BestPractGuide_MethDrain_es31

download BestPractGuide_MethDrain_es31

of 86

Transcript of BestPractGuide_MethDrain_es31

  • 8/8/2019 BestPractGuide_MethDrain_es31

    1/86

    ECONOMICCOMMISSIONFOREUROPE

    METHANETOMARKETSPARTNERSHIP

    BestPracticeGuidanceforEffective

    MethaneDrainageandUseinCoalMines

    ECEENERGYSERIESNo.31

    UNITEDNATIONS

    NewYorkandGeneva,2010

  • 8/8/2019 BestPractGuide_MethDrain_es31

    2/86

    NOTE

    Thedesignationsemployed and thepresentationof thematerial in thispublicationdonot

    implytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnited

    Nationsconcerningthelegalstatusofanycountry,territory,cityorarea,orofitsauthorities,

    orconcerningthedelimitationofitsfrontiersorboundaries.

    Mentionofanyfirm,licensedprocessorcommercialproductsdoesnotimplyendorsementby

    theUnitedNations.

    UNITEDNATIONS

    PUBLICATION

    SalesNo.10.II.E.2

    ISBN9789211170184

    ISSN10147225

    CopyrightUnitedNations,2010

    Allrightsreservedworldwide

  • 8/8/2019 BestPractGuide_MethDrain_es31

    3/86

    Foreword

    Coalhasbeenanimportantsourceofglobalprimaryenergyproductionforthepasttwocenturies,and

    theworldwillcontinue todependoncoalasanenergysource for the foreseeable future.Methane

    (CH4) released during coal mining creates unsafe working conditions in many underground mines

    around the world, with human fatalities an unacceptable consequence of many methanerelated

    accidents.Effectivegasmanagement isnot limited tosafetyconcerns,however.Methaneventedto

    theatmosphere,especially fromdrainage systems, isanenergy resource lost forever.The resulting

    emissionsalsocontributetoclimatechange.Fortunately,solutionsforthesechallengescangohand

    inhandusinganeffective,coordinatedresponse.

    Although respected technical literatureonmethanemanagement iswidelyavailable for themining

    professional, a single source of informed but accessible guidance for senior managers did not

    previouslyexist.TheBestPracticeGuidanceonEffectiveMethaneDrainageandUse inCoalMines is

    intendedtofillthiscrucialvoid.Recommendedprinciplesandstandardsoncoalminemethane(CMM)

    captureandusearesetoutinaclearandsuccinctpresentationtoprovidedecisionmakerswithasolid

    base of understanding from which to direct policy and commercial decisions. We believe such

    knowledge iscriticaltoachievezero fatalitiesandexplosionriskwhileminimisingtheenvironmental

    impactofCMMemissions.Changemuststartatthetop.

    Theguidancedocumentcanalsobeusedbystudentsandeventechnicalspecialistsasanintroduction

    tokeymethanemanagementprinciplesandreferences.Infact,aspartofthisoverallinitiative,several

    organizations funded a reprint of the seminal Firedamp Drainage Handbook, a definitive technical

    referencefirstpublishedbyVerlagGlckauffortheCommissionoftheEuropeanCommunitiesin1980.

    We

    wish

    to

    emphasize

    that

    theBest

    Practice

    Guidance

    does

    not

    replace

    or

    supersede

    national

    or

    internationallawsorotherlegallybindinginstruments.Theprinciplesoutlinedhereinareintendedto

    provide guidance to complement existing legal and regulatory frameworks and to support

    developmentofsaferandmoreeffectivepracticeswhereindustrypracticeandregulationcontinueto

    evolve.

    Thecontributorstothisprojectgavetheirtimefreelyandwillinglyinthedesiretopromoteincreased

    safetyincoalmining.Inthelightofrecentaccidentsandinmemoryofallthefatalitiesofthepast,the

    authorsexpressthehopethattheirworkwillcontributetoincreasinglysafercoalminingoperations.

