Bioequivalence of Highly Variable Drug Products

38
Bioequivalence of Highly Variable Drug Products Dr. Bhaswat S. Chakraborty

Transcript of Bioequivalence of Highly Variable Drug Products

Page 1: Bioequivalence of Highly Variable Drug Products

Bioequivalence of Highly Variable Drug

Products

Dr. Bhaswat S. Chakraborty

Page 2: Bioequivalence of Highly Variable Drug Products

2

Page 3: Bioequivalence of Highly Variable Drug Products

3

Highly Variable Drug Products• Definition: BIO-international '92 [2001] "Drugs

which exhibit intra "Drugs which exhibit intra-subject variabilities >30 % (CV from ANOVA) are to be classified as highly variable …"

• Essential differentiation• Highly variable drug substances, e.g. statins • Highly variable drug products, e.g. enteric coated

• Sources of (high) variability • Administration conditions, interactions with food• Physiological factors (GE, transit, first-pass, ...), technical

aspects, e.g. bioanalytical procedures

Page 4: Bioequivalence of Highly Variable Drug Products

4

Page 5: Bioequivalence of Highly Variable Drug Products

5

Usual Standards for Passing ABE

• AUC: 90% CI limits 80-125%• Cmax: 90% CI limits 80-125%

• Data generated in a 2x2 crossover study• Criteria applied to drugs of low and high variability

Page 6: Bioequivalence of Highly Variable Drug Products

6

TwCounter-intuitive to the Concept of BE

• Two formulations with a large difference in Means: Bioequivalent (if variances are low)

• Two formulations with a small difference in Means: Not Bioequivalent (if variances are high).

Page 7: Bioequivalence of Highly Variable Drug Products

7

Reference Test

PI PII PI PII

A better generic product gets penalized for high within-subject & within product variability of the reference!

Page 8: Bioequivalence of Highly Variable Drug Products

8

• For HVDs and HVDPs, it may be almost impossible to show BE with a reasonable sample size.

• The common 2×2 cross-over design over assumes Independent Identically Distributions (IID), which may not hold

• If e.g., the variability of the reference is higher than the one of the test, one obtains a high common (pooled) variance and the test will be penalized for the ‘bad’ reference (previous slide)

Impact of High Variability

Page 9: Bioequivalence of Highly Variable Drug Products

9

• Produces medical dilemma (Switchability for NTRs, Prescribability for nth generic

• Ignores distribution of Cmax and AUC• Within subject variation is not accurate • Ignores correlated variances and subject-by-

formulation interaction• One criteria irrespective of inherent patterns of

product, drug or patient variations• Although rare, but may not be therapeutic equivalent

Other Limitations of a 2x2 Crossover Study

Page 10: Bioequivalence of Highly Variable Drug Products

10

HVDs & HVDPs are usually safe and of wide therapeutic range

Con

cent

rati

on

Time

Page 11: Bioequivalence of Highly Variable Drug Products

11

Power to show BE with 40 subjects for CVintra 30–50%

μT/μR 0.95, CVintra 30%→ power 0.816

μT/μR 1.00, CVintra 45%→ power 0.476

μT/μR 0.95, CVintra

50%→ n=98 (power 0.803)

Page 12: Bioequivalence of Highly Variable Drug Products

12

US FDA ANDAs: 2003 – 2005 Example

(1010 studies, 180 drugs)• 31% (57/180) highly variable (CV ≥30%)

• of these HVDs/HVDPs,• 60% due to PK (e.g., first pass

metabolism)• 20% formulation performance• 20% unclear

Page 13: Bioequivalence of Highly Variable Drug Products

13

• Reduce human experimentation (number of participants) in BE studies

• Prohibitive size of BE studies for some HVDs means no generic is available – many patients go untreated

• Changing criteria to reduce number of participants in BE studies on HVDs can be accomplished without compromising safety/efficacy

• 80 – 125% BE criteria not universally implemented worldwide

Why a Different Set of Passing Criteria Needed for HVDs & HVDPs?

Page 14: Bioequivalence of Highly Variable Drug Products

14

Approaches to Solution• US-FDA:

• In favour of replicate design approach• Rejection of multiple dosing as less discriminative

• Individual BE:• “Prescribability" vs. “switchability/interchangeability”• S*F interaction – what does it mean therapeutically?• Concept on trials for years, than dismissed

• Reference scaled procedure• Widening of acceptance criteria due to scaling• Based on Reference product related variability

Page 15: Bioequivalence of Highly Variable Drug Products

15

Highly VariableDrugs• Includes many therapeutic classes• Includes both newer and older products• Potential savings to patients in the billions of

dollars if generics are approved• Examples: atorvastatin, esomeprazole,

pantoprazole, clarithromycin, paroxetine (CR), risedronate, metaxalone, itraconazole, balsalazide, acitretin, verapamil, atovaquone, disulfiram, erythromycin, sulfasalazine, many delayed release and modified release products etc.

