Biological Route in Breakdown and Depolymerization of Biomass Igor Polikarpov … · 2012. 11....

45
Biological Route in Breakdown and Depolymerization of Biomass Igor Polikarpov IFSC/USP _______________________________________________ Igor Polikarpov, (e): [email protected] Instituto de Física de São Carlos UNIVERSIDADE DE SÃO PAULO Brazilian ChemComm Symposium Chemistry and Sustainable Energy (FAPESP, SP)

Transcript of Biological Route in Breakdown and Depolymerization of Biomass Igor Polikarpov … · 2012. 11....

  • Biological Route in Breakdown and Depolymerization

    of Biomass

    Igor Polikarpov

    IFSC/USP

    _______________________________________________ Igor Polikarpov, (e): [email protected] Instituto de Física de São Carlos

    UNIVERSIDADE

    DE SÃO PAULO

    Brazilian ChemComm Symposium –

    Chemistry and Sustainable Energy

    (FAPESP, SP)

  • UK

    France

    Belgium Holland

    Norway Sweden

    http://www.york.ac.uk/org/cnap/SUNLIBB/index.htmlhttp://cordis.europa.eu/fp7/people/home_en.htmlhttp://cordis.europa.eu/fp7/people/home_en.html

  • Cellulose and glucose Hemicellulose and Pentose

    sugars

    Lignins

    http://upload.wikimedia.org/wikipedia/commons/1/1f/Cellulose_Haworth.svg

  • Marcos Buckeridge & Wanderley dos Santos

  • Exo-

    glucanases

    Endo-

    glucanases

    Beta-

    glucosidases

    Expansins GH61

    Xylanases Xylosidases

  • • Pretreatment of Biomass

  • Efficiency of enzymatic hydrolysis of alkaline pretreated cellulignin increases with severity of pre-treatment

    -3 0 3 6 9 12 15 18 21 24

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Glu

    cose

    (g

    /L)

    Time (h)

    0.10

    0.25

    0.50

    1.00

    2.00

    4.00

    Bagasse

    Cellulignin

    Maeda, Serpa, et al. (2011) Proc. Biochem. 46:1196 - 1201

    NaOH

    concentration,

    %

    EF

    FIC

    IEN

    CY

    OF

    PR

    ET

    RE

    AT

    ED

    SU

    GA

    R

    CA

    NE

    BA

    GA

    SS

    E H

    YD

    RO

    LY

    SIS

  • Composition of bagasse samples after pretreatment steps

    Rezende, et al., Biotechnology for Biofuels (2011) 4:54

  • CPMAS-TOSS NMR spectra of

    sugarcane bagasse: (a) untreated; (b)

    bagasse treated with H2SO4 1.0% and

    (c) bagasse treated with acid and NaOH

    4.0%. The spectra were normalized by

    the intensity of line 10 (C1 carbon of

    cellulose).

    ssNMR

    H L

  • Solid vs Hydrolisate fractions

    The solid fraction spectra (a) exhibit a

    progressive decrease of the lignin lines

    with pretreatments using increasing NaOH

    concentrations (note particularly the

    methoxy carbon at 56.2 ppm on the

    highlighted region).

    The cellulose signals at 62.5, 64.8, 72.5,

    83.5 and 105 ppm (indicated by arrows in b)

    are not observed in samples pretreated with

    NaOH concentrations below 0.5%, but

    these lines clearly show up for higher NaOH

    concentrations.

    C C

    C C

  • Line Number Chemical Group 13C Chemical Shift

    (ppm)