    February2010

    UnitedNationsEconomicCommissionforEurope

    MethanetoMarketsPartnership

  • 8/8/2019 BestPractGuide_MethDrain_es31

    4/86

    Contents

    Foreword.......................................................................................................................................................... iiiContents........................................................................................................................................................... ivAcknowledgements......................................................................................................................................... viiAcronymsandAbbreviations........................................................................................................................... ixGlossaryofTerms............................................................................................................................................. xiExecutiveSummary.........................................................................................................................................xiiiChapter1.Introduction .................................................................................................................................... 1

    KeyMessages................................................................................................................................................11.1 ObjectivesofthisGuidanceDocument ................................................................................................11.2 TheIssues..............................................................................................................................................11.3 GasCapture,Utilisation,andAbatement .............................................................................................3

    Chapter2.FundamentalsofGasControl.......................................................................................................... 5KeyMessages................................................................................................................................................52.1 ObjectivesofMineGasControl ............................................................................................................ 52.2 OccurrenceofGasHazards...................................................................................................................5

    IgnitionofExplosiveMethaneMixtures.................................................................................................7 2.3 ReducingExplosionRisk........................................................................................................................72.4 RegulatoryandManagementPrinciples...............................................................................................9

    EffectiveSafetyRegulatoryFramework.................................................................................................. 9Enforcement ...........................................................................................................................................9PermissibleGasConcentrationsforSafeWorkingConditions ............................................................... 9SafeTransportandUtilisationofGas ................................................................................................... 10RegulationstoReduceIgnitionRisk......................................................................................................11

    Chapter3.Occurrence,Release,andPredictionofGasEmissionsinCoalMines..........................................12KeyMessages..............................................................................................................................................123.1 Introduction .......................................................................................................................................123.2 OccurrenceofGasinCoalSeams........................................................................................................12

  • 8/8/2019 BestPractGuide_MethDrain_es31

    5/86

    3.3 TheGasReleaseProcess.....................................................................................................................133.4 RelativeGassinessofCoalMines........................................................................................................14 3.5 UnderstandingGasEmissionCharacteristicsofCoalMines...............................................................143.6 MeasurementoftheInSituGasContentofCoal...............................................................................15 3.7 PracticalEstimationofGasFlowsinCoalMines ................................................................................16

    Chapter4.MineVentilation............................................................................................................................17KeyMessages..............................................................................................................................................174.1 VentilationChallenges ........................................................................................................................ 174.2 KeyVentilationDesignFeatures ......................................................................................................... 174.3

    Ventilation

    ofGassy

    Working

    Faces....................................................................................................18

    4.4 VentilationSystemPowerRequirement.............................................................................................214.5 VentilationofCoalHeadings...............................................................................................................214.6 VentilationMonitoring .......................................................................................................................224.7 VentilationControl..............................................................................................................................22

    Chapter5.MethaneDrainage ........................................................................................................................23Key

    Messages..............................................................................................................................................23

    5.1 MethaneDrainageandItsChallenges ................................................................................................23 5.2 BasicPrinciplesofMethaneDrainagePracticesEmployedWorldwide .............................................235.3 PreDrainageBasics.............................................................................................................................245.4 PostDrainageBasics...........................................................................................................................25 5.5 DesignConsiderationsforMethaneDrainageSystems......................................................................275.6 UndergroundGasPipelineInfrastructure...........................................................................................285.7 MonitoringofGasDrainageSystems..................................................................................................29

    Chapter6.MethaneUtilisationandAbatement ............................................................................................30KeyMessages..............................................................................................................................................306.1 CoalMineMethaneandClimateChangeMitigation .........................................................................306.2 MineMethaneasanEnergyResource ...............................................................................................30 6.3

    Use

    Options.........................................................................................................................................31

  • 8/8/2019 BestPractGuide_MethDrain_es31

    6/86

    6.4 AbatementandUtilisationofDrainedMethane ................................................................................32 6.4.1 Medium toHighMethaneConcentrationCMM .................................................................336.4.2 LowConcentrationDrainedMethane ..................................................................................346.4.3 PurificationTechnologiesforDiluteMethanefromDrainageSystems ................................346.4.4 Flaring ...................................................................................................................................35