Page 16: Bioequivalence of Highly Variable Drug Products

16

Fed BE Studies• Confidence interval criteria now required for BE

studies under fed conditions

• General paucity of information on variability under fed conditions

• Some drugs show much more variability under fed conditions than fasting conditions, making them HVDs (e.g., esomeprazole, pantoprazole, tizanidine)

• May be more HVDs than generally appreciated

Page 17: Bioequivalence of Highly Variable Drug Products

17

Hierarchy of Designs• The more ‘sophisticated’ a design is, the more information can be

extracted.• Hierarchy of designs:

• Variances which can be estimated:

Full replicate (TRTR | RTRT or TRT | RTR) Partial replicate (TRR | RTR | RRT)Standard 2×2 cross-over (RT | RT) Parallel (R | T)Full replicate: Total variance + within subjects (reference, test) Partial replicate: Total variance + within subjects (reference)Standard 2×2 cross-over: Total variance + incorrect within subjectParallel: Total variance

Page 18: Bioequivalence of Highly Variable Drug Products

18

Design of 4-period, Replicate Studies

Subjects

Sequence 1

Sequence 2

T

R

PI W

A

S

H

O

U

T

1

Randomizaion

PII PIII PIVW

A

S

H

O

U

T

2

W

A

S

H

O

U

T

3R

RR

TT

T

Page 19: Bioequivalence of Highly Variable Drug Products

19

Replicate Designs• Each subject is randomly assigned to sequences, where at

least one of the treatments is administered at least twice• Not only the global within-subject variability, but also the

within-subject variability within product can be estimated• Smaller subject numbers compared to a standard 2×2×2

design – but outweighed by an increased number of periods

• Two-sequence three-period TRT RTR

• Two-sequence four-period (>2-sequence does not have any particular advantage)

TRTR RTRT

Page 20: Bioequivalence of Highly Variable Drug Products

20

Conduct of Replicate Studies• Generally dosing, environmental control, blood sampling

scheme and duration, diet, rest and sample preparation for bioanalysis are all the same as those for 2-period, crossover studies

• Avoid first-order carryover (from preceding formulation) & direct-by-carryover (from current and preceding formulation) effects

• Unlikely when the study is single dose, drug is not endogenous, washout is adequate, and the results meet all the criteria

• If conducted in groups, for logistical reasons, ANOVA model should take the period effect of multiple groups into account

• Use all data; if outliers are detected, make sure that they don’t indicate product failure or strong subject-formulation interaction

Page 21: Bioequivalence of Highly Variable Drug Products

21

Evaluation of BE: Replicate Studies• Any replicate design can be evaluated according to

‘classical’ (unscaled) Average Bioequivalence (ABE)

• ABE mandatory if scaling not allowed FDA: sWR <0.294 (CVWR <30%); different models depend on design (e.g., SAS Proc MIXED for full replicate and SAS Proc GLM for partial replicate)

• EMA: CVWR ≤30%; all fixed effects model according to 2011’s Q&A-document preferred (e.g., SAS Proc GLM)

• Even if scaling is not intended, replicate design give more information about formulation(s)

Page 22: Bioequivalence of Highly Variable Drug Products

22

Sample size and Ethics: Replicate Studies• 4-period replicate designs:

• Sample size = ~½ of 2×2 study’s sample size• 3-period replicate designs:

• Sample size = ~¾ of 2×2 study’s sample size• Number of treatments (and biosamples)

• Same asconventional 2×2 cross-over• Allow for a safety margin – expect a higher number

of drop-outs due to additional period(s).• More time commitment from subjects; Consider

increased blood loss; improved Bioanalytical method required

Page 23: Bioequivalence of Highly Variable Drug Products

23

3-period Replicate 4-period Replicate

SAMPLE SIZES

Page 24: Bioequivalence of Highly Variable Drug Products

24

Unscaled & Scaled ABE from Replicate Studies

• Common to EMA and FDA

• ABE:

• Scaled ABE model:

• Regulatory switching condition θS is derived from the regulatory standardized variation σ0 (proportionality between acceptance limits in ln-scale and σW in the highly variable region)

Page 25: Bioequivalence of Highly Variable Drug Products

25

Reference Scaling• A general objective in assessing BE is to compare the

log-transformed BA measure after administration of the T and R products

• An expected squared distance between the T and R formulations to the expected squared distance between two administrations of the R formulation

• An acceptable T formulation is one where the T-R distance is not substantially greater than the R-R distance

• When comparison of T happens in central tendencies and also to the reference variance, this is referred to as scaling to the reference variability

Page 26: Bioequivalence of Highly Variable Drug Products

26

Reference Scaled BE Criteria

• Highly Variable Drugs / Drug Products with CVWR

>30 %• USA: Recommended in API specific guidances;

scaling for AUC and/or Cmax acceptable,• GMR 0.80 – 1.25; ≥24 subjects

• EU: Widening of acceptance range (only Cmax ) to maximum of 69.84% – 143.19%), GMR 0.80 – 1.25; Demonstration that CVWR >30% is not caused by outliers; justification that the widened acceptance range is clinically irrelevant.