    1 CH3 in acetyl groups of hemicelluloses 21.5

    2 Aryl methoxyl carbons of lignin 56.2

    3 C6 carbon of non-crystalline cellulose, C6 carbon of

    hemicelluloses, OCH2 carbons of lignin

    62.5

    4 C6 carbon of crystalline cellulose 64.8

    5 C2,3,5 of cellulose, OCH2 carbons of lignin 72.5

    6 C2,3,5 of cellulose and hemicelluloses 74.4

    7 C4 carbon of non-crystalline cellulose and hemicelluloses,

    OCH2 carbons of lignin

    83.5

    8 C4 carbon of crystalline cellulose 87.9

    9 Shoulder of C1 carbon of hemicelluloses 101.8

    10 C1 carbon of cellulose 105.0

    11 C2 and C6 aromatic carbons of Syringyl and C5 and C6

    aromatic carbons of Guaiacyl in lignin

    110-115

    12 C2 of aromatic carbons Guaiacyl in lignin 126.6

    13 C1 and C4 aromatic carbons of Syringyl (e) 134.5

    13 C1 and C4 aromatic carbons of Syringyl (ne) 136.9

    14 C3 and C5 aromatic carbons of Syringyl (ne) and C1 and C4

    aromatic carbons of Guaiacyl in lignin

    148.0

    15 C3 and C5 aromatic carbons of Syringyl (e) in lignin 153.5

    16 Carboxyl groups of lignin 163.0-180.0

    17 Carboxyl groups of hemicelluloses 173.6

    ssNMR

  • Morphology of untreated and acid pre-treated bagasse (SEM)

    Untreated

    Acid pre-treated

  • Morphology of acid+alkaline pre-treated bagasse

    SEM surface images of the sugarcane bagasse sample treated with alkaline

    solutions: (a) NaOH 0.5% with bundles starting to come apart; (b) and (c) NaOH 2%,

    (unstructured and unattached bundles); and (d) NaOH 4%, (individual fibers).

    0,5

    % N

    aO

    H

    2%

    NaO

    H

    2%

    NaO

    H

    4%

    NaO

    H

    Rezende, et al., Biotechnology for Biofuels (2011) 4:54

  • Crystallinity

  • Combined pretreatment and enzymatic hydrolysis yields of sugar cane bagasse saccharification

  • Enzymatic hydrolysis yields of eucalyptus bark

  • • Enzymatic Hydrolysis

  • Efficiency of biomass saccharification by commercial and home-made enzymatic cocktails.

    M=Multifect

    Maeda, Serpa, et al. (2011) Proc. Biochem. 46:1196 - 1201

    M+P+T M+T

    M+P

  • Some of our glycosyl hydrolases structural studies Aparicio, R. et al. (2002) Biochemistry 41: 9370-9375.; Rojas, A.L., Nagem, R.A.P. et al. (2004) J. Mol. Biol. 343: 1281-1292; Golubev, A.M. et al. (2004) J. Mol. Biol. 339: 413-422; Nagem, R.A.P. et al. (2004) J. Mol. Biol., 344: 471-480; Rojas, A.L. et al. (2005) Biochemistry 44: 15578-15584; Watanabe, L., et al. (2007) Acta Cryst. F63: 780-783; Kim, K.-Y., Nascimento, A.S. et al. (2008) BBRC 371: 600-605; Golubev A.M., et al. (2008) Prot. Pept. Lett. 15:1142-1144; Nascimento, A.S., et al. (2008) J. Mol. Biol. 382:763-778; Zamorano, L.S., et. al. (2008) Biochimie 90: 1737-1749; Watanabe, et al. (2010) J. Struct. Biol. 169: 226-242; Colussi, F., Textor, L.C., et al. (2010) Acta Cryst. F66: 1041-1044; Bleicher, L., Prates, E., et al. (2011) J. Phys. Chem. B 115: 7940–7949; Textor, L.C., Santos, J.C. et al. (2011) Acta Cryst. F67: 1641-1644; Hidalgo-Cuadrado, N., Arellano, J.B. et al. (2011) Curr. Topics Biochem. Res. 13:67-79; Santos, C., Paiva, J. et al. (2012) Biochem. J. 441:95–104; Liberato, V. M., et al. (2012) Acta Cryst. F68: 306-309; Colussi, F., Garcia, W. et al. (2012) Eur. Biophysics J. 41: 89-98

  • A-gal (T. reesei) Exo-Inul (A. awamori)

    TrAsP (T. reesei) Lamin (Rhodothermus

    marinus)

    Peroxidase

    (Roystonea regia)

    B-man

    (T. reesei)

    B-gal (Penicilium sp)

    Endo-Inul

    (Arthrobacter sp.)