    6.5 AbatementorUtilisationofLowConcentrationVentilationAirMethane(VAM) .............................356.6 MethaneMonitoring...........................................................................................................................36

    Chapter7.CostandEconomicIssues .............................................................................................................37KeyMessage ...............................................................................................................................................377.1 TheBusinessCaseforMethaneDrainage ..........................................................................................377.2 ComparativeCostsofMethaneDrainage...........................................................................................37 7.3 MethaneUtilisationEconomics .......................................................................................................... 387.4 CarbonFinancingandOtherIncentives..............................................................................................417.5 OpportunityCostofUtilisation...........................................................................................................437.6 EnvironmentalCosts ........................................................................................................................... 44

    Chapter8.Conclusions

    and

    Summary

    for

    Policymakers ................................................................................45

    Chapter9.CaseStudies ..................................................................................................................................47CaseStudy1:AchievingPlannedCoalProductionfromaGassy,RetreatLongwallwithSevereStrata

    StressandaSpontaneousCombustionProneCoalSeamUnitedKingdom ............................................48CaseStudy2:HighPerformanceLongwallOperationsinAreaswithHighGasEmissionsGermany......50CaseStudy3:HighPerformanceLongwallOperationsinAreaswithHighGasEmissionsAustralia ...... 52Case

    Study

    4:

    Reducing

    Explosion

    Risk

    in

    Room

    and

    Pillar

    Mines

    South

    Africa......................................54

    CaseStudy5:DevelopmentofaCMMPowerCoGeneration/EmissionAbatementSchemeChina......56CaseStudy6:VAMChina .........................................................................................................................5 7CaseStudy7:VAMAustralia....................................................................................................................59

    Appendix1.ComparisonsofGasDrainageMethods .....................................................................................61References ......................................................................................................................................................66Additional

    Resources ......................................................................................................................................68

  • 8/8/2019 BestPractGuide_MethDrain_es31

    7/86

    AcknowledgementsSponsoringOrganizations

    The United Nations Economic Commission for Europe (UNECE) is one of the five UN Regional

    Commissions and provides a forum through which 56 countries of North America and Western,

    Central,andEasternEuropeaswellasCentralAsiacometogethertoforgethetoolsoftheireconomic

    cooperation.ThemainareasofUNECEsactivityare:economiccooperation,environmentandhuman

    settlements, statistics, sustainableenergy, trade, industryand enterprisedevelopment, timber, and

    transport. UNECE pursues its goals through policy analysis, the development of conventions,

    regulations and standards, and the provision of technical assistance.

    www.unece.org/energy/se/cmm.html

    TheMethane toMarketsPartnership (M2M) is an internationalpublicprivatepartnershipwith 30

    Partnercountries,plustheEuropeanCommission,establishedin2004andfocusedonpromotingcost

    effectivemethaneemissionreductionsthroughrecoveryandusefromfourkeymethanesectors:coal

    mining, landfills,oilandgas systems,andagriculture.TheCoalSubcommitteehasbrought together

    keyexpertsincoalminemethanerecoveryandutilisationtoshareinformationaboutstateoftheart

    technologies and practices through a number of workshops, trainings, study tours, and capacity

    buildinginitiatives.www.methanetomarkets.orgStructure

    ThisdocumentwasconceivedbyaSteeringCommittee,whoprovideddirectionandoverallvision,and

    drafted by a Technical Experts Panel, consisting of five globally renowned experts in underground

    ventilation

    and

    methane

    drainage

    at

    coal

    mines.

    The

    draft

    document

    was

    first

    reviewed

    by

    a

    StakeholdersAdvisoryGroup to ensure that messageswere clear and effective for seniordecision

    makers,beforeundergoingaformaltechnicalpeerreviewprocess.

    ExecutiveSteeringCommittee

    PamelaFranklin,Cochair,M2MCoalSubcommittee

    RolandMader,ViceChairman,UNECEAdHocGroupofExpertsonCoalMineMethane

    RaymondC.Pilcher,Chairman,UNECEAdHocGroupofExpertsonCoalMineMethane

    CarlottaSegre,Secretary,UNECEAdHocGroupofExpertsonCoalMineMethane

    ClarkTalkington,

    Former

    Secretary,

    UNECE

    Ad

    Hoc

    Group

    ofExperts

    on

    Coal

    Mine

    Methane

    TechnicalExpertsDraftingGroup

    BharatheBelle,AngloAmerican

    DavidCreedy,SindicatumCarbonCapitalLtd.

