforms consist of  signal plus noise mixed together

•   Signal and noise are relative terms, relative to the task at 

hand: the signal is that portion of  the waveform of  interest 

while the noise is everything else

•   Goal of  signal processing is to separate out signal from noise, 

to identify the presence of  a signal buried in noise, or to 

detect features of  a signal buried in noise

•   The relative amount of  signal and noise present in a waveform is usually quantified by the signal‐to‐noise ratio, SNR

•   Is the ratio of  signal to noise, both measured in RMS (root‐

mean‐squared) amplitude

Page 398: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 398/509

It is difficult to detect 

presence of  the signal visually when the SNR is 

−3 db, and impossible 

when the SNR is −10 db

The ability  to detect  signals with low  SNR is the goal  and  motivation  for  many  of  the 

signal   processing tools

Page 399: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 399/509

ANALOG‐TO‐DIGITAL CONVERSION: BASIC 

CONCEPTS•   Converts an analog voltage to an equivalent digital number

•   Analog or continuous waveform,  x (t ), is converted into a 

discrete waveform,  x (n), a function of  real numbers that are defined only at discrete integers, n

•   Requires –    slicing in time

 –    slicing in amplitude•   Slicing the signal into discrete points in time is termed time 

sampling or simply sampling

•   Time slicing samples the continuous waveform,  x (t ), at 

discrete points in time, nTs, where Ts is the sample interval

•   Since the binary output of  the ADC is a discrete integer while the analog signal has a continuous range of  values, analog‐to‐digital conversion also requires the analog signal to be sliced 

into discrete levels, a process termed quantization

Page 400: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 400/509

Page 401: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 401/509

Quantization Error•

  The number of  bits used for conversion sets a lower limit on the resolution, and also determines the quantization error

•   This error can be thought of  as a 

noise process added to the signal•   If  a sufficient number of  quantization 

levels exist (say N > 64), the distortion produced by quantization error may be modeled as additive independent white noise with zero mean with the variance determined by the quantization step size, δ = VMAX/2N

•   Assuming that the error is uniformly distributed between −δ/2 +δ/2, the 

variance, σ, is:

•   Assuming a uniform distribution, the RMS value of  the noise would be  just twice the 

standard deviation, σ

Page 402: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 402/509

Noise Representation

•   Noise is usually represented as a random variable,  x (n)

•   Describing noise as a function of  time is not very useful

•   More common to discuss other properties of  noise such : –    probability distribution –    range of  variability

 –    frequency characteristics

•   Noise can take on a variety of  different probability 

distributions•   Central Limit Theorem implies that most noise will have a 

Gaussian or normal  distribution

•   The Central Limit Theorem states that when noise is 

generated  by 

 a large

 number 

 of 

 independent 

 sources

 it 

 will 

 have a Gaussian  probability  distribution regardless of  the 

 probability  distribution characteristics of  the individual  sources

Page 403: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 403/509

(A) The distribution of  

20,000 uniformly 

distributed random 

numbers.

(B) The distribution of  

20,000 numbers, each of  

which is the average of  

two uniformly distributed 

random numbers

(C) and (D) The 

distribution obtained 

when 3 and 8 random 

numbers, still uniformly 

distributed, are averaged 

together

 Although the underlying distribution is uniform, the averages of  these 

uniformly  distributed  numbers tend  toward  a Gaussian distribution 

Page 404: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 404/509

•   The probability of  a Gaussian distributed variable,  x , is specified in the well‐known normal or Gaussian distribution equation

•   Two important properties of  a random variable are its mean, or 

average value, and its variance, the term σ2

•   The mean value of  a discrete array of  N samples is evaluated as:

•   The sample variance, σ2, is calculated as 

and the standard deviation, σ, is  just the square root of  the variance

•   Normalizing the standard deviation or variance by 1/(N − 1) produces 

the best estimate of  the variance, if   x  is a sample from a Gaussian 

distribution

Page 405: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 405/509

•   When multiple measurements are made, multiple random variables can be generated

•   If  these variables are combined or added together, the means add so that the resultant random variable is simply the mean, or average, of  the individual means

•   The same is true for the variance—the variances add and the average variance is the mean of  the individual variances:

•   But the standard deviation is the square root of  the variance and the standard 

deviations add as the   times the average standard deviation

•   Accordingly, the mean standard deviation is the average of  the individual 

standard deviations divided by 

•   Thus averaging noise  from different  sensors, or  multiple observations  from the 

same source, will  reduce the standard  deviation of  the noise by  the square root  

of  

the 

number  

of  

averages

Page 406: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 406/509

Spectral characteristics of  Noise•   Energy distribution may vary with frequency

•  Frequency characteristics of  the noise are related to 

how well, one instantaneous value of  noise correlates with the adjacent instantaneous values: for digitized data how much one data point is correlated with its 

neighbors

•   If  the noise has so much randomness that each point is independent of  its neighbors, then it has a flat spectral 

characteristic and vice versa, called as white noise•   When white noise is filtered, it becomes bandlimited

and is referred to as colored  noise

Page 407: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 407/509

ENSEMBLE AVERAGING

•   Averaging can be a simple, yet powerful signal processing technique for reducing noise when multiple observations of  the signal are possible

•   In many biomedical applications, the multiple observations come from repeated responses to the same stimulus

•   In ensemble averaging, a group, or ensemble, of  time responses are averaged together on a point‐by‐point basis; that is, an average signal is constructed by taking the average, for each point in time, over all signals in the ensemble

•   Two essential requirements –   the ability to obtain multiple observations

 –  reference signal closely time‐linked to the response

Page 408: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 408/509

An ensemble of  individual (vergence) eye movement 

responses to a step change in stimulus

Page 409: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 409/509

DATA FUNCTIONS AND TRANSFORMS

•   In signal processing, most functions fall into two categories –   waveforms, images, or other data

 –  entities that operate on waveforms, images, or other data •   can be further divided into functions that modify the data, and 

functions used to analyze or probe the data

•   Example1: filter coefficients (modify the spectral content of  a waveform)

•   Example2: Fourier Transform uses functions (harmonically related sinusoids) to analyze the spectral content of  a waveform

•   Functions that modify data are also termed operationsor transformations

•   A transform can be thought of  as a re‐mapping of  the 

original data into a function that provides more information than the original

Page 410: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 410/509

How transforms work!•   Transforms are achieved by comparing the signal of  interest with some 

sort of  probing function

•   Comparison takes the form of  a correlation (produced by multiplication) 

that is averaged (or integrated) over the duration of  the waveform, or 

some portion of  the waveform

where  x (t ) is the waveform being analyzed,  f m(t ) is the  probing function and m is 

some variable of  the probing function, often specifying a particular member in a family of  similar functions

