BIODEV published pdf

89
Replicable tools and frameworks for biocarbon development in West Africa Ramya Sehmi, Cheikh Mbow, Sari Pitkanen, Helen Cross, Nicholas Berry, Mike Riddell, Janne Heiskanen, Ermias Aynekulu

Transcript of BIODEV published pdf

Page 1: BIODEV published pdf

Replicable tools and frameworks for biocarbondevelopment in West Africa

Ramya Sehmi, Cheikh Mbow, Sari Pitkanen, Helen Cross, Nicholas Berry, Mike Riddell, Janne Heiskanen, Ermias Aynekulu

Page 2: BIODEV published pdf

i

ReplicabletoolsandframeworksforbiocarbondevelopmentinWestAfrica

RamyaSehmi,CheikhMbow,SariPitkanen,HelenCross,NicholasBerry,Mike

Riddell,JanneHeiskanen,ErmiasAynekulu

Page 3: BIODEV published pdf

ii

LIMITEDCIRCULATION

Correctcitation:SehmiR,MbowC,PitkanenS,CrossH,BerryN,RiddellM,HeiskanenJ,AynekuluE.

2016.Replicabletoolsandframeworksforbio-carbondevelopmentsinWestAfrica.ICRAFWorking

paperNo.237.Nairobi,WorldAgroforestryCentre.DOI:http://dx.doi.org/10.5716/WP16138.PDF.

TitlesintheworkingpaperSeriesaimtodisseminateinterimresultsonagroforestryresearchand

practicesandstimulatefeedbackfromthescientificcommunity.Otherpublicationseriesfromthe

WorldAgroforestryCentreinclude:TechnicalManuals,OccasionalPapersandtheTreesforChange

series.

PublishedbytheWorldAgroforestryCentre

UnitedNationsAvenue

POBOX30677,GPO00100

Nairobi,Kenya

Tel:+254(0)207224000,viaUSA+16508336645

Fax:Tel:+254(0)207224001,viaUSA+16508336646

Email:[email protected]

WorkingPaperNo.237

Theviewsexpressedinthispublicationarethoseoftheauthorsandnotnecessarilythoseofthe

WorldAgroforestryCentre.

Articlesappearingintheworkingpaperseriesmaybequotedorreproducedwithoutcharge,

providedtheirsourceisacknowledged.

Page 4: BIODEV published pdf

iii

Abouttheauthors

RamyaSehmiRamyaSehmiholdsaBScinEnvironmentalSciencesfromtheUniversityofNottingham.She

workedasaresearchassistantundertheBiocarbonandRuralDevelopment(BIODEV)

projectattheWorldAgroforestryCentre.

CheikhMbowDrCheikhMbowservedasaSeniorScientistonClimateChangeandDevelopmentatthe

WorldAgroforestryCentrefrom2012to2016.HeisanAdjunctProfessoratMichiganState

University’sDepartmentofForestryandleadauthoroftheAgriculture,ForestryandOther

LandUse(AFOLU)chapterinIPCC'sFifthAssessmentReport,andtheIntergovernmental

Science-PolicyPlatformonBiodiversityandEcosystemServices(IPBES).Heiscurrentlythe

ExecutiveDirectorofSTARTInternationalinWashington-DC,USA.

SariPitkänenDrSariPitkänenreceivedherPhDinforestryin1998.SheworksattheUniversityofEastern

Finland,SchoolofForestSciencesandisthecoordinatorofUEF’sbioeconomyprogramme.

SheisalsotheSecretaryGeneraloftheInternationalPartnershipforForestryEducation

(IPFE).PitkänenhasalsoservedasaPlanningOfficer,ResearchScientistandResearch

OfficerattheUniversityofJoensuu,andauthoredseveralscientificpapers.

HelenCrossDrHelenCrossisahumanecologistwhospecializesinlivelihoodsresearch.SheholdsaPhD

inAnthropologyfromUniversityCollegeLondonandleadsthemarineturtleconservation

programmeonBastimentosIsland,Panama,fortheEndangeredWildlifeTrust,UK.

NicholasBerryDrNicholasBerry’sexpertiseisinparticipatoryprojectdesign,andthedevelopmentof

monitoringapproacheslinkedtoadaptivemanagementandperformance-basedfinance.He

hasover10years’experienceincommunity-basednaturalresourcemanagementprojects

inAfricaandAsia.BerryhasanMResinEnvironmentalManagement,aPhDinTropical

ForestEcology,andistheformerChairoftheTechnicalAdvisoryCommitteeofthePlanVivo

Foundation.

MikeRiddellDrMikeRiddell’sbackgroundisinpoliticalecologyandinter-disciplinaryresearch.His

expertiseisintheapplicationofparticipatorymethodsandprocessestounderstandthe

linksbetweennaturalresource-basedlivelihoodsandenvironmentalchange,livelihood

monitoring,andtheparticipatorydesignofbenefit-sharingarrangements.HeholdsanMSc

inBiodiversityConservationandManagementandaDPhilfromOxfordUniversity’sCentre

fortheEnvironment.

JanneHeiskanenDrJanneHeiskanenisaresearcherintheDepartmentofGeosciencesandGeography,

UniversityofHelsinki,Finland.Hismainresearchinterestsincludemeasurementand

Page 5: BIODEV published pdf

iv

mappingforestandvegetationbiophysicalattributesusingfieldinventoriesanddifferent

typesofremotesensingdata.HeholdsaPhDinGeography.

ErmiasAynekuluDrErmiasAynekuluisalandhealthscientistattheWorldAgroforestryCentre.Hisresearch

workbroadlyfocusesonlandhealthsurveillancewhichaimsatmeasuringandmonitoring

landhealthconstraintstoprovidesustainableecosystemservicesandtargeting

interventionstoimproveagro-ecosystemhealthandhumanwellbeing.Heleadslandhealth

projectsinAfricaandco-ordinatesUNCCDactivitieswithinICRAF.

Page 6: BIODEV published pdf

v

TableofContentsAbouttheauthors..........................................................................................................................ii

Listofabbreviations....................................................................................................................viii

Summary........................................................................................................................................x

Acknowledgements........................................................................................................................x

Keyterms......................................................................................................................................xi

A-1Introduction.............................................................................................................................1

1.1BiocarbonandclimatechangeinWestAfrica..............................................................................1

1.2Purposeofthetoolkitandobjectives..........................................................................................2

1.3Basicconcepts..............................................................................................................................3

A-2Methodsofmonitoringbiocarbon............................................................................................4

2.1Methodsofestimatingcarbonstocks..........................................................................................5

Definingprojectboundaryandmappingland-use.........................................................................5

Stratificationofprojectarea..........................................................................................................8

Carbonpools..................................................................................................................................8

Carbonpoolselectionandfrequencyofmeasurement.................................................................8

Definitionofmeasurementparametersandsamplingmethods:shapeandnumberofplots....10

Samplingmethods:shape,areaandnumberofplots.................................................................10

Conductfieldmeasurements,recordandcompiledata..............................................................12

Biomassestimatesandsourcesofuncertainty............................................................................15

2.2Carbondioxideemissionreductionthroughefficientwoodenergy(improvedstoves)............18

2.3Estimatingthesourcesofuncertainty........................................................................................19

B-1/Developmentoffruitandvegetabletreesforemissionreductionandcarbonsequestration.20

Rationaleandobjectives..................................................................................................................20

Dataandinformationrequirementsforcarbonsequestrationinfruitandvegetabletrees...........21

Carbonabatementpotential............................................................................................................23

Costsandinvestments.....................................................................................................................24

Environmentalandsocioeconomicbenefitsoffruitandvegetabletrees.......................................25

Institutionalframeworksandmanagementschemes......................................................................26

Monitoringrequirements.................................................................................................................27

Challengesandbarriers....................................................................................................................28

Capacitydevelopment......................................................................................................................29

Page 7: BIODEV published pdf

vi

References........................................................................................................................................29

B-2/Protectionofstandingbiomassforemissionreductionandcarbonsequestration.................32

Rationaleandobjectives..................................................................................................................32

Dataandinformationrequirementsforbiomassandcarbon.........................................................34

Carbonabatementpotential............................................................................................................35

Costsandinvestments.....................................................................................................................37

Environmentalandsocioeconomicbenefitsofconservingstandingbiomass.................................38

Institutionalframeworksandmanagementschemes......................................................................40

Monitoringrequirements.................................................................................................................40

Challengesandbarriers....................................................................................................................40

Capacitydevelopment......................................................................................................................41

References........................................................................................................................................42

B-3/Nitrogen-fixingtreesandsoilfertilization..............................................................................44

Rationaleandobjectives..................................................................................................................44

Dataandinformationrequirementsforcarbonsequestrationbynitrogen-fixingtreesandsoil

fertilization.......................................................................................................................................46

Carbonabatementpotential............................................................................................................47

Costsandinvestments.....................................................................................................................48

Environmentalandsocioeconomicbenefitsofnitrogen-fixingtreesandfertilization....................49

Institutionalframeworksandmanagementschemes......................................................................49

Monitoringrequirements.................................................................................................................49

Challengesandbarriers....................................................................................................................50

Capacitydevelopment......................................................................................................................51

References........................................................................................................................................51

B-4/Woodenergyorstoves..........................................................................................................53

Rationaleandobjectives..................................................................................................................53

Dataandinformationrequirements................................................................................................55

Carbonabatementpotential............................................................................................................57

Costsandinvestments.....................................................................................................................58

Environmentalandsocioeconomicbenefits....................................................................................59

Institutionalframeworkandmanagementschemes.......................................................................59

Monitoringrequirements.................................................................................................................60

Challengesandbarriers....................................................................................................................60

Capacitydevelopment......................................................................................................................61

Page 8: BIODEV published pdf

vii

Sustainableenergywoodmanagement...........................................................................................62

References........................................................................................................................................63

B-5/Landrestorationforcarbonsequestration.............................................................................65

Rationaleandobjectives..................................................................................................................65

Dataandinformationrequirementsforlandrestoration................................................................66

Carbonabatementpotential............................................................................................................66

Costsandinvestments.....................................................................................................................67

Environmentalandsocioeconomicbenefitsoflandrestoration.....................................................68

Institutionalframeworksandmanagementschemes......................................................................68

Monitoringmethods........................................................................................................................68

Challengesandbarriers....................................................................................................................69

Capacitydevelopment......................................................................................................................69

References........................................................................................................................................70

ANNEX1:Carbondioxideequivalent............................................................................................72

ANNEX2:BiocarbonprojectsinAfrica..........................................................................................73

Page 9: BIODEV published pdf

viii

ListofabbreviationsAGB Above-GroundBiomass

ACF AfricaConservationFoundation

AFOLU Agriculture,ForestryandOtherLandUse(

AREAP AfricaRenewableEnergyAccessProgramme

BIODEV BiocarbonandRuralDevelopment

CCC ClimateChangeConnection

CD CrownDiameter

CDM CleanDevelopmentMechanism

CEPF CriticalEcosystemPartnershipFund

CER CertifiedEmissionReduction

CFL CompactFluorescent

CIFOR InternationalCentreforForestryResearch

DBH DiameteratBreastHeight

DM DryMass

DOE DepartmentofEnergy

FAO FoodandAgricultureOrganizationoftheUnitedNations

FM FreshMass

FMNR Farmer-ManagedNaturalRegeneration

GEF GlobalEnvironmentFacility

GHG GreenhouseGas

GPS GlobalPositioningSystem

GRF GuineanRainForest

GWP GlobalWarmingPotential

HCF Hydrofluorocarbons

ICRAF WorldAgroforestryCentre

ICRISAT InternationalCropsResearchInstituteforSemi-AridTropics

INERA Institutdel'EnvironnementetdeRecherchesAgricoles

IP InternationalProgramme

IPBES IntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystem

Services

IPCC IntergovernmentalPanelonClimateChange

IPFE InternationalPartnershipforForestryEducation

LULC LandUseandLandCover

LULUCF LandUse,Land-UseChangeandForestry

MAC MarginalAbatementCost

MEDD MinistryofEnvironmentandSustainableDevelopment

MEWR MinistryofEnvironmentandWaterResources

MRV Measuring,ReportingandVerifying

NGO Non-GovernmentalOrganization

NMVOC Non-MethaneVolatileOrganicCompounds

NPK Nitrogen,PhosphorusandPotassium

OECD OrganizationforEconomicCo-operationandDevelopment

PFC Perfluorocarbons

REDD ReducingEmissionsfromDeforestationandforestDegradation

REEEP RenewableEnergyandEnergyEfficiencyPartnership

RMC RelativeMoistureContent

Page 10: BIODEV published pdf

ix

RWEDP RegionalWoodEnergyDevelopmentProgramme

SOCSOM SequestrationofCarboninSoilOrganicMatter

STEWARD SustainableandThrivingEnvironmentsforWestAfricanRegionDevelopment

UEF UniversityofEasternFinland

UK UnitedKingdom

UN UnitedNations

UNCCD UnitedNationsConventiontoCombatDesertification UNEP UnitedNationsEnvironmentProgramme

UNFCCC UnitedNationsFrameworkConventiononClimateChange

USA UnitedStatesofAmerica

USAID UnitedStatesAgencyforInternationalDevelopment

USDA UnitedStatesDepartmentofAgriculture

USFS UnitedStatesForestService

UTM UniversalTransverseMercator

VCA ValueChainAnalysis

WP WorkPackage

Page 11: BIODEV published pdf

x

SummaryThisworkingpaperisintendedtohelpcountriesinWestAfrica,andlocalcommunitiesand

farmerstoadoptclimate-smartlandmanagementpracticesthatenhancecarbon

sequestration.Abatinggreenhousegasemissionfromlanduseshouldnot,intheAfrican

context,limitacommunity’sdevelopment.Hence,promotingaHighValueBiocarbon

communityofpracticeshouldfirstaddressthelivelihoodsofinhabitantsthroughincreased

socioeconomicdevelopmentopportunities.Thedocumenthighlightstheimportanceof

interventionslikeagroforestryinattaininggoodqualityandquantityofproductsby

highlightingthesignificanceofgrowingfruitandvegetabletrees,nitrogen-fixingtrees

againstheavyfertilizerusage,protectionofstandingbiomass,utilizationofimprovedwood

energystovesandlandrestoration.Thesubstantialamountofinformationanddata

requiredtoexecuteeachoftheprojectsaregivenindetailinthisworkingpaper,together

withthesocioeconomicandenvironmentalbenefits,costsincurred,monitoring

requirements,proposedmanagementschemesandcapacitybuilding.Theratesofsuccess

oftheprojectscanbemeasuredbyconductingcarboninventories,estimatingtheamount

ofcarbondioxideemissionsreleased,andcarryingoutsurveysamonglocalstoascertainthe

qualityandquantityofproduceandmarketvalues.Thechallengesandbarriersexperienced

inimplementingbiocarbondevelopmentprojectscanbeaddressedbyincreasingthe

numberoftrainingworkshopsofferedonconductingcarboninventories,bridgingthegaps

inresearchanddevelopment,increasingaccesstocapitalandimprovinginfrastructure

development.Itisfundamentaltoensureprogressinthesestaturestoencouragefurther

sustainablefarmingtechniquesforthebenefitoftheenvironment,societyandthe

economy.

AcknowledgementsThisdocumentispartofaseriesofpublicationsfromWP2oftheBIODEVprojectfundedby

theGovernmentofFinland.WearethankfultothecommunityofCassouinBurkinaFaso

andtheINERAscientistswhofacilitatedtheworkinthefield.ThankstoDr.JeromeTondoh

fortheoverallcoordination.OurwarmthankstoSusanOnyangoforthevaluablereviews.

Page 12: BIODEV published pdf

xi

Keyterms1Agroforestry–Insimpleterms,agroforestrymeansgrowingtreesonfarms.Thiscaninclude

thedevelopmentoffertilizertrees,fruittrees,foddertrees,medicinaltreesandtimberand

fuelwoodtrees.Manyofthesetreesaremultipurpose,providingarangeofbenefits.

Biomass–Organicmaterialderivedfromlivingorrecentlylivingorganisms,oftenreferring

toplantmaterials.Biomassisalsoconsideredasasourceofrenewableenergy.

BiocarbonandRuralDevelopmentproject(BIODEV)–Aninitiativetoachievedevelopmentalandenvironmentalbenefitsthatcanbeaccruedfrombuildingbiologicalor

naturalcarbonthroughimprovedagroforestryandforestrymanagementandtreeplanting.Carbon–OneofthemostabundantelementsonEarthandintheatmosphere.Carbonis

thechemicalbasisforallknownlife.Itisabsorbedandemittedinvariousformsthroughout

thecarboncycle,buttheamountiseffectivelyconstant.Carbonprojectsmeasurethe

carbondioxidesequestratedbytrees.

Carboncredit–Atrade-ableunitorcertificatewhichrepresentsonemetrictonofcarbon.A

carboncreditorcarbonoffsetcanbesoldasareductioninemissionsofcarbondioxideand

othergreenhousegasesmadeinordertocompensatefor,ortooffsetanemissionmade

elsewhere.

Carbondioxide(CO2)–Naturallyoccurringgreenhousegasandaby-productofburningfossilfuelsorbiomass,orland-usechangesandindustrialprocesses.Itistheprincipal

anthropogenicgreenhousegasthataffectstheEarth’sradiativebalanceleadingtoglobal

warming.

Carbonemissions–Inthecarboncycle,carbondioxideisabsorbedbyplantsandmaybere-

emittedascarbondioxidebyorganismswhichconsumethebiomassaccumulatedbyplants.

Thetermisoftenassociatedwiththeenhancedemissionsproducedbyhumanactivities

throughburningoffossilfuels.Carbonemissionsfromdifferentactivitiessuchasflying,

drivingandheatingorcoolinghomescannowbeaccuratelycalculated.Thesecalculations

areusedtomeasuretheamountofcarboncreditsrequiredtooffsetsuchemissions.

Carbonmarkets–Therearetwotypesofcarbonmarketsnamelycomplianceandvoluntary.

ThecompliancemarketsareprescribedbytheUnitedNationsFrameworkConventionon

ClimateChangeandrealizedthroughCleanDevelopmentMechanismProjectsCertified

EmissionReduction(CER)permits,whicharesoldandtradedbetweennations.Voluntary

markets,ontheotherhand,arelesscentralizedandincludetransactionsbetween

individualsandbusinesses,andprivateornot-for-profitcompanieswhichbuyandsell

carboncreditstooffsetthecarbonemissionstheygenerate.

Carbonsequestration–Thisisthedirectremovalofcarbondioxidefromtheatmosphere

throughland-usechange,afforestation,reforestationand/orincreasesinsoilcarbon.

Carbonsinkorcarbonpool–Asystemthatcanstoreand/oraccumulatecarbone.g.above-

groundbiomass(treesandvegetation),litter,deadwoodandsoilorganiccarbon.

Carbonstandard–Normallyassociatedwiththevoluntarycarbonmarket,acarbon

standardisasetofqualitystandardsandprocedurestoensurearigorousandtransparent

carbonforestryproject.Eachstandardprovidesguidelinesforvalidating,measuring,and

monitoringcarbonoffsetprojects.

Forestdegradation–Thereductionofaforestsproductivityorecologicalfunctionthroughselectiveloggingalthoughlanduse/coverremainsasforest.Incontrasttodeforestation,

thisisoftenagradualprocessenhancedbychangesinlocalmicro-climatesandforestfires.

1 Sources:Alforteetal.2014,IPCC2013,ICRAF2016

Page 13: BIODEV published pdf

xii

Greenhousegas–Gasesconcentratedintheatmospherewhichenhancesthewarming

effect,effectivelycreatingablanketaroundtheearth.Theyincludecarbondioxide(CO2),

carbonmonoxide(CO),nitrousoxide(N2O),oxidesofnitrogen(NOx),methane(CH4),and

non-methanevolatileorganiccompounds(NMVOCs).TheKyotoProtocolalsoaddresses

hydrofluorocarbons(HCFs),perfluorocarbons(PFCs),andsulphurhexafluoride(SF6).

Landuse,land-usechangeandforestry(LULUCF)–TheUnitedNationsFramework

ConventiononClimateChangedefinesthisas,‘Agreenhousegasinventorysectorthat

coversemissionsandremovalofgreenhousegasesresultingfromdirecthuman-induced

landuse,land-usechangeandforestryactivities.’EmissionsfromLULUCFareestimatedto

representupto20%oftheglobalemissionsannually.

Mitigation–Thereductionandpreventionofgreenhousegasemissionsandenhancement

ofexistingsinks.

Nitrogenfixation–Thisisaprocessbywhichnitrogen(N2)intheatmosphereisconverted

intoammonia(NH3)andmadeavailabletoplants.

Permanence–Akeyconceptincarbonforestryprojects.Ensuring‘permanence’ofthe

claimedcarbonsequestratedthroughproceduresandpracticeswhichguaranteethatthe

treesplantedorprotectedremainso.Inpractice,thisisdifficulttoguaranteeandlossesdue

todisease,firesandevenneglectareareality.Therefore,morecarbonstandardsrequire

theprojecttosetasidea‘buffer’incaseoflossoftreesandthecarbontheystore.

Remotesensing–Istheartandscienceofmakingmeasurementsoftheearthusing

sensorsonairplanesorsatellites.

Technicalspecifications–Aspecifiedland-useactivity,includingthemethodologyusedto

quantifycarbonsequestrated,assessmentofrisksandleakage,themanagementand

monitoringsystemtobeadopted,anddescriptionsoflikelyecosystemservices,including

butnotlimitedtocarbon.Manytechnicalspecificationshavealreadybeendevelopedso

theremaybenoneedtodeveloponesforyourspecificproject.

Page 14: BIODEV published pdf

1

A-1Introduction

1.1BiocarbonandclimatechangeinWestAfricaLossoftreecoverisamajorcontributorofgreenhousegasemissionsinsub-SaharanAfrica.

Thesustainablemanagementofforests,includingtreecropsystems,isvitaltothesuccess

ofcommunityclimatechangeadaptationneedswhilesupportingglobalclimatechange

mitigationefforts.Investmentsinimprovedwoodyvegetationmanagementofferthemost

significantcarbonsequestrationpossibilitiesinrurallandscapes.Moreimportantly,they

alsohavepositiveeffectsonotherenvironmentalservices(e.g.,waterflowsand

biodiversity),energyprovision,agriculturalproductivityandincome(SinareandGordon

2014).Inadditiontobenefitsthroughmitigation,agroforestryandforestscontributeto

communities’abilitytoadapttoclimatechange(Mbowetal.2014,FAO,2010).Treeson

farmsincreasetheresilienceandproductivityofagriculturalsystems,thusincreasingthe

adaptivecapacityofsmallholderfarmers.

Abroad-basedcarbonenrichmentstrategyatlandscapelevelwillalsocontributeto

increasedbiomassforenergy,reducingpressureonforeststhatarecriticalfor

environmentalservices.Italsoenrichessoilssothattheyaremoreproductiveandcapable

ofupliftingagriculturalproductionandincome(Lal2004,Shibu,2009).Productsfromforest

andwoodlandresourcesarelikewiseknowntoprovidelocalcommunitieswithmuch-

neededresourcesandincome,especiallyduringperiodsofdroughtandotherclimate-

relateddisasters.Productsofseveralspeciesmanagedbyfarmershavesalevaluesinthe

tensofmillionsofdollarseachyear.Additionally,fuelwoodfromtreesaccountsforover9%

oftotalprimaryenergyglobally(FAO2016).InAfrica,around92%ofwoodremovalsfrom

forestandwoodlandareforfuel(Amous1997).

Stockandfluxaretwoimportantconceptswhicharesubsequentlylinked;increaseinstock

indicatesthattheecosystemabsorbscarbon.Thisfactcomesfromthelawofconservation

ofmass.Forinstance,ifcarbonstockisgrowing,itmeansthatthereismorecarbon

enteringthangoingout.Inotherwords,thenetbalanceoffluxisaninboundflux.Itmeans

thatifCO2isremovedfromtheatmosphere,theatmosphericconcentrationofgreenhouse

gasesisdecreasedandclimatechangeisreduced.Inthatcase,theprocessiscalledcarbon

fixation,absorptionorremoval,andtheecosystemiscalledacarbonsink.Conversely,ifthe

stockdecreases(forinstanceinadecayingorburningforest),anoutboundfluxwillincrease

atmosphericgreenhousegasconcentrationsandincreaseclimatechange.Theprocessis

knownascarbonemission,andtheecosystemiscalledacarbonsource.

Bothforestedandagriculturallandscapesprovideavarietyofenvironmentalservicesthat

areverysensitivetohumanpressure.Loweringtheratesofdeforestationorenhancingthe

carbonstocksinanecosystemresultsinmitigation.Inparticular,mitigationbenefitscome

fromimprovedmanagementactionsleadingtoloweremissionsorinincreasedremovalof

carbonfromtheatmosphere,thusloweringtheCO2intheatmosphere.Concurrently,these

samelandscapescanprovidebenefitsthatincreaseresiliencyofcommunities.Such

adaptationbenefitsincludeimprovedwaterresources,biodiversityandvariedeconomic

Page 15: BIODEV published pdf

2

opportunitiesthroughagriculturalproductsandservices,timber,non-timberproductsand

culturalvalues.Thoseservicesandlandscapesarethemselvesvulnerabletoclimate

variabilityandchange,forexample,duetohigherfrequencyofforestfiresandotherforms

ofhumanoranimalpressures.Thus,forestoragriculturalmanagementitselfneedstobe

adaptedtobecomemoreresilient.

InAfricathepotentialtobundlemitigationandadaptationthroughsustainableland

managementisdemonstrated,butcommunitieslackthetechnicalskillsandknowledgeto

planandimplementclimate-smartsolutions.Currently,technicalcapacitiesexpressed

throughvariousagreementsareweakinmostcountries.Improvedcapacityisthereforea

requirementforbiocarbonapproachesinthecontinent.Thistoolkitwasdevelopedtofill

thegapandnurtureopportunitiesthroughmainstreamedknowledgetovariousgroupsof

practitioners.