    ErwinKunz,DMTGmbH&Co.KG

    MikePitts,GreenGasInternational

    HilmarvonSchoenfeldt,HVSConsulting

  • 8/8/2019 BestPractGuide_MethDrain_es31

    8/86

    StakeholderAdvisoryGroup

    YuriyBobrov,AssociationofDonbassMiningTowns(Ukraine)

    GraemeHancock,WorldBank

    MartinHahn,InternationalLabourOrganization

    HuYuhong,

    State

    Administration

    for

    Worker

    Safety

    (China)

    SergeiShumkov,MinistryofEnergy(RussianFederation)

    AshokSingh,CentralMinePlanning&DesignInstitute(India)

    TechnicalPeerGroup

    JohnCarras,CommonwealthScientificandIndustrialResearchOrganisation(Australia)

    HuaGuo,CommonwealthScientificandIndustrialResearchOrganisation(Australia)

    LiGuojun,TiefaCoalIndustryLtd.(China)

    GlynPierceJones,TrolexLtd.(UK)

    B.N.Prasad,

    Central

    Mine

    Planning

    &Design

    Institute

    (India)

    RalphSchlueter,DMTGmbH&Co.KG(Germany)

    KarlSchultz,GreenGasInternational(UK)

    JacekSkiba,CentralMiningInstituteofKatowice(Poland)

    TrevorStay,AngloAmericanMetallurgicalCoal(Australia)

    OlegTailakov,InternationalCoalandMethaneResearchCenter,Uglemetan(Russian

    Federation)

    Inadditiontothoselistedabove,thesponsoringorganizationswishtoexpresstheirgratitudetoLuke

    Warren,whoplayedanintegralroleintheinitialstagesofthisproject.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    9/86

    AcronymsandAbbreviations

    CBM CoalbedMethane

    CDM CleanDevelopmentMechanism

    CERs CertifiedEmissionReductions

    CFRR CatalyticFlowReversalReactors

    CH4 Methane

    CMM CoalMineMethane

    CMR CatalyticMonolithReactor

    CNG CompressedNaturalGas

    CO2 CarbonDioxide

    CO2e CarbonDioxideEquivalent

    ERPA EmissionReductionPurchaseAgreement

    ERUs EmissionReductionUnits

    ESMAP EnergySectorManagementAssistanceProgram

    GHG

    Greenhouse

    Gas

    GWP GlobalWarmingPotential

    IBRD InternationalBankforReconstructionandDevelopment

    IC InternalCombustion

    I&M InspectionandMaintenance

    JI JointImplementation

    kWh

    Kilowatthour

    LNG LiquefiedNaturalGas

    l/s LitresperSecond

    m Metre

    m/s MetresperSecond

    m3/d CubicMetresperDay

    m3/s

    CubicMetres

    per

    Second

  • 8/8/2019 BestPractGuide_MethDrain_es31

    10/86

    mD Millidarcy(incommonusage,equivalenttoapproximately103(m)2)

    MRD MediumRadiusDrilling

    MSA MolecularSieveAdsorption

    Mt Million(106)tonnes

    Mtpa MillionTonnesperAnnum

    MWe MegawattofElectricityCapacity

    Nm3 NormalCubicMetres

    PSA PressureSwingAdsorption

    scfm StandardCubicFeetperMinute

    t Tonne(metric)

    t/d TonnesperDay

    TFRR ThermalFlowReversalReactor

    TRD TightRadiusDrilling

    UNECE UnitedNationsEconomicCommissionforEurope

    UNFCCC UnitedNationsFrameworkConventiononClimateChange

    VAM VentilationAirMethane

    VERs VerifiedEmissionReductions

    USBM UnitedStatesBureauofMines

  • 8/8/2019 BestPractGuide_MethDrain_es31

    11/86

    GlossaryofTerms

    Withinthecoalandminegasindustry,thereisstillconfusionovertermsandabbreviationsusedwithin

    and across differentjurisdictions. In addition to the terms listed here, the UNECE has prepared a

    GlossaryofCoalMineMethaneTermsandDefinitionsthatismorecomprehensiveandhighlightshow

    terminologyisusedindifferentregions

    (www.unece.org/energy/se/pdfs/cmm/cmm4/ECE.ENERGY.GE.4.2008.3_e.pdf).