•   A family of  probing functions is also termed a basis

•   For discrete functions, a probing function consists of  a sequence of  values, 

or vector, and the integral becomes summation over a finite range

where  x(n) is the discrete waveform and  f m(n) is a discrete version of  the family

of  probing functions. This equation assumes the probe and waveform functions are the same length

Page 411: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 411/509

•   When either x(t) or  f m(t) are of  infinite length, they must be truncated

•   Also if  the length of  the probing function,  f m(n), is shorter than the 

waveform ,  x(n), then x(n) must be shortened in some way

•   Can be shortened by simple truncation or by multiplying the function by 

another function that has zero value beyond the desired length

•   A function used to shorten another function is termed a window function

•   Consequences of  this artificial shortening will depend on the specific 

window function used

where W(n) is the window function

Page 412: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 412/509

Finite Support•   If  the probing function is of  finite length ( finite support ) and this length is 

shorter than the waveform, then it might be appropriate to translate or 

slide it over the signal and perform the comparison (correlation, or 

multiplication) at various relative positions between the waveform and 

probing function

•   The output would be a family of  functions, or a two‐variable function, where one variable corresponds to the relative position between the two 

functions and the other to the specific family member

where the variable k  indicates the relative position between the two functions

and m is the family member as in the above equations

•   Approach can be used for long—or even infinite—probing functions, 

provided the probing function itself  is shortened by windowing to a length that is less than the waveform

•   The shortened probing function can be translated across the waveform in 

the same manner as a probing function that is naturally short

Used in STFT

Page 413: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 413/509

Page 414: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 414/509

Projections•

  All of  the discrete equations (discussed so far) have one thing in common: they all feature the multiplication of  two (or sometimes three) functions 

and the summation of  the product over some finite interval

•   This multiplication and summation is the same as scalar   product  of  the 

two vectors

•   When the probing function consists of  a family of  functions, then the scalar 

product operations can be thought of  as  projecting the waveform vector  

onto vectors representing the various  family  members

•   In this vector‐based conceptualization, the probing function family, or basis, can be thought of  as the axes of  a coordinate system

•   Hence the motivation behind  development of  probing functions that have 

family members that are orthogonal or orthonormal  so that  the scalar 

product computations (or projections) can be done on each axes (i.e., on 

each family member) independently of  the others

Page 415: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 415/509

Page 416: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 416/509

CONVOLUTION•   Important concept in linear systems theory, solving the need for a time 

domain operation equivalent to the Transfer Function

•   Convolution can be used to define a general input–output relationship in 

the time domain analogous to the Transfer Function in the frequency 

domain

•   The input, x(t), the output, y(t), and the function linking the two through 

convolution, h(t), are all functions of  time; hence,  convolution is a time 

domain operation

•   Basic concept behind convolution is superposition

•   The first step is to determine a time function, h(t ), that tells how the 

system responds to an infinitely short segment of  the input waveform

•   If  superposition holds, then the output can be determined by summing 

(integrating) all the response contributions calculated from the short 

segments

Page 417: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 417/509

Impulse Response

•  The way in which a linear system responds to an infinitely short 

segment of  data can be determined simply by noting the system’s response to an infinitely short input, an infinitely short pulse

•   An infinitely short pulse (or one that is at least short compared to 

the dynamics of  the system) is termed an impulse or delta 

function (commonly denoted δ(t )), and the response it produces is termed the impulse response, h(t ).

•   Given that the impulse response describes the response of  the system to an infinitely short segment of  data, and any input can be 

viewed as an infinite

•   string of  such infinitesimal segments, the impulse response can be used to determine the output of  the system to any input

•   Response produced by an infinitely small data segment is simply 

this impulse response scaled by the magnitude of  that data segment

•   The contribution of  each infinitely small segment can be summed, or integrated, to find the response created by all the segments

Page 418: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 418/509

Page 419: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 419/509

Mathematical Description of  Convolution

•   Stated mathematically, the output y (t ), to any input,  x (t ) is given by:

•   To determine the impulse of  each infinitely small data segment, the 

impulse response is shifted a time τwith respect to the input, then scaled 

(i.e.,multiplied) by the magnitude of  the input at that point in time

•   It does not matter which function, the input or the impulse response, is 

shifted

•   Shifting and multiplication is sometimes referred to as the lag  product 

•   For discrete signals, the integration becomes a summation and the 

convolution equation becomes:

Page 420: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 420/509

Correlation•

  Word correlation conveys similarity: how one thing is like another•   Mathematically, correlations are obtained by multiplying and normalizing

•   Covariance and correlation use multiplication to compare the linear 

relationship between two variables, but in correlation the coefficients are 

normalized to fall between zero and one•   Because of  normalization correlation coefficients  are insensitive to 

variations in the gain of  the data acquisition process or the scaling of  the 

variables

•   Can be applied to

 –    two or more waveforms

 –    multiple observations of  the same source

 –    multiple segments of  the same waveform

•  The correlation function is the lagged product of  two waveforms:

Also called cross‐

correlation

Page 421: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 421/509

Autocorrelation•   Special case of  the correlation function occurs when the 

comparison is between two waveforms that are one in the same; 

that is, a function is correlated with different shifts of  itself 

•   Provides a description of  how similar a  waveform is to itself  at 

various time shifts, or time lags

•   Autocorrelation function will naturally be maximum for zero lag (n = 

0) because at zero lag the comparison is between identical 

waveforms

•   Usually the autocorrelation is scaled so that the correlation at zero 

lag is 1

•   Function must be symmetric about n = 0, since shifting one version 

of  the same waveform in the negative direction is the same as shifting the other version in the positive direction

•   Related to the bandwidth of  the waveform

•   The sharper the peak of  the autocorrelation function the broader 

the bandwidth

Page 422: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 422/509

Page 423: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 423/509

Cross‐covariance•   Same as cross‐correlation function except that the means 

have been removed from the data before calculation

•   The terms correlation and covariance, when used alone (i.e., 

without the term function result into a single number

Page 424: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 424/509

Covariance and Correlation Matrices

•   Can be applied to multivariate data where multiple responses, 

or observations, are obtained from a single process

•   The covariance and correlation matrices assume that the multivariate data are arranged in a matrix where the columns 

are different variables and the rows are different observations 

of  those variables

•   In signal processing, the rows are the waveform time samples, and the columns are the different signal channels or 

observations of  the signal

•   The covariance matrix  gives the variance of  the columns of  the 

data matrix  in the diagonals while the covariance between 

columns is given by  the off ‐diagonals

Page 425: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 425/509

•   Correlation matrix is related to the covariance matrix by the 

equation:

•   The correlation matrix is a set of  correlation coefficients between waveform observations or channels and has a similar 

positional relationship as in the covariance matrix

•   Since the diagonals in the correlation matrix give the 

correlation of  a given variable or waveform with itself, they will 

all equal 1 (rxx(0) = 1), and the off ‐diagonals will vary between 

± 1

Page 426: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 426/509

SAMPLING THEORY AND FINITE DATA 

CONSIDERATIONS

•   To convert an analog waveform into a digitized version:

 –    sampling the waveform at discrete points in time

 –    if  the waveform is longer than the computer memory, isolating a segment of  the analog waveform for the conversion‐(windowing)

•   The “Shannon Sampling Theorem” states that any sinusoidal waveform can be uniquely reconstructed provided it is 

sampled at least twice in one period

•   The sampling frequency,  f s, must be ≥ 2 f sinusoid 

•   Shannon’s Sampling Theorem states that a continuous waveform can be reconstructed without loss of  information provided the sampling frequency is greater than twice the highest frequency in the analog waveform:

Page 427: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 427/509

Sampling function

•   The sampling process is equivalent to multiplying the analog waveform by a repeating series of  short pulses

•   This repeating series of  short pulses is sometimes referred to 

as the sampling function

•   The sampling function can be stated mathematically using the 

impulse response

where Ts is the sample interval and equals 1/f s

•   For an analog waveform, x(t), the sampled version, x(n), is 

given by multiplying x(t) by the sampling function:

Page 428: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 428/509

Effects of  sampling•

  Multiplication in the time domain is equivalent to convolution in frequency domain (and vice versa)

•   Hence, the frequency 

characteristic of  a sampled waveform is  just the convolution of  the analog waveform spectrum with the sampling function 

spectrum•   It would be possible to 

recover the original spectrum simply by filtering the sampled data by an 

ideal low‐pass filter with a bandwidth >  f  max

CONV

Page 429: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 429/509

Aliasing

•   Spectrum that results if  the digitized data were sampled at  f s < 2 f max, in this case  f s = 1.5 f max

•   The reflected portion of  the spectrum has 

become intermixed with the original 

spectrum, and no filter can unmix them

•   When  f s < 2 f max, the sampled data suffers 

from spectral overlap,better known as 

aliasing

•   The sampled data no longer provides a unique representation of  the analog 

waveform, and recovery is not possible

•   Aliasing must be avoided either by :

•   use of  very high sampling rates—rates 

that are well above the bandwidth of  the 

analog system

•   or by filtering the analog signal before 

analog‐to‐digital conversion

Anti‐aliasing filters

Page 430: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 430/509

ExampleAn ECG signal of  1 volt peak‐to‐peak has a bandwidth of  0.01 to 100 Hz. 

Assume that broadband noise may be present in the signal at about 0.1 volts 

(i.e., −20 db below the nominal signal level). This signal is filtered using a four‐

pole low‐pass filter. What sampling frequency is required to ensure that the 

error due to aliasing is less than −60 db (0.001 volts)?

The noise at the sampling frequency must be reduced another 40 db (20 * log (0.1/0.001)) by the four‐pole filter. A four‐pole filter with a

cutoff  of  100 Hz (required to meet the fidelity requirements of  the ECG signal) would attenuate the waveform at a rate of  80 db per decade. For a four‐pole filter the asymptotic attenuation is given as:

Attenuation = 80 log(  f 2/ f c) db

To achieve the required additional 40 db of  attenuation required by the problem from a four‐pole filter:

80 log(  f 2/ fc) = 40 log(  f 2/ fc) = 40/80 = 0.5

 f 2/ fc = 10.5 =; f2 = 3.16 × 100 = 316 Hz

Thus to meet the sampling criterion, the sampling frequency must be at

least 632 Hz, twice the frequency at which the noise is adequately attenuated

Page 431: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 431/509

•   Unfortunately, in order for this impulse function to produce an ideal filter, 

it must be infinitely long•   However if   fs >>  f max, as is often the case, then any reasonable low‐pass 

filter would suffice to recover the original waveform

•   Recovery of  a waveform when the sampling frequency is much muchgreater that twice the highest frequency in the sampled waveform (fs = 

10fmax) is easier with practical LPF

•   In this case, the low‐pass filter (dotted line) need not have as sharp a 

cutoff.

Page 432: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 432/509

Edge Effects•   Advantage of  dealing with infinite data is that one 

need not be concerned with the end points•   Finite data consist of  numerical sequences having 

a fixed length with fixed end points at the 

beginning and end of  the sequence•   Some operations, such as convolution, may 

produce additional data points while some operations will require additional data points to complete their operation on the data set

•   How to add or eliminate data points?

Page 433: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 433/509

Extending data length•   Three common strategies for extending a data set when 

additional points are needed:

 –    extending with zeros (or a constant), termed zero  padding;

 –    extending using periodicity or wraparound ; 

 –    extending by reflection, also known as symmetric extension

•   In the zero padding approach, zeros are added to the end or 

beginning of  the data sequence 

•   This approach is frequently used in spectral analysis and is  justified by the implicit assumption that the waveform is zero outside of  the sample period anyway

•   A variant of  zero padding is constant   padding, where the data sequence is extended using a constant value, often the last (or first) value in the sequence

Page 434: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 434/509

•   If  the waveform can be reasonably thought of  as one 

cycle of  a periodic function, then the wraparoundapproach is clearly  justified data are extended by tacking on the initial data sequence to the end of  the data set and visa versa

•   This is quite easy to implement numerically: simply make all operations involving the data sequence index modulo N, where N is the initial length of  the data set

•   These two approaches will, in general, produce a 

discontinuity at the beginning or end of  the data set, which can lead to artifact in certain situations

•   The symmetric reflection approach eliminates this discontinuity by taking on the end points in reverse order (or beginning points if  extending the beginning of  the data sequence)

Page 435: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 435/509

S t l A l i Cl i l M th d

Page 436: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 436/509

Spectral Analysis: Classical Methods•   Many biological signals demonstrate interesting or diagnostically useful properties 

when viewed in the so called  frequency  domain,

 E.g. heart rate, EMG, EEG, ECG, 

eye movements and other motor responses, acoustic heart sounds, and stomach 

and intestinal sounds

•   Determining the frequency content of  a waveform is termed spectral  analysis