Page 27: Bioequivalence of Highly Variable Drug Products

27

Reference Scaled BE Criteria: USA & EMA

• There is a difference between EMA and FDA scaling approaches

• US FDA: Regulatory regulatory switching condition θS is set to 0.893, which would translate into

• RSABE is allowed only if CVWR ≥ 30% (sWR ≥ 0.294), which explains to the discontinuity at 30%

• EMA: Regulatory regulatory switching condition θS avoids discontinuity

Page 28: Bioequivalence of Highly Variable Drug Products

28

Example 1: Data set 1• RTRT | TRTR full replicate, 77 subjects, imbalanced,

incomplete• FDA: sWR 0.446 ≥ 0.294 → apply RSABE (CVWR

46.96%)• a. critbound -0.0921 ≤ 0 and• b. PE 115.46% ⊂ 80.00–125.00%

• EMA: CVWR 46.96% → apply ABEL (> 30%)• Scaled Acceptance Range: 71.23–140.40%• Method A: 90% CI 107.11–124.89% ⊂ AR; PE 115.66%• Method B: 90% CI 107.17–124.97% ⊂ AR; PE 115.73%PE = Point estimate; AR = Acceptance range

Page 29: Bioequivalence of Highly Variable Drug Products

29

Example 2: Data set 2• TRR | RTR | RRT partial replicate, 24 subjects,

balanced, complete• FDA: sWR 0.114 < 0.294 → apply ABE (CVWR

11.43%)• 90% CI 97.05–107.76 ⊂ AR (CVintra 11.55%)

• EMA: CVWR 11.17% → apply ABE (≤ 30%)• Method A: 90% CI 97.32–107.46% ⊂ AR; PE 102.26%• Method B: 90% CI 97.32–107.46% ⊂ AR; PE 102.26%• A/B: CVintra 11.86% PE = Point estimate; AR = Acceptance range

Page 30: Bioequivalence of Highly Variable Drug Products

30

Canadian BE Criteria for HVDPs• The 90% confidence interval of the relative mean AUC of the

test to reference product should be within the following limits:

• 80.0%-125.0%, if sWR ≤0.294 (i.e., CV ≤30.0%);

• [exp(-0.76sWR) × 100.0%]-[exp(0.76sWR) × 100.0%] if 0.294 <sWR ≤0.534 (i.e., 30.0% <CV ≤57.40%); or,

• 66.7%-150.0%, if sWR >0.534 (i.e., CV >57.4%).

• The relative mean AUC of the test to reference product should be within 80.0% and 125.0% inclusive;

• The relative mean maximum concentration (Cmax) of the test to reference product should be between 80.0% and 125.0% inclusive.

Page 31: Bioequivalence of Highly Variable Drug Products

31

Analysis by SAS Proc Mixed

Page 32: Bioequivalence of Highly Variable Drug Products

32

Example 3: Inverika Data Set; Two Alverine Formulations; Intra-subject CV ~35%; n = 48

Page 33: Bioequivalence of Highly Variable Drug Products

33

Individual Bioequivalence (IBE) Metric

2 2 2 2

2 20

( ) ( )max( , )

T R D WT WRI

WR W

2

20

(ln1.25)I

W

Where

WhereµT = mean of the test productµR = mean of the reference productσD

2 = variability due to the subject-by-formulation interactionσWT

2 = within-subject variability for the test productσWR

2 = within-subject variability for the reference productσW0

2 = specified constant within-subject variability

Page 34: Bioequivalence of Highly Variable Drug Products

34

Population Bioequivalence (PBE) Metric

WhereµT = mean of the test productµR = mean of the reference productσTT

2 = total variability (within- and between-subject) of the test product

σTR2 = total variability (within- and between-subject) of the reference product

σ02 = specified constant total variance

≤θP

Page 35: Bioequivalence of Highly Variable Drug Products

35

Example 3: Inverika Data Set; Two Alverine Formulations; Intra-subject CV ~35%; n = 48

Page 36: Bioequivalence of Highly Variable Drug Products

36

Issues with RSABE• Advantages

• Sometimes fewer subjects can be used to demonstrate BE for a HVD

• Concerns• Borderline drugs• Submission of unscaled and reference-scaled BE statistics

for same product• What if T variability > R variability• Unacceptably high or low T/R mean ratios• Number of study subjects

Page 37: Bioequivalence of Highly Variable Drug Products

37

Questions?Comments?

[email protected]

Page 38: Bioequivalence of Highly Variable Drug Products

38

Thank You Very Much