    Airlockanarrangementofdoorsthatallowspassagefromonepartofamineventilationcircuitto

    anotherwithoutcausingashortcircuit.

    Auxiliaryventilationproportionofmainventilatingcurrentdirectedtothe faceofablindheading

    (i.e.,entry)bymeansofanauxiliaryfanandducting.

    Backreturn a temporary ventilation arrangement formed at the return end of a Uventilated

    longwalltodivert

    aproportion

    ofthe

    air

    behind

    the

    face

    toallow

    access

    for

    gas

    drainage

    drilling

    and

    preventhighconcentrationgoafgasesencroachingonthefaceend.

    Bleedershaftaverticalshaftthroughwhichgasladenairfromworkingdistrictsisdischarged.

    Blindheadingadevelopmentroadwaywithasingleentrythatrequiresauxiliaryventilation.

    Bordandpillar (roomandpillar)a methodofmining inwhich coal is extracted from a seriesof

    headings,whicharetheninterlinkedleavingunminedcoalpillarstosupporttheroof.

    Capture (drainage) efficiency the proportion of methane (by volume) captured in a methane

    drainage

    system

    relative

    to

    the

    total

    quantity

    of

    gas

    liberated.

    Gas

    liberated

    comprises

    the

    sum

    of

    drainedgasplusgasemittedintothemineventilationair.Usuallyexpressedasapercentage,capture

    (ordrainage)efficiencycanbedeterminedforasinglelongwallpanelorforawholemine.

    Coal front gas gas released from the working seam coalface by the action of the coalcutting

    machine.

    Coalbedmethane(CBM)agenerictermforthemethanerichgasnaturallyoccurring incoalseams

    typically comprising 80% to 95% methane with lower proportions of ethane, propane, nitrogen, and

    carbondioxide.Incommoninternationaluse,thistermreferstomethanerecoveredfromunminedcoal

    seamsusingsurfaceboreholes.

    Coalminemethane(CMM)gascapturedataworkingcoalminebyundergroundmethanedrainage

    techniques.Thegasconsistsofamixtureofmethaneandotherhydrocarbonsandwatervapour. It is

    oftendilutedwithairandassociatedoxidationproductsdue tounavoidable leakageofair into thegas

    drainageboreholesorgalleriesthroughmininginducedfracturesandalsoduetoairleakageatimperfect

    jointsinundergroundpipelinesystems.Anygascapturedunderground,whetherdrainedinadvanceofor

    aftermining,andanygasdrainedfromsurfacegoafwellsisincludedinthisdefinition.Preminingdrained

    CMMcanbeofhighpurity.

    Extraneousgasgasemissionsotherthancoalfrontgas.

    FiredampalternativetermforCMM.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    12/86

    Gasdrainagemethodsforcapturingthenaturallyoccurringgasincoalseamstopreventitentering

    mine airways. The gas can be removed from coal seams in advance of mining using predrainage

    techniquesandfromcoalseamsdisturbedbytheextractionprocessusingpostdrainagetechniques.

    OftenreferredtoasMethanedrainageifmethaneisthemaingascomponenttargettobecaptured.

    Goaf(United

    States:

    gob)

    broken,

    permeable

    ground

    where

    coal

    has

    been

    extracted

    by

    longwall

    coal

    miningandtheroofhasbeenallowedtocollapse,thusfracturinganddestressingstrataaboveand,to

    a lesserextent,below theseambeingworked.The termgob isgenerallyused in theUnitedStates;

    elsewhere,goafisgenerallyused.

    MethanedrainageSeeGasdrainage.