•  Methods can be divided into two broad categories

 –    classical methods based on the Fourier transform 

 –    modern methods such as those based on the estimation of  model parameters

•   The accurate determination of  the waveform’s spectrum requires that the signal 

be periodic, or of  finite length, and noise‐free

•   But many biological signals are

 –    either infinite or of  sufficient length that only a portion of  it is available for 

analysis

 –    often corrupted by substantial amounts of  noise or artifact

•   All spectral analysis techniques must necessarily be approximate; they are 

estimates of  the true spectrum

•   The various spectral analysis approaches attempt to improve the estimation 

accuracy of  specific spectral features

Page 437: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 437/509

•   Two spectral features of  potential interest are: –    the overall shape of  the spectrum, termed the spectral estimate, 

and/or 

 –    local features of  the spectrum sometimes referred to as parametric estimates

•   Techniques that provide good spectral estimation are poor 

local estimators and vice versa

THE FOURIER TRANSFORM FOURIER SERIES ANALYSIS

Page 438: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 438/509

THE FOURIER TRANSFORM: FOURIER SERIES ANALYSIS

•   Classical Fourier transform (FT) method is the most straightforward for spectral 

estimate

•   Any periodic waveform can be represented by a series of  sinusoids that are at the 

same frequency as, or multiples of, the waveform frequency

•   If  a waveform can be broken down into a series of  sines or cosines of  different 

frequencies, the amplitude of  these sinusoids must be proportional to the frequency component contained in the waveform at those frequencies

•   Consider the case where sines and cosines are used to represent the frequency 

components: to find the appropriate amplitude of  these components it is only 

necessary to correlate (i.e., multiply) the waveform with the sine and cosine family, 

and average (i.e., integrate) over the complete waveform (or one period if  the waveform is periodic)

where T  is the period or time length of  the 

waveform ,  f T  = 1/T , and m is set of 

integers, possibly infinite: m = 1, 2, 3, . . . , 

defining the family member.

This gives rise to a family of  sines and cosines 

having harmonically related frequencies,

mf T 

F i i l i bi f i i hi h h f il

Page 439: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 439/509

•   Fourier series analysis uses a probing function in which the family consists of  harmonically related sinusoids

•   The sines and cosines in this family have valid frequencies only at values of  m/T , which is either the same frequency as the waveform (when m = 1) or higher multiples (when m > 1) that are termed harmonics

•  Since this approach represents waveforms by harmonically related 

sinusoids, the approach is sometimes referred to as harmonic  decomposition

•   For periodic functions, the Fourier transform and Fourier series 

constitute a bilateral transform: the Fourier transform can be applied to a waveform to get the sinusoidal components and the Fourier series sine and cosine components can be summed to reconstruct the original waveform:

…. (1)

Page 440: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 440/509

Two periodic functions and their approximations constructed from a

limited series of  sinusoids. 

Upper graphs: A square wave is approximated by a series of  3 and 6 sine waves. 

Lower graphs: A triangle wave is approximated by a series of  3 and 6 cosine 

waves

Page 441: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 441/509

•   Spectral information is usually presented as a frequency plot, 

a plot of  sine and cosine amplitude vs. component number, or the equivalent frequency

•   To convert from component number, m, to frequency,  f , note 

that  f  = m/T , where T  is the period of  the fundamental. 

•   In digitized signals, the sampling frequency can also be used 

to determine the spectral frequency

•   Rather than plot sine and cosine amplitudes, it is more 

intuitive to plot the amplitude and phase angle of  a sinusoidal wave using the rectangular‐to‐polar transformation

Page 442: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 442/509

  A triangle or sawtooth wave (left) and the first 10 terms of  its Fourier series (right)

•   Note that the terms become quite small after the second term

Symmetry

Page 443: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 443/509

Symmetry•   Some waveforms are symmetrical or anti‐symmetrical about t  

= 0, so that one or the other of  the components, a(k ) or b(k ) in 

Eq. (1), will be zero

•   If  the waveform has mirror symmetry about t  = 0, that is,  x (t ) 

=  x (−t ), then multiplications by a sine functions will be zero irrespective of  the frequency, and this will cause all b(k ) terms 

to be zeros

•   Such mirror symmetry functions are termed even functions

•   If  the function has anti‐symmetry,  x (t ) = − x (t ), a so‐called odd 

function, then all multiplications with cosines of  any 

frequency will be zero, causing all a(k ) coefficients to be zero

•   Functions that have half ‐wave symmetry will have no even 

coefficients, and both a(k ) and b(k ) will be zero for even m

•   These symmetries are useful for reducing the complexity of  

solving for the coefficients when such computations are done 

manually

Page 444: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 444/509

Function Symmetries

R l Wi d

Page 445: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 445/509

Rectangular Window

•   The digitized waveform must necessarily be truncated at least 

to the length of  the memory storage array

•   This  process is called windowing

•   The windowing process can be thought of  as multiplying the 

data by some window shape

•   If  the waveform is simply truncated and no further shaping is 

performed on the resultant digitized waveform (as is often the case), then the window shape is rectangular by default

•   Other shapes can be imposed on the data by multiplying the 

digitized waveform by the desired shape

•   Windowing creates some effects (to be discussed later!)

Another representation of  Fourier series

Page 446: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 446/509

p•   The equations for computing Fourier series analysis of  digitized data are 

the same as for continuous data except the integration is replaced by summation

•   Equations are presented using complex variables notation so that both the sine and cosine terms can be represented by a single exponential term using Euler’s identity

•   Discrete Fourier transform becomes:

where N  is the total number of  points and m indicates the family member, 

i.e., the harmonic number (m must now be allowed to be both positive

and negative when used in complex notation)

•   The inverse Fourier transform can be calculated as:

• gives the magnitude for the sinusoidal representation

Page 447: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 447/509

•    gives the magnitude for the sinusoidal representation 

of  the Fourier series while the angle of   X (m) gives the phase angle for this representation, since  X (m) can also be written as

•   The discrete Fourier transform produces a function of  m

•   To convert this to frequency note that:

where  f 1 ≡ f T  is the fundamental frequency, T s is the sample interval;  f s is the 

sample frequency; N  is the number of  points in the waveform; and T P  = NT s is

the period of  the waveform

•   The equation for the discrete Fourier transform can also be written as:

Fourier Transform For Aperiodic Functions

Page 448: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 448/509

Fourier Transform For Aperiodic Functions

•   If  the function is not periodic, it can still be accurately decomposed into sinusoids if  it is 

aperiodic; that is, it exists only for a well‐defined 

period of  time, and that time period is fully represented by the digitized waveform