Thekeymessageinthispublicationisthatthesamemanagementactioncanbothprovide

mitigationandadaptationbenefits.Mitigationbenefitsarerealizedthroughreduced

emissionsfromdeforestationandincreasedcarbonsinksfromplantedtrees,while

adaptationbenefitscomethroughthegreaterclimateresilienceoflocalcommunitiesfrom

continuedregulationandprovisionofecosystemservices.

Itisimportantthereforethatstrategiestoimproveagroforestry,treeandforest

managementemphasizetheircontributiontowardsdevelopmentandwellbeing.Those

benefitsgenerallyoffergreaterprivatefinancialrewardsthandothebenefitsfrom

environmentalservices,andthustheytendtodrivetheincentivesforinvestmenttoa

greaterdegree(Bugayong2003).

Buildingcarboninecosystemreservoirsthroughimprovedagroforestryandforest

managementandtreeplantingisreferredtoasbiocarbondevelopmentinthispaper.TheBiocarbonandRuralDevelopment(BIODEV)projectbyICRAFusesforestry,agroforestryand

treestoderiveabroadrangeofdevelopmentandenvironmentaloutcomes(i.e.,notjustfor

carbon);whichisreferredtoashigh-valuebiocarbondevelopment.Approachestosustainableruraldevelopmentarecriticalinthelightofclimatechangeandtheincreasing

importanceofadaptationandmitigation.

1.2PurposeofthetoolkitandobjectivesThereisavarietyofcost-effectivemitigationoptionsavailablethatarebasedonforest

resourcemanagement.TheseoptionsofferopportunitiesformanyAfricancountriestoboth

contributetoclimatechangemitigation,andtoimproveadaptivecapacitiesofpoor

communities.Inthiscontext,theterm‘biocarbon’isdefinedasthebroadsectorthat

includesrenewableenergyderivedfrombiomassandorganicwastes,aswellasthecarbon

sinks(trees,vegetation,soilandpeat)foundinagricultural,forestandotherterrestrial

ecosystems.AsetoftransformativeoptionsthatarewidelyapplicableinruralareasofWest

Africatocontributetothepreventionofemissionsbymaintainingandenhancingcurrent

biocarbonsinks,andcontributetotheremovalofcarbonfromtheatmospherethroughthe

establishmentofnewbiocarbonsinkswereselected.

Thesectorsdescribedinthistoolkitinclude:

1) Developmentoffruitandvegetabletrees

Page 16: BIODEV published pdf

3

2) Protectionofstandingbiomass

3) Developmentofnitrogen-fixingtreesandsoilfertilization

4) Improvedwoodenergy/stoves

5) Landrestorationforcarbonsequestration.

1.3BasicconceptsThecarboncycleisabiogeochemicalcyclewherecarbonisexchangedamongthe

componentsoftheEarth,namelyatmosphere,biosphere,hydrosphere,pedosphereand

geosphere.

Carbondioxideispresentinreservoirswhereitcanbestoredorreleased(e.g.,insoiland

vegetation)calledcarbonpools.Thesecarbonpoolseitherstorethecarbontoforma

carbonsink,orreleasethecarbondioxidetobecomeacarbonsource.Theprocessbywhich

carbondioxideisremovedfromtheatmosphereforstoragebyasubsequentcarbonpoolis

referredtoascarbonsequestration.Carbonemissionistheremovalofbiocarbonfrom

carbonsinksintotheatmosphere.Additionally,acarbonfluxisdefinedastherateof

exchangebetweencarbonpools.

Figure1.1:Termsusedintheexchangeofcarbondioxidebetweencarbonpools

Remotesensingtechnologiescombinedwithgroundmeasurementsplayakeyrolein

measuringandmonitoringthecarbonbudget.

Page 17: BIODEV published pdf

4

A-2MethodsofmonitoringbiocarbonToavoidrepetitioninsubsequentsectionsofthistoolkit(sectionB-X),thegeneralmethods

ofmonitoringbiocarbonarediscussedhere.Anyadditionaldetailsarethencoveredin

specificsections.

Therearethreetechniquesthatcanbeusedtomeasurebiomassandcarboninforests

(RavindranathandOstwald2008).

a) Fieldmeasurements

b) Remotesensing

c) Allometricmodelling

Figure2.1:Asummarizedfigureofthesignificantinformationandstepsrequiredfortheimplementationofasuccessfulcarboninventorywithmeasurementsinvolvedandsubsequenttechniquesused(Source:RavindranathandOstwald2008).

Themostcommonfieldmeasurementsoftreestodeterminecarbonstockincludethestem

diameteratbreastheight(DBH),treeheightandcrowndiameter.Thesebiometric

measurementsareessentialastheycanbeusedtoestimateconvertedtreebiomassusing

allometricmodels(Brown1997,Nairetal.2010).Furthermore,carboncontentcanbe

derivedfrombiomassasapproximately50%ofbiomassiscarbon.

Thegrowthoffruitandvegetabletrees,nitrogen-fixingtreesandfertilizer,conservationof

standingbiomass,useofwoodenergyorefficientstovesandlandrestorationallhave

substantialeffectsontheabove-groundbiomassoftheconsequentialecosystems.

Therefore,determiningtheabove-groundbiomassoftreesandmonitoringchangesinitis

veryrelevant.

Page 18: BIODEV published pdf

5

2.1MethodsofestimatingcarbonstocksTreesareimportantfeaturesinfarminglandscapesinWestAfrica.Yetestimatingthe

carbonpotentialofnumerousagroforestsystemshasbeenlimited.Agoodwaytovisualize

astockofcarbonistothinkofthebiomassstoredintheecosystem.Almost50%ofthedry

biomassiscarbon.Ifthedrybiomassofatreeistwotonnes,thenitcontainsaroundone

tonneofcarbon(C=biomassX0.47).

Figure2.2:Simplifiedstepsindicatingtheprocessofestimatingcarbonstocksoffruitandvegetabletreesoragroforestrysystemsinadefinedprojectarea(Source:RavindranathandOstwald2008)

Definingprojectboundaryandmappingland-useIdentifyingtheprojectboundaryisthefirstcrucialsteptoobtainingacarboninventoryof

thespecifiedland-usecategory.Ingeneral,therearetwoapproachesofdevelopingproject

boundaries(RavindranathandOstwald2007):

a) Ground-basedmethods

b) Remotesensing

Themethodusedtoformaprojectboundaryishighlydependentonthestatusofland,the

vegetationandscaleoftheproject.Forexample,alarge-scaleprojectwouldbenefitmost

fromtheuseofremotesensing.

Page 19: BIODEV published pdf

6

Ground-basedmethodsThesemethodsareusefulforsmall-scaleprojectsandincludephysicalmeasurementsor

usingGPScoordinatestoformaprojectboundary.

Table2.1:MethodsandmaterialsrequiredfordefiningprojectboundariesMethods Physicalmeasurements GPSmeasurements RemotesensingandGIS

Materialsrequired

Compass,measuringtape

orchains,permanent

marker,clinometer(ifthe

siteissloped),notebook,

surveypegsandhammer.

GPS,notebook,tagging

deviceandlocalmapsfor

latitudeandlongitude

coordinatesanda

compass.

Multispectralhighto

mediumresolution

satelliteimage(e.g.

LANDSAT,ASTER,SPOT,

GEOEYE,RAPIDEYE,

QUICKBIRDetc.)andGIS

software.

Pictureexamples

PlantedForestInventoryin

Mbao(Senegal)

DelineatedStrateinWelor

(Senegal)

Quickbirdimageofthe

Ferlo(Senegal)

RavindranathandOstwald2008

Directmeasurements

Acompass,measuringtapesorchainscanbeusedtoanalysetheareaandmarkthe

positionsusingpegs,dependingonifthelandislevel.

GPSmeasurements

SelectthecoordinatesystemandunitrequiredandenterthemintotheGPSforrecording

andtrackingtheprojectboundary.TheGPSshouldproperlybecalibratedforprecisionin

dataacquisition.UsingmetricunitsinmapcoordinatessuchasUTM-basedprojectionwill

helpintranslationoffieldcoordinates-basedmaps.Landmarksshouldbeproperlytagged

usingmetalclipsoranydevicethatcanbeusedformarkingandmakenotesoferror

estimatesgivenbytheGPS(RavindranathandOstwald2007).Acompasswouldbe

beneficialasvegetationmaybedenseinsomeareasandthisinterfereswiththe

transmissionsignalsfromthesatellites.

Page 20: BIODEV published pdf

7

Figure2.3:ExampleofahandheldGPS(PhotobyRamyaSehmi)

RemotesensingandGISRemotesensingcomprisesusingsensorsmountedonsatellitesonaircraftsandinvolvesthe

useofpassiveandactivesatellitemethodsandinstruments,includingaerialphotography.

Remotesensingiswidelyusedforlarge-scaleprojects.Thismethodinvolvesthedetection

andmeasurementoflandobjectsusingsatelliteimageries(e.g.LANDSAT,MODIS,ASTER,

SPOT)andaerialphotographsthroughvisualinterpretationorclassificationmethods

(Graham1999).ExamplesofremotesensingsoftwareincludeENVI,ERDAS,GRASS,etc.

Figure2.4:AnexampleofafalsecolourcompositeofLandsat8OLIimage(green,redandnearinfraredspectralbands)fromsouthernBurkinaFaso(top).Close-upimagesdemonstratedifferenceinspatialresolutionbetweenthehighresolutionRapidEyeimage(left)andmediumresolutionOLIimage(right)fortheareaindicatedbytheyellowrectangle.BothimageswereacquiredinFebruary2014.

Page 21: BIODEV published pdf

8

StratificationofprojectareaGivenspatialvariationincarbonstockanddynamics,precisioninmeasurement

requirementsurgeforadifferentiatedassessmentofvariousgeographicalvariationsfor

carbonstockestimatesbyarrangingorclassifyingintogroupstoformrelatively

homogenousclasseswithsimilarcarbonstocks(Pearsonetal.2013).Thestepsinclude:

1) Delineatingcomplexmosaicsintohomogenousareasbyvegetationtypesorland

use.2) Selectandapplysamplingmethodsforeachstratum.3) Finally,compileobtaineddataandestimatecarbonstocksforeachstrataand

projectarea.

MethodsofstratificationStratificationcanbeachievedinthefollowingways:

1) GPS((i).2forinstructions)–ThisiscarriedoutbyusingtheGeographicalInformation

Systemsoftwareprogrammetostore,analyseandreportdata.Althoughthismaybe

atediousandtime-consumingapproach,itischeaperthanothermethodsandis

thereforeconsidered.

2) Remotesensing(section(i).(2).b)–ThisentailstheuseofaerialphotographyorsatelliteimagesandGISsoftwareformappingvegetationtypesandlanduse.

Figure2.5:Exampleofastratifiedplotofland(VelingaraForestinSouthernSenegal)

CarbonpoolsInagivenecosystem,thereareseveralreservoirsofcarbonthatcanbemeasuredand

monitored.Theseareindicatedinfigure2.7.

CarbonpoolselectionandfrequencyofmeasurementSelectingtheprecisecarbonpoolsforinventoryisaffectedbytheprojecttype,sizeofthe

pool,rateofchange,costtomeasureandattainableaccuracy(MacDicken1997a,b,Brown

Page 22: BIODEV published pdf

9

2002).Aselectiveorpartialaccountingsystemcanbeusedbutitmustcontainallrelevant

poolsexpectedtodecreaseorincrease(Brown2002).

Figure2.6:Thevariouscarbonpoolspresentinagivenenvironment

Table2.2:AselectionofcarbonpoolsthatcanbemeasuredindifferentprojectsProjecttypes CarbonPools

LiveBiomass DeadBiomass Soil WoodTrees Understory Roots Fine Coarse Products

Avoidemissions

- Stopdeforestation

- Reducedimpact

logging

- Improvedforest

management

Y

Y

Y

M

M

M

R

R

R

M

M

M

Y

Y

Y

R

M

M

M

M

Y

Sequestercarbon

- Plantations

- Agroforestry

Y

Y

N

Y

R

M

M

N

M

N

R

R

Y

M

Carbonsubstitution

- Shortrotation

energyplantations

Y

N

M

N

N

Y

*

Y=Yes,R=Recommended,M=Maybe,N=Notrecommended,*StorescarboninunburnedfossilfuelsSource:IPCC,2000

Table2.2givesasummaryofpoolsthatcanbemeasuredinvariousland-basedcarbon

projectscenarios;carbonemission,sequestrationandsubstitution.Incarbonsequestration

projects,measuringthecarbonpoolsintreesandwoodproductswouldbemostbeneficial

asthechangeinthepoolswouldbelarge.

Above-groundbiomassisthemostdynamiccarbonpoolforlandusesystemsandprojects

involvingtrees.Itislikelytochangefrequentlyorannually,muchfasterthanotherpoolsfor

allprojectsinvolvingtreeplanting.Themeasurementfrequencydependsonthestockin

above-groundbiomasspoolatthepre-projectimplementationphase(knownasbaseline

Page 23: BIODEV published pdf

10

scenario).Ifthestockiszeroorinsignificant,aswithafforestationorreforestationprojects

inbarelands,theannualcarbonaccumulationislikelytobesignificantandshouldbe

measuredeverythreeyears.Whereasinthescenarioofforestmanagementprojects(also

knownasavoideddeforestation),theabove-groundbiomassislikelytobepresentin

considerableamountsatthestartoftheproject,therefore,annualmonitoringisnot

required,(RavindranathandOstwald2007).

Onthewhole,themeasurementfrequencyofabove-groundbiomasswhichusuallyranges

fromonceayeartoevery2-3yearsisreliantonthecarbonstocksatthebeginningofthe

project,thegrowthrateofthebiomassandtheobjectiveoftheproject.

Definitionofmeasurementparametersandsamplingmethods:shapeandnumberofplots

DefinitionofparametersTheconsequentialestimationandmonitoringofcarbonstocksinaprojectrequiresthe

measurementofparameters.Thesearegivenbelow.

Table2.3:Parametersforestimatingcarbonstocksinabove-groundbiomass

Source:RavindranathandOstwald2007

Samplingmethods:shape,areaandnumberofplotsSamplingistheprocessbywhichinferenceismadetothewholeprojectareabyexamining

partsofit.Themaingoalistogetareliableestimatewithminimalcost(Pearsonetal.2005).Measurementsforcarboninventoriesaretakeninanumberofplots.Theaverage

valueobtainedwhenallplotsarecombinedrepresentthewiderpopulation,andbyusing

theconfidenceinterval,theaccuracyandhowrepresentativethevalueiscanbe

determined.Typically,aconfidencelevelof95%isusedandportraysthat95timesoutof

100,thetruecarbondensitylieswithintheinterval(Pearsonetal.2005).

Carbonpool Parameterstobemeasuredandrecorded

Above-groundbiomassoftreesandshrubs • Nameofspecies(includinglocalnameif

available)

• Diameteratbreastheight(DBH)(cm)

Height(m)

• Crownextent:fullcrownorpercent

crowndamaged

• Freshweightandnumberofstemsfor

shrubs

• Origin:regeneratedorplanted

Above-groundbiomassofherborground-layer

vegetation(smallershrubs)

• Nameofspecies

• Densityofherbsandsmallershrubs

(number/plot)

• Freshweightofherblayerbiomass(g/m2)

Page 24: BIODEV published pdf

11

Therearetwotypesofsampleplotsthatcanbeusedforsamplingtrees:permanentplots

andtemporaryplots.Permanentplotsaremorestatisticallyefficientandpermitverification

overtime,andarethereforemoresuitableforcarbondynamicsestimationinaprojectarea

consistingofmainlytrees.Additionally,thesizesandshapesofthesampleplotshavea

trade-offbetweenaccuracy,precision,measurementtimeandcostofmeasurement.

Temporaryplotsaresuitableforassessingcurrentstocks.Itisalsoimportantto

differentiatebetweensingleplotsoffixedsizesornestedplotscontainingsub-unitsof

differentsizes(Lackmann2011).Plotscanalsobeclassifiedaccordingtotheirshapes,the

mostpopularforvegetationanalysesarecircular,rectangularandsquareplots,though

stripsarealsoused.

Identifyingthenumberofplotsrequiredtobemeasuredormonitoredforestimating

carbonstocksisacrucialstepintheproject.Thenumberofplotsshouldbechosenwith

statisticalrigortogetacorrectassessmentoftheimpactofaland-basedprojectoncarbon

stocks,roundwoodproductionorsoilorganicmatter(RavindranathandOstwald2007).

Thefollowingstepsareusedtocalculatethenumberofplots:

• Step1-Identifytheprecisionlevel.

• Step2-Identifyareatocollectpreliminarydata.

• Step3-Estimatemeancarbonstockandvariancefromthepreliminarydata.

• Step4-Calculatethenumberofplotsusingtheequationbelow:

Equation2.1:Commonformulatoestimatenumberofplots

Where:

• n=numberofplotstobemeasured

• Syx=estimationerror

• t=studenttvalue

• S=variance

• X=meanvalue

Alternatively,anonlinetoolforcalculatingnumberofplotsisavailableat:

http://www.worldagroforestry.org/downloads/Publications/PDFS/TM11192.pdf(Aynekulu

etal.2011).

Theselectionofsampleplotlocationsmustbefreeofbias.Thisstatisticalerrorisavoided

byfirstlyexaminingtheprojectboundaryandthemapofthearea,selectingifplotswillbe

randomlyorsystematicallysampledanddeterminingtheexactsitesusingGISdata.Tropical

forestsandwoodlandsrequirelargersamplingplotsduetotheirsizesandextensive

canopies.

Intermediate plot: radius 14 m, trees 20-50 cm dbh

Page 25: BIODEV published pdf

12

Figure2.7:AnexampleoftheDBHoftreesandtheapproximateradiiusedinfixedplots(Source:Pearsonetal.2007)

(a) Randomsampling(b)Systematicsampling

Figure2.8:Anexampleofsamplingdesigns,(a)randomand(b)systematic

Conductfieldmeasurements,recordandcompiledataTobeginfieldmeasurements,anumberofprerequisitesarerequired,namely(Ravindranath

andOstwald2007):

• Trainedstaff

• Informationabouttheprojectarea

• Instrumentsandmaterialsneededforthemeasurements

• Arrangementforplantsamplecollection

• Equipmentforrecordingdata

Followingthesearrangements,fieldexperimentscancommenceassuringfurtheraccuracy

andtimemanagement.Theinstrumentsneededformeasurementsandrecordingdatafor

carboninventoryarelistedbelow.

Table2.4:Alistofallinstrumentsandmaterialsneededtoconductfieldexperiments- Measuringtape–long(5,30,50m)andfinetoallowmeasurementofDBH(1-1.5m)

- Clinometer–estimatingtreeheight

- Pegsformarkingboundaries

- PaintandbrushormarkersformarkingpointofDBHmeasurement

- GlobalPositioningSystem(GPS)

- Balance(forweighingshrubsandwoodybiomass)

- Sheetsandpencilsforrecordingdata

- Metalquadratforsamplingherbaceousvegetation

- CaliperstomeasureDBHofsmallstems

- Aluminumtagsformarkingtrees

- Clothbagsorpaperbagstocollectlitterorherbaceousvegetation

Large plot: radius 20m, trees >50 cm dbh

Small plot: radius 4 m, trees 5-20 cm dbh

Page 26: BIODEV published pdf

13

Measuringabove-groundbiomassoftrees.Calculatingtheabove-groundbiomassoftreesrequiresnotesandmeasurementsofa

numberofparameters:thespecies,diameteratbreastheight(DBH),thecrownradiusand

treeheight(Seetable2.3).

• Treediameteratbreastheight(1.3maboveground)ismeasuredusingatapewhich

providesthecircumference,oraDBHtapewhichgivestheDBHdirectly.TheDBHis

thenrecordedincentimetresonthedatasheet.Ifthetreehasanumberofshoots,

theDBHforallshootsaremeasured.

Figure2.9:Measuringthediameteratbreastheightofvaryingshootsandformsoftrees(Pearsonetal.2005

• Measuringtheheightofthetreecanbedoneinanumberofways:

i) Usingmeasuringinstruments–Ifthetreeissmallerthan5m,thenagraduated

heightstickcanbeusedbyholdingthestickagainstthetree.Butifitisabigtree,

aclinometeriscommonlyused(butnotindensevegetation).Hypsometers(for

example,Suunto)arealsowidelyusedanddonotrequirecalculations.When

usingaclinometer,theworkerstandsaconsiderabledistanceawayfromthe

tree(notedowndistancefromtree)suchthatthewholetreecanbeviewed

fromtheclinometer.Ifthesampleplotislocatedonaslopeitisadvisedtoview

thetreefromacrosstheslopetomaintainthedistance.

a) Usingtheclinometer,alignthecenterlinewithbaseofthetreeandusinga

percentagescale,thenrecordthereading.Followingthis,aimtheclinometer

Page 27: BIODEV published pdf

14

tothetopofthetreeandrecordthereadingagainonapercentagescale.

Theheightofthetreecanthenbedeterminedusingtheequationbelow:

Equation2.2:Formulatodetermineheightofthetreeusingclinometerreading

Height(m)=[topangle(%)–baseangle(%)]xhorizontaldistance

100

Figure2.10:Estimatingtreeheightusingtheclinometermethod

ii) Usingaheightequation–Thismethodcorrelateswiththediameteratbreast

height(DBH).Aregressionequationcanbeformulatedforagivennumberof

species,approximately30samples,usingheightandDBHmeasurementsoftrees

withdifferentheights.TheheightcanbeestimatedfromDBHdataforagiven

treespeciesusingthefollowingequation(RavindranathandOstwald2007):

Equation2.3:Where:D=DBH,a=constant,b=regressioncoefficientHeight(H)=a+bD

RecordingandcompilingdataAllmeasurementsoftreespecies,heightsandDBHrecordedonthedatasheetarethen

transferredtoanExcelfileforfurtheranalysis.Anexampleofwhatadatasetmaylooklike

isshowninTable2.5.

Distance to tree

NB:Itisimportanttonotethehealthofthetreesbeingdocumented.Forinstance,

thepercentageofdamageonatreecrown,ifany,andifthetreeisdead,fallenor

standing.Thesefactorsaffectthecarbonstockestimationoftheprojectarea.

Page 28: BIODEV published pdf

15

Table2.5:Asampleofinformationrecordedandcompiledinadatabase

BiomassestimatesandsourcesofuncertaintyBiomasscanbeestimatedusingtwomethods:

- Directmethods:destructivesamplinganddevelopmentofallometricequations.

- Indirectmethods:applicationsofexistingallometricequations,biomassexpansion

factorandvolumeequations.

Treemeasurementsusingtraditionalforestinventorieswillbeanalysedusingallometric

equationstoobtainindividualtrees’biomasswhicharethenusedforestimatingcarbon

stocksoftheprojectarea.

(a) EstimatingbiomassusingdestructivesamplingAgoodsamplingdesignshouldbeestablishedbasedonpre-existingdatasetonabundance

ofvariousspeciesanddistributionoftreeinsizeclass.Anumberofallometricmodelshave

beenbuiltbasedondirectsamplingoftreesofvarioussizeandvariousspecies.Depending

ontheobjectivesandtheavailabilityoftheequations—eitherspeciesspecificallometric

modelsorgenericallometricmodelmosaicscanbeused.Allometricequationsarea

fundamentaltoolfornon-destructiveestimationofbiomassinwoodyvegetation.These

equationsexpresstreebiomassasafunctionofeasy-to-measureparameterssuchas

diameter,height,orwooddensity,oracombinationofthese(Brown2002,Chaveetal.

2005).

Thenumberoftreesselectedvaries,butthepopulation(n)harvestedshouldbe

representativeenoughtoallowstatisticalinferences.Themeasurementprotocolforeach

selectedtreeintheinventoryplotsincluded10successivesteps:

1. MeasureofDBH,heightandcrowndiameter

2. Cutthetreeatthebase

3. Measurethetrunklength(fromthebasetotheinitialramifications)

4. Separatethepartsofthetreeinthreecategories(trunk,branchesandleaves)

5. Weighthedifferentpartsineachcategory

6. Collectsamplesfromeachcategoryandweightheirfreshmass(FM)withan

electronicbalance

7. Dehydratethesamplesinaventilatedovenat60°Cuntiltheirdrymass(DM)

remainsconstant

Page 29: BIODEV published pdf

16

8. CalculatetherelativemoisturecontentRMC=(FM-DM)/FMofthesamples

9. ConverttheFMintoDMbyapplyingtheappropriateconversionfactorsforeach

categoryofthetree

10. Estimatethetotaldrybiomassofthetreebysummingupthemassesofthethree

categories(trunk,branchesandleaves).

Thefundamentalmeasurementsacquiredforeachtreewithineachinventoryplotinclude

thetreespeciesname,theDiameteratBreastHeight(DBH)andtrunkcircumference,the

totalheightandtreeCrownDiameter(CD),thewetanddrymass,aswellastherelative

moisturecontentofsamplesfromeachofthethreecategories(trunk,branches,leaves),

andtheweightsofthesesamples.

Table2.6:Anexampleofadatasetforconstructingallometricequations

EstimatingbiomassusingallometricequationsInputstoanallometricequationusuallyincludeDBH,treeheightandwooddensitywhich

canbederivedfromliteratureoronlinedatabasessuchas:

http://db.worldagroforestry.org.Sometimes,DBHistheonlyinputandthedatahowever

resultsinasignificantamountofbias(Valbuenaetal.2016).