    Naturalgastypicallyreferstogasextractedfromgeologicalstrataotherthancoalseams(i.e.,from

    conventionalgasreserves).Thegascouldbecomposedmostlyofmethaneandmayhaveoriginally

    migratedfromcoalseamsources.

    Predrainage(preminedrainage)extractionofgasfromcoalaheadofmining.

    Postdrainage(postminedrainage)extractionofgasreleasedasaconsequenceofmining.

    Respirabledustmicroscopicparticlesofdustwhichcanenteranddamagethehumanlung.

    Ventilationairmethane(VAM)methaneemittedfromcoalseamsthatenterstheventilationairand

    isexhaustedfromtheventilationshaftatalowconcentration,typicallyintherangeof0.1%to1.0%by

    volume.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    13/86

    ExecutiveSummaryTheworldhas reliedupon coal for a significantportionof itsprimary energyproduction since the

    Industrial Revolution. The worlds major industrialised, emerging, and transitional economiesand

    hence, theglobaleconomywillbedependentoncoalenergy resources for the foreseeable future.

    Today,coalsupplies25%ofglobalprimaryenergy,40%ofglobalelectricity,andalmost70%of the

    worlds steelandaluminum industry. The InternationalEnergyAgency (IEA)projects thatemerging

    economieswillseeenergydemandgrow93%by2030,drivenlargelybydemandgrowthinChinaand

    India,andcoalisexpectedtobetheleadingfueltomeetthisgrowingdemand(IEA,2009).

    With the continued dependence on coal production, coal extraction is expected to become

    increasinglychallenginginmanypartsoftheworldasshallowreservesareexhaustedanddeeperand

    more gassy seams are mined. Yet societies are demanding and expecting safer mine working

    conditions, and greater environmental stewardship from the coal industry. The application of best

    practicesformethanedrainageanduseiscriticaltoreducemethanerelatedaccidentsandexplosions

    thatalltoooftenaccompanycoalmining,whilealsocontributingtoenvironmentalprotectionthrough

    reductionofgreenhousegas(GHG)emissions.

    CoalMineMethanePosesSafetyandEnvironmentalChallenges

    The global coal industry, national governments, trade unions, and worker safety advocates are

    concernedthatthefrequencyandseverityofmethaneexplosions,especially inemergingeconomies,

    areunacceptablyhigh.Goodminingpracticesneed tobe transferred toallcountries toensure that

    risksaremanagedprofessionallyandeffectively.Nomine,even in themostdevelopedcountries, is

    freefromsafetyrisks.Regardlessoflocationorminingconditions,itispossibletosignificantlyreduce

    theriskofmethaneaccidents.

    Methaneisanexplosivegasintherangeof5%to15%methaneinair.Itstransport,collection,oruse

    withinthisrange,orindeedwithinafactorofsafetyofatleast2.5timesthelowerexplosivelimitand

    at least two times the upper limit, is generally considered unacceptable because of the inherent

    explosionrisks.

    Effectivemanagementof methane risks at coalmines can alsohave the benefit of contributing to

    reducedorminimisedGHGemissions.Coalmines area significant emissions sourceofmethane, a

    potentGHGwithaglobalwarmingpotential(GWP)ofmorethan20timesthatofcarbondioxide(IPCC,

    2007).Methanetotals14%ofglobalanthropogenicGHGemissionsandcoalminesrelease6%ofglobal

    anthropogenicmethane

    emissions,

    orabout

    400

    million

    tonnes

    ofcarbon

    dioxide

    equivalent

    (MtCO2e)

    peryear.CMMemissionsareprojected to increase through2020 (MethanetoMarkets,2008; IPCC,

    2007;EPA,2006a),withestimatesashighas793MtCO2eby2020(ESMAP,2007).

    MethaneOccurrenceandControl

    Methanerichgases,generallycontaining80%to95%methaneatundergroundminingdepths,occur

    naturallyincoalseamsandarereleasedasCMMwhencoalseamsaredisturbedbyminingactivities.

    CMMonlybecomesflammableandcreatesanexplosionhazardwhenallowedtomixwithair.