  • • Exoglucanases (T. harzianum CBHI/Cel7A)

  • 0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 50 100 150 200C

    on

    cen

    tração

    B (

    %)

    Ab

    s (

    mA

    u)

    Volume (mL)

    Native gel electrophoresis of CBHI (6, 3, 1.5 e 1 mg/mL)

    CBHI

    66 kDa

    Topt=50ºC, pHopt=5

    Colussi, F., Textor, L.C., et al. J. Microbiol. Biotech. (2011) 21: 808–817

    CBHI from Trichoderma harzianum

  • A

    Loop 6

    Loop 5

    Loop 6

    B

    Loop 6

    Loop 5

    Loop 5

    C

    A384

    V216

    Y371

    I203

    A386

    T216

    Tr_CBHI

    Th_CBHI

    Ph. crys_CBHI

  • A384

    Y260

    Y371

    V216

    I203

    Y247

    A B

    Loop 5

    Loop 6

    T. reesei CBHI T. harzianum CBHI

  • L3

    L3

    L5

    L5

    A384

  • Q101

    -6 -5

  • Catalytic side loops movements

    are strongly anticorrelated!

    DYNAMIC CROSS-CORRELATION MATRIX & ESSENTIAL DYNAMICS

  • • Endoglucanases (T. harzianum EG3/Cel12)

  • 3D structure of EG3 (Cel12, T. harzianum): A cellulase without CBM

  • 3D structure of EG3 (Cel12, T. harzianum): A cellulase without CBM

  • Substrate Binding Cleft

  • Comparison between Celulomonas fimi endoglucanase C and ThEG3

  • • Thermostable enzymes

  • Bleicher, L., et al., & Polikarpov, I. J. Phys. Chem. B (2011) 115: 7940–7949

    Hyperthermostable Rhodothermus marinus β-1,3-glucanase

  • Topology of the salt bridges

  • 2 C L 2

    H 2 Y K

    L a m R

    2 5 o C 9 0 o C

    2 C L 22 C L 2

    H 2 Y KH 2 Y K

    L a m RL a m R

    2 5 o C 9 0 o C2 5 o C 9 0 o C

    Rodothermus

    Nocardiopsis

    P. chrysosporium Salt bridges within the hydrophobic

    environment facilitate water

    penetration

    (not every salt bridge favors

    thermal stability)

    Water penetration into the

    hydrophobic layer of LamR

    is reduced relative to less

    thermostable proteins.

  • COLAPSE OF THE ACTIVE SITE FOR P. CHRYSOSPORIUM LAMINARINASE,

    WHILE IT IS PRESERVED IN LAMINARINASE RH. MARINUS SIMULATIONS AT

    HIGHER TEMPERATURE

    Collapsed active site

    Solvent-accessible active site

    Rhodothermus

    P. chrysosporium

  • Novel Enzymes

  • Targeted analysis of microbial lignocellulolytic secretomes -

    a new approach to enzyme discovery

    São Paulo State (Brazil):

    - Prof. Igor Polikarpov (PI,

    IFSC/USP),

    - Dr. Sandro José de Souza

    (Ludwig Institute),

    - Prof. Eduardo Ribeiro de

    Azevedo (IFSC/USP) &

    - Prof. Wanius José Garcia da

    Silva (UFABC)

    UK, University of York

    - Prof. Neil Bruce (PI),

    - Profs. Simon McQueen-Mason &

    - Peter Young (Co-PIs).

  • Acknowledgements

    Thematic project & CeProBIO

    Prof. Munir Skaf (UNICAMP)

    CeProBIO team

    Prof. Marcos Buckeridge (CTBE& IB/USP)

    Prof. Paulo Seleghim Jr. (EESC/USP)

    Profa. Anete P. de Souza (CBMEG/UNICAMP)

    Prof. A. Augusto F. Garcia (ESALQ/USP)

    Profa. Glaucia M. de Souza (IQ/USP)

    Prof. Carlos Labate (ESALQ/USP)

    Prof. Marcelo E. Loureiro (UFV)

    Dr. Itamar Soares de Melo (EMBRAPA)

    Dr. Jose Geraldo Pradella (CTBE)

    Prof. Luiz Antonio Martinelli (CENA/USP)

    Prof. Armando Augusto H. Vieira (UFSCar)

    &

    all the EMBRAPA and SUNLIBB collaborators

  • Thank you !

    http://upload.wikimedia.org/wikipedia/commons/1/1f/Cellulose_Haworth.svg

  • Structural similarities between Celulomonas fimi endoglucanase C and ThEG3 carbohydrate recognition

    CfCBM ThEG3