Table2.7:Examplesofsomepublishedallometricequations

S/N Equation Vegetation Author1 930.02 )(051.0 HdbhAGB ´´= Agroforestry,WesternKenya

Henryetal.,2009

2 472.2)(091.0 dbhAGB ´=

Agro-ecosystems,WesternKenya

Kuyahetal.,2012

3 AGB=DBH(1.929+0.116xDBH+0.013XDBH2) Savannasystem,Senegal

Mbowetal.2013

4 AGB=33338×(1–exp(–2×2245×X/33338))² TropicalDryforest Manleyetal.2002

5 AGB=0.0673x(qD2H)0.976 Pantropicalforest

Chaveetal,2014

Page 30: BIODEV published pdf

17

Table2.8:SpeciesspecificallometricequationsSpecies n Equations R2 RSE Country Authors

AcaciaSenegal

44 y=0.032Dbh3-

1.016Dbh2+10.87Dbh+

7.429

0.963 - Sénégal Thiametal.2014

Pterocarpuserinaceus

105 Vf=3.024D2.259 0.873 0.353 Gaya(Niger) Rabiouetal.2015

Faidherbiaalbida

9 y=7.985Dbh+32.277 0.33 0.2447 Kollo(Niger) Larwanouetal.2010

Combretumnigricans

100 y(g)=

1.2289×(X^2.5806)×10^(–

3)

1 N’goukan(Mali) Henryetal.2011

Anogeissusleiocarpa

20 ln(y)=-2.4996+

1.5133ln(Dbh)+1.1256

ln(H)

0.9576 Benin Guendehouetal.2012

Ziziphusmauritiana

9 y=5.46Dbh+6.6167 0.99 0.2182 Kollo(Niger) Larwanouetal.2010

Source:Moussaetal.2015

Chaveetal.(2014),recentlyrevisedageneralallometricequationforestimatingabove-

groundbiomassintropicalforestsandwoodlands.Thisallometricequationdisplayedin

Table3.7canbeusedtodeterminecarbonstocksinvariousecosystems.FAOhasinitiated

thefollowingglobalallometrydatabasehttp://www.globallometree.org.

EstimatingbiomassusinganexpansionfactorandvolumeequationsThebiomassexpansionfactoristherelationshipbetweenthetotaltreebiomassandthe

stembiomass.Itisusedtoestimatethetotaltreebiomassusingthestembiomass.

Equation2.4:AttainingtotaltreebiomassusingabiomassexpansionfactorB

tot=B

stem*BEF

Where:Btot=Totaltreebiomass,Bstem=Stembiomass,BEF=Biomassexpansionfactor

Thismethodestimates;(i)thevolumeofthetimberinthetreestem;(ii)thebiomassinthestem

bymultiplyingthevolumeoftimberbythewooddensity;and(iii)theabove-groundbiomass,by

multiplyingthestembiomassvolumesbyanappropriatebiomassexpansionfactor.

Thegeneralequationforabove-groundbiomass(AGB)is:AGB=VxρxBEF

- whereV=stemvolumeρ=drywooddensity;BEF=biomassexpansionfactorfor

above-groundbiomass(branchesandcanopy).

Page 31: BIODEV published pdf

18

2.2Carbondioxideemissionreductionthroughefficientwoodenergy(improvedstoves)Implementationofefficientcookingstovesbenefitsboththehealthofthepublicandthe

environmentthroughtheconsequentialreductionincarbondioxideemissions.Therateof

deforestationtoattainfuelwoodisreducedaslessfuelwoodisneededwhencookingwith

efficientlydesignedcookingstoves.Additionally,thecookingstovesaredesignedtorelieve

ruralfamiliesacrossWestAfricafromthepossibilitiesofgettingburntandharmful

emissionsproducedwhilecooking.

Therelativeamountsofemissionsproducedfromtheuseofefficientcookingstovesare

difficulttointerpretaseachindividualstoveisdependentonvariousparameterssuchas

thetypeanddesignofthestoveandthesourceofwoodfuel(Bhattacharyaetal.2002).

Grupp(2002)stipulatedthatcookingisresponsibleforapproximately5%ofallgreenhouse

gasesworldwide,whichisnearly2billiontonnesofcarbondioxideequivalentemissionsa

year(AdriaandBethge2013).

Figure2.11:Relativeglobalemissionsofvariouscookingfuels(Source:Grupp2004)

Figure2.11depictsthecarbondioxideemissionsreleasedbyvariouscookingfuels.The

three-stonefireproducesmorethanthree-quartersofthecarbondioxidereleasedfrom

cooking(withseverehealthimplications),whileanimprovedbiomasscookingstovereduces

theseemissionsto6%.Hence,woodenergycookingstovescouldreducegreenhousegas

emissionssignificantlyataneteconomicbenefitorlowcost(AdriaandBethge2013).

FurtherdetailsonwoodfuelsandefficientcookingstovesarediscussedinSectionB-4.

Emissionsfromcookingstovescanbemeasuredandmonitoredusingbothdirectand

indirectmethods(Treemer1997):

i) Directmethods–Thismeasurementiscarriedoutatthesourcewherebyahoodis

placedoverthestovetocaptureemissions.

Ker

osen

e

Page 32: BIODEV published pdf

19

ii) Indirectmethods–Inaroomresemblingaruralhome,theinfluenceofthestoveand

theemissionsaremeasuredusingagaschamberandtheemissionsourcestrengthis

calculatedbyperformingamassbalanceforthepollutantinthechamber.Another

indirectmethodistheuseofemissionfactorsthatconvertflatemissionratefromunits

ofwoodorcharcoalusedforcooking.

2.3EstimatingthesourcesofuncertaintyUncertaintyistheconsequentialdoubtthatarisesfromconductingmeasurements.The

sourcesofuncertaintiesanderrorsincarboninventoriesareattributabletothefollowing

(Bell2001):

i) Themeasurementprocess–Themethodofmeasurementmaybechallengingsuchas

estimatingtheheightoftreesinaslopedarea.Althoughnumerousmethodshavebeen

verifiedinestimatingdifferentformsofbiomass,whichmayperhapsseemimpossibleto

analyse(e.g.talltreesinrainforests,slantingtreetrunks),thereisstillacertainamount

oferroranduncertaintythatarisesasopposedtomeasuringDBH/treeheightsof

simplertreesandbiomass.

ii) Themeasurementinstruments–Instrumentsusedcouldbeoutdated,brokenandold,

withhighusagehistorywhichcouldimpedethevaluesacquiredfromthemeasurement

procedure.

iii) Humanerror–Thisisunavoidableerrorwhichoccursnaturallythroughfaultsinreadinginstrumentsanddatarecording,amongothers.Ausualpracticetoreducethatistoset

peercross-checkwiththeinconvenienceofspendingmoretimeindatacollection.

iv) Allometricmodelsused–Certainallometricmodelsproduceresultswithasignificant

amountofbiasinparticularwhentheconditionsofapplicationareverydifferentfrom

theallometrysources.

Therelativeamountofuncertaintyinacarboninventorycanbereducedbycheckingthe

measurementattainedtwiceorthricebeforeproceeding.However,thismaybetime

consumingifthebenefitofreduceduncertaintyoffsetsthetimeconsumption.Additionally,

attainingaveragesofthemeasurementstoacquirethebestestimate,increasingworkshops

andtrainingworkersonconductingcarboninventoriesandadvancedtechnologywould

greatlyreduceuncertainty.

Page 33: BIODEV published pdf

20

B-1/Developmentoffruitandvegetabletreesforemissionreductionandcarbonsequestration

RationaleandobjectivesFruitandvegetabletreescontainsufficientamountsofwoodybiomasstoactascarbon

sinks.However,thecarbonsequestrationoffruitandvegetabletreeplantationsalonemay

notbeashighasitisinforestsduetoreducedbranchesandwoodymass.Fruitand

vegetabletreeshavethebenefitsofimprovingfoodsecurity,nutritionalvalue,agricultural

incomeandsustainableuseoflandwhenplantedtogether.

Anadditionaladvantageistheabilityoffruitandvegetabletreestosurviveinvarious

environmentswhereforestsmaybeunabletothrive.Thisishighlydependentonthetype

ofplantation,butisbeneficialtoclimatechangeandthesoilenvironmentasnutrient

cyclinganddecompositionoflitterfromtheexistingfruitandvegetabletreesincreasethe

fertilityandorganicmatterofsoil.Thisallowsforthegrowthofmoreherbaceous

vegetationandagriculturalproduce.Suchprocessesincreasetheoverallrateofcarbon

sequestrationtherebyalteringtheconcentrationofcarbondioxidegasintheatmosphere

andreducingclimatechangeasanamplenumberoftreesaregrowninareaswherethere

werenonetobeginwith.

Themainpurposeofpromotingthedevelopmentoffruitandvegetabletreesinthistoolkit

istoincreasecarbonsequestrationandreduceclimatechange.Atthesametime,farmers

areeducatedonmoresustainablemethodstoacquiregoodqualityfood/productsoftheir

preferencethatenablesbetternutritionoftheWestAfricaaswellassocioeconomic

development.

AvastnumberofindigenousfruittreesarefoundinthevaryingclimatesacrossWestAfrica.

Someexamplesare:MangoandAfricanmangoes(MangiferaindicaandIrvingiagabonensis),tamarind(Tamarindusindica),baobab(AdansoniadigitataL.)andsheatree(Vitellariaparadoxa),amongothers.Thesefruittreeswereidentifiedaspriorityspeciesfor

domesticationprogrammesbytheWorldAgroforestryCentre(ICRAF)in1995duetotheir

highnutritional,medicinalandincome-generatingvalues(Kalinganireetal.2008,

Tchoundjeuetal.2008).ThecoastalareasofWestAfricahavecoconutpalm(Cocosnucifera)trees.However,denseforestsarescarceduetothesalinenatureofsoils.

Thepalmtrees(Elaeisguineensis)notonlyenhancethewell-beingoftheenvironment,but

alsocontributetosocioeconomicdevelopment.Martin(1999)highlightedtheimportance

ofshadetreesforsmallerfruitorvegetabletreessuchbanana,coffee,cacaoorplantingsof

annualorperennialvegetables.Withtheshadetrees,yieldsincreasedconsiderablyand

woodharvestinginforestsdecreased.Thishighlightsthevalueofsustainableuseofland

throughtreesandagriculture,knownasagroforestry,wherewoodyperennialsare

deliberatelyintegratedwithcropsand/oranimalsonthesamelandwithbothecological

andeconomicinteractionsbetweenthewoodyandnon-woodycomponents(ICRAF1997).

Developingbiocarbonprojectsinhumanizedlandscapesisabigconundrumduetolackof

clarityonlandtenuresystemsthatdeterminesthesecurityandriskofdeforestation.In

Africa,deforestationisfrequentlyaresultoftheriseindemandforfoodandfuelsdueto

increasingpopulations.Theforestsareclearedforagriculturalpurposesusingtechniques

Page 34: BIODEV published pdf

21

suchasslash-and-burnwheretheremainingashisusedasfertilizerforthecropstobe

grown.Deforestationnotonlyresultsinanincreasednetfluxofcarbondioxideintothe

atmosphere,butalsoposesotherconcernssuchassoilerosion.Thiscandestroynewly

plantedcropsandseedlingsandcauselossofnutrientsleavinglandunsuitableforanyplant

growthwhatsoever.

Thisinturnreducesthequalityandquantityofcashcropsbeinggrown,assoilnutrient

richnessislostandthelandleftbarren.Subsequently,carbondioxideconcentrationinthe

atmosphereisincreased,alongwiththeeffectofglobalwarmingandclimatechange,while

thesocioeconomicdevelopmentofthecountryfacesdrawbacks.

Tocounterdeforestationthroughlandrestoration,theuseofvariousformsofagroforestry

suchasreforestation,edgeorlineplantingandfarmer-managednaturalregeneration

(FMNR)canbeimplemented.Hence,farmerscanopttoplantfruitandvegetabletrees

alongwithtimbertrees,nativeforestsorperhapstogether,suchasthecaseofpalmtrees.

TheWorldCommissiononForestsandSustainableDevelopmentsuggestedradicaland

urgentactionstotackleclimatechange,deforestationandpovertybyimplementingmore

extensivesupporttocommunity-basedagroforestrytopromotegrowthoffruitand

vegetabletreestogether(LeakeyandTchoundjeu2001).Herein,thefarmlandbecomesthe

communities’andtherisksandbenefitsoffoodproductionareshared.

Theseagroforestrysystemsprovidebetterqualityproductswithadequatenutritional

values,andfertilesoilsduetoleaflitterdecomposition.Theyreducetheneedforfrequent

applicationoffertilizer,whileevidentlyenhancingsustainableagricultureandlanduse.As

deforestationisconsiderablyreduced,carbonsequestrationisenhancedasnotreesare

beingcutdownbutinsteadgrown,creatingmorecarbonpoolsinthatarea.Thisevidently

reducesthepressureonforestsandmaximizesthesustainableuseofland,thusensuring

co-benefitsforclimatechangeadaptationandmitigation(Mbowetal.2014).

DataandinformationrequirementsforcarbonsequestrationinfruitandvegetabletreesMeasuringthepreciseamountofcarbonstocksinafruitandvegetabletreedominatedarea

ischallengingduetothevastspatialandtemporalheterogeneityofspecies(Kuyahetal.

2012).However,itisanimportanttaskconsideringthatatleast87%ofagroforestrysystems

insub-SaharanAfricahavemorethan10%treecover(Kuyahetal.2012,Zomeretal.2009).

Carbonstockscanberegulatedthroughagroforestprojectsby:

i) Targetingdegradedordeforestedlandswhereafforestationisfeasibleandallowed

ii) Analysingtheclimateofthedegradedareaandotheraspectssuchaseconomicand

ecologicalbenefitstoenableselectionofthemostsuitablespeciestogrow;priority

species:“therighttreefortherightplace”althoughthevegetationmapforWestAfrica

hasnotyetbeendeveloped.(ICRAFwebpage:

http://vegetationmap4africa.org/Vegetation_map.html).

iii) Selectingcommunitiesandchoosingappropriatemanagementandmonitoring

techniquesbasedonthenatureoftheplantation,silviculturalpracticessuchaspruning,

harvesting,croprotationandfertilizing,andselectingmethodsforfieldandlaboratory

Page 35: BIODEV published pdf

22

studies.Figure3.1.1demonstratesthecycleofcarbonsequestrationinanygiven

agroforest.

Figure3.1.1:Thedrivers,processesandeffectsofsilviculturalpracticesoncarbonsequestrationpotentialonagroforestry(Source:Nairetal.2010)

Thesequestrationpotentialofcarboninagroforestsishighlydependentonthespecies,site

quality,managementpracticesandageorrotationlength(Nairetal.2009,Nairetal.2010).

Toenablesuccessfulprojectdevelopment,thefollowingfactorsmustbedetermined:

a) Baselinescenario–Enablesclearanalysisofcarbonstockadditioninthetargeted

landbeforeimplementationoftheprojectscenarioandafter.

b) Additionality–Theestimatedamountofcarbonthatwillbestoredasbiomass

throughoutthedevelopmentoftheprojectfromthebaselinescenario.

c) Leakage–Theconsequentnetlossofbiomasscarbonduetoconversionofland

outsidetheprojectboundaryaffiliatedwithdisplacementoffarmersandlocals.

d) Permanence–Thedurationofthecarbonsequestrationprojectshouldbealong

termschemetoenablemaximumstoragepotentialofcarbonbyallspecies.

Page 36: BIODEV published pdf

23

Figure3.1.2:IllustratesadditionalcarbonsequestrationdenotedbyA,BandC,throughtheimplementationofaprojectscenariotothreevaryingbaselinescenarios

Beforetheexecutionofaproject,itisimportanttoassessthebaselinescenarioto

determinetheadditionalcarbonsequestration(shownbyA,BandC)expectedbythe

implementationoftheproject.Thebaselinescenariosgiveninfigure3.1.2depictthe

standardcarbonbiomasspatternsindicating:nochangesincarbonstocks,decreasing

carbonstocksorsteadilyincreasingcarbonstocks.Furthermore,theleakageandthe

expectedpermanenceoftheprojectmustbequantifiedsoastoallowanaccurate

estimationofcarbonsequestrationbyfruitandvegetabletrees.

CarbonabatementpotentialThissectiontargetsexamplesofsuccessfulcarbonsequestrationprojectsregarding

developmentoffruitandvegetabletreesinWestAfrica.Thecarbonabatementpotential

referstotheabilityofthefruitandvegetabletreestoreducecarbondioxideconcentration

fromtheatmospherebyconvertingitintobiomassorcarbonstocks.Belowisatable

providinginformationoncarbonsequestrationpotentialofdifferentspeciesgrownin

variouscountrieswithdifferentclimaticandecologicalnichesacrossWestAfrica.

Table3.1.1:Examplesofcarbonsequestrationpotentials(t/ha/yr)ofvariousspeciesandclimatesSpecies Conditionsofgrowth CarbonsequestrationpotentialCocosnucifera(coconuttrees)

Humidtropics,hot

temperaturesandalong

coastlines

1-5t/ha/yr

Musaacuminata,Musabalbisiana(bananaplantations)

Sub-tropicalclimates 6t/ha/yr

Elaeisguineensis(Africanoilpalmtrees)

Humidtropics,semi-arid

tropics

6t/ha/yr

Dacryodesedulis(Safou) Humidandsub-humidtropics 8t/ha/yr

Theobromacacao(cacaotrees)

Humidtropics 7t/ha/yr

Source:Toensmeier2016

A B C

Page 37: BIODEV published pdf

24

Table3.1.1providesadditionalexamplesandinformationonspeciesthatcanbegrownin

varyingenvironments.Farmerscanoptfortreesthatsequestermorecarbonintheproject

areainordertoincreasesustainablefarmingandagriculturalpractices.Additionally,the

speciesselectedmustalsoprovideasubstantialamountofeconomicprofits.

CostsandinvestmentsThedevelopmentoffruitandvegetabletreesonfarmstoenhancecarbonsequestrationin

WestAfricarequiresproperinvestment.Theprojectneedstogeneratemorefinancial

advantagesratherthanoutgoingcostsinwhole.Anumberofcheaper,moreefficient

alternativescanbeusedandaregiveninthemethodologysection(seesectionA-2).

Primarily,acarboninventorybeginsbyestimatingtheprojectboundary,stratifyingthe

area,identifyingparametersandconductingmeasurementsandlaboratoryanalysis.Thisis

wheremostcostsandinvestmentsareprocured.Thefollowingstepsinacarboninventory

requiresubstantialamountsoffunding:

i) Trainingstaff–Thisenablesattainmentofimprovedaccuracyandprecision.The

selectedstaffmustbewellskilledtocarryoutprocessessuchasremotesensing,

handlingGPSdata,stratification,conductingtreemeasurementswhichrequire

readingclinometersandasignificantamountofinformationontheprojectarea.ii) Incentivesforfarmerstoenablethemtocontinuetheiragriculturalpracticesoutside

theprojectboundary–Incasetheselectedprojectareaisagriculturalland,farmers

mayneedtobedisplacedandforcedtocarryouttheiractivitiesoutsideofthe

conservationarea.Thismeanshavingtostartalloveragainandthereforemayrequire

somefinancialsupport.

iii) Incentivesforworkers–Thisismandatoryforallworkersthatarepartoftheproject.

Itadherestothelawsofeverycountrytopayforlabour.iv) Capitalforcarryingoutremotesensingtechniques–Remotesensingcomprises

receivingdatafromsatellites.Thismethodrequirescertainsatelliteimageswhichcan

beboughtsuchasLANDSAT,SPOT,Quickbird.Nonetheless,thereareanumberoffree

softwareavailableontheinternetsuchasQGIS,GRASS,Interimage,E-fotoandgvSIG,

amongothers.Satelliteimageryissoldatpricesthatrangefrom$5-$3000persquare

kilometre.Thepricesaredependentonthesoftwarepackagebeingusedandthe

resolution.However,therearegooddataavailableforfree,suchasLANDSAT8OU

andSentinel-2images.v) Purchasingequipmentformeasurementsandprojectboundarydelineation–The

materialsrequiredare:clinometerswhichcostroughlybetween$130-$170,aGPS

whichusuallyrangesbetween$150-$400,measuringtape,surveypegs,compass,

markersanddatasheets.vi) Seedlingsandfertilizers–Oncethespeciestobegrownareselected,fundsneedto

beputasidetobuythefruitandvegetabletreeseedsandfertilizer.vii) Managementtechniques–Themanagementtechniquesrefertotheadditional

requirementsassessedthroughstratificationoftheprojectarea,suchaslivefencing

forsilvopastoralpractices,fertilizers,irrigationpumpsandtillageequipment.viii) Monitoringtechniques–Thecostsrelatedtomonitoringaredependentonthe

frequenciesofmeasurement.Theamountsofcarbonstockspresentbeforethe

implementationoftheprojectdeterminethemeasurementfrequencies.Iftheproject

includesafforestationorreforestation,carbonstocksshouldbemeasuredannually.

Page 38: BIODEV published pdf

25

Thismayturnouttobemorecostlyasopposedtomeasuringcarbonstocksevery2-3

yearsinaforestoragroforestrymanagementproject.Basedonthefundingavailable,themethodstouseandimplementintheprojectcanbe

determinedtofitwithinthespecifiedbudget.

EnvironmentalandsocioeconomicbenefitsoffruitandvegetabletreesTheprimaryreasonsforcultivationoffruitandvegetabletreesaretoincreasethepotential

ofcarbonsequestration,tomitigateclimatechangeandenhancesocioeconomic

development.Theenvironmentalbenefitsrefertothenon-carbonbenefitsofvariousfruit

andvegetabletreespeciesandthesubsequentadvantagestothesoilenvironmentthrough

decompositionandnutrientcyclingwhichenhancesoilfertilityandintensifybiodiversity.

Furthermore,fruitandvegetabletreeshavetheabilitytothriveinvaryingclimatic

conditionswhereforestsmaybeunabletoexist.ExamplesofWestAfricanindigenous

speciesarepalmtrees(Cocosnucifera)whichgrowinsalinesalts,baobabtrees(AdasoniadigitataL.)whicharecapableofsurvivingdryclimateandsheanuttree(Vitalleriaparadoxa)foundindrysavannah,amongothers.Theadditionofcarbonsinkstothe

environmentincreasethelikelihoodofmitigatingclimatechangethroughthesequestration

ofcarbonfromtheatmosphere.

Alongwiththeenvironmentalbenefitsoffruitandvegetabletreeplantations,thesocialand

economicaspectsperformakeyroleinthedeterminationofwhatspeciestogrowand

where.Fruitandvegetableplantationsenhancefoodsecurity,thelivelihoodsofrural

peopleandcontainvastamountsofnutritionalvaluesthatarefundamentalforahealthy

lifestyle.TheWestAfricanSahelisanexampleofwherethereareanumberoffruitand

vegetabletreeswithsocioeconomicbenefitsthatcanimprovethedietandlivelihoodsof

theruralpoor.Table3.1.2givesafewexamplesoftheenvironmental,economicandsocial

benefitsofdomesticatedtreesintheWestAfricanSahel.

Table3.1.2:FruitandvegetabletreesthataredomesticatedintheWestAfricanSahelandtheireconomicandsocialbenefitsTreespecies Socialbenefits Economicbenefits Environmental

benefitsPriceperkg(CFA)(1USD=550CFAroughly)

AdansoniadigitataL.(Baobab)

RichinvitaminC,

vitaminAand

protein

Fruitpulp,ropesand

medicines

Carbon

sequestration

250-500

FCFA/kg

DetariummicrocarpumG.etPerr.(Detar)

3.2gvitaminC,4.9

gprotein64.5gof

sugar.

Cakes,woodusedfor

fuel,constructionpoles

andtoolhandles.

Seedsusedasfragrance

Carbon

sequestration

Cakessellat25

FCFA/kg,fruit

soldat100

FCFA/kg

Parkiabiglobosa(Nere)

Richinproteins,

lipids,and

phosphorus,

vitaminCand

carbohydrates.

Fruitpulp,driedseeds,

soldasmedicine

Carbon

sequestration,

agroforestry,soil

fertility

Driedseedssell

for600F

CFA/kg,fruit

pulpfor200F

CFA/kg

TamarindusindicaL.(Tamarind)

Highlevelsof

proteins,

carbohydrates

Snacks,makingsauces,

wine,icecream,drinks,

jam,confectionery,

Carbon

sequestration

Fruitpulpsells

for400FCFA/kg

Page 39: BIODEV published pdf

26

Treespecies Socialbenefits Economicbenefits Environmentalbenefits

Priceperkg(CFA)(1USD=550CFAroughly)

andmineralssuch

aspotassium,

phosphorus,

calciumandiron

edibleoil,dyes.Wood

usedformakingtool

handles,furniture,

charcoalandfuelwood

Vitalleriaparadoxa(Sheanuttree)

Highlevelsof

omega6

Beneficialforskin

health

Sheabutter.Exportedfor

useinchocolateproducts

andbypharmaceutical

companies

Carbon

sequestration.

Sheabuttersells

for400FCFA/kg

In2004/2005

Maliexported

10,000tofdry

kernelforabout

800millionF

CFA

Ziziphusmauritiana(Ber)

Leaves,roots,and

barkusedfor

medicinal

purposes

Freshjuice,freshfruit

pulpanddryfruitpaste.

Woodusedforkitchen

utensils,firewood,

charcoalandhandles

Carbon

sequestration,

leavesusedfor

fodder,

recommended

forplantingalong

contourlinesfor

erosioncontrol

Fruitpulpsells

for350FCFA/kg

Source:Kalinganireetal.2007

Thefruittreesaboveallgrowinthesemi-aridlandscapeoftheSahelandthroughmore

sustainablepractices,increasedplantationsandagroforestrydomesticatedindigenoustrees

canthriveandcreatemoreenvironmentalandsocioeconomicbenefits.

InstitutionalframeworksandmanagementschemesAframeworkreferstothebasicstructureunderlyingasystemorprocedure.Thesuccessful

developmentoffruitandvegetabletreesrequiresamanagementschemeorframework

involvingthecooperationofanumberofinstitutionstoenablemoresustainableand

beneficialagriculturalpracticestargetingthelivelihoodsofcommunities.

Primarily,anagroforestryprojectorfruitandvegetabletreeplantationrequiresadequate

planning,measurementsandresearchtocomeupwithareasonable,moresustainable

projectproposaltocontractfunds.ThisiscarriedoutbyinstitutionssuchasICRAF,the

InternationalCropsResearchInstituteforSemi-AridTropics(ICRISAT)andUnitedNations

EnvironmentProgramme(UNEP),amongothers.Theseinstitutionsencouragefarmersand

otheragriculturalpractitionerstopracticesustainableagriculturalwhilealsopromoting

qualityofproduce,therecommendeddietforhealthierlifestyles,improvementof

livelihoodsofcommunitiesandthesocioeconomicdevelopmentofthecountry.