    Emissions of large volumes of carbon dioxide also occur from coal mines in some geologic

    environments(e.g.,

    Australia,

    South

    Africa,

    France,

    and

    Central

    Europe).

    This

    coal

    seam

    carbon

    dioxide

    canhaveimportantimplicationsforoverallminedegasificationmanagementstrategies.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    14/86

    Goodsafetypracticeincoalminesistoreduceexplosionriskbypreventingtheoccurrenceofexplosive

    mixtureswherepractical,andbyrapidlydilutingthemtosafeconcentrations(i.e.,throughventilation

    systems).Wheregasflowsaresohighthattheyexceedthecapacityofthemineventilationsystemto

    ensureadequatedilutionofmethaneinthemineair,gasshouldbecollectedthroughaminedrainage

    systembeforeitcanenterthemineairways.

    Good practice for mine methanedrainage systemsmeansboth selection of a suitable gas capture

    method and proper implementation and execution of the mine drainage system. Following good

    practicewillensurethatCMMcanbesafelycaptured,transported,and (ifappropriate)utilised,ata

    concentrationatleasttwicethatoftheupperexplosivelimit(i.e.,atorover30%methane).

    RegulatoryApproachestoMethaneControl

    A risk assessment approach to minimising explosion riskscombined with strong enforcement of

    robustventilationandutilisationsafetyregulationscanleadtosubstantiallyimprovedquantitiesand

    qualitiesofcapturedgas.

    Furthermore, establishment and enforcement of safety regulations governing gas extraction,

    transport,andutilisationwillencouragehighermethanedrainagestandards, increasedcleanenergy

    production,andgreateremissionreductions.

    PredictionofUndergroundMethaneReleases

    Gas flows into underground coal mines under normal, steadystate conditions are relatively

    predictable in certain geological andmining conditions, although there is significant variation from

    country to country. Lack of reliable gas emission prediction methods for deep and multipleseam

    mining continues to be a significant challenge due to the complex mininginduced interactions

    between

    strata,

    groundwater,

    and

    gas.

    Nonetheless,

    proven

    methods

    for

    projecting

    gas

    flows,

    gas

    capture,ventilation requirements,andutilisationpotentialarewidelyavailableand shouldbeused

    routinelyinmineplanning.

    Bytheirverynature,unusualemissionandoutbursteventsarenoteasilypredicted,buttheconditions

    underwhichtheycanoccurarereasonablywellknown.Therefore,followinggoodpracticeallowsfor

    moreeffectivemanagementoftheserisks.

    Any mining activity can sometimes disturb adjacent natural gas reservoirs, leading to unwanted

    methanereleasesthatcanbeasmuchas twice thoseexpected fromcoalseamsourcesalone.Such

    situationscanbeidentifiedatanearlystagebycomparingmeasuredandpredicteddata.

    TheRoleofVentilationSystems

    The maximum rate of coal extraction that can be safely achieved on a gassy working coalface is

    determinedprimarilybythecombinationoftwofactors:1)themineventilationsystemscapacityto

    dilutegaseouspollutants toacceptableconcentrations,and2) theefficiencyof theminesmethane

    drainagesystem.

    Operating costs are a key driver in designing the overall mine degasification scheme. The power

    consumed inprovidingundergroundmineventilation isamongthemostcostlyoperationalexpenses

    at a mine; it is proportional to the airflow volume cubed. Therefore, introducing a gas drainage

    system

    or

    increasing

    its

    effectiveness

    often

    represents

    a

    lowercost

    option

    than

    increasing

    ventilationairvolumes.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    15/86

    MethaneDrainage

    Thepurposeofmethanedrainage istocapturegasathighpurityfrom itssourcebefore itcanenter

    themineairways. From a strictly regulatoryperspective,only enough gasneeds tobe captured to

    ensurethatthecapacityoftheventilationairtodilutegaseouspollutants isnotexceeded.However,

    there is a strong case for maximising gas capture to achieve enhanced safety, environmental

    mitigation,andenergyrecovery.