•   The sinusoidal components can exist at all 

frequencies, not  just multiple frequencies or harmonics

•   The analysis procedure is the same as for a periodic 

function, except that the frequencies obtained are really only samples along a continuous frequency 

spectrum

Page 449: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 449/509

•   The frequency 

spectrum of  a 

periodic triangle 

wave for three 

different periods•   As the period 

gets longer, 

approaching an 

aperiodic 

function, the 

spectral shape 

does not change, 

but the points get 

closer together

Frequency Resolution

Page 450: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 450/509

Frequency Resolution•

  From the discrete Fourier series equation , the number of  points produced by the operation is N, the number of  points in the data set

•   Since the spectrum produced is symmetrical about the midpoint, N/2 (or  fs/2 in frequency), only half  the points contain unique 

information•   If  the sampling time is T s, then each point in the spectra represents 

a frequency increment of  1/(NT s)

•   As a rough approximation, the frequency resolution of  the spectra will be the same as the frequency spacing, 1/(NT s)

•   Frequency spacing of  the spectrum produced by the Fourier transform can be decreased by increasing the length of  the data, N

•   Increasing the sample interval, T s, should also improve the frequency resolution, but since that means a decrease in  f s, the 

maximum frequency in the spectra,  f s /2 is reduced limiting the spectral range

•   One simple way of  increasing N even after the waveform has been sampled is to use zero padding

Truncated Fourier Analysis: Data Windowing

Page 451: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 451/509

Truncated Fourier Analysis: Data Windowing

•   Often, a waveform is neither periodic or aperiodic, but a segment of  a much longer—possibly infinite—time series (E.g. 

ECG)

  Only a portion of  such waveforms can be represented in the finite memory of  the computer, and some attention must be 

paid to how the waveform is truncated

•   Types of  windowing used:

 –    Rectangular

 –   Barlett (Triangular)

 –    Hamming

 –    Hanning

 –    Truncated Gaussian

Page 452: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 452/509

Window Functions (a.k.a. Tapering Functions)

Page 453: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 453/509

Rectangular

Barlett (Triangular)

Hamming

Hanning

Gaussian

Effects of  windowing

Page 454: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 454/509

•   When a data set is windowed, which is essential if  the data set is larger than the memory storage, then the frequency  characteristics of  the window become part of  the spectral result

•   Thus all windows produce two types of  artifact

•   The actual spectrum is widened by an artifact termed the main lobe, and additional peaks are generated termed the side

 lobes

Page 455: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 455/509

Selecting the Window Function

Page 456: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 456/509

Selecting the Window Function

•   Selecting the appropriate window, depends on what spectral 

features are of  interest

•   If  the task is to resolve two narrowband signals closely spaced in 

frequency, then a window with the narrowest mainlobe (the rectangular window) is preferred

•   If  there is a strong and a weak signal spaced a moderate distance 

apart, then a window with rapidly decaying sidelobes is preferred to 

prevent the sidelobes of  the strong signal from overpowering the weak signal

•   If  there are two moderate strength signals, one close and the other 

more distant from a weak signal, then a compromise  window with 

a moderately narrow mainlobe and a moderate decay in sidelobes

could be the best choice

•   Often the most appropriate window is selected by trial and error

Power Spectrum

Page 457: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 457/509

p

•   The power spectrum is commonly defined as the Fourier 

transform of  the autocorrelation function

•   In continuous and discrete notation, the power spectrum 

equation becomes:

•   Since the autocorrelation function has odd symmetry, the sine 

terms, b(k) will all be zero

Power Spectrum (Direct Approach)

Page 458: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 458/509

•   The direct approach is motivated by the fact that the energy contained in 

an analog signal,  x (t ), is related to the magnitude of  the signal squared, 

integrated over time

•   By an extension of  Parseval’s theorem it is easy to show that

Parseval’s Theorem: The sum (or integral) of  the square of  a function is 

equal to the sum (or integral) of  the square of  its transform

•   Hence      equals the energy density function over frequency, also 

referred to as the energy spectral density, the power spectral density, or simply the power spectrum

•   In the direct approach, the power spectrum is calculated as the 

magnitude squared of  the Fourier transform of  the waveform of  interest:

Periodogram

Page 459: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 459/509

g•   While the power spectrum can be evaluated by applying the 

FFT to the entire waveform, averaging is often used, 

particularly when the available waveform is only a sample of  a 

longer signal

•   In such very common situations, power spectrum evaluation 

is necessarily an estimation process, and averaging improves 

the statistical properties of  the result

•   When the power spectrum is based on a direct application of  the Fourier transform followed by averaging, it is commonly 

referred to as an average  periodogram

•   Selection of  data window and averaging strategy is usually 

based on experimentation with the actual data

•   Averaging is usually achieved by dividing the waveform into a 

number of  segments, possibly overlapping, and evaluating the 

Fourier transform on each of  these segments

Welch method of spectral analysis

Page 460: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 460/509

Welch method of  spectral analysis

•   One of  the most popular procedures to evaluate the average 

periodogram is attributed to Welch and is a modification of  

the segmentation scheme originally developed by Bartlett

•   In this approach, overlapping segments are used, and a 

window is applied to each segment

•   By overlapping segments, more segments can be averaged for 

a given segment and data length•   Averaged periodograms obtained from noisy data traditionally 

average spectra from half ‐overlapping segments; that is, 

segments that overlap by 50%.

Page 461: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 461/509

•   A waveform is divided into three segments with a 50% overlap between each 

segment

•   In the Welch method of  spectral analysis, the Fourier transform of  each 

segment would be computed separately, and an average of  the three 

transforms would provide the output

Digital Filters

Page 462: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 462/509

•   Filters are closely related to spectral analysis since the goal of  filtering is to reshape the spectrum to one’s advantage

•   Most noise is broadband (the broadest band noise being white noise with a flat spectrum) and most signals are 

narrowband; hence, filters that appropriately reshape a waveform’s spectrum will almost always provide some improvement in SNR

•   A basic filter can be viewed as a linear process in which the 

input signal’s spectrum is reshaped in some well‐defined manner

•   Filters differ in the way they achieve this spectral reshaping, and can be classified into two groups based on their 

approach: –    finite impulse response (FIR) filters 

 –    infinite impulse response (IIR) filters

THE Z‐TRANSFORM

Page 463: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 463/509

•   Frequency‐based analysis introduced in the last chapter is a most useful tool for analyzing systems cannot be applied to transient responses of  infinite length, such as step functions, or systems with nonzero initial conditions