Additionally,ICRISATcanoffergeneticallymodifiedseedssoastoguaranteegoodquality

producetoeradicatefoodinsecurityandenhancenutrientsinthedietsofcommunities.The

fundingrequiredfortheprojectscanbesoughtfrombodiessuchasTheWorldBank,Africa

ChallengeEnterpriseFund,AfricanDevelopmentBank,ConcernUniversalandStarfish

Initiativesamongothers.

Page 40: BIODEV published pdf

27

Devex,aninternationalcompany,currentlyhasaprojectwhichaimstoimprovethe

livelihoodsofsmall-scaleAfricanfarmersbyincreasingtheiraccesstolocal,regionaland

internationalmarkets.Suchcompanieshaveexpertiseandlinkstointernationalmarkets.

Thiscouldhelpfarmersselltheirproducetosmall-andlarge-scalemarkets,thusincreasing

theirincomesandimprovingtheirlivelihoods.

Atthenationallevel,forestservicesandgovernmentalorganizationscanraisefundsunder

theUnitedNationsFrameworkConventiononClimateChange(UNFCCC)agreementsor

bilateralsupports.ThecurrentREDD+frameworkisachanneltoinvestinbiocarbon.Many

NGOs(CARE,Bioclimatic,LIVELIHOOD)canaccessfundsforvariousstakeholderstopromote

biocarbon.

MonitoringrequirementsMonitoringofcarbonpoolsrequiresmeasuring,reportingandverifying(MRV)changesin

carbonstocksintheprojectimplementationarea.Thisprojectisdesignedtoenhance

carbonsequestration,thereforechangesinallcarbonstocksclaimedneedtobere-

measuredperiodically.Thiscanbedonebythere-measurementofmarkedtreesinthe

permanentselectedplotsandre-measuringothercomponentsasshownbelow(Brown

2002).

Figure3.1.3:Ameasuringandmonitoringplan(Source:IPCC2003)

Page 41: BIODEV published pdf

28

Theabove-groundbiomassismonitoredthroughthemeasurementofthediameterat

breastheight(DBH),heightofthetreeandcrowncover.Thedataistheninsertedinto

generalallometricequationsorspeciesspecificallometricequationstoassesstheincrease

incarbonstockssincethepreviousmeasurementsweretaken.Foradetailedanalysison

stratificationandmeasurementsseeA-2forthemethodology.

Additionally,theimpactsoftheprojectonsocioeconomicaspectsneedtobemonitored.

Thesecanbeassessedbyhandingoutsurveystolocalsandconductingforumstocollect

feedbackonthequalityandquantityoffruitsandvegetablesattained,includingtheir

marketvaluesandtheirsales.

ChallengesandbarriersThekeypurposeofpromotingthedevelopmentoffruitandvegetabletreesotherthan

carbonsequestration,istheaptitudeofthetreestoenhancefoodsecurity,boost

nutritionalvaluesinthedietsofruralcommunities,andimprovetheeconomicstabilityof

thegivenregions.Developingcountrieshavebeenlesssuccessfulintheimplementationof

large-scalefruittreesplantationforimprovedfoodandnutrition(Mwaniki2006).Thisis

attributedtotheunstablesocialandpoliticalenvironmentsthatprecludesustainable

economicgrowth,warandcivilstrife,macroeconomicimbalancesintradeandnatural

resourceconstraints.Otherreasonsincludepoorhumanresourcebase,genderinequality,

inadequateeducation,poorhealth,naturaldisasterssuchasfloodsandlocustinfestation,

andtheabsenceofgoodgovernance.Allthesefactorscontributetoeitherinsufficient

nationalfoodavailabilityorinsufficientaccesstofoodbyhouseholdsandindividuals.

Someofthebarriersandchallengesfacingthedevelopmentoffruitandvegetabletreesare:

i) Landtenure–Owningthetitledeedallowstheproprietortodeterminethefate

ofthedesignatedprojectareasite.Thetenants,womenandthelandlessareless

fortunateandareunabletocarryoutagroforestrypracticesorplantperennial

cropsduetolackoflandresources,tenureinsecurityandcroprestrictions(refto

UN-HABITATconceptofsecuredlanduseforall).Stateinterventionsand

conflictsbetweenfarmersandpastoralistsfurtherlimitlandtenuresecurityof

theruralpopulation.Thisreducesthewillingnessoffarmerstoinvestonalong-

termbasisandtoprotectnaturalresources.Anexampleofsuchacasewas

notedinBenin(NeefandHeidhues1994).Thefateofthelandliesinthehands

ofthelandlord.Thiscausesrestrictionsintheimplementationoffruitand

vegetabletreeplantationprojectsoragroforestryasthechoiceofthepossessor

mayinsteadleantowardshousing.

ii) Adequatefunding–Facilitatingthesuccessfulimplementationofaproject

developmentprogrammedemandsfundsthatarereadilyavailableforallrelated

costs.Insufficientfundinghinderstheproject.

iii) Anunder-developedagriculturalsector–InAfrica,theunder-developedagriculturalsectorreferstothepoorsoilquality,environmentaldegradationand

over-relianceonprimaryagriculture,amongothers.Fruitandvegetable

productionisvulnerabletoadverseweatherconditionsandisthereforea

challengetoovercomeduetothealreadycontinuingglobalclimatechange

scenario.Additionally,therehasbeenadeclineinfarminputinvestmentssuch

asfertilizers,seedsandtechnologyadoptions(Mwaniki2006).

Page 42: BIODEV published pdf

29

iv) Diseases,infectionsandpests–Fruitandvegetabletreescaneasilybeaffectedbyvariousdiseasesandinfectionsresultinginreductioninthequalityandyield

ofthespecies.Particularly,ifthediseaseorinfectionsareunknownandthereis

nocure,theentirepopulationcouldbewipedout.Additionally,theoccurrences

ofpestssuchaslocustsandgrasshoppersareamenacetofruitandvegetable

plantationsandmustbedealtwithquickly.

v) Trainingworkersonmeasuringandmonitoringtechniques–Anumberof

workerstendtolackadequateknowledgeonsustainablepractices,measuring

andmonitoringtechniques.Therefore,itisfundamentaltoeducatethemon

thesepracticesbeforeimplementationoftheproject.

vi) Environmentalconstraints–Poorseedlingestablishment,forexampledryseed

bedsandbadweather.

Challengesandbarrierscanbeeasilyovercomethroughadequateplanningand

strategizinginthepre-projectimplementationphase.

CapacitydevelopmentThereareanumberofgapsincapacitydevelopmentwhichcanbefilledwithfocuson

education,researchanddevelopment,accesstocapitalandinfrastructuredevelopment.

Educatinglocalsonvarioussustainablefarmingmethodscanhelpthefarmersselectthe

mostbeneficialmethod.

Africanssteppingupandplayinganactiveroleinresearchanddevelopmentmatterswhich

affectthemiscrucialforbridgingthegapsincapacitydevelopment.Thisincludesfood

preservationatthevillagelevel,alternativemedicinestomakehealthmoreaffordableand

accessibletothelocals,efficientagriculturalextensionservices,optionsforimprovingsoil

fertility,bestapproachesformanagingthedifferentagriculturalsystems,andoptimal

marketingstrategies.Careshouldbetakentomodifyavailabletechnologiestosuitthe

communitysetting,andnottheotherwayround.Forbenefitstoberealizedinallareas,

infrastructuredevelopmentmustbeahighpriority(Mwaniki2006).

ReferencesAdriaO,BethgeJ.2013.Whatuserscansavewithenergy-efficientcookingstovesandovens.WuppertalInstituteforClimate,EnvironmentandEnergy.

AlforteA,WilsonD,PulhinF,LascoR.2014.Definitionofterms.Creditswherecreditsdue:Aguidetocommunity-levelcarbonforestryprojectdevelopment.LosBanos,Philippines:WorldAgroforestryCentre(ICRAF).pxiv-xviii.

AmousS.1997.TheroleofwoodenergyinAfrica.WETTRegionalStudies,FAO.

AynekuluE,VagenT-G,ShepherdK,WinowieckiL.2011.Aprotocolformodelling,

measurementandmonitoringsoilcarbonstocksinagriculturallandscapes.Version1.1.

WorldAgroforestryCentre,Nairobi.

BellS.2001.Abeginner'sguidetouncertaintyofmeasurement.MeasurementGoodPracticeGuide11(2),p3-8.BrownS.1997.Estimatingbiomassandbiomasschangeoftropicalforests:Aprimer.Illinois:FoodandAgricultureOrganization.p1-55.

Page 43: BIODEV published pdf

30

BrownS.2002.Measuring,monitoring,andverificationofcarbonbenefitsforforest-based

projects,PhilosophicalTransactions360(1),p1669-1683.BugayongL.2003.Socioeconomicandenvironmentalbenefitsofagroforestrypracticesinacommunity-basedforestmanagementsiteinthePhilippines.Available:http://www.cifor.org/publications/corporate/cd-roms/bonn-

proc/pdfs/papers/T3_FINAL_Bugayong.pdf.Lastaccessed5thJun2016.

Chaveetal.2014.Improvedallometricmodelstoestimatetheabovegroundbiomassof

tropicaltrees.GlobalChangeBiology20(1),p3177-3190.FoodandAgricultureOrganization.2010.Managingforestsforclimatechange.Available:http://www.fao.org/docrep/013/i1960e/i1960e00.pdf.Lastaccessed5

thJun2016.

FoodandAgricultureOrganization.2016.WoodEnergy.Available:http://www.fao.org/forestry/energy/en/Lastaccessed30

thAugust2016.

GrahamS.1999.Remotesensing.Available:http://earthobservatory.nasa.gov/Features/RemoteSensing/.Lastaccessed11

thApril2016.

GuendehouGHS,LehtonenA,MoudachirouM,MäkipääR,SinsinB.2012.Stembiomass

andvolumemodelsofselectedtropicaltreespeciesinWestAfrica.SouthernForests.74(2):p77-88.

HenryM,BesnardA,AsanteWA,EshunJ,Adu-BreduS,ValentiniR,BernouxM,Saint-André

L.2010.Wooddensity,phytomassvariationswithinandamongtrees,andallometric

equationsinatropicalrainforestofAfrica.ForestEcol.Manage.260:p1375–1388.doi:10.1016/j.foreco.2010.07.040.

ICRAF–CGIAR.2015.Treefunctionalattributesandecologicaldatabase.http://db.worldagroforestry.org/.ICRAF.1997.ICRAFMediumTermPlan1998-2000,Nairobi:ICRAF,340p.IPCC.2013.ClimateChange2013:ThePhysicalScienceBasis.Available:http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_AnnexIII_FINAL.pdf.Last

accessed18thJuly2016.

KalinganireA,WeberJ,UwamariyaA,Kone,B.2007.Improvingrurallivelihoodsthrough

domesticationofindigenousfruittreesintheparklandsoftheSahel.Fruittrees.1(1),p186-197.

KalinganireA,WeberJC,UwamariyaA,KoneB.2008.ImprovingrurallivelihoodsthroughdomesticationofindigenousfruittreesintheparklandsoftheSahel.In:AkinnifesiFK,LeakeyRRB,AjayiOC,SileshiG,TchoundjeuZ,MatakalaP,KwesigaF(Eds)Indigenousfruit

treesinthetropics:domestication,utilizationandcommercialization.CABI,Oxfordshire,pp

186-203.

KuyahS,DietzJ,MuthuriC,JamnadassR,MwangiP,CoeR,NeufeldtH.2012.Allometric

equationsforestimatingbiomassinagriculturallandscapes:I.Above-ground

biomass.Agriculture,EcosystemsandEnvironment.158,p216-224.LalR.2004.Soilcarbonsequestrationimpactsonglobalclimatechangeandfood

security.Science.304(1),p1623-1626.LarwanouM,YemshawY,SaadouM.2010.Predictionmodelsforestimatingfoliarandfruit

drybiomassesoffiveSavannahtreespeciesintheWestAfricanSahel.Int.J.Biol.Chem.Sci.4(6):p2245-2256.

LeakeyB,TchoundjeuZ.2001.Diversificationoftreecrops:domesticationofcompanion

cropsforpovertyreductionandenvironmentalservices.ExperimentalAgriculture.37(1),p279-296.

Page 44: BIODEV published pdf

31

MartinF.1999.Multipurposepalmsyoucangrow.Available:http://agroforestry.org/multipurpose-palms-you-can-grow/coconut-palms.Lastaccessed

18thMarch2016.

MoussaM,MahamaneL,SaadouM.2015.Allometricequationsforbiomassestimationof

woodyspeciesandorganicsoilcarbonstocksofagroforestrysystemsinWestAfrican:State

ofcurrentknowledge.InternationalJournalofResearchinAgricultureandForestry.2(10),p17-27.

MwanikiA.2006.AchievingfoodsecurityinAfrica:Challengesandissues.Available:http://hqweb.unep.org/training/programmes/Instructor

Version/Part_2/Activities/Human_Societies/Agriculture/Supplemental/Achieving

_Food_Security_in_Africa.pdf.Lastaccessed25thApril2016.

NairPKR.1980.Agroforestryspecies-Acropsheetsmanual.ICRAF,Nairobi.336p.

NeefA,HeidhuesF.1994.Theroleoflandtenureinagroforestry:Lessonsfrom

Benin.AgroforestrySystems.27(2),p145-161.PearsonT,WalkerS,BrownS.2005.Sourcebookforlanduse,land-usechangeandforestry

projects.WinrockInternationalandtheBioCarbonFundoftheWorldBank.p57.PearsonT,BrownS,BirdseyR.2007.Measurementguidelinesforthesequestrationofforestcarbon.Delaware:USDAForestService.p12-13.PearsonT,CasarimF,BrownS,EickhoffG.2013.GuidelinesforstratificationforREDD+:Usinganationalinventory.Available:https://www.climatelinks.org/resources/guidelines-

stratification-redd-using-national-inventory.Lastaccessed11thApril2016.

PenmanJ.2003.Goodpracticeguidanceforlanduse,land-usechangeandforestry(GPG-LULUCF).Available:http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html.Last

accessed24thApril2016.

RabiouH,BationoBA,SeglaKN,DioufA,KossiA,KokutseAD,RadjiR,MahamaneA,Kokou

K,SâadouM.2015.EstimationdevolumecommercialduboisdePterocarpuserinaceusPoir.(Fabaceae)dansleszonessahélo-soudaniennesetSoudaniennesduNigeretdu

BurkinaFaso(Afriquedel’ouest).JournalofAppliedBiosciences.87:p8131–8143.doi.org/10.4314/jab.v87i1.13.

RavindranathH,OstwaldM.2008.Carboninventorymethods-Handbookforgreenhouse

gasinventory,carbonmitigationandroundwoodproductionprojects.AdvancesinGlobalChangeResearch.29.SassonA.2012.FoodsecurityforAfrica:anurgentglobalchallenge.AgricultureandFoodSecurity1(2),p1-16.ShibuJ.2009.Agroforestryforecosystemservicesandenvironmentalbenefits:An

overview.AgroforestSystems76(1),p1–10.SinareH,GordonL.2014.Ecosystemservicesfromwoodyvegetationonagriculturallands

inSudano-SahelianWestAfrica.Agriculture,EcosystemsandEnvironment.200(1),p186–199.

ThiamS,SambouB,MbowC,GuisseA.2014.Élaborationdemodèlesallométriques

d‟AcaciaSénégalL.Willdversezl’analyseducarboneligneuxenmilieusahélien:casdela

zonesylvopastoraleauSénégal.AfriqueSCIENCE.10(3):p304-315.TchoundjeuZ,AtanganaA,AsaahE,TsobengA,FacheuxC,FoundjemD,MbossoC,

DegrandeA,SadoT,KanmegneJ,MbileP,TabunaH,AnegbehP,UseniM.2008.

Domestication,utilizationandmarketingofindigenousfruittreesinWestandCentralAfrica.In:AkinnifesiFK,LeakeyRRB,AjayiOC,SileshiG,TchoundjeuZ,MatakalaP,KwesigaF(Eds)

Page 45: BIODEV published pdf

32

Indigenousfruittreesinthetropics:domestication,utilizationandcommercialization.CABI,

Oxfordshire,pp171–185.

TappanG,CushingM.2013.WestAfricaLandUseandLandCoverTrendsProject.Available:http://lca.usgs.gov/lca/africalulc/results.php.Accessed15

thApril2016.

ToensmeierE.2016.Carbonsequestrationpotentials.In:JorstadL.TheCarbonFarmingSolution.Vermont:ChelseaGreenPublishing.p29-37.

TheWorldAgroforestryCentre.2016.TheBiocarbonandRuralDevelopment(BIODEV)Programme.Available:http://www.worldagroforestry.org/project/biocarbon-and-rural-development-biodev.Lastaccessed30

thAugust2016.

ValbuenaR,HeiskanenJ,AynekuluE,PitkänenS,PackalenP.2016.Sensitivityofabove-groundbiomassestimatestoheight-diametermodellinginmixed-speciesWestAfrican

woodlands.PLoSONE11(7):e0158198.doi:10.1371/journal.pone.0158198.

VineE,SathayeJ.2000.Themonitoring,evaluation,reporting,verification,andcertification

ofenergy-efficiencyprojects.MitigationandAdaptationStrategiesforGlobalChange.5(2),p189-216.ZomerR,TrabuccoA,CoeR,PlaceF.2009.TreesonFarm:Analysisofglobalextentand

geographicalpatternsofagroforestry.WorldAgroforestryCentre.

B-2/Protectionofstandingbiomassforemissionreductionandcarbonsequestration

RationaleandobjectivesAforest,likeanyecosystem,isseenascarboninvariousreservoirs.Carbonisfound

everywhere,fromtheleavestothesoil.Atropicalrainforestcanstoreupto430tonnesof

carbonperhectareintheabove-groundbiomassandadegradedsavannadowntofew

tonnesperhectare.

Standingbiomassreferstothetotalbiomassofagivenareaatthepresenttime.The

strategicapproachtoclimatechangemitigationinvolvestheconservationofcarbonstocks

throughsustainablemanagementpracticesandincreasingthecarbonsinksandreducing

carbonsourcesthroughreforestationandafforestation.Over90%ofWestAfrica’soriginal

forestisaffectedbyhumanactivities,andwhatremainsisheavilyfragmentedanddegraded

byhumans(Onadekoetal.2013),throughdeforestationtoaccommodateincreasing

populationsbymakingroomforagriculturalexpansionandhousing.Theresultant

phenomenonisacceleratedclimatechangethroughrisingemissionsofcarbondioxidegas

intotheatmosphere,lossofbiodiversityandcertaingenepools.

Page 46: BIODEV published pdf

33

Figure3.2.1:ChangeinforestedlandcoverinBurkinaFaso,Mali,GuineaandSierraLeoneovertheyears1990,2000,2005and2010(Source:FAO2010)

Figure3.2.1indicatesasubsequentreductioninforestedlandcoverinBurkinaFaso,Mali,

GuineaandSierraLeonefrom1990to2010.Theannualdeforestationrates/reductionin

forestcoveraregiveninthetablebelow.

Table3.2.1:TheannualchangerateofforestsinBurkinaFaso,Mali,GuineaandSierraLeone

Table3.2.1showsthatthehighestreductioninforestcoverinallfourWestAfrican

countrieswasexperiencedbetween2005and2010.Standingbiomassnotonlyassistsinthe

mitigationofclimatechangebutalsohasotheradvantagesforlocalcommunitiesandthe

socioeconomicdevelopmentofacountry.Severalspeciesinecosystemsprovidelocal

communitieswithmedicines,timberproducts,foodandvitalnutrients.Additionally,

standingbiomasscanbeincorporatedwiththedevelopmentoffruits,vegetablesand

breedinglivestockforagriculturalpracticessuchasagrisilvicultural,silvopastoraland

agrisilvopastoral.

Country/area

Annualchangerate

1990-2000 2000-2005 2005-2010

Percentage(%)

1000

ha/yr

Percentage(%)

1000

ha/yr

Percentage(%)

1000

ha/yr

Burkina -60 -0.91 -60 -0.98 -60 -1.03

Mali -79 -0.58 -79 -0.60 -79 -0.62

Guinea -36 -0.51 -36 -0.53 -36 -0.54

SierraLeone -20 -0.65 -20 -0.68 -20 -0.70

Page 47: BIODEV published pdf

34

Failuretoimplementappropriateconservationpracticesmayeventuallyleadtolossesin

biodiversityandacceleratedemissionsofcarbondioxideintotheatmosphereintensifying

climatechange.Forinstance,extensiveresearchontheGuineanrainforest(GRF)inWest

Africaindicatedareductionintheforestbiomassduetoexpansionofextensivesmallholder

agriculture.Over20yearsago,theecosystemwasaglobalbiodiversityhotspotwhich

substantiallydecreasedto113,000km2inthebeginningofthemillennium,comprising

about18%ofitsoriginalarea.Thissubsequentlyledtoemissionofapproximately1.4billion

tonnesofCO2intotheatmosphere(GockowskiandSonwa2010).Hadtherebeen

appropriateconservationpractices,deforestationandcarbondioxideemissionsfromthe

well-knownbiodiversityhotspotcouldhavebeenavoided.

Conservingstandingbiomassnotonlyreferstothepreventionofdeforestation,butalso

entailsmethodsofsustainablemanagementforsocioeconomicpurposes.Examplesof

methodsofconservationinclude:

a) Fencing–Toabolishillegalharvestingofwoodbylocalcommunitiesinconserved

areascontainingendangeredspecies.Fencingissuitableforasmallareaofland

beingconservedwithendangeredspecies.Ontheotherhand,conservingalarge

forestedareamayrequirelocalstouseanalternativesource,whichinacarbon

inventoryisreferredtoasleakage.b) Reforestation–Re-plantingtreeswheretheyhadbeencutdown,perhapstwoor

threemoreintheplaceofeachtreethatwaslogged.

c) Afforestation–Plantingtreeswheretherewerenone.Thisisbeneficialinincreasingcarbonsequestrationasstandingbiomassisincreased.

d) Sustainableharvesting–Withsustainableharvestingtechniques,localscanderive

productssuchasmedicines,timber,fruitsandsoon,withoutcausingsubstantial

amountsofharmtotheconservedarea.

e) Sustainablemanagementtechniques–Suchaspruningandcoppicing.Theconservedareamayalsocontaindeadlogswhichcanbeusedbylocalcommunities

astimberoranyotherpreferredpurpose.Thiswouldultimatelyreducetheamount

oftreeslogged.

Activitiesthatincreasebiomassandcarbonsequestrationincludeplantingnewtreesand

protectingexistingtrees.Alternatively,activitiesthatdecreasebiomasscomprise

harvesting,fires,deforestationanddisturbances(forexample,destructionoftreeseedlings

bywildanimals),amongothers.

Formaximumcarbonsequestration,itisessentialtoprotectexistingbiomasswhichhas

sequestratedconsiderableamountsofCO2fromtheatmosphereovertheyearsofgrowth

andpromoteafforestationandreforestation.

DataandinformationrequirementsforbiomassandcarbonThecarbonstocksinaconservationprojectcanbeestimatedby:

i) Targetingforestedlandorecosystemtocarryoutconservationalpractices.

ii) Identifyingtheconservationalpracticestobeimplementedintheareaby

investigatingthetypeofvegetationandspeciesinthearea.

Page 48: BIODEV published pdf

35

iii) Measurementsforestimatingcarbonstocksoftheregion,usingmethodologies

similartoassessingcarbonsequestrationoffruitandvegetabletrees(seeA2).

iv) Estimatingtheproductionoffuelwood,timberanddestructivesampling(ifany).

v) Calculatingtheuncertainty.

vi) Monitoringchangeintreecarbonstocksovertime.

Above-groundbiomassisgreatlyaffectedbyconservation,protectionandnatural

regeneration,andhaltingthefellingoftrees.Thereforeitisimportanttoestimateand

monitorcarbonstocksusingabove-groundbiomassvalues.Additionally,the

implementationofprojectstargetingmitigationofclimatechangethroughcarbon

sequestration,landrestoration,afforestation,reforestationandconservationshouldtake

intoconsiderationthebaselinescenario,additionality,leakageandtheprojectscenariofor

monitoringpurposes.Inthecaseofconservingstandingbiomass,theexpectedoutcomeis

givenbelow.

Figure3.2.2:Thegraphaboveillustratestwodifferentscenariosthatmaytakeplaceintheabsenceofeffectiveconservationresultinginactivedeforestationinanecosystem

Inanecosystemwhichlacksappropriateconservationpractices,thebaselinescenario

(conditionoftheareabeforetheimplementationoftheproject)depictsadecliningtrendof

carbonstocks.Thisisasaresultofdeforestationtocreatelandforagricultureandhousing,

fortimberandforfuel.Addingconservationtechniquesandimposingabanon

deforestationintheselectedareacouldleadtostableorincreasingcarbonstocks,

consequentiallyreducingclimatechangethroughlessenedcarbondioxideemissions(figure

3.2.2)–indicatedbyaredstableline.Theamountofcarbonstocksinaforest,beforeand

afterprojectimplementation,canbemeasuredanddeterminedinasimilarwaytothat

statedandexplainedinthedevelopmentforfruitandvegetabletrees(figure3.1.2).

CarbonabatementpotentialThecarbonabatementpotentialregardingtheconservationofstandingbiomasswould

refertotheamountofcarbonstockspresentintheselectedareabeforeandafterproject

Page 49: BIODEV published pdf

36

implementation.Thekeypurposeofconservingthestandingbiomassistoavoid

deforestationandlossofbiomass.Therefore,itisfundamentaltoensurecarbonstocksare

eitherstableorincreasingduringeverymonitoringperiod.Table3.2.2presentsexamplesof

someecosystemsandthehighamountsofcarbonstockstheyharbour,revealingthe

positivesignificanceofenhancingstrategiesfortheconservationofstandingbiomass.

Theestimatedamountofcarbonsequesteredbytropicalforests,whichformmajorityofthe

vegetationinWestAfrica,isatotalof428GtCayear.Additionally,thehighestcarbons

stockswerefoundtobelocatedintheabove-groundbiomassoftheecosystem

(RavindranathandOstwald2008).