•   Motivated the development of  the Laplace transform

 in the analog 

domain

•   Laplace analysis uses the complex variable s (s = σ +  j ω) as a representation of  complex frequency in place of   j ω in the Fourier 

transform•   The  Z ‐transform is a digital operation analogous to the Laplace 

transform in the analog domain, and it is used in a similar manner

•   The Z‐transform is based around the complex variable,  z, where  z is 

an arbitrary complex number,    e j ω

•   This variable is also termed the complex frequency, and as with its time domain counterpart, the Laplace variable s, it is possible to substitute e j ω for  z to perform a strictly sinusoidal analysis

If     is set to 1, then z = e jω

. This is called evaluating z on the unit circle

•   The Z‐transform(similar to the Fourier transform equation) is:

Page 464: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 464/509

where z = an arbitrary complex variable

•   Probing function for this transform is simply z−n

•   In any real application, the limit of  the summation will be finite, usually the length of   x (n)

•   When identified with a data sequence, such as  x (n) above,  z−n

represents an interval shift of  n samples, or an associated 

time shift of  nT s seconds

•   This time shifting property of   z−n can be formally stated as:

The time shifting characteristic of  the Z‐

transform can be used to define a unit 

delay process, z−1

Digital Transfer Function

Page 465: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 465/509

Digital Transfer Function

•   Most useful applications of  the Z‐transform lies in its ability to define the digital equivalent of  a transfer function

•   By analogy to linear system analysis, the digital transfer function is defined as:

•   Unlike analog systems, the order of  the numerator, N, need 

not be less than, or equal to, the order of  the denominator, D, for stability

•   In fact, systems that have a denominator order of  1 are more 

stable that those having higher order denominators

•   From the digital transfer function, H(z), it is possible to 

determine the output given any input

Page 466: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 466/509

determine the output given any input

•   The input–output or difference equation analogous to the 

time domain equation and can be obtained by applying the 

time shift interpretation to the term z−n

equation assumes that a(0) = 1

•   Filter design, then, is simply the determination of  the 

appropriate filter coefficients, a(n) and b(n), that provide the 

desired spectral shaping

•   If  the frequency spectrum of  H ( z) is desired, it can be 

obtained from a modification substituting z = ejω as:

Page 467: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 467/509

obtained from a modification ‐substituting  z = e j ω as:

•   Frequency can be obtained from the variable m by multiplying 

by f s/N or 1/(NT s )

FINITE IMPULSE RESPONSE (FIR) FILTERS•   FIR filters have transfer functions that have only numerator 

Page 468: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 468/509

y

coefficients, i.e., H(z) = B(z)•   This leads to an impulse response that is finite

•   Merits:

 – 

  stable  –    linear phase shifts

 –    have initial transients that are of  finite durations 

 –    their extension to 2‐dimensional applications is straightforward

•   Demerits:

 –    less efficient in terms of  computer time and memory

•   FIR filters are also referred to as nonrecursive because only 

the input (not the output) is used in the filter algorithm•   FIR filtering has also been referred to as a moving 

average process

•   The general equation for an FIR filter is: Similar to convolution

Page 469: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 469/509

where b(n) is the coefficient function (also referred to as the weighting 

function) of  length L,  x(n) is the input, and y(n) is the output

•   Filter coefficients (or weights) of  an FIR filter are the same as the 

impulse response of  the filter

•   Since the frequency response of  a process having an impulse 

response h(n) is simply the Fourier transform of  h(n), the frequency 

response of  an FIR filter having coefficients b(n) is  just the Fourier 

transform of  b(n):

•   The inverse operation, going from a desired frequency response to the coefficient function, b(n), is known as filter design

•   Since the frequency response is the Fourier transform of  the filter 

coefficients, the coefficients can be found from the inverse Fourier 

transform of  the desired frequency response

FIR Filter Design

Page 470: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 470/509

•   The ideal lowpass filter  is a rectangular window in 

the frequency domain 

•   The inverse Fourier transform of  a rectangular 

window function is:

where  f c  is the cutoff  frequency; T s is the sample interval in 

seconds; and L is the length of  the filter.The argument, n − L/2, is used to make the coefficient 

function symmetrical  giving the  filter  linear   phase 

characteristics

Filter function

Page 471: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 471/509

  FFT of  this function is same as an impulse response

•   This coefficient function must be infinitely long to produce 

the filter characteristics of  an ideal filter

•   Truncating it will result in a 

lowpass filter that is less than ideal

Effects of  b(n) truncation with rectangular 

Page 472: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 472/509

window 

•   The weighting functions were abruptly truncated at 17 and 65 coefficients (rectangular window)

•   The artifacts associated with this truncation are clearly seen

•   The lowpass cutoff  frequency is 100 Hz

Effects of  b(n) truncation with 

Page 473: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 473/509

Hamming window 

•   The overshoot in the passband has disappeared and the oscillations 

are barely visible in the plot

Highpass, Bandpass, and Bandstop

Page 474: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 474/509

filters•   Are derived in the same manner from equations generated by 

applying an inverse FT to rectangular structures having the 

appropriate associated shape

Page 475: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 475/509

MATLAB Demo LPF FIR Design

Steps for Designing FIR Filters

Page 476: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 476/509

p g g

•   Given:  f s,( f C  or  f H and  f L)

•  Choose the appropriate filter (LPF,HPF,BP,BS)

•   Select the filter length L

•   Compute b(n) using filter formula(length: L+1)

•   Check the filter spectrum by using FT of  b(n)

•   Convolve the input  x(n) with b(n) to obtain 

the output y(n)

Derivative Operation

Page 477: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 477/509

•   The derivative is a common operation in signal processing and is particularly useful in analyzing certain physiological signals

•   Digital differentiation is defined as Δ x /Δt  and can be implemented by taking the difference between two adjacent points, scaling by 1/T s, and repeating this operation along the entire waveform

•   As FIR filter this is equivalent to a two coefficient filter,  [−1, +1]/T s,

  The frequency characteristic of  the derivative operation is a linear increase with frequency so there is

•   Considerable gain at the higher frequencies

•   Since the higher frequencies frequently contain a greater percentage of  noise, this operation tends to produce a noisy 

derivative curve hence we use two‐point central difference algorithm

The Two‐Point Central Difference Algorithm

Page 478: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 478/509

•  The two‐point central difference algorithm uses two 

coefficients of  equal but opposite value spaced L points apart, 

as defined by the input–output equation:

where L is the skip factor that influences the effective bandwidth, and 

T s is the sample interval

•   The filter coefficients for the two‐point central difference 

algorithm would be:

Frequency characteristic of  the derivative 

Page 479: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 479/509

operationIdeal

FIR implementation

Page 480: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 480/509

(A) The derivative was calculated by taking the difference in adjacent points and scaling by the sample frequency.