Page 50: BIODEV published pdf

37

Table3.2.2:ExamplesofspeciesfoundinforestsofWAfricaandtheirestimatedcarbonsequestrationpotentials(t/ha/yr)

SpeciesfoundintheforestsofWestAfrica

WestAfricancountries

Carbonsequestrationpotential(t/ha/yr)

References

EucalyptuscamaldulensisDehn(Eucalyptustrees)

Guinea 7.80t/ha/yr Bordbarand

Mortazavi2008

Bambusavulgaris(Bambootrees)

Ghana 8-34t/ha/yr Toensmeier2016

Eucalyptusurophylla(Eucalyptustrees)

Côted'Ivoire

5.52t/ha/yr Chenetal.2015

Heveabrasiliensis(Rubbertrees) Nigeria,Ghana 2t/ha/yr Toensmeier2016

Therearevariousreferencesofnaturalforestcarbonpotentialintheliteraturethatcanbe

referredtoinassessingthepotentialofvariousecosystems(FAOstatistics).

CostsandinvestmentsThecost-benefitanalysisisanimportantfactortoconsiderwhenimplementing

conservationalpractices.Theseanalysesindicatewhethertheaggregatebenefitsofpolicy

decisionsoutweighthecosts.Informationprovidedoncost-benefitanalysescanhelpin

makingefficientdecisionsabouthowtobestallocatescarceresourcesinpursuitofvarious

conservationalobjectives(NaidooandRicketts2006).Beforeaconservationprojectis

executed,theconsequentialcostsandamountoffundingmustbeoutlinedandtakeninto

considerationtoensurethebenefitsofconservingthelandoffsetthecostsprocured.

Toestimateasetbudgetforaconservationproject,anumberofcostsareincurred,

relativelysimilartothosedescribedinB-1:

i) Trainingstaff–Estimatingtherelativeamountofcarbonstocksinanecosystem

involvesasubsequentnumberofmeasurements,includingtreeheight,diameterat

breastheightandcrowndiameter.Theworkersalsoneedtobeproficientin

interpretingdataobtainedfromclinometers,GPSsystemsandsatellites.

Additionally,furthertrainingmayberequiredforanyphysicalconservational

practicesbeingimplemented,suchasfencing.

ii) Educatinglocalcommunitiesandfarmersontheimportanceofconservationandsustainablemethodsofconservation–Thisisimperativeasdeforestationemits

carbondioxideintotheatmospherewhichistheleadingcauseofclimatechange.

Henceeducatinglocalsontheimportanceofconservationandvarioussustainable

managementpracticesisfundamental.Thecostshereareprocuredinattaining

qualifiedstafftoheadtheinformativegroups,fortransportation,tofindasuitable

locationfortheclassesandprovidesomelearningmaterials.

iii) Advertising,talksandforums–Althoughadvertisingiscostly,ithasitsprosasitcreatesawarenessonalargerscale.Advertisementsonbillboards,noticeboards,

televisionandradionetworksontheimportanceofconservingstandingbiomass

andalertingthepublicondeforestationratesandtheresultingconsequences.

Advertisementscanbealsousefulinfundraising.Additionally,somecitizenswould

altertheirlifestylesandattainamoregreenandsustainableprospectonlifeby

reducingtheircarbonfootprintswillingly.

iv) Incentivesforworkers–Thisismandatoryforallworkerswhoarepartofthe

project.Incentivescanbeinvariousforms,includingfinancialorin-kindbenefits,

assetsandproductsoutofforests.

Page 51: BIODEV published pdf

38

v) Payingdividendstofarmersbeginningsustainablepractices–Farmersmayneed

toaltertheircurrentagriculturalpracticestoattainmoreenvironmentally-friendly

agriculturalsystemswhichmayrequireabandoningtheconservationarea.

Therefore,farmersmustbecompensatedifthisisthecase.

vi) Investingininstrumentsforcarboninventories–Theseincludeclinometers,GPS,

measuringtapes,surveypegs,compass,markersanddatasheets.

vii) Capitalforremotesensingtechniques–Remotesensingisrequiredfor

stratificationandprojectdelineationandmaybecostly,butisnecessary.

ProgrammessuchasLANDSATandSPOTarewidelyusedtogeneratesatellite

images.Alternatively,thereareanumberoffreeonlinesatelliteimagery

programmessuchasGRASS,InterimageandE-foto.

viii) Fencing–Optingtofencetheareacomesatahighcostdependingonthe

perimeteroftheland,numberofposts,thesizeofpostsandthematerialthe

fencingisderivedof.Commonly,electricfencingorbarbedwireisused,butthese

mayimposedangersforanimalsintheprojectarea.Moreover,migrationof

animalsisgreatlyrestrictedandlocalsarecompletelycutofffromsources,thus

forcingthemtofetchtheircommoditiesfromelsewhere,resultinginleakage.The

approximatecostoffencingperfootis$15-$20forbarbedwireand$1-$3for

electricfencing.

ix) Seedlingsandfertilizers–Theseexpensesoccurwhenconsideringafforestationandreforestationstrategiesintheconservedarea,fortherecommendedspeciesof

treestogrow.Ensuretheseinputsareavailablefromtheshortestdistancepossible

withrequiredquality.

x) Sustainablemanagementtechniques–Thesearethetechniquesthatareimplementedintheprojectareatomaintainconservationofthestandingbiomass

andpromotesustainableagricultureinthearea,ifany.Examplesarepruningto

avoidcompetitionintheareaforgroundvegetationandcoppicingtostimulate

growth.xi) Monitoringofcarbonstocks–Theestimatedexpenditureishighlydependenton

thefrequencyofmeasurements.Carbonstocksinareforestationorafforestation

projectmustbemeasuredannuallytomonitorgrowthcarbonsequestration

potentialofthenewlyplantedtrees.Ontheotherhand,aforestconservation

projectexcludingadditionofnewbiomasscanbemeasuredevery2-3years,

resultinginlessexpenses.

Overall,thecostsaffiliatedwiththeconservationprogrammemustbeoffsetbythebenefits

achievedenvironmentally,sociallyandeconomically.

EnvironmentalandsocioeconomicbenefitsofconservingstandingbiomassConservingstandingbiomassnotonlybenefitstheenvironmentbyactingasacarbonsink

andmitigatingclimatechange,butalsodevisesseveralsocialandeconomicadvantagesfor

localcommunitiesprovidedthesourcesaremanagedandacquiredinasustainablemanner.

Afewofthesustainablemanagementtechniqueshavebeenmentioned(seesectionon

rationaleandobjectives)andfollowingtheseapproachescangreatlybenefittheeconomy

andtheenvironment.

Page 52: BIODEV published pdf

39

Theprotectionofforestsisvastlynecessarywiththegrowingamountsofdeforestation.Not

onlydocarbondioxideconcentrationsintheatmosphereincrease,butbiodiversityis

significantlylost.Thisinturnaffectsthelivelihoodsoflocalcommunitieswhodependonthe

forestforincomeasaportionofthelostdiversitycouldbethecapitalgeneratingsourcefor

theirfamilies.

Toenjoybothenvironmentalandsocioeconomicbenefitsfromstandingbiomass

conservation,localcommunitiesmustcarryoutsustainablepractices,suchasobtaining

certainmedicines,timber,fruitsandherbsfromharvestingonlythepartofthetreesor

plantsthatbeartherequiredproduct.Applyingtheuseofcoppicingasamanagement

techniqueisrecommendedasthechoppedtreeremainscanbeusedbythecommunity.At

thesametime,thisstimulatesgrowthoftrees.Pruningalsoresultsinlargeamountsof

twigsandwoodystemswhichareofeconomicvalue.Thesearesuitableconservative

methodswhichprominentlyreducetheloggingoftheentiretreeandpromote

socioeconomicdevelopmentsimultaneously.Furthermore,deadlogsortwigsfoundinthe

protectedforestedareacanbeusedfortimberandfirewood.

Table3.2.3highlightssomespeciesfoundinforestsacrossWestAfricathatareharvestedin

sustainableways,thusbenefitingboththeenvironmentandsocioeconomicdevelopment.

Table3.2.3:ExamplesofspeciesthatareharvestedinsustainabletechniquesacrossWestAfricaTreespecies Socialbenefits Economic

benefitsEnvironmentalbenefits

Estimatedprices(1USD=550CFAroughly)

Dacryodesedulis(Safou)

Highlevelsof

protein,fibreand

appreciable

amountsofK,Ca,

Na,MgandP

Fruitpulp,flowers

usedin

apiculture,herbal

medicinesand

sustainably

harvestedwood

canbeusedfor

doorhandlesand

timber

Sustainably

harvestedand

environmental

policies

implemented

18-440CFAwith

yieldof20-50kg

pertree

Laccospermasecundiflorum

(Rattan)

Furniture Furniture,laundry

baskets,shopping

andflower

baskets,serving

trays,diningsets

Sustainable

harvestingand

permissionfrom

districtforest

managerrequired

tocarryoutany

harvesting

4500-4700CFA–

approximately20

pieces

Vitellariaparadoxa(sheanuttree)

Highlevelsof

omega6.

Beneficialforskin

health

Sheabutterand

soap.Exportedfor

useinchocolate

productsand

pharmaceutical

companies

Encouraging

sufficient

incentivestolocal

peopletoensure

theconservation

ofrainforest

resources

Sheabuttersells

for400CFA/kg

Source:CIFOR2004

Page 53: BIODEV published pdf

40

InstitutionalframeworksandmanagementschemesSuccessfulconservationprojectsareallmanaged,fundedandconductedbyanumberof

institutionsfollowingasetframeworkandpoliciesthatareadheredto.Numerous

conservationprojectsinWestAfricaarecoordinated,plannedandimplementedby

organizationssuchastheInternationalCentreforForestryResearch(CIFOR),ICRAF,the

UnitedNationsEnvironmentProgramme(UNEP)inconjunctionwithUnitedNations–

ReducingEmissionsfromDeforestationandforestDegradation(UN-REDD),Sustainableand

ThrivingEnvironmentsforWestAfricanRegionDevelopment(STEWARD)which

concentratesontheupperGuineanforestecosystems,andTheAfricanConservation

Foundation.Therolesoftheseinstitutionsaretoconductconservation-basedprojectson

landscapesexperiencingincreasingdeforestationandprotectthebiodiversityofboth

animalsandplantsspecies.Theyalsodevelopprojectproposals,carryoutmeasurements

andfrequentmonitoringofcarbonstockssoastoenhancethelivelihoodsofsurrounding

localcommunities.

Understandably,everyprojectrequiresadecentamountoffunding.Itistheroleofthe

institutionheadingtheconservationactivitiestoobtainthefinancesandrequiredresources

bypresentingadequateprojectproposals.Thesemoniescanbeacquiredfrom

establishmentssuchasTheWorldBank,AfricaChallengeEnterpriseFund,Starfish

initiatives,AfricanDevelopmentBank,ConcernUniversal,UnitedStatesAgencyfor

InternationalDevelopment(USAID)andUnitedStatesForestService/International

Programmes(USFS/IP).

Aspreviouslymentioned(seeB-1:Institutionalframeworks),localscanselltheirproduce

throughlinksintointernationalmarketsbycompaniessuchasDevex.Suchexposurecan

substantiallyimprovesocioeconomicdevelopment.Whatissuperlativeaboutthisisthat

theenvironmentbenefitsthroughconservationandsustainablepracticeswhilefarmersgain

theirshareofadvantages.

MonitoringrequirementsThisentailstheMeasuring,ReportingandVerifying(MRVs)ofcarbonstocks.Ina

conservationprojectexcludinganyreforestationordeforestation,thecarbonstockscanbe

measuredevery2-3years.Carbonstocksforreforestationorafforestationprogrammes

wouldbeexpectedtobemonitoredatleasteveryyeartoobservetheeffectivenessofthe

projectimplementation.Therefore,inaconservationproject,carbonstocksarepredictedto

eitherremainsteadyorincrease.

Inadditiontomonitoringcarbonstocks,theprogressoftheconservationofstanding

biomasscanalsobeassessedthroughdirectviewing,remotesensingtechniquesand

surveys.Forumsheldtoobtaininformationoftheadvancementoftheconservationproject

fromlocalsintheareaarealsouseful.

ChallengesandbarriersConservationofstandingbiomasscomeswithgreatamountsofimplications,mostly

becauseoftheeconomicvalueoftheresources.However,conservingstandingbiomassalso

comprisessustainablemanagementtechniques,sofarmersarenotbannedfromthe

resources.Thisisacommonmisunderstandingandneedsfurtherinputandelaboration.

Page 54: BIODEV published pdf

41

Somechallengesandbarrierswhenconductingaconservationprojectinclude:

i) Landtenure–Thisisoneofthebiggestchallengesonlybecausetheforestedlandrequiredtoundergoaconservationprojectmaybeentitledtoalandholderthat

wantstousethelandforotherpersonalpurposes.Thiswouldmeanthatthe

involvedinstitutionswouldhavetocometoasettlementwherebothpartiesbenefit

tocreateawin-winsituation.Itcouldbethroughpayingthetitleholderasumof

moneyeverymonthorinvestinginnewpropertyawayfromtheproject

conservationareaentitledtothelandlord.ii) Adequatefunding–Conservationprojectscomeatahighcostandtoensurea

successfulprogramme,substantialamountsofcapitalisrequired.Herein,theissueis

thatanumberoffundingorganizationscutbacksubsidiestoassistotherglobal

causesandcrisesatcertainperiodsoftime.Therefore,fundingmayattimesbe

insufficient,resultinginprojectdelays.iii) Diseases,infectionsandpests–Inareforestationorafforestationconservation

programmetheonsetofdiseases,infectionsandpestsimpedetheprogressionof

theproject.Thespeciestobeimplantedmustthereforebecarefullyselected.iv) Educatingfarmersonsustainablemanagementandharvesting–Theknowledge

andskillsofindividualfarmersandorganizationsneedtobedevelopedforaccurate

projectimplementation.v) Traininglabouronmeasuringandmonitoringcarbonstocks–Humanerrorisa

common,unavoidablefault.However,throughsufficientamountsoftrainingthese

errorscanbeavoided.vi) Developmentofbioenergy–Bioenergyisrenewableenergythatcansubstantially

reducecarbondioxideemissions.Acquisitionofbioenergymayhowevercomeatthe

expenseoftheecosystemssuchthatforestscouldbeclearedtoplantmorebiofuel

plantationssuchassugarcaneandpalmoiltrees.Additionally,theseplantations

requirelargeramountsoflandandwatertogeneratehighqualityyields.

Throughdefiningclear,practicalmeasuresofconservationsuccessanddevelopingtheskills

andknowledgeofindividualsinorganizationsthechallengesandbarrierscanbeovercome

(Salafskyetal.2006).

CapacitydevelopmentConservativecapacitydevelopmentencompasseskeystrategiestocombatdrawbacksthat

couldaffectaproject.Themainbarriersandgapsinconservationinitiativesareexplored

andstepsaretakentoensuresuccessfulimplementation.Anumberofmeasuresthat

facilitateconservationcapacitybuildingare:

i) Enhancededucationandtrainingonsustainability–Theaptitudeofconservationprojectscanbeimprovedbybridgingthegapsinthequalityoftrainingand

educationthestaffandfarmersreceive.Itisfundamentaltoencouragefarmersto

startoffbygrowingtheirproduceusingsustainableapproachestoavoidlanduse

changelaterwhichmaybemorecostly.

ii) Advancedconservationmethods–Furtherresearchandinitiationofworkshopsonup-to-dateconservationtoolsandtechniques,whichcouldpossiblymaketheproject

moresustainableandconsiderablyeasiertoexecute.

iii) Suitablemarketingstrategies–Throughsustainableharvestingtechniques,deliveringappropriatemarketingstrategiestothefarmers,dependingonthe

Page 55: BIODEV published pdf

42

produce,wouldinturnallowthemtoreceivehigherincomewithbetterquality

yield.Therefore,farmerswouldsupporttheideaofsustainableharvestingand

conservationprovidedtheeconomicbenefitsareplenty.

ReferencesBordbarK,MortazaviM.2008.CarbonsequestrationpotentialofEucalyptusCamaldulensisDehnh.andAcaciaSalicinaLindl.plantationinwesternareasofFarsProvince.Pajouhesh-Va-Sazandegi.19(1),p95-103.BranderM.2012.GreenhouseGases,CO2,CO2e,andcarbon:Whatdoallthesetermsmean?Available:http://ecometrica.com/assets/GHGs-CO2-CO2e-and-Carbon-What-Do-These-

Mean-v2.1.pdf.Lastaccessed2ndJune2016.

CentreforInternationalForestryResearch.2004.Fruitsandoils,woodcarvingandwoodproducts,fibresandweavingmaterials.In:SunderlandT,OusseynouN.ForestProducts,LivelihoodsandConservation.2nded.Indonesia:CentreforInternationalForestryResearch.p91-291.

ChenY,LiuZ,RaoX,WangX,LiangC,LinY,ZhouL,CaiX,FuS.2015.Carbonstorageand

allocationpatterninplantbiomassamongdifferentforestplantationstandsinGuangdong,

China.Forests.6(1),p795-805.ClimateChangeConnection(CCC).2014.CO2equivalents.Available:http://climatechangeconnection.org/emissions/co2-equivalents/.Lastaccessed2

ndJune

2016.

FoodandAgricultureOrganization.2010.GlobalForestResourcesAssessment2010.Rome:

FAO.

GockowskiJ,SonwaD.2010.Cocoaintensificationscenariosandtheirpredictedimpacton

CO2emissions,biodiversityconservation,andrurallivelihoodsintheGuineaRainForestof

WestAfrica.EnvironmentalManagement.48,p307-321.MacDickenKG.1997.Aguidetomonitoringcarbonstorageinforestryandagroforestry

projects.WinrockInternational,Arlington,VA,USA,87pp,availableat:

http://www.winrock.org/REEP/PDF_Pubs/carbon.pdf;alsoinSpanishfromFundacionSolar,

Guatemala,http://www.winrock.org/REEP/PDF_Pubs/fundacionsolar.pdf.

NaidooR,RickettsT.2006.Mappingtheeconomiccostsandbenefitsofconservation.PLOSbiology.4(11):e360.doi:10.1371/journal.pbio.0040360.OECD.2001.Carbondioxideequivalent.Available:https://stats.oecd.org/glossary/detail.asp?ID=285.Lastaccessed2

ndJune2016.

OnadekoA,EgonmwanR,SaliuJ.2013.Biodiversitychange:Preliminarymonitoringof

AnuraspeciesinselectedvegetationsitesinsouthwesternNigeria.WestAfricanJournalofAppliedEcology.21(1),p70-82.RavindranathN,OstwaldM.2008.Carboninventorymethods.Switzerland:Springer.p16-147.

SalafskyN,MargoluisR,RedfordK,RobinsonJ.2002.Improvingthepracticeof

conservation:Aconceptualframeworkandresearchagendaforconservation

science.ConservationBiology.16(6),p1469-1479.SebukeeraC,MuramiraE,MomokamaC,ElkholeiA,ElbagouriI,MasumbukoB,Rabesahala

V.2006.Forestsandwoodlands.In:JenniferC,KaterereM.AfricaEnvironmentOutlook2.Nairobi:UnitedNationsEnvironmentProgramme.p196-223.

SubediB,PandeyS,PandeyA,RanaE,BhattaraiS,BanskotaT,CharmakarS,TamrakarR.

2010.Forestcarbonstockmeasurement.Nepal:AsiaNetworkforSustainableAgriculture

Page 56: BIODEV published pdf

43

andBioresources,FederationofCommunityForestUsersNepal,InternationalCentrefor

IntegratedMountainDevelopment.p2-43.

ToensmeierE.2016.Carbonsequestrationpotentials.In:Jorstad,L.TheCarbonFarmingSolution.Vermont:ChelseaGreenPublishing.p29-37.

UNEP.2006.GEOAfricaDataPortal.UnitedNationsEnvironmentProgramme.Available:

www.unep.org/geo/data/africa.Lastaccessed22ndMay2016.

Page 57: BIODEV published pdf

44

B-3/Nitrogen-fixingtreesandsoilfertilization

RationaleandobjectivesNitrogenfixationisaprocessbywhichnitrogen(N2)fromtheatmosphereisconvertedinto

ammonia(NH3),afreeformthatcanbeusedbyplants,animalsandmicro-organismsto

manufactureaminoacids,proteins,nucleicacidsandothernitrogen-containingcomponents

necessaryforlife.ThisprocessismediatedinnaturebyN-fixingrhizobiabacteria

(Rhizobiaceae,α-Proteobacteria)(SørensenandSessitsch2007).Inlegumesandafewother

plants,therhizobiabacteriaarepresentinsmallnodulesfoundontherootsthatconvert

thenitrogentoammoniawhichisthenabsorbedbytheplants.

Figure3.3.1:Alegumeplantrootcontainingnoduleswherethenitrogen-fixingbacteriaispresent(Source:LindemannandGlover2015)

Otherthanbacteria-fillednodulespresentonselectedplantandtreespecies,biological

nitrogenfixationtakesmanyotherformsinnatureincludingblue-greenalgae,lichensand

free-livingsoilbacteria.Thesenitrogen-fixingtechniquescontributesignificantamountsof

ammoniatonaturalecosystems(butnotcroppingsystems)togeneratebiomass.However,

furtherresearchhasindicatedthatnitrogenfixationbyleguminousplantsandtreesismuch

higherrangingfromabout25-75lbperacreperyearinnaturalecosystems.Itisevenhigher

incroppingsystemsasopposedto5lbperacreperyearbythealternativebiological

nitrogen-fixingmethods(LindemannandGlover2015,Frankow-LindbergandDahlin2013,

Guldanetal.1996,Burton1972).

However,itisimportanttonotethatnotallplantsareefficientinconvertingnitrogeninto

ammoniaandthereforerequireadditionalnitrogenapplicationintheformoffertilizers.

Commonbeansarepoorfixersofnitrogenandusuallyconvertlessthantheiractual

nitrogenneeds.Formaximumyield,anextra30-50lbofnitrogenfertilizerperacreneedsto

beapplied.However,ifthebeansarenotnodulatedtheyieldmaystillremainlowas

researchhassuggestedthatthenodulesalsoenhancetheefficientuseoffertilizer

(LindemannandGlover2015).

Page 58: BIODEV published pdf

45

Nitrogen-fixingplantspeciesmayrespondmorepositivelytoelevatedatmosphericcarbon

dioxideconcentrationsthanotherspeciesbecauseoftheirabilitytomaintainahighinternal

nutrientsupply(Tempertonetal,2003).Alnusglutinosa(aldertrees)growninelevatedlevelsofcarbondioxideillustratedasignificantincreaseinnitrogenaseactivityandsmaller

morenumerous,lessclumpedrootnodules.Thesesmallernodulesenhancethesurface

area,therebyincreasingthenitrogen-fixingcapacity(KingandPurcell2001,Tempertonet

al.2003)whichinturnincreasesthecarbonsequestration.Additionally,rootnodulesof

unfertilizedaldertreesgrowinginelevatedcarbondioxideconditionshadalargerbiomass

comparedtounfertilizedtreesgrowinginambientsettings.Theseresultsindicatea

subsequentdependenceofnitrogenfixationinplantsoncarbondioxidelevels.Moreover,

thedatadepictsexactlyhowimportantnitrogen-fixingtreescanbeforcarbon

sequestrationandmitigatingclimatechange.

Anexampleofawidelyplantednitrogen-fixingspeciesinAfricaistheFaidherbiaalbidawhichisusuallyfoundinparklands.Ithasauniquecompatibilitywithcroppingsystemsdue

toits‘reverseleafphenology’–itisdormantduringthewetseasonanddropsitsleavesto

fertilizeassociatedcropsthroughleaflitterdecomposition.Itsleavesonlygrowduringthe

dryseasonandprovidenutritiouslivestockfodderduringcriticalperiodsofdrought.

Additionally,theF.albidacontributessignificantlytomaintainingcropyieldthroughthe

biologicalnitrogenfixationandfavourablemicroclimatewhileminimizingtreecompetition

(Verchotetal.2005).Otherexamplesofnitrogen-fixingspeciesacrossWestAfricaare

Albizzialebbek,AcaciaauriculiformisandGliricidiasepium,amongothers.

Theadditionoffertilizerstosoilsimilarlyresultsinincreasedcarbonsequestrationand

higherbiomassproduction.Thisisbecausethemostcommonlyusedfertilizerscontain

relativeamountsofNitrogen,PhosphorusandPotassium(NPKfertilizers)foroptimumyield

production.However,iffertilizationisnotwellmanaged,excessamountsofnitrogencan

resultindeteriorationofcropresidueinsteadofincreasingthebiomassthroughtheprocess

ofphotosynthesisbysequestratingcarbondioxidefromtheatmosphere.Nitratepollution

ofgroundandsurfacewater,soilqualitydegradationandincreasedcarbondioxideoffset

areconsequencesofexcessnitrogenfertilization(Khanetal.2007).Therefore,nitrogen

fertilizationshouldbemanagedbysite-specificassessmentofsoilnitrogenavailabilityto

avoidsurplussoilnitrogen(Khanetal.2007).

Thekeyobjectiveofplantingnitrogen-fixingtreesandsoilfertilizationistoallowmaximum

carbonsequestrationtomitigateclimatechange.Thetreesalsocreateappropriateshading

forsmallercropsandhelpcontrolsoilerosion.Decomposedleaflitterandtwigsfrom

nitrogen-fixingspeciesenhancefertilityofsoilsresultinginbetterqualityproduce.A

numberofnitrogen-fixingtreeshaveeconomicvaluefromtimberandmedicinaluse.TheF.albidacangrowindryclimatesincreasingsoilfertilityoftheareaandincreasingbiomass

productionwhichresultsinreducedcarbondioxideintheatmosphereandinturnreducing

theeffectsofclimatechange.

Inagroforestry,plantations,homegardensandforests,fertilizationandnitrogen-fixingtrees

canbeutilizedtoenhancethequalityandyieldoftheproducewhilesimultaneouslyhelping

theenvironment.Therefore,thecommunitiesandenvironmentbenefitgreatly,provided

sustainablemanagementtechniquesareapplied.

Page 59: BIODEV published pdf

46

Dataandinformationrequirementsforcarbonsequestrationbynitrogen-fixingtreesandsoilfertilizationAssessingcarbonstocksinnitrogen-fixingtreesandfertilizedtreescanbedoneby

measuringtherelativechangesandamountofcarboninabove-groundbiomass.Asimilar

proceduretothatofestimatingcarbonstocksinfruitandvegetabletreesandstanding

biomassisfollowedasshownbelow:

i) First,targetthelandforprojectimplementation.

ii) Identifytheecosystempracticesandspeciesoftreesinthearea.

iii) Conductresearchtoestimatetheamountofnitrogeninthesoiloftheselected

ecosystembeforeplantingnitrogen-fixingtreesandfertilizer.Thisisbecauseexcess

amountsofnitrogencancausenitratepollutionofsurfaceandgroundwater,soil

deterioration,destroycropsandultimatelyleadtooffsetofcarbondioxide

emissions.

iv) Estimatetheamountsofcarbonstocksintheareabeforeprojectimplementation.

v) Selectthespeciesofnitrogen-fixingtreestogrowandfertilizertoapply(ifnitrogen

isnotadequate).

vi) Estimatethenumberoftreesandamountoffertilizertoadd.

vii) Calculatetheuncertainty.viii) Monitorcarbonstockseveryyeartoassessprogress.

Inthecaseofnitrogen-fixingtreesandfertilizerapplicationinaprojectscenario,thestocks

ofcarbonarepredictedtoincreaseunlessthenitrogeninthesoilisinexcessamounts

whichmaycauseacontrastingresult.Thepredictedcarbonstocksinabaselinescenario

andprojectscenarioareshowninfigure3.3.2.

.

Figure3.3.2:ThegraphaboveillustratesadditionalcarbonsequestrationdenotedbyA,BandC,throughtheimplementationofaprojectscenariotothreevaryingbaselinescenarios(seefigure3.2.2)

Theselectedareaforprojectimplementationmayeitherhavecarbonstocksthatarereadily

increasingwithtimethroughnaturalregeneration(A),steadycarbonstocks(B)orreducing

carbonstocks(C).However,nitrogen-fixingtreesandfertilizerapplicationgreatlyincreases

thesequestrationofcarbonandalsocontaintheleakage,permanenceandadditionality

aspectofeveryprojectdevelopmentprotocol.Remotesensing,fieldmeasurementsand

Page 60: BIODEV published pdf

47

modellingcanbeusedtomeasurethebiomassinthebaselinescenarioandmonitoring

phases(seeA-2).

CarbonabatementpotentialThecarbonabatementpotentialofnitrogen-fixingtreesandfertilizationisrelativelyhigh

andhaspositiveeffectsonthesoilandvegetationoftheecosystems.Afewexamplesofthe

carbonsequestrationpotentialofnitrogen-fixingspeciesaregivenintable3.3.1.

Table3.3.1:Carbonsequestrationpotentialsofnitrogen-fixingtreesinWestAfricaSpecies Carbonsequestration(t/ha/yr) ReferencesFaidherbiaalbida(evergreenagriculture)

2-4t/ha/yr Toensmeier2016

Leucaenaleucocephala(White

leadtree)

19.81±0.44t/ha/yr Sheikhetal.2015

DalbergiasissooRox.(Rosewood)

27.35±0.19t/ha/yr Sheikhetal.2015

Pterocarpuslucens(Padauk)

0.325t/ha/yr Ngometal.2014

Nitrogen-fixingspeciesareoftengrowninvariousecosystemsandsometimesmixedwith

othernitrogen-fixingspeciestoenhancecarbonsequestration.Examplesofecosystems

containingnitrogen-fixingspeciesandtheircarbonsequestrationpotentialsaregivenin

table3.3.2.

Table3.3.2:Carbonsequestrationofsomeagroforestscontainingnitrogen-fixingspeciesinWestAfricaAgroforestrysystems Country Ages

(yrs)C(MgCha-1yr-1)

Authors

Fodderbanks(Gliricidiaseptum,PterocarpuslucensandP.erinaceus)

Mali 7.5 0.29 Takimotoetal.

(2008)Hedges(Acacianilotica,Acaciasenegal,Bauhiniarufescens,ZiziphusmauritianaandLawsoniainermis)

Mali 8 0.59 Takimotoetal.

(2008)

Parklands(FaidherbiaalbidaandVitellariaparadoxa)

Mali 35 1.09 Takimotoetal.

(2008)Culturealley(Leucaena) Nigeria 5 13.6 Lal(2005)Source:Moussaetal.2015Sheikhetal.(2015),conductedresearchonthecarbonsequestrationpotentialoftwonitrogen-fixingspecies,namelyDalbergiasissooRox.andLeucaenaleucocephala.Theyfoundthatcarbonsequestrationwashighestwhenbothnitrogen-fixingspeciesweregrown

togetherinthesameecosystem.Therefore,plantinganumberofnitrogen-fixingspecies

togethermaybehighlybeneficialinmitigatingclimatechange,increasingsoilfertilityand

producingbetterqualityyield.

Furthermore,addingnitrogenfertilizerinthecorrectamountstothesoilwouldincrease

yieldandcarbonsequestrationinthesamewaynitrogen-fixingtreeswould,although

excessfertilizershouldbeavoidedtopreventnitratepollution.Therefore,planting

nitrogen-fixingspeciesisrecommended,ratherthanusenitrogenfertilizersinexcessto

attaintherequiredyield.

Page 61: BIODEV published pdf

48

CostsandinvestmentsEverycarbonsequestrationprojecthasasetnumberofexpensesandinvestmentsto

adhereto,toenableasuccessfulandreliablecarbonsequestrationplan.Thefollowingare

thecostsandinvestmentsprocuredinthecaseofplantingnitrogen-fixingtreesand

fertilizerapplication:

i) Trainingthestaff–Theworkersneedtobequalifiedtoconductaccuratetreemeasurements,interpretGPSdataandremotesensingdata,carryout

stratificationandreadanduseinstrumentssuchasclinometersandmeasuring

tapespreciselytoavoidhumanerror.

ii) Incentivesforworkers–Fundingmustbeenoughtopaysufficientamountsof

labourtoeveryworker.

iii) Dividendsforfarmerstoenablethemtocontinuetheiragriculturalpracticesoutsidetheprojectboundary–Dependingonthenatureoftheecosystem,

farmersmayneedtostoppracticessuchaslivestockfarmingandcropfarmingto

enabletheplantingofnitrogen-fixingtreessoastorestoresoilfertilityand

increasecarbonsequestration.Thismayrequirethefarmerstomoveoutofthe

projectplotandcarryouttheirpracticeselsewhereusingsustainablemethods.

iv) Laboratoryanalysisforestimatingtheamountsofnitrogeninthesoiloftheprojectarea–Thismustbecarriedouttoguaranteethatnitrogenlevelsarenot

high.Thiscouldbedisastrousiffurthernitrogenisaddedtothesoilscausing

nitratesurfacewaterandgroundpollution,soildeterioration,cropdiebackand

offsetofCO2emissions.

v) Capitalforcarryingoutremotesensingtechniques–Conductingremotesensing

isfairlycostlydependingontheimagequality,size,softwareandexactlyhow

recenttheprocessedimageoftheplotis.However,costscanbereducedbyusing

freeremotesensingsoftwarefoundonline;examplesareQuantumGIS,E-foto,

GRASSandInter-image.

vi) Obtainingequipmentandmaterialsformeasurementsandprojectboundarydelineation–FormaterialsrequiredseeA-2.

vii) Seedlingsandfertilizers–Plantingnitrogen-fixingtreesandapplyingnitrogenfertilizerscomeatacostandthereforeacertainamountoffundingmustbe

reservedfortheseexpenses.Nitrogenfertilizersmayneedtobeapplied

frequently;thesecostsmustalsobetakenintoconsideration.

viii) Managementtechniques–Thesearethepracticesappliedtotheprojectareatoenablesocioeconomicbenefitsthroughsustainablemanagementsuchaspruning,

coppicing,agrosilviculture,fertilizersandirrigationpumps,amongothers.

ix) Monitoringmethods–Thecostsincurredheredependonhowfrequentlythecarbonstocksoftheongoingprojectshouldbemonitored.Inthecaseofplanting

nitrogen-fixingtreesandfertilization,thecarbonstocksneedtobemonitored

morefrequentlyasopposedtoconservationprojects.

x) Educatinglocalsandfarmersonthebenefitsofnitrogen-fixingtreesanduseofnitrogenfertilization–Qualifiedandskilledstaffarerequiredtoconductforums

toeducatelocalsandfarmersontheenvironmentalandsocioeconomicbenefitsof

nitrogen-fixingtreesandfertilization.Additionally,farmersandlocalcommunities

mustalsobewarnedontheadverseeffectsofexcessuseofnitrogenfertilizers.

Theexpensesareincurredinattainingqualifiedstafftoheadtheinformative

Page 62: BIODEV published pdf

49

groups,transportation,findingasuitablelocationfortheclasses,providingsome

learningmaterialsandsoon.

Environmentalandsocioeconomicbenefitsofnitrogen-fixingtreesandfertilizationTheenvironmentalandsocioeconomicbenefitsofplantingnitrogen-fixingtreesand

fertilizationaresubstantial.Thisisbecausethenitrogen-fixingtreescanbeplantedinavast

numberofecosystemsandcangrowindrylands.Fertilizerscanalsobeappliedtoanumber

ofplantationsitestoincreasethequalityandyieldofcropsandplants.

Asufficientnumberofstudieshavepostulatedanincreaseincarbonsequestrationand

biomassthroughtheplantingofnitrogen-fixingtreesandfertilizerapplication.Kingand

Purcell(2001)andTempertonetal.(2003)foundthatthenodulesinthealdertrees

increasedtheirsurfaceareainelevatedlevelsofcarbondioxidesoastoincreasenitrogen-

fixingcapacity.Thisinturnleadstoenhancedcarbonsequestrationasthebiomassofthe

treeandplantgrows.Therefore,nitrogen-fixingtreesandfertilizerwhengrownorapplied

inanagroforestoranyotherecosystemcouldsequesterevenlargeramountsofcarbon

dioxidefromtheatmosphereresultinginthereductionofclimatechange.

Nitrogen-fixingtreesandfertilizerenhancethequalityandyieldsoffruitandvegetable

trees,cashcrops,herbsandotherstandingbiomass.Therefore,farmerswouldbeableto

harvestrequiredpartoftheplantortreeatlargeryieldsandattainmorecapitalbyselling

betterqualityproduce.Forinstance,sheabutterthatsellsatapriceof400CFA/kg(USD

0.550)couldbesoldatahigherpriceprovidedtheyieldisofbetterquality.Additionally,

morekilogramsofsheabuttercouldbesoldatacertaintimegeneratingahigherincome.

InstitutionalframeworksandmanagementschemesAsufficientamountofplanningisrequiredtoimplementacarbonsequestrationproject.

Herein,agreatdealofresearchisrequired.Theseincludetheeffectsofnitrogen-fixing

speciesandfertilizerapplicationonvariousecosystemsandwhichplantations,forestsor

homegardenswouldbenefitfromnitrogenadditiontothesoils.Alsoimportantisthe

amountofnitrogenalreadypresentinthesoils,andwhichspeciesofnitrogen-fixingtreesto

plant.Theseevaluations,includingaprojectproposalandcostestimationfortheproject

canbepreparedbyorganizationssuchasICRAF,UNEPandACF.

Additionally,theseinstitutionscansourcethefundingneededfromorganizations

mentionedinB-1.Ultimately,throughsustainablemanagementtechniquesandusing

alternativemeasurementmethods,costscanbereduced.

Throughplantingnitrogen-fixingtreesandapplyingfertilizer,thequalityandyieldofthe

producewouldgreatlyincrease.ThroughcompaniessuchasDevexwhichhaveaccessto

internationalmarkets,localcommunitiesandfarmerswouldbenefit.

MonitoringrequirementsMonitoringrequirementsareconstitutedbyMeasuring,ReportingandVerifying(MRV).

Carbonstocksandsocioeconomicdevelopmentaremonitored.Toestimatetheabove-

groundbiomassofthetreesandsurroundingvegetation,refertoA-2foradetailed

Page 63: BIODEV published pdf

50

explanationonmaterialsrequired,alternativeandcheapermethodsofconducting

measurementsoftrees,stratificationprocess,samplingmethodsandallometricequation

modellingusingdestructivesamplingforspecificspeciesiftherearenoequationsavailable.

Moussaetal.(2015)presentedalistofspeciesspecificallometricequationsderivedfrom

WestAfrica,someofwhichoutlinedbelow.

Table3.3.3:Speciesspecificallometricequationsofnitrogen-fixingvegetationinWestAfrica()Species Equation Country ReferenceAcaciasenegal y=0.032Dbh

3-1.016Dbh

2+

10.87Dbh+7.429Senegal Thiametal.2015

Faidherbiaalbida

y=7.985Dbh+32.277 Niger Larwanouetal.2010

Pterocarpuserinaceus

Vf=3.024D2.259 Niger Rabiouetal.2015

Guierasenegalensis

log10y(g)=

(0.55+(1.89×log(X)))×10^(–3)Tongomayel

(BurkinaFaso)Henryetal.2011

Source:Moussaetal.2015

Theallometricequationsabovecanbeusedtodeterminethecarbonstocksinthe

nodulatednitrogen-fixingtreesorshrubsafterretrievingtheappropriatemeasurements

requiredandinsertingthemintothebiomassequations(seeA-2).Alternatively,Chaveetal.(2014)publishedamoregenericequationthatcanbeusedtoestimatecarbonstocksina

widerangeofecosystems.Thus,thesurroundingbiomassaroundthenitrogen-fixingtrees

andthetreesthatarefertilizedcanbeanalysedusingagenericequation.

Thesocioeconomicimpactsofgrowingnitrogen-fixingtreesandfertilizercanbeassessed

throughdirectviewingofbiomass/fruitsandvegetables,conductingsurveysamongfarmers

andlocalstokeeptrackofthequantityandqualityofproduce,andassessingthenutritional

andmarketvalueforincreasedincomeduetobetterproduce.

ChallengesandbarriersEverycarbonsequestrationprojecthassomehindrancestoovercometoensurea

sustainablymanaged,wellthought-out,successfulproject.Afewofthecommonchallenges

andbarriersare:

i) Landtenure–Principally,thefateofthelandselectedfortheprojectimplementationisdependentontheplansofthetitleholder.Theownermayhave

otherpersonalproposalsfordevelopmentoftheland.ii) Selectlandthatmeetstheprojectcriteria–Thismeansthatthesoilofthechosen

plotmustnotbehighinnitrogenlevels,asaddingmorenitrogencanhavea

devastatingeffectthatmaytakeyearstoundo.iii) Adequatefunding–Withoutsufficientamountofcapitalfromdonors,theproject

maycometoahalt.iv) Diseases,insectsandpests–Allplantsandtreesaresusceptibletoattackfrom

diseases,pestsandinsectsandthismaybeathreattotheprojectassubstantial

amountsofbiomasscouldbedestroyed.v) Farmersandlocalsmayapplytoomuchfertilizer–Trainingandeducationfor

farmersandlocalcommunitiesonthetypeofnitrogen-fixingspeciestogrowand

Page 64: BIODEV published pdf

51

thecorrectamountsandtypesfertilizersisfundamentalastoomuchnitrogencan

bedestructivetosoilsandplants.vi) Requirementofwellskilledlabour–Carryingoutcarboninventoriesisanintrinsic

taskthereforeworkersemployedmustbewelltrainedandsuitedforthejobsto

minimizehumanerror.

CapacitydevelopmentCapacitydevelopmentandsuccessoftheprojectcanbeenhancedbytargetingthe

challengesandbarriersthatimpedetheprogressofcarbonsequestrationprojects.The

mostbeneficialmethodsofcapacitybuildingarebycreatingawarenessoftheimportance

ofnitrogen-fixingtreesandfertilizationincarbonsequestration.Alsoimportantisthe

advancementoftrainingandeducationonconductingcarboninventoriessoastoachieve

themostaccurateresults.Promotingsustainablemanagementtechniquessuchascoppicing

andpruning,andestablishingabroadermarketwherefarmerscanselltheirproduceandin

turngainhigherincomesisessential.Sustainablemanagementmethodsalsobenefitthe

environment.Capacitybuildingshouldfocusontheenvironmentandsocioeconomic

developmentofacountry.

ReferencesBurtonJC.1972.Nodulationandsymbioticnitrogenfixation.In:HansonCH(Ed),AlfalfaScienceandTechnology(Monograph15;pp.229-246).Madison,WI:AmericanSocietyof

Agronomy.

Frankow-LindbergBE,DahlinAS.2013.N2fixation,Ntransfer,andyieldingrassland

communitiesincludingadeep-rootedlegumeornon-legumespecies.PlantandSoil,370,567-581.

GuldanSJ,MartinCA,Cueto-WongJ,SteinerRL.1996.InterseedinglegumesintoChile:

LegumeproductivityandeffectonChileyield.HortScience,31,1126-1128.HenryM,PicardN,TrottaC,ManlayRJ,ValentiniR,BernouxM,Saint-AndréL.2011.

Estimatingtreebiomassofsub-SaharanAfricanforests:areviewofavailableallometric

equations.SilvaFennica.45(3B):477-569.KhanS,MulvaneyR,EllsworthT,BoastC.2007.Themythofnitrogenfertilizationforsoil

carbonsequestration.EnvironmentalQuality.36(1),p1821-1832.KingCA,PurcellLC.2001.Soybeannodulesizeandrelationshiptonitrogenfixationresponsetowaterdeficit.CropSci.41:1099-1107.LalR.2005.Forestsoilsandcarbonsequestration.For.Ecol.Manage.220.242-258.LandonJR(Ed)1991.Bookertropicalmanual.Ahandbookforsoilsurveyandagricultural

landevaluationinthetropicsandsubtropics.London:Longman.

LarwanouM,YemshawY,SaadouM.2010.Predictionmodelsforestimatingfoliarandfruit

drybiomassesoffiveSavannahtreespeciesintheWestAfricanSahel.Int.J.Biol.Chem.Sci.4(6):p2245-2256.LindemannW,GloverC.2015.Nitrogenfixationbylegumes.Available:http://aces.nmsu.edu/pubs/_a/A129/Lastaccessed22

ndMay2016.

MoussaM,MahamaneL,SaadouM.2015.Allometricequationsforbiomassestimationof

woodyspeciesandorganicsoilcarbonstocksofagroforestrysystemsinWestAfrican:State

ofcurrentknowledge.InternationalJournalofResearchinAgricultureandForestry.2(10),p17-27.

Page 65: BIODEV published pdf

52

NgomD,AgbangbaEC,FallT,DiattaS,AkpoLE.2014.Quantificationofecosystemservices

providedbyPterocarpuslucensLepr.ExGuill.andPerrott.:Forageproduction,timberand

carbonsequestrationinthebiospherereserveofFerlo(NorthernSenegal).AmericanJournalofPlantSciences,2014,5.p766-777.doi.org/10.4236/ajps.2014.55091.RabiouH,BationoBA,SeglaKN,DioufA,KossiA,KokutseAD,RadjiR,MahamaneA,Kokou

K,SâadouM.2015.EstimationdevolumecommercialduboisdePterocarpuserinaceusPoir.(Fabaceae)dansleszonessahélo-soudaniennesetSoudaniennesduNigeretdu

BurkinaFaso(Afriquedel’ouest).JournalofAppliedBiosciences.87:p8131–8143.doi.org/10.4314/jab.v87i1.13.

RobledoC,KanninenM,PedroniL.2005.Tropicalforestsandadaptationtoclimatechange:Insearchofsynergies.Indonesia:CentreforInternationalForestryResearch.p103-116.SheikhM,KumarM,TodariaN.2015.Carbonsequestrationpotentialofnitrogen-fixingtree

stands.ForestryStudies,62(1),p39-47.SørensenJ,SessitschA.2007.Plant-associatedbacteria—lifestyleandmolecular

interactions.In:vanElsasJD,JanssonJK,TrevorsJT(Eds),ModernSoilMicrobiology,2nded.(pp.211–236).BocaRaton,FL:CRCPress,TaylorandFrancisGroup.

TakimotoA,RamachandranPK,NairA,NairVD.2008:Carbonstockandsequestration

potentialoftraditionalandimprovedagroforestrysystemsintheWestAfricanSahel.

Agriculture,EcosystemsandEnvironment.125:p159-166.ThiamS,SambouB,MbowC,GuisseA.2014.Élaborationdemodèlesallométriques

d‟AcaciaSénégalL.Willdversezl’analyseducarboneligneuxenmilieusahélien:casdela

zonesylvopastoraleauSénégal.AfriqueSCIENCE.10(3):p304-315.TempertonV,GraystonS,JacksonG,BartonC,MillardP,JarvisP.2003.Effectsofelevated

carbondioxideconcentrationongrowthandnitrogenfixationinAlnusglutinosainalong-termfieldexperiment.TreePhysiology,23(1),p1051-1059.ToensmeierE.2016.Carbonsequestrationpotentials.In:JorstadL.TheCarbonFarmingSolution.Vermont:ChelseaGreenPublishing.p29-37.

WorldAgroforestryCentre.2012.FaidherbiaAlbidakeystoneofEvergreenAgricultureinAfrica.Available:http://www.worldagroforestry.org/sites/default/files/F.a_keystone_of_Ev_Ag.pdf.Last

accessed22ndMay2016.

Page 66: BIODEV published pdf

53

B-4/Woodenergyorstoves

RationaleandobjectivesWhenusedandmanagedappropriately,woodenergyisarenewablesourceofenergy

obtainedfromtimberinforestsorplantations.Ifnotproperlyplannedandmanaged,the

expansionofthisbioenergyproductionwilltriggerbothdirectandindirectland-use

changes,leadingtodestructionofforestsandthelossofcertainecosystems,resourcesand

theservicesthatsuchsystemsprovide.Unfortunately,thisisalreadythecasenotonlyin

WestAfrican,butalsoinotherAfricancountries.Annualdeforestationratesarecommonly

at1%inWestAfrica,whichinpracticemeansthelossoftensofthousandsofhectaresof

landperyear.Eventhoughreforestationcampaignsandsustainableforestmanagement

campaignshavebeeninitiated,theirscaleisnowhereclosetothatofdeforestation.

Furthermore,deforestationintheSaheliancountriesisoftenthefirststeptowards

desertification.Thesituationismadeworsebythefactthatwoodybiomassandresidues

frombothagricultureandforestry–intheformoffuelwoodandcharcoal–arethemain

sourcesofenergyformostofthesecountries.Thisismoreprevalentinruralareasandat

thehouseholdlevel(forbothcookingandheating),wherewoodfuelsmayrepresentupto

96%oftheusedenergy(Arevalo2016).Thusitisunderstandablethatpopulationincrease

andagricultureareoneofthemainreasonsforthereductionofnaturalresourcesasthis

resultsinahigherdemandforbothfoodandfuelwood.Itfollowsthatagricultural

developmentandsustainableforestmanagementarethenumberonepracticalmethods

withwhichtobattledeforestationandlanddegradation.

Anotherpointofviewtousingwoodasenergyisprovidedwhenclimatechangeis

considered.Theimplicationsofusingwoodasfuelontheglobalenvironmentcanbe

evaluatedbyestimatingtheassociatedgreenhousegasemissions.Thesecalculatedcarbon

dioxideemissionscanthenbecomparedtothoseproducedbyusingalternativefuelssuch

ascoal,petroleumandnaturalgas(RWEDP1997).Agivenadvantageofusingwoodfuelas

energyisthatitisrenewable.Thismeansthatmoretreescanbereplantedtosequester

carbondioxideemissionsthatareproducedfromtransportingandburningofthewood.But

thisisthecaseonlyifforestgrowthandincrementofforestareaishigherthancuttings

(industrialcutting+energywoodcuttings).

Additionally,theimplementationoffuel-efficientcookingstovescangreatlyreducethe

amountofenergylostwhilecooking.Thisdecreasestheamountoffirewoodused,exposure

ofchildrentoaccidentsinthehome,risksofcontractingrespiratorydiseasesandthe

numberoftripsmadebylocalcommunitiestofetchthisfirewoodwhichcanberisky.

Consequentially,thisresultindecreasedamountofdeforestationandharvestingfirewood

whichinturnhelpsmitigateclimatechange.InBIODEVWP1.4thecalculationsindicateda

30-40%savingsintheamountofsolidfuelwoodinimprovedstovesand10-15%savings

usingcharcoal.Thisisaremarkableamountofwood(Torssonenetal.2015).

Utilizingwoodasafuelandultimatelypairingitupwiththeuseoffuel-efficientcooking

stovescanlargelyreducetheoverallamountofcarbondioxideproduced.Althoughburning

woodstillresultsinemissionofCO2gas,thecarbonfootprintisgreatlyreducedasopposed

tonon-renewablesourcesofenergy.Thisissupportedbytheempiricalresultsobtainedby

Page 67: BIODEV published pdf

54

ShafieiandSalim(2014),wheretheypostulatedthatnon-renewableenergyconsumption

increasedCO2emissions,whereasrenewableenergyconsumptiondecreasedCO2emissions

inOECDcountries.WestAfricaisnotamemberoftheOrganizationforEconomicCo-

operationandDevelopment(OECD),butishighlydependentonwoodforfuels.

Figure3.4.1:Examplesofimprovedenergystoves

Implementingtheuseofcookingstovescouldgreatlyreducetheamountofcarbondioxide

emissionsproducedfromburningwood.Thiscaninstigateacarbonnegativecountrythat

enhancescarbonsequestrationratherthanemittingcarbondioxide.Woodcanalsobe

convertedintocharcoal.Thisisprobablythestepinthecharcoalvaluechainwiththe

highestpotentialforreducinggreenhousegasemissions.However,charcoalisstillbeing

producedusingtraditionalmethodsandfurtherdevelopmentoncharcoalproductionfrom

woodcanplayanimportantroleinthemitigationofclimatechange(WorldBankGroup

2011).InthecharcoalexperimentsofWP1.4itwasfoundoutthattheprocesscanbe

improvedby10-15%(comparinghowmuchwoodisneededtothesameamountof

charcoalandenergy)ifthemethodsareconvertedmoreefficientbyverysimplemeans

(Vilppo2015).