(B) The derivative was computed using the two‐point central difference algorithm with a skip factor of  4

Time‐Frequency Analysis•   Spectral analysis techniques developed thus far represent powerful signal 

Page 481: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 481/509

processing tools if  one is not especially concerned with signal timing•   Classical or modern spectral methods provide a complete and appropriate 

solution for waveforms that are stationary; that is, waveforms that do not 

change in their basic properties over the length of  the analysis

•   Many waveforms—particularly those of  biological origin–are not stationary, and change substantially in their properties over time

•   Fourier analysis provides a good description of  the frequencies in a 

waveform, but not their timing

•  Timing is encoded in the phase portion of  the transform, and this 

encoding is difficult to interpret and recover

•   In the Fourier transform, specific events in time are distributed across all 

of  the phase components

  A local feature in time has been transformed into a global feature in phase

•   Timing information is often of   primary  interest  in many  biomedical  signals, 

and  this is also true  for  medical  images where the analogous inf ormation 

is localized  in space

Methods

Page 482: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 482/509

•   A wide range of  approaches have been 

developed to try to extract both time and frequency information from a waveform

•   Basically they can be divided into two groups:

 –  time–frequency methods 

 –  time–scale methods (wavelet analysis)

Short‐Term Fourier Transform: The 

Page 483: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 483/509

Spectrogram•   The first time–frequency methods were based on the 

straightforward approach of  slicing the waveform of  interest into a number of  short segments and performing the analysis on each of  these segments, usually using the standard Fourier transform

•   A window function is applied to a segment of  data, effectively isolating that segment from the overall 

waveform, and the Fourier transform is applied to that segment

•   This is termed the spectrogram or “short‐term Fourier transform” (STFT) since the Fourier Transform is applied to 

a segment of  data that is shorter, often much shorter, than the overall waveform

•   Selecting the most appropriate window length can be critical

•   The basic equation for the spectrogram in the continuous domain is:

Page 484: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 484/509

where w(t‐τ) is the window function and τ is the variable that 

slides the window across the waveform, x(t)

•   The discrete version

•   There are two main problems with the spectrogram:

(1) selecting an optimal window length for data segments 

that contain several different features may not be possible, 

(2) the time–frequency tradeoff: shortening the data length, N, to improve time resolution will reduce frequency 

resolution which is approximately 1/(NTs)

•   If  window is made smaller to improve the time resolution, then the frequency resolution is degraded and visa versa

• Thi ti f t d ff h b t d t

Page 485: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 485/509

•   This time–frequency tradeoff  has been equated to an uncertainty   principle where the product of  frequency resolution (expressed as bandwidth, B) and time, T , must be greater than some minimum

•   STFT has been used successfully in a wide variety of  problems, particularly those where only high frequency components are of  interest and frequency resolution is not critical

•   The area of  speech processing has benefitted considerably from the application of  the STFT

•  Where appropriate, the STFT is a simple solution that rests on 

a well understood classical theory (i.e., the Fourier transform) and is easy to interpret

Page 486: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 486/509

Page 487: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 487/509

Page 488: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 488/509

Wavelet Analysis

Page 489: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 489/509

•   Inability of  the Fourier transform to describe both time and frequency characteristics of  the 

waveform led to a number of  different approaches

•   The wavelet transform can be used as yet another way to describe the properties of  a waveform that changes over time, but in this case the waveform is divided not into sections 

of  time, but segments of  scale

THE CONTINUOUS WAVELET TRANSFORM

•   A variety of  different probing functions may be used, but the family always 

consists of enlarged or compressed versions of the basic function as well

Page 490: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 490/509

consists of  enlarged or compressed versions of  the basic function, as well as translations

•   Continuous wavelet transform (CWT) equation is defined as:

where b acts to translate the function across  x(t) just as t  and the variable 

a acts to vary the time scale of  the probing function, ψ

•   If  a is greater than one, the wavelet function, ψ, is stretched along the time axis, and if  it is less than one (but still positive) it contacts the 

function

•   Negative values of  a simply flip the probing function on the time axis

  Probing function ψ could be any of  a number of  different functions, but it always takes on an oscillatory form, hence the term “wavelet”

•   The * indicates the operation of  complex conjugation, and the 

normalizing factor l/   ensures that the energy is the same for all values 

of  a (all values of  b as well, since translations do not alter wavelet energy)

•   If  b = 0, and a = 1, then the wavelet is in its natural form, 

which is termed the mother  wavelet  ;  that is, ψ1,0 (t) ≡ ψ(t)

Page 491: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 491/509

•   The wavelet shown is the popular Morlet wavelet, named after a 

pioneer of  wavelet analysis, and is defined by the equation

•   Wavelet coefficients, W (a,b), describe the correlation between the waveform and the wavelet at various 

translations and scales: the 

similarity 

between 

the 

waveform 

and the wavelet at a given combination of scale and position

Page 492: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 492/509

translations and scales: the similarity between the waveformand  the wavelet  at  a given combination of  scale and   position, a,b

•   Coefficients provide the amplitudes of  a series of  wavelets, 

over a range of  scales and translations, that would need to be added together to reconstruct the original signal

•   Wavelet analysis can be thought of  as a search over the waveform of  interest for activity that most clearly 

approximates the shape of  the wavelet•   This search is carried out over a range of  wavelet sizes: the 

time span of  the wavelet varies although its shape remains the same

•   Wavelet coefficients respond to changes in the waveform, more strongly to changes on the same scale as the wavelet, and most strongly, to changes that resemble the wavelet

•   If  the wavelet function, ψ(t ), is appropriately chosen, then it is 

possible to reconstruct the original waveform from the 

wavelet coefficients just as in the Fourier transform

Page 493: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 493/509

wavelet coefficients  just as in the Fourier transform•   As CWT decomposes the waveform into coefficients of  two 

variables, a and b, a double summation (or integration) is 

required to recover the original signal from the coefficients

Wavelet Time–Frequency Characteristics

•   Wavelets provide a compromise in the battle between time and frequency 

localization: they are well localized in both time and frequency, but not precisely localized in either

Page 494: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 494/509

y q y,precisely localized in either

•   Measure of  the time range of  a specific wavelet, Δt ψ, can be specified by the square root of  the second moment of  a given wavelet about its time center (i.e., its first moment)

In mathematics, a moment is, loosely speaking, a quantitative measure of  the shape of  a 

set of  points. The "second moment", for example, is widely used and measures the 