Solidbiofuelssuchaswoodhaveanumberofadvantagesanddisadvantages,someofwhich

arepresentedintable3.4.1(Siegel2012).

Table3.4.1:AdvantagesanddisadvantagesofsolidbiofuelsAdvantages DisadvantagesGenerallylowcostinputs Landutilizationcanbeconsiderable.Canleadto

deforestation

Abundantsupply Maycompetedirectlywithfoodproduction(e.g.

corn,soy)

Widelyavailableandnaturallydistributed Nottotallycleanwhenburned(NOX,soot,ash,

CO,CO2)

Canbedomesticallyproducedforenergy

independence

Heavyfeedstocksrequireenergytotransport

Lowcarbon,cleanerthanfossilfuels Noteasilyscalable

Canconvertwasteintoenergy,helpingtodeal

withwaste

Energyintensivetoproduce.Insomecases,with

littleornonetgain

Renewableenergy AtthemomentnotsustainableinAfrica

Source:Siegel2012

Page 68: BIODEV published pdf

55

Thedisadvantageslistedabovecanbeovercomethroughsustainablemanagement

techniquessuchascoppicing,pruningandusingcookingstovestoreducetheamountof

firewoodneeded.Thiswilldecreasedeforestation,cutdownemissionsfromburningwood

andlessentheloadoffirewoodfortransportation.Therefore,inthiscontextitisclearthat

usingwoodfuelthatismanagedsustainablycanhelpsequestercarbondioxidewhichin

turnmitigatesclimatechange.

Dataandinformationrequirements

Figure3.4.2:Fuelwoodvaluechainwithmainstakeholders,quantities(steres/day)andprices(FCFA/stere)ineachprocessandconsideringformalityoftheactivities

Thedemandmodulerequiressocioeconomicanddemographicdata,aswellasdataon

woodfuelconsumptionfromlocalsurveys.Forthesupplymodule,detailedlanduse/land

coverinventoriesandanationalforestryinventoryshouldbeinplace.Inaddition,data

wouldberequiredon:biomassstockingfromnon-forestland-useclasses(typicallyfrom

localstudies);availableinfrastructureforwood/biomasstransportandprocessing;and

agriculturalareaespeciallydataonwoodfuelsupply,whichhasbeenamajorissueinwood

fuelanalysisformanyyears.InWP1.4oftheBIODEVproject,avaluechainanalysis(VCA)of

energywoodwascarriedout(Puentesetal.2016)basedoninterviewsofstakeholdersand

thefielddatameasured.ItshowedthatoneofthemainproblemsinVCA,andalsoinforest

management,istheinformalchainandespeciallyinthedeterminationoftheamountof

Page 69: BIODEV published pdf

56

informalcuttingsfordomesticuseandforinformalmarkets.Thereisbasicallynocontrolin

thatandiftheforestmanagementdecisionsarebasedontheformalinformation,itleadsto

forestloss.Thisstudyalsoprovedhowimportantitistocombineinformationfrommany

sourceslikeforestinventoryandVCAtobeabletogetaclearunderstandingofthecomplex

situation.

Often,theonlypieceofdataavailableforthesupplymoduleisthenationalforest

inventory.Detailedinformationonnon-forestandotherlanduseclassesisnotavailablein

mostcases.Withregardtoconsumption,dataisoftenavailableforonlypartofthecountry

andsometimesiscollectedusingincompatiblemethodologies.Thisdatagapcanbe

overcomeby:

1) Usingaproxyvariableto“spatialize”discontinuousvalues.2) Extrapolatinginformationavailableattheprojectleveltoanentirestudyregion.

3) Fillingspecificorcriticaldatagapswithnewdatacomingfromfieldstudies.

Themainchallengeistofinddirectorproxyvariablesavailableatthenationallevelthatcan

beusedtoestimateproduction/consumptionparametersandtheirspatialdistribution.A

projectpromotingtheuseofwoodfuelandcookingstoveswouldportrayabaseline

scenarioandprojectscenarioinrelationtoreducingcarbondioxideemissionsasshownin

figure3.4.3.

Figure3.4.3:Thebaselinescenarioandprojectscenarioinacarbondioxideemissionreductionproject

Inthebusinessasusualscenario(baseline)emissiontrendfollowsanincreasingsteep

curve.Theprojectscenarioshowsareversetrendmagnifyingtheabatementeffortofthe

project.Figure3.4.3illustratestheexpectedtrendsofcarbondioxideemissionswhen

instigatingtheuseofwoodfuelsandcookingstovesinaprojectscenarioandbeforethe

planiscommencedinabaselinescenario.Thecarbondioxideemissionsreducewhenfossil

fuelsarereplacedwithrenewableenergytherebydepictingadecreasingtrendlineina

projectscenarioandanincreasingtrendlineinthecaseofabaselinescenario.

Page 70: BIODEV published pdf

57

Asimilartrendcouldbeobservedintheamountofforestresources:theiramountincreases

astheamountofsustainably-managedlandsincreases.Futuretrendscanevenbecome

suchthattheamountofforestlandstaysstable,buttheamountofforestresourceskeeps

ongrowingduetobetterforestmanagementandmoreefficientstovesandfuelwood

productionmethods.

CarbonabatementpotentialThecarbonabatementpotentialreferstotherelativeamountsofcarbondioxideemissions

thatarereducedandsequestratedthroughtheuseofwoodasfuelandefficientcooking

stoves.Globalenergyconsumptionisincreasingwithrespecttorisinghumanpopulations

andindustrialization.Therefore,itisfundamentaltomakeenergychangesassoonas

possibletoavoidacceleratingtheprocessofclimatechangeandriskingtheexploitationof

fossilfuelswhichtakeyearsandyearstobeproduced.TheGhanaianNationalClimate

ChangePolicyFrameworkconstructedaMarginalAbatementCostCurve(MACcurve)for

householdenergydemandinthecountryfortheyear2020disclosingfivestrategiesto

lowercarbondioxideemissions.Theseareshowninfigure3.4.4:

Figure3.4.4:AMarginalAbatementCostCurveforhouseholdenergyinGhanafortheyear2020(Source:Tilburgetal.2011)

Figure3.4.4indicatesthatatleastfourofthestatedCO2loweringstrategieshavenegative

costsandthereforeprovideneteconomicbenefitswhilereducingtheemissionsof

greenhousegases.ThereplacementoflightbulbswithCompactFluorescentBulbs(CFLs)is

themostcosteffective,buttheimplementationofefficientcookingstovesandimproved

Abatement potential (Mt CO2 -eq)

Carbon abatement costs (USD/tCO2 –eq)

Page 71: BIODEV published pdf

58

charcoalproductionsdepictthelargestpotentialforreducingcarbondioxideemissions

(Tilburgetal.2011).Thecostofimprovedcharcoalproductionusingwoodaccordingto

Tilburgetal.(2011)isonlyindicativeduetolackofdataavailableintheunder-developed

sector.Tosecurethepositiveeffectofusingthesemoreefficientmethodsandtechniquesit

isimportanttosecuretheforestgrowthandsustainabilityaswell.Theimplementationof

moreefficienttechniquesalonedonotimprovethesituationifnoattentionispaidto

increasetheforestcover.

Thus,thisdataandinformationobtainedfromGhanacanbeexpandedthroughoutthe

remainingWestAfricancountries.Thedataputsemphasisoncarbondioxideemissions

producedinurbanhouseholdsandruralareas.

CostsandinvestmentsPromotingtheuseofwoodforfuelsandcharcoalproductionandsimultaneouslyutilizing

efficientcookingstovesinhouseholdscanberelativelycostly.Althoughthebenefits

accruedbytheimplementationofrenewablewoodenergyandefficientcookingstoves

surpassthecosts,itisstillimportanttoanalysetheproposaltoensureasuccessful,well

thoughtout,budgetedprojectthatcanbeexpandedacrossSub-SaharanAfrica.Anumber

ofcostsandinvestmentstoconsiderare:

i) Educatingfarmersandlocalcommunitiesonsustainableharvestingtechniques–Thisisaninvestmentpresentinalmosteverycarbonproject.Alargenumberof

localshavenotreceivedformaleducationforalmostalltheirlives,soitisnecessary

totutorthemregularlyonadvancedmethodsofsustainableharvestingtechniques

andtools.Additionally,thisreducestheratesofdeforestation,thushindering

climatechangewhileconcurrentlyallowingthesurroundingcommunitiestoutilize

sourcesfromtheforestedlandorplantationsthroughtechniquessuchascoppicing

andpruning.ii) Educatingfarmersandlocalcommunitiestosecuretheregenerationthrough

seedlingproductionandplanting–Seedlingproductionisakeyelementinmostof

theareasaroundthevillagesandifnoplantingisdoneitisbasicallyimpossibleto

secureforestsinthefuture.Inaddition,politicaldecisionsandchangeinforest

policyisrequiredtoensurethatfarmershavecontrolovertheland.iii) Costsofestimatingcarbondioxideemissionsfromwoodfuelsandcookingstoves

–Theserefertoconductinglandcover/forestinventories.iv) Seedlingsandfertilizers–Thisisconditionalasthespeciesoftreesrequiredfor

timbermayvary,thereforeseedsandfertilizermayberequired.Additionally,

nitrogen-fixingtreescanbeplantedalongwiththetreestoenhancethequalityand

yield.

v) Approximatingwoodfuelusageusinglocalsurveys–DistributingthesurveyscouldbetimeconsumingandcostlybutisfundamentalinassessingCO2emissions

produced.

vi) Trainingthestaff–Inordertoattainaccuratefiguresoncarbondioxideemissions

fromusingwoodasafuelandefficientcookingstoves,staffmustbeskilledand

havedeepknowledgeontheprocessrequired.Itisvitaltoacquireaccurateresults

asthesedataarethencomparedtothoseoffossilfuelstoassesswhichofthefuels

arelessharmfultotheenvironment.

Page 72: BIODEV published pdf

59

vii) Capitalforprovidingefficientcookingstovestolocalcommunities–Overtheyears,thecookingstoveshavebecomemoreandmoreefficientreducingthe

amountofemissionsproducedandtheamountofwoodfuelrequired.Amodern

efficientcookingstovecomesatanaveragepricerangingfrom$100-$400

dependingonthematerial,thesizeandthemakeofthestoves.

viii) Thecostsoftransportingthewood–Thisdependsonthepurposeofthewood.Localscancarryalimitedamountofwoodtoandfromthesite.However,

companiesusingwoodforalternativepurposeswoulduseheavydutytruckswhich

arecarbonemittingandcostly.Additionally,localcommunitiesmakeuseoftheir

livestockorinvestinlivestocktoassistinthetransportationofwood.

Theseareonlyanumberofthecostsandinvestmentsprocuredinthegeneralproject.

Theremaybeadditionalcostsrelatedtotheimplementationofwoodenergyandefficient

cookingstoveswhichmayhowever,beminor.Supplementaryfundswouldbebeneficialin

thiscase.

EnvironmentalandsocioeconomicbenefitsAlthoughtheuseofwoodenergycontributestoenvironmentaldegradation,when

evaluatedagainstfossilfuelsthelatterispositive,especiallywhensustainabilityandforest

regenerationareincluded.Eventhoughtheharvestingofwoodforcookingandheating

resultsinemissionofcarbondioxide,thefactthatitisrenewable,isreadilyavailableand

cansequestercarbondioxidethroughreplantingoftreesmakesitamorefavourablesource

ofenergy.Incontrast,fossilfuelsemitlargeramountsofcarbondioxide,require

investmentsandprocessingbeforetheycanbeused,andmayonedaybeexhausted.World

Vision(2011)establishedthatinstallationandcorrectuseofimprovedstovesreduced

greenhousegasemissionsbyapproximately74%.Furthermore,therewasreductioninsoil

erosion,improvementinthesoilfertilityandwaterholdingcapacityofthesoil.

Usingwoodforfuelenhancestheconservationofforestsonlythroughsustainable

harvestingpracticesandsecuredregeneration(plating)andalsobytheuseofefficient

cookingstoves,astheamountofwoodfuelrequiredissubstantiallyreduced.Thesocial

benefitsinthiscontextare:saferenvironmentforchildrenasthereisreductioninthe

amountofsmokeproducedandtheriskofaccidents,andwomencanspendlesstime

collectingfuelandcaninsteadtakecareoftheirchildrenorstartworkingforadditional

income(WorldVision2011).Inaddition,iftheforestcoverisincreased,thelivelihoodsof

communitiescouldimprove–byadequatefood,shelterandincomegeneratingactivities.

Inregardstoeconomicbenefits,thewoodenergysectorcreatesconsiderableamountsof

employmentandincome,assomeofthewoodfetchedcanalsobesoldtoothercompanies

athigherprices.Additionally,thewoodenergycanbeusedtoproducevaryinggoodsand

servicessuchasheating,cookingandlighting.

InstitutionalframeworkandmanagementschemesThedevelopmentofwoodenergyandefficientcookingstovescanbeachievedthroughthe

implementationofeffectivemanagementschemesandinstitutionalframeworksthatwork

towardssustainabledevelopmentforfuturegenerations.Inaddition,educationfordecision

makersandpoliticianstoensurethepoliticalwillisimportant.

Page 73: BIODEV published pdf

60

FurtherresearchandprojectimplementationbyinstitutionsincludingICRAF,CIFOR,USAID,

UNEP,FAO,WorldVisionandtheAfricaRenewableEnergyAccessProgramme(AREAP),

amongothers,isrequired.TheseinstitutionshavemadeadifferencetoAfrican

communitiesbypromotingsustainableharvestingtechniques,reducingdependenceon

fossilfuelsandsupplyinghomeswithefficientcookingstoves.Thisismadepossiblewith

fundingreceivedfromdonorssuchastheWorldBank,AfricaDevelopmentBankandGood

Samaritans.

MonitoringrequirementsAsstatedabovejustincreasingtheefficiencyofcookingandcharcoalprocessesdonot

ensuresustainableandrenewablewoodenergy.Infact,atthemoment,woodenergyisnot

renewableinAfricancountriesascanbeseenfromthehugedeforestationrates.Sierra

LeoneandBurkinaFasoaregoodexamplesofthis.AccordingtotheMinistryofEnergyand

WaterResources,SierraLeone,vastdeforestationoccursinthecountryduetothemassive

dependenceofitsover7millionpeopleonwoodfuels(MEWR2009).InBurkinaFasofrom

the5.4millionhectaresofforests(FAOSTAT2015)—including3.9millionhectaresofstate-

ownedforestreserves—theannualforestlossduring1992-2002accordingtothe

governmentwas107,626hectaresandannualforestdegradationequivalentto0.5million

hectares(MEDD2012a).90%ofthepopulationutilizeswoodenergyintheformoffirewood

andcharcoal(REEEP2012).Thesefiguresshowclearlythattheforestmanagementisnot

sustainableandthewoodenergyisnotrenewableatthemoment.

Toimprovethesituationandtomakewoodenergyatrulyrenewablesource,forestloss

mustbestoppedthroughactiveandmassiveregenerationactions,intensificationof

agriculture,aswellaspromotionofagroforestry.Thiswillrequirepoliticalwill,educationat

alllevelsandactiveinputtoseedlings.Peopleatalllevelswillneedtobemotivatedtocarry

outregeneration,notonlythroughplanting,butalsothroughsustainableforest

management.

Tomonitorthesuccessintheseactivitiesaproperforestinventoryisneeded.InBIODEV

projectWP1.4,asuitablemethodformonitoringandmeasuringtheabove-groundbiomass

aswellasthecalculationprocedureforavailableenergywoodinsampleplotswere

presented(HeiskanenandPackalen2013,Valbuenaetal.2016).Thiskindinventorysystem

withremotesensingdatashouldbeappliedtobeabletomonitorthechangesinforestland

areaandamountofavailablewoodybiomass.Onlythencanpropermanagementplansbe

madeforsustainability.

Inaddition,thereisneedtoexaminethedifferentvaluechainsandthebusinessaround

forestgoodstoimproveefficiency(likeinmarketingandtransportinggoods)andtomake

surethattherearenooverlapsintheuseofnaturalresources.Equallyimportantisthe

needtolearnaboutthedifferentformalandinformalprocessesandchainssincetheyboth

affecttheamountofavailablebiomass(Puentesetal.2016).Thiswouldpromote

developmentofnewbusinessmodelsforwomenandthusimprovetheirstandardsofliving.

ChallengesandbarriersSomeofthedifficultiesexperiencedbyinstitutionsinsuccessfullyimplementingtheswitch

towoodenergyandefficientcookingstovesare:

Page 74: BIODEV published pdf

61

i) Alternativepurposesofanopenfire–Indoorfiresforcookingfoodoftenserveotherpurposessuchasheatingindoorareas,preservingfoodthroughsmoking,

keepingthatchedroofsdryandrot-free,repellingmosquitoesandlighting.

Improvedstovesdonotaddressalloftheseneeds,andhenceneedtobepartof

thebroadersustainabledevelopmentefforts(WorldVision2011).

ii) Compatibilitywithlocalfuelsandfoods–Cookingstoveshavetocomeina

varietyofshapesandsizestoenablecertainpotsandpanstoaccuratelyfitand

consumeenergyfromthestoveentirelysothatnoneiswasted(WorldVision

2011).

iii) Communityacceptance–Differentcommunitiesandindividualsmayhave

differentcriteriabywhichtheyevaluateastove’smerits–andoftenthosecriteria

differfromtheonesdictatingastove’sdesign.Astovemaybedesignedto

maximizeenergyefficiencyandreducesmoke,forexample,butstoveusersmay

alsojudgethemodelbasedonfactorslikesafety,convenience,priceand

perceiveddurability(WorldVision2011).

iv) Insufficientfunding–Appropriateamountsofcapitalarerequiredtoenablethe

commencementoftheproject.

v) Deforestation–Ifwoodisnotharvestedinsustainably,theoutcomewouldbea

reductioninoveralltreecoverandexcessemissionsofcarbondioxideintothe

atmosphere,furthertriggeringclimatechange.

vi) Usinglandtogrowtreesforwoodfuelleadingtodirectcompetitionwithfoodcrops–Thismatterwouldrequireprecisesustainablelandmanagement

strategies,forexample,instigatingagroforestrysystems.

vii) ProducesCO2emissionsthroughburningofwoodandtransportation–Thepublicneedstobeawarethattheseemissionsproducedarelessthanthoseemittedby

fossilfuels.Additionally,harvestingtechniquessuchascoppicingandpruningand

usingefficientcookingstovescanultimatelyreducecarbondioxideemitted

throughburningandtransportation.Plantingmoretreescansequesterexcess

carbondioxideproducedthroughburningandtransportationofwood.

Furtherresearchonsustainabledevelopmentandneedsoflocalcommunitiescould

enhancetheeffectivenessoftheprojectinreducingcarbondioxideemissions.

CapacitydevelopmentCapacitydevelopmentonwoodenergyandefficientcookingstovesspecificallyfocuseson

improvingthesocioeconomicviability,ecologicalsustainability,resourceefficiencyand

emissionsofgreenhousegases(FAO2015).Projectsimplementingtheuseofwoodenergy

andefficientcookingstovescanbemoresuccessfulandresourceful.Thiscanbeachieved

throughbridgingthegapsineducation,collectingandimprovingdataacquiredandraising

awarenessoftheimportanceofwoodenergy.Additionally,researchingonmodernand

improvedsustainableandresource-efficientproductionandconsumptionofwood,and

increasingthefrequencyoftrainingworkshopssothatlocalscanlearnfromoneanother

arealsokey.

Capacitybuildingallowstheadvancementoftheproposedprojectssoastoattainthe

expectedresultsandimproveenvironmentalandsocioeconomicfactors.Institutions

Page 75: BIODEV published pdf

62

workingtogetheronalargescalecanbridgethesegapsinresearchandimprovetheaspects

offuturesustainabledevelopment.

Equallyimportantistoofferandcarryouttrainingatalllevels(fromdecisionmakersand

politicians,tofarmers)aboutsustainableforestmanagement,whileofferingknowledgeon

ecologyandeconomyrelatedtoforests.Itmustbeclearforeverybodythatthereareno

markets,nobusinessesandnomoneyiftheforestsarelost.Theconnectionbetweenthe

differentitemsmustbecleartoeveryone.

SustainableenergywoodmanagementBasedontheworkandresearchofWP1.4onenergywood,itisclearthatonlyrenewable

andsustainableenergywoodcanbeobtainediftheforestmanagementisbasedon

sustainabilityandtheforestedlandareacoverisincreased.BasedontheresultsofWP1.4

issuestouchingonthesustainabilityofthewoodbasedenergyincludethefollowing

(Torssonenetal.2015):

i) Thereisneedtodevelopforestpolicyandforestlaw.

ii) Asystematicnationalforestinventorymustbelaunchedtotrackchangesinwood

biomass.

iii) Trainingatalllevelsisakeyfactor.Thereisneedtobuildthecapacityofcommunities,farmers,forestmanagers,woodsellers,researchers,teachers,

businesspeople,politiciansanddecisionmakers.

iv) Needtobuildupastrategicplanforsustainablewoodfuelmanagement.Inthis

paper,thisworkisstartedandtherecommendationsoftheWP1.4workinggroup

arepresented.

v) Improvedandup-to-dateteachingonclimateissues,biodiversity,forestsand

forestryatalllevelsofeducation,fromprimaryschoolstouniversities.Inthis

BIODEVproject,theworkinggroupofWP1.4tookthefirststepbytrainingstafffrom

NjalaandOugadougouUniversitiesonsustainablewoodenergymanagementandby

publishingatextbookforuniversities.

vi) Needtoimprovecharcoalproductiontoreducetheenergylossintheprocess.

vii) Needtocombineagroforestryandfuelwoodproductiontoincreaseaccessto

fuelwoodplantationsandincomeforfarmers(producingandsellingfuelwoodinthe

area).

Figure3.4.5highlightsthesuggestedchaintoguaranteethesustainabilityinforest

management(Torssonenetal.2015).

Page 76: BIODEV published pdf

63

Figure3.4.5:Aflowchartdepictingtheidealwayofmanagingtheforestsandproducingincome,productsanddevelopmentonasustainablebasis

ReferencesFAOSTAT2015.OnlineDatabase.FAO,Rome.Retrievedfrom

http://faostat3.fao.org/home/EFoodandAgricultureOrganization.2015.WoodEnergy.Available:http://www.fao.org/forestry/energy/90828/en/.Lastaccessed29

thMay2016.

HeiskanenJ,PackalenP.2013.Fieldmeasurementprotocoltoestimateaboveground

biomassandfuelwoodstocks.12p

MEDD2012a.ReadinesspreparationplanforREDD.MinistryofEnvironmentand

SustainableDevelopment,BurkinaFaso.

MEWR2009.NationalEnergyPolicyandStrategicPlan.MinistryofEnergyandWater

Resources,SierraLeone.

PuentesRodriguezY,TorssonenP,Ramcilovik-SuominenS,PitkänenS.2016.Fuelwood

valuechainanalysisinCassouandOuagadougou,BurkinaFaso:Fromtheproductiontothe

consumption.Manuscript.21p.

REEEP2012.Web-basedResources,PolicyDatabase,RenewableEnergyandEnergy

EfficiencyPartnership.Retrievedon11thJanuary2016fromhttp://www.reegle.info/

RegionalWoodEnergyDevelopmentProgramme.1997.RegionalStudyonWoodEnergyTodayandTomorrowinAsia.Available:http://ftp.fao.org/docrep/fao/W7744E/W7744E00.pdf.Lastaccessed26

thMay2016.

Page 77: BIODEV published pdf

64

ShafieiS,SalimR.2014.Non-renewableandrenewableenergyconsumptionandCO2

emissionsinOECDcountries:Acomparativeanalysis.EnergyPolicy.66(1),p547–556.SiegelR.2012.BiomassEnergy:ProsandCons.Available:http://www.triplepundit.com/special/energy-options-pros-and-cons/biomass-energy-pros-

cons/.Lastaccessed27thMay2016.

TilburgX,WürtenbergerL,RiveraR,Atta-OwusuF.2011.Policybrief:Lowcarbonoptionsforenergydemand.Available:https://www.ecn.nl/docs/library/report/2011/o11022.pdf.Lastaccessed28

thMay2016.

TorssonenP,PitkänenS,MelinM,KilpeläinenA,PackalenP,PuentesY,Ramcilociv-

SuominenS,ValbuenaR.2016.Towardssustainablewoodfuelmanagement.Strategicplan.

AvailableonthewebsiteofBIODEV.

ValbuenaR,HeiskanenJ,AynekuluE,PitkänenS,PackalenP.2016.Sensitivityofabove-groundbiomassestimatestoheight-diametermodellinginmixed-speciesWestAfrican

woodlands.Manuscript.45p.

VilppoT.2015.Simplemethodstoimprovebiocharyield.3p.Availableonthewebsiteof

BIODEV.WorldBankGroup.2011.Wood-BasedBiomassEnergyDevelopmentforSub-SaharanAfrica:Issuesandapproaches.Washington:AfricaRenewableEnergyAccessProgramme.

p1-64.

WorldVision.2011.Fuel-efficientcookingstoves:atriplewinforchildhealth,developmentandtheenvironment.Available:https://www.worldvision.com.au/docs/default-

source/publications/climate-change/wv_fuel-efficientcookingstovesreport.pdf?sfvrsn=6.

Lastaccessed28thMay2016.

Page 78: BIODEV published pdf

65

B-5/Landrestorationforcarbonsequestration

RationaleandobjectivesLandUseLandCover(LULC)changecontributesaconsiderableamountofglobal

anthropogenicgreenhousegasemissions,accountingforanestimated12.5%ofcarbon

emissionsfrom1990to2010(Houghtonetal.2012).Approximately52%oftheworld’s

forestsareconcentratedinthetropics,whichhavethehighestratesofdeforestationand

landconversionglobally(Brownetal.1996).WestAfricaisdominatedbytropicalforests

whichstretchfromSierraLeoneallthewaytovastregionsofGhana.Onlyabout15%ofthe

originalforesthotspotvegetationcoverofGuinearemainstodayduetodeforestationfor

agriculturalpurposesandhumansettlements,comparedto18%ofhotspotvegetation

coveratthebeginningofthemillennium(GockowskiandSonwa2010,CEPF2016).Thisland

usechangeresultedinsubstantialamountsofcarbondioxideemissionsduetothe

reductioninstandingbiomassforgrowingcashcrops.

Figure3.5.1:AnimageofdegradedlandinNiger(Source:Hannah2013)

Althoughclearinglandtogrowcropsforsocialandeconomicpurposesmayseemnormalin

developingcountries,itisgreatlyaffectingtheenvironment,thesoilsandthequalityofthe

produce.Reductioninsoilfertilityandqualityofproducecouldbeattributedtothe

subsequentincreaseinsoilerosion,lackofnutrientsduetoleachingandreducedlitter

decompositionwhichenhanceandregulatethenitrogenandcarboncycles.Additionally,

deforestationrateshaveledtoemissionsofcarbondioxide,thusacceleratingclimate

change.

Thefateoflanduseiscontrolledbythehumanpopulationandtoalargeextent,individuals,

businesses,non-profitorganizationsandgovernmentsthatcanmakelanddecisionsto

adapt/reducetheeffectsofclimatechange(Brownetal.2014).Afewadaptationoptions

postulatedbyBrownetal.(2014)aimedatreducingtheprocessofclimatechangeinclude:

i) Expandingforeststoaccelerateremovalofcarbonfromtheatmosphere.

ii) Modifyingthewaycitiesarebuiltandorganizedtoreduceenergyconsumptionand

reducelandusechange.

iii) Alteringagriculturalmanagementpracticestoincreasecarbonstorageinabove-

groundbiomassandsoil.

Page 79: BIODEV published pdf

66

Thesesolutionscanbeappliedacrosstheworldtominimizethegrowingemissionsof

carbondioxideproducedthroughlandusechange.Landrestorationentailstechniquessuch

asreforestation,afforestation,agroforestry,agropastoral,agrisilvicultureand

agrosilvopastoralmethodswhichsubstantiallyincreasecarbonsequestrationandinturn

reducetheprocessandeffectsofclimatechange.

DataandinformationrequirementsforlandrestorationQuantifyingemissionsfromLULCchangeremainsoneofthemostuncertaincomponentsin

carbonbudgeting,particularlyinlandscapesdominatedbysmallholderagriculture(Brown

etal.2007,Houghtonetal.2012,Smithetal.2012,KearneyandSmulker2015).According

toKearneyandSmulker(2015),anumberofstepsarerequiredtoestimategreenhousegas

emissions/removalsfromLULC.Theseinclude:

i) DeterminevariationsinLandUseLandCoverChanges–Thismustbedoneby

comparingdatafromtwoormorepointsintime.

ii) Developabaseline–Theobservedchangesincarbonstocksmustbecomparedtoa

scenariowithouttheimplementationoflandrestoration.Thisiscarriedoutbyeither

developingabaselinescenarioorthroughdirectobservationofaregion.

iii) Calculatecarbonstockchanges–Greenhousegasemissionscanbeusedor

alternatively,thecarbonstockscanbemeasuredusingthemethodologystatedinA-

2foreachlandclass.iv) Assessaccuracyandcalculateuncertainty–Accuracyofeachstepmustbeassessed

inordertodeterminetheuncertaintyassociatedwithfinalemissions/removals

estimatesassociatedwithLULCchanges.

DeterminingthechangesinLULCcanbedonethroughremotesensingtechniqueswhich

yieldaccuratedata.Comparisonscanbemadewiththesatelliteimagesobtainedfromtwo

ormorepointsintimetogiveanestimationofthefateofthecarbonstocksinthe

ecosystemovertime.Additionally,developingabaselineandprojectscenarioforland

restorationaredependentonthetypeofland-usecategorywhichcouldbe:forestland,

cropland,grassland,wetlands,orsettlements.Changingcroplandtoforestlandand

incorporatingagroforestrywouldincreasecarbonsequestrationlargelyduetoincreasein

standingbiomass.Landrestorationprojectsshouldaimtoincreasethecarbon

sequestrationtothegreatestpotentialbyevenplantingnitrogen-fixingtreesandadding

fertilizersoastoincreaseproductionandyieldofbiomass,aswellassequesterlarge

amountsofcarbondioxide.Therefore,inalandrestorationprojectthebaseline-project

scenariographwouldbesimilartothatillustratedfigure3.1.2.

CarbonabatementpotentialThecarbonabatementpotentialvariesacrosseachlandusecategory.Evidently,tropical

forestsarethelargestcarbonsinksduetotheirvastcanopies,diversespeciesandecological

systems.Landrestorationcanhowever,alsosequestratecarbondioxideinpossiblysimilar

amountswiththeintegrationoffertilizers,nitrogen-fixingspeciesandagroforestry.

Table3.5.1presentsexamplesofcarbonstocksinvariousland-usecategoriestoillustrate

thehighestcarbonsequestratingecosystemsthatcouldbelargelybeneficialtothe

environment.

Page 80: BIODEV published pdf

67

Table3.5.1:CarbonsequestrationpotentialsofvaryingbiomesBiomes/ecosystems Carbonsequestration(PgCperyear)Agriculturallands 0.85–0.90Biomasscroplands 0.50–0.80Grasslands 0.50Forests 1–3Desertsanddegradedlands 0.80–1.30Terrestrialsediments 0.70–1.70

DOE1999

Forestscontainthelargestamountofstandingbiomassandthereforesequestergreat

amountsofcarbondioxidethroughtheprocessofphotosynthesis.Increasingtheamountof

carbonsequesteredinthebiomeslistedabovecouldbedonebyplantingmoretreesand

usingsustainablemanagementandharvestingpractices.

Therefore,convertingevenagriculturallandtoaforestedlandscapedeliverslarge

environmentalbenefitsandsimultaneouslycarryingoutcroppingandintercropping,the

socioeconomicbenefitscanalsobeincreased.

CostsandinvestmentsLaunchingalandrestorationprojectinvolvesahugeinvestment.Anumberofthecostsand

investmentsprocuredinclude:

i) Educatingthepublic,localcommunitiesandfarmersontheimportanceoflandrestorationandsustainablefarming–Thisinvolvesadvertisements,seminars,

forumsandpossiblycoursestaughtbywelltrainedandskilledindividuals.

ii) Incentivesforworkers–Fundingmustbeadequatetopayforlabourandsufficient

amountsofcapital.

iii) Incentivesforfarmerstoenablethemtocontinuetheiragriculturalpracticesoutsidetheprojectsite–Torestorelandthathasbeenexcessivelydegradedthroughagriculture,farmersmaybeforcedtotemporarilycarryouttheirpractices

elsewhere.Thisrequiresacertainsumofcapitaltoallowthemtostartallover

againandensuretheybeginusingsustainablemanagementtechniques.

iv) Capitalformaterialsandinstrumentsforcarboninventoryandestimatinggreenhousegasemissions–Estimatingcarbonstocksandemissionsrequire

greenhousegaschambers,measuringtapes,clinometers,compasses,pegs,remote

sensingsoftwareandGPS(seeA-2).

v) Seedsandfertilizers–Restoringlandrequiresinvestmentsinseedsandfertilizers

formaximumyieldproductionandcarbonsequestration.vi) Managementtechniques–Materialsrequiredforprocessessuchascoppicing,

pruning,livefencing,andreducedtillage,amongothers.vii) Monitoringmethods–Landrestorationmustbemonitoredfrequently,atleast

onceayear.viii) Restoringsoilfertilityandconductinglaboratorytestsonsoils–Ifthelandtobe

recoveredwasapreviouscoalmine,substantialamountsoffertilizerandsoil

analysistestsarerequiredtoensurethereisnoarsenicpoisoningifthelandis

beingrestoredforagriculturaluse.

Thecostbenefitanalysisinthiscasemustcarefullybeexaminedtoensurethatthebenefits

attainedfromtheconversionoflandoffsettheexpenses.

Page 81: BIODEV published pdf

68

EnvironmentalandsocioeconomicbenefitsoflandrestorationDependingonthelandusecategoryandcarbonsequestrationpotential,theenvironmental

andsocioeconomicbenefitsarevast.However,themostefficientmethodofincreasing

carbonsequestrationwhileconcurrentlyencouragingsocioeconomicdevelopmentisby

plantingspeciesoftreesthataremostusedandbeneficialforlocalcommunities,and

incorporatingnitrogen-fixingtreesforsoilfertility.Furtherenvironmentalbenefitsother

thanmitigatingclimatechangeincludeimprovementinsoilfertility,reductioninsoil

erosion,improvementincropyieldsduetoincreasedcarbonsequestrationbynitrogen-

fixingtreesandfertilizertreeswhichactaswindbreaksandpreventflooding.Inthesocial

andeconomicaspectsoflandrestoration,benefitsinclude:

• Landrestoration–Localfarmers,communitiesandinstitutionsareabletowork

togetheronasocialleveltoattainacertaingoal.

• Additionoffertilizersandnitrogen-fixingspeciesimprovesqualityandyieldofany

cashcropsbeinggrown.Thisincreasesthevalueoftheproducewhichcanbesoldat

higherprices,thusincreasinghouseholds’incomes.

• Agroforestrylandrestorationcanimprovethenutritionaldietsofthelocal

communities,thusenhancingtheirhealth.

• Growingavarietyofspeciesbringsforthavarietyofeconomicvaluesuchastimber,

herbalmedicines,fruitpulpandfibres.

InstitutionalframeworksandmanagementschemesExperiencesuggeststhatrestorationusuallyonlyworksinthelongtermifithassupport

fromasignificantproportionoflocalstakeholders(Vallaurietal.1986).InWestAfrica,

collaborativeinterestinlandrestorationbyinstitutionssuchasICRAF,UNEP,USAID,could

behelpfulastheseorganizationshaveskilledprofessionalswhocandevelopproposalsand

securefundsfromdonorssuchastheWorldBank,AfricaDevelopmentBankandtheprivate

sector.

Additionally,landrestorationrequiresavarietyofexpertiselikeecology,silviculture,

economics,publicpolicy,andthesocialsciences,whichneedtobecombinedinanefficient

way.Institutionalframeworksandmanagementschemescanappropriatelyadheretothese

requirementsandprovidesufficientskilledandtrainedstaff.

MonitoringmethodsMonitoringistheprocessofperiodicallycollectingandusingdatatoinformmanagement

decisions(O’Connoretal.1986).Inlandrestorationprojects,monitoringinvolvesthe

estimationofcarbonstockstoassesstheprogressandsurveysanddirectobservationto

assessifthecommunitiesareusingsustainablemanagementtechniquesandifnot,what

actionstoundertake.Figure3.5.1summarizesthestepsofmonitoringalandrestoration

project:

Page 82: BIODEV published pdf

69

Figure3.5.1:Thestepstakentomonitorprogressoflandrestorationprojects

ChallengesandbarriersAsuccessfullandrestorationprojectrequiresanenormousamountofinstitutionaland

communitycooperationandeffort.Thisisperhapsasocialadvantageasitbringstogethera

networkofpeopleworkingtowardsasimilargoal.However,italsocomeswithchallenges

suchas:

i) Expensiveprojectsthatneedsufficientfunding–Convertinglandisanenormous

projecttotakeonandconsistsofalargenumberofcostsandexpenses.

ii) Itisdifficulttoestimategreenhousegasremovalsandemissionsiii) Landrestorationprojectarelongandextensive–Restoringaforestonhighly

degradedlandcantakeapproximately10-15yearswithregularcorrectionsand

intensive-tuning(Vallaurietal.1986).iv) Theextentofsoildamagemayhindertheproject–Ifthedegradedlandwasfor

instance,anex-coalmine,thehighlevelsofarseniccouldbedamagingforthe

growingvegetationandconsequentlyreducethebiomassproduction.

v) Requirementofwellskilledlabour–Estimatingcarbonstocksandemissionsfrom

landuselandcoverchangeneedstrainedstaffsoastoensureprojectaccuracy.

vi) Landtenure–Theprojectcanonlybeexecutedoncethego-aheadisgivenbytheownerofthelandwhocouldhavealternativeplansforthearea.

CapacitydevelopmentAlandrestorationprojectcanbemademoreeffectivebycarefulplanningthroughadapting

short-termrestorationgoalsandtechniquestominimizethenumberofcostlycorrective

actions.Planningaheadtosecurefundsforcarryingoutmonitoringandevaluation,

correctiveactions,or“aftercare”inthelongtermisalsoimportant(Vallaurietal.1986).

Furthermore,long-termgoalsmustalsobeconsideredtoensurethattheprojectcanbe

sustainedovertheperiodoftimerequired.

Stakeholdersandcommunitiesmustworkondevelopingasharedandacceptedvisionand

goalforthelandscapewhichwouldenableamoresuccessfulrestorationprocess(Vallauriet

al.1986).Beforethelaunchoftheproject,thereasonsforlanddegradation,therootcauses

Page 83: BIODEV published pdf

70

andsolutionstoimplementmustbecleartoallpartners.Fundingandsubsequentpartners

mustbesecuredtoavoidanychallengesduringprojectimplementation.

Figure3.5.2:Aseriesofstepstakentoenhancecapacitybuildingofalandrestorationproject.(Source:Vallaurietal.1986)

Followingthestepsinthefigureabovecanhelpreducechallengesandbarriersexperienced

intheproject.

ReferencesBrownS,SayantJ,CannellM,KauppiPE.1996a.Mitigationofcarbonemissionstothe

atmospherebyforestmanagement.CommonwealthForestryReview.75:p80-91.BrownD,PolskyC,BolstadP,BrodyS,HulseD,KrohR,LovelandT,ThomsonA.2014.Land

useandlandcoverchange.ClimatechangeimpactsintheUnitedStates.In:MelilloJM,

TereseTC,YoheGW(Eds)TheThirdNationalClimateAssessment,USGlobalChange

ResearchProgramme.p318-332.doi:10.7930/J05Q4T1Q.

BrownS,HallM,AndraskoK,RuizF,MarzoliW,GuerreroG,MaseraO,DushkuA,DeJongB,

CornellJ.2007.Baselinesforland-usechangeinthetropics:applicationtoavoided

deforestationprojects.MitigAdaptStrategGlobChang.12:p1001–1026.doi:10.1007/s11027-006-9062-5.

CriticalEcosystemPartnershipFund(CEPF)2016.GuineanForestsofWestAfrica.Available:http://www.cepf.net/resources/hotspots/africa/Pages/Guinean-Forests-of-West-

Africa.aspx.Lastaccessed29thMay2016.

DepartmentofEnergy(DOE)1999.CarbonSequestration:StateoftheScience.UnitedStatesDepartmentofEnergy(DOE),Washington,DC.

GockowskiJ,SonwaD.2010.Cocoaintensificationscenariosandtheirpredictedimpacton

CO2emissions,biodiversityconservation,andrurallivelihoodsintheGuineaRainForestof

WestAfrica.EnvironmentalManagement.48,p307-321.HannaH.2013.Communicatingenvironmentalchallengeswithphotography.Available:https://thepalebluedot.me/author/hafdishanna/.Accessed5

thJul2016.

Page 84: BIODEV published pdf

71

HoughtonR,HouseI,PongratzJ,vanderWerfR,DeFriesR,HansenMC,LeQuéréC,

RamankuttyN.2012.Carbonemissionsfromlanduseandland-coverchange.Biogeosciences.9:p5125–5142.doi:10.5194/bg-9-5125-2012.KearneyS,SmuklerS.2015.Standardassessmentofagriculturalmitigationpotentialand

livelihoods.Available:http://samples.ccafs.cgiar.org/wp-

content/uploads/2015/06/Chapter-3-Land-use-and-land-cover-change.pdf.Lastaccessed

29thMay2016.

O’ConnorS,SalafskyN,SalzeD.1986.Monitoringforestrestorationprojectsinthecontext

ofanadaptivemanagementcycle.ForestRestorationinLandscapes.p145-149.SmithP,DaviesC,OgleS,ZanchiG,BellarbyJ,BirdN,BoddeyRM,McNamaraNP,Powlson

D,CowieA,NoordwijkM,DavisSC,RichterDDB,KryzanowskiL,WijkMT,StuartJ,KirtonA,

EggarD,Newton-CrossG,AdhyaTK,BraimohAK.2012.Towardsanintegratedglobal

frameworktoassesstheimpactsoflanduseandmanagementchangeonsoilcarbon:

currentcapabilityandfuturevision.GlobChangBiol.18:p2089–2101.doi:10.1111/j.1365-2486.2012.02689.x.

VallauriD,AronsonJ,DudleyN.1986.Anattempttodevelopaframeworkforrestoration

planning.ForestRestorationinLandscapes.(1)p65-70.

Page 85: BIODEV published pdf

72

ANNEX1:CarbondioxideequivalentAcarbondioxideequivalentisameasureusedtocomparetheemissionsfromvarious

greenhousegasesbasedontheirglobalwarmingpotentials(OECD2001).Apartfromwater

vapour,themaingreenhousegasesintheEarth’satmospherearecarbondioxide(CO2),

methane(CH4),nitrousoxide(N2O)andozone(Brander2012).Eachofthegaseshas

differentglobalwarmingpotentialsandresidesintheatmospherefordifferentlengthsof

time(ClimateChangeConnection2014).Althoughthesegreenhousegasesoccurnaturally

intheearth’satmosphere,humanactivitieshaveacceleratedtheconcentrationsofthese

gasesresultinginincreasedclimatechange.

ThemostcommonconversionusedbetweenCO2andCOistherateof3.7.Thisfactoris

usedtoconverttonnesofcarbondioxideintocarbon.Theseconversionsallowabetter

calculationofaradiativeforcingeffectthatleadstoglobalwarming.Theglobalwarming

potential(GWP)ofagreenhousegasindicatestheamountofwarmingitcancauseovera

givenperiodoftime,normallyabout100years.Carbondioxidehasaglobalwarming

potentialof1.Additionally,theglobalwarmingpotentialsoftheremaininggreenhouse

gaseslistedabovedepictthenumberoftimesmorewarmingtheycauseascomparedto

carbondioxide(Brander2012).

TableA1.1belowgivestheglobalwarmingpotentialsofvariousgreenhousegasesfromland

usechange.

TableA1.1:The‘Kyotogases’andtheirrelevantglobalwarmingpotentialsGreenhousegas Globalwarmingpotential(GWP)Carbondioxide(CO2) 1

Methane(CH4) 25

Nitrousoxide(N2O) 298

Source:IPCC2007,Brander2012

Inthisreport,thecarbonequivalentisusedthroughout,andthereforeallgreenhousegases

emittedaremeasuredundercarbondioxideequivalent.

Page 86: BIODEV published pdf

73

ANNEX2:BiocarbonprojectsinAfrica

Biocarbonproject Country WebpagelinkVillage-Based

Managementof

WoodySavanna&

Establishmentof

Woodlotsfor

Carbon

Sequestration

Benin GEF

(http://www.gefonline.org/projectDetails.cfm?projID=389)

FAO,2004

SustainableEnergy

Management

Project

BurkinaFaso UNFCCC**(http://unfccc.int/kyoto_mechanisms/aij/activities_

implemented_jointly/items/2005.php)

HumboAssisted

Regeneration

Ethiopia WBBioCarbonFund

(http://carbonfinance.org/Router.cfm?Page=Projport&ProjID=

9625)

WesternKenya

Integrated

Ecosystem

Management

Project

Kenya GEF

(http://www.gefonline.org/projectDetails.cfm?projID=1362)

(MutungaandMwangi2006)

GreenBelt

Movement

Kenya WBBioCarbonFund

(http://carbonfinance.org/Router.cfm?Page=Projport&ProjID=

9635)

Reforestationon

DegradedLandfor

SustainableWood

Productionof

Woodchips

Madagascar CDMpipelineupdatedbyUNEPRisoCentre

http://cdmpipeline.org/

Carbonfrom

Communities

Mali VirginiaTechUniversity

(http://www.oired.vt.edu/resanddev/projects/carbon.htm)

Participatory

Rehabilitationof

DegradedLands

Mauritania

and

Senegal

GEFhttp://www.gefonline.org/projectDetails.cfm?projID=457

Nhambita

Community

CarbonProject

Mozambique UniversityofEdinburghhttp://www.miombo.org.uk/(Jindal

2004)

AcaciaCommunity

Plantations

Niger WBBioCarbonFund

(http://carbonfinance.org/Router.cfm?Page=Projport&ProjID=

9634)

Sequestrationof

CarboninSoil

OrganicMatter

(SOCSOM)

Senegal USGeologicalSurvey

(http://edcintl.cr.usgs.gov/carboninfosheet.html)(Tieszenet

al.2004)

Page 87: BIODEV published pdf

74

Biocarbonproject Country WebpagelinkTheNamwasa

ForestationProject

Uganda CDMpipelineupdatedbyUNEP

RisoCentre(http://cdmpipeline.org/)

PlanVivoProject Uganda PlanVivo

(www.planvivo.org)CarbonNeutralCompany

(http://www.carbonneutral.com/projects/projects.asp?id=13)

NileBasin

Reforestation

Uganda WBBioCarbonFund(http://carbonfinance.org/Router.cfm?

Page=Projport&ProjID=9644)

Page 88: BIODEV published pdf

75

WorkingPaperseries213. Vulnerability of smallholder farmers and their preferences on farming practices in Buol

District, Indonesia http://dx.doi.org/10.5716/WP15724.PDF 214. Dynamics of land use/cover change and carbon emission in Buol District, Indonesia

http://dx.doi.org/10.5716/WP15725.PDF 215. Gender perspective in smallholder farming practices in Lantapan, Philippines

http://dx.doi.org/10.5716/WP15726.PDF 216. Vulnerability of smallholder farmers in Lantapan, Bukidnon

http://dx.doi.org/10.5716/WP15727.PDF 217. Vulnerability and adaptive capacity of smallholder farmers in Ho Ho Sub-watershed, Ha Tinh

Province, Vietnam http://dx.doi.org/10.5716/WP15728.PDF 218. Local knowledge on the role of trees to enhance livelihoods and ecosystem services in

northern central Vietnam http://dx.doi.org/10.5716/WP15729.PDF 219. Land-use/cover change in Ho Ho Sub-watershed, Ha Tinh Province, Vietnam

http://dx.doi.org/10.5716/WP15730.PDF 220. Agroforestry and forestry in Sulawesi series: evaluation of the agroforestry farmer field

schools on agroforestry management in South and Southeast Sulawesi, Indonesia http://dx.doi.org/10.5716/WP16002.PDF

221. Farmer-to-farmer extension of livestock feed technologies in Rwanda: A survey of volunteer farmer trainers and organizations http://dx.doi.org/10.5716/WP16005.PDF

222. Projected climate change impact on hydrology, bioclimatic conditions, and terrestrial ecosystems in the Asian highlands http://dx.doi.org/10.5716/WP16006.PDF

223. Adoption of agroforestry and its impact on household food security among farmers in Malawi http://dx.doi.org/10.5716/WP16013.PDF

224. Agroforestry and forestry in Sulawesi series: Information channels for disseminating innovative agroforestry practices to villages in Southern Sulawesi, Indonesia http://dx.doi.org/10.5716/WP16034.PDF

225. Agroforestry and forestry in Sulawesi series: Unravelling rural migration networks. Land-tenure arrangements among Bugis migrant communities in Southeast Sulawesi http://dx.doi.org/10.5716/WP16035.PDF

226. Agroforestry and forestry in Sulawesi series: Women’s participation in agroforestry: more benefit or burden? A gendered analysis of Gorontalo Province http://dx.doi.org/10.5716/WP16036.PDF

227. Kajian Kelayakan dan Pengembangan Desain Teknis Rehabilitasi Pesisir di Sulawesi Tengah http://dx.doi.org/10.5716/WP16037.PDF

228. Selection of son tra clones in North West Vietnam http://dx.doi.org/10.5716/WP16038.PDF 229. Growth and fruit yield of seedlings, cuttings and grafts from selected son tra trees in

Northwest Vietnam http://dx.doi.org/10.5716/WP16046.PDF 230. Gender-Focused Analysis of Poverty and Vulnerability in Yunnan, China

http://dx.doi.org/10.5716/WP16071.PDF 231. Seri Agroforestri dan Kehutanan di Sulawesi: Kebutuhan Penyuluhan Agroforestri untuk

Rehabilitasi Lahan di Sumba Timur, Nusa Tenggara Timur, Indonesia http://dx.doi.org/10.5716/WP16077.PDF

232. Agroforestry and Forestry in Sulawesi series: Agroforestry extension needs for land rehabilitation in East Sumba, East Nusa Tenggara, Indonesia. http://dx.doi.org/10.5716/WP16078.PDF

233. Central hypotheses for the third agroforestry paradigm within a common definition. http://dx.doi.org/10.5716/WP16079.PDF

234. Assessing smallholder farmers’ interest in shade coffee trees: the farming systems of smallholder coffee producers in Gisenyi Area, Rwanda http://dx.doi.org/10.5716/WP16104.PDF

235. Review of agricultural market information systems in sub-Saharan Africa. DOI: http://dx.doi.org/10.5716/WP16110.PDF

236. Vision and road map for establishment of a protected area in Lag Badana, Lower Jubba, Somalia. DOI: http://dx.doi.org/10.5716/WP16127.PDF

Page 89: BIODEV published pdf

The World Agroforestry Centre is an autonomous, non-profit research organization whose vision is a rural transformation in the developing world as smallholder households increase their use of trees in agricultural landscapes to improve food security, nutrition, income, health, shelter, social cohesion, energy resources and environmental sustainability. The Centre generates science-based knowledge about the diverse roles that trees play in agricultural landscapes, and uses its research to advance policies and practices, and their implementation that benefit the poor and the environment. It aims to ensure that all this is achieved by enhancing the quality of its science work, increasing operational efficiency, building and maintaining strong partnerships, accelerating the use and impact of its research, and promoting greater cohesion, interdependence and alignment within the organization.

United Nations Avenue, Gigiri • PO Box 30677 • Nairobi, 00100 • Kenya Telephone: +254 20 7224000 or via USA +1 650 833 6645

Fax: +254 20 7224001 or via USA +1 650 833 6646Email: [email protected] • www.worldagroforestry.org