"width" (in a particular sense) of  a set of  points in one dimension or in higher dimensions measures the shape of  a cloud of  points as it could be fit by an ellipsoid. Other moments 

describe other aspects of  a distribution such as how the distribution is skewed from its 

mean, or peaked. Any distribution can be characterized by a number of  features (such as 

the mean, the variance, the skewness, etc.), and the moments of  a function describe the 

nature of  its distribution

where t 0  is the center time, or first moment of  

the wavelet

•   Similarly the frequency range, Δωψ, is given by:

Page 495: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 495/509

where Ψ ( ω ) is the frequency domain representation (i.e., Fourier 

transform) of  ψ(t/a), and ω0  is the center frequency of  Ψ ( ω )

•   The time and frequency ranges of  a given family can be 

obtained from the mother wavelet

For Mexican hat wavelet

Page 496: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 496/509

•   The frequency range, or bandwidth, would be the range of  the mother 

Wavelet divided by a:

Δωψ(a) = Δωψ / 

•   If  we multiply the frequency range by the time range, the a’s cancel and 

Page 497: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 497/509

e u t p y t e eque cy a ge by t e t e a ge, t e a s ca ce a d

we are left with a constant that is the product of  the constants

•   Product of  the ranges is invariant to dilation and that the ranges are inversely 

related; increasing the frequency range, Δωψ(a), decreases the time range, 

Δtψ(a)

•   These ranges correlate to the time and frequency resolution of  the CWT•   Decreasing the wavelet  time range (by  decreasing a )  provides a more 

accurate assessment  of  time characteristics (i.e., the ability  to separate out  

close events in time) at  the expense of   frequency  resolution, and  vice versa

  CWT will provide better frequency resolution when a is large and the length of  the wavelet (and its effective time window) is long

•   Conversely, when a is small, the wavelet is short and the time resolution is 

maximum, but the wavelet only responds to high frequency components

x(t)   Mother 

wavelet

Page 498: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 498/509

CWT

Page 499: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 499/509

CWT representations allow 

detecting the fiducial points for ECG 

THE DISCRETE WAVELET TRANSFORM

•   The CWT has one serious problem: it is highly redundant.

•   The CWT provides an oversampling of  the original waveform: many ffi i d h ll d d

Page 500: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 500/509

more coefficients are generated than are actually needed to 

uniquely specify the signal

•   Will be costly if  the application calls for recovery of  the original 

signal

•   For recovery, all of  the coefficients will be required and the 

computational effort could be excessive

  In applications that require bilateral transformations, we would prefer a transform that produces the minimum number of  

coefficients required to recover accurately the original signal

•   The discrete wavelet  transform (DWT) achieves this by restricting 

the variation in translation and scale, usually to powers of  2•   When the scale is changed in powers of  2, the discrete wavelet 

transform is sometimes termed the dyadic wavelet  transform

•   The DWT is often introduced in terms of  its recovery transform

Page 501: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 501/509

Here k  is related to a as: a = 2k ; b is related to  as b = 2k  ; and d(k,  ) is

a sampling of  W(a,b) at discrete points k  and 

.

•   New concept is introduced termed the scaling function, a function that 

facilitates computation of  the DWT

•   To implement the DWT efficiently, the finest resolution is computed first

•   The computation then proceeds to coarser resolutions, but rather than 

start over on the original waveform, the computation uses a smoothed 

version of  the fine resolution waveform

•  This smoothed version is obtained with the help of  the scaling function

•   Actually, the scaling function is sometimes referred to as the smoothing 

 function

•   The definition of  the scaling function uses a dilation or a two‐

scale difference

 equation:

Page 502: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 502/509

where c(n) is a series of  scalars that defines the specific scaling 

function

•   In the DWT, the wavelet itself  can be defined from the scaling 

function:

where d(n) is a series of  scalars that are related to the waveform x(t)

Filter Banks•

  For most signal and image processing applications, DWT‐based analysis is best described in terms of  filter banks

Page 503: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 503/509

y

•   The use of  a group of  filters to divide up a signal into various 

spectral components is termed subband coding.

•   The most basic implementation of  the DWT uses only two 

filters

•   The waveform under analysis is divided into two components, y lp(n) and y hp(n), by the digital filters H0(ω) and H1(ω)

•   The spectral characteristics of  the two filters must be carefully chosen with H0(ω) having a lowpass spectral characteristic and H (ω) a highpass spectral characteristic

Page 504: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 504/509

H1(ω) a highpass spectral characteristic

•   The highpass filter is analogous to the application of  the wavelet to the original signal, while the lowpass filter is analogous to the application of  the scaling or smoothing function

•   The original signal can often be recovered, but both subband signals will required

•   A second pair of  filters, G0(ω) and G1(ω), operate on the high and lowpass subband signals and their sum is used to reconstruct a 

close approximation of  the original signal,  x ’(t )•   The Filter Bank that decomposes the original signal is usually 

termed the analysis  filters while the filter bank that reconstructs the signal is termed the syntheses  filters

•   FIR filters are used throughout because they are inherently stable and easier to implement

Page 505: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 505/509

•   If  the output is essentially the same, as occurs in some data compression applications, the process is termed lossless, otherwise it is a lossy  operation

•   Problem is that data samples get doubled hence we use downsamplingillustrated schemacally by the symbol ↓ 2

•   If  downsampling is used, then there must be some method for recovering the missing data samples (those with odd indices) in order to reconstruct the original signal

•   An operation termed upsampling (indicated by the symbol ↑ 2) accomplishes this operation by replacing the missing points with zeros

Page 506: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 506/509

Signal Decomposition

•   For most of  the signal analyses, 

the DWT operation takes the

Page 507: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 507/509

the DWT operation takes the 

form of  logarithmic tree 

•   The bandwidth of  the signal is 

halved after each level of  decomposition also it is more 

appropriate to describe the 

frequency in radians in the 

discrete domain

  Effectively the resolution of  the signal, which is the amount of  

detail information in the signal, 

is changed by the filtering 

operations and the scale is 

increased by downsamplingoperations

Denoising

• Processing is done on the subband signals before

Page 508: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 508/509

•   Processing is done on the subband signals before reconstruction

•   The basic assumption in this application is that the noise is coded into small fluctuations in the higher resolution (i.e., more detailed) highpass subbands

•   This noise can be selectively reduced by eliminating the smaller sample values in the higher resolution highpass

subbands•   The two highest resolution highpass subbands are 

examined and data points below some threshold are zeroed out

•   The threshold is set to be equal to the variance of  the highpass subbands

Page 509: Biomedical Signal Processing Lectures 2011-12

7/23/2019 Biomedical Signal Processing Lectures 2011-12

http://slidepdf.com/reader/full/biomedical-signal-processing-lectures-2011-12 509/509