    Methanecanbecapturedbeforeandafterminingbypre andpostdrainagetechniques,respectively.Pre

    drainage istheonlymeansofreducinggas flowdirectly from theminedseam.Forthisreason,pre

    drainage isespecially important iftheseambeingextracted isthemaingasemissionsource,but it is

    generally only feasible in seams of medium to highpermeability. Postdrainage methods involve

    interceptingmethanethathasbeenreleasedbyminingdisturbancebeforeitcanenteramineairway.

    Postdrainage techniques all involve accessing the zoneofdisturbance aboveand also sometimes

    belowthe worked coal seam. Postdrainage may involve drilling from the surface or from

    underground.

    Lowcaptureefficienciesofthedrainagesystemandexcessiveingressofairtothemineworkingsresult

    from the selectionofunsuitablegasdrainagemethodsand from thepoor implementationof these

    methods. These, in turn, negatively affect both gas transport and utilisation by producing gas

    concentrationssometimesatlevelsthatarenotconsideredsafe(e.g.,below30%methane).

    Theperformanceofmethanedrainagesystemscanbesignificantly improvedthroughacombinationof

    properinstallationandmaintenance,regularmonitoring,andsystematicdrilling.

    There is a strong business case for installing and operating highefficiency methane gas drainage

    systems.Successful

    methane

    control

    isakey

    factor

    inachieving

    profitability

    ofgassy

    underground

    coal

    mines.

    Basedonexperiences in coalminesworldwide, investment ingoodpracticegasdrainage systems

    resultsinlessdowntimefromgasemissionproblems,saferminingenvironments,andtheopportunity

    toutilisemoregasandreduceemissions.

    MethaneUtilisationandAbatement

    CapturedCMMisacleanenergyresourceforwhichthereareavarietyofuses.FigureES1summarizes

    thedistributionofknownCMMprojectsgloballythatareoperating,underdevelopment,planned,or

    wereoperatingpreviously.Thesefiguresarebasedonadatabaseofmorethan240projectsglobally,

    compiledbytheMethanetoMarketsPartnership.Asthe figure indicates,powergeneration,natural

    gaspipelineinjection,andboilersarethedominantprojecttypes(basedonnumberofprojects).

    FigureES1DistributionofCMMUses inGlobalProjects.This figurerepresentsthetotalnumberof

    CMMprojectsreportedtoMethanetoMarketsthatareactiveorunderdevelopmentglobally,based

    ontypeofenduse.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    16/86

    (Source:MethanetoMarketsPartnership,2009)

    Purificationtechnologies

    have

    been

    developed

    and

    are

    extensively

    used

    (e.g.,

    inthe

    United

    States)

    to

    remove any contaminants fromhighqualityCMMtypicallyproduced from predrainagetomeet

    stringentpipelinequality standards (EPA,2009). Formanyother gasenduseapplications, thehigh

    costs associated with purifying drained gas may be unnecessary and can be avoided by improving

    undergroundmethanedrainagestandards.

    Withtheproperequipmentandprocedures,unuseddrainedgascanbesafelyflaredtominimiseGHG

    emissions.Flaringconvertsmethane,whichhasaGWPofmorethan20comparedtocarbondioxide,

    whichhasaGWPofone(IPCC,2007).

    Methane

    that

    is

    not

    captured

    by

    the

    drainage

    system

    is

    diluted

    in

    the

    mine

    ventilation

    air

    and

    is

    emittedtotheatmosphereasdiluteventilationairmethane(VAM),typicallyatconcentrationsof1%

    or lessmethane.Despitethis lowconcentration,collectivelyVAM isthesingle largestsourceofmine

    methaneemissionsglobally.Thermaloxidationtechnologieshavebeen introducedatdemonstration

    andcommercialscalesatseveralsitesglobally(e.g.,Australia,China,andtheUnitedStates)toabate

    theseemissions(andinonecase,toproduceelectricityfromthedilutemethane).Othertechnologies

    tomitigateVAMemissions(e.g.,catalyticoxidation)areemergingandunderdevelopment.

    CostandEconomicIssues

    Effectivegasdrainagereducestherisksofexplosions,andhenceaccidentrisks.Reducingtheserisksin

    turn

    reduces

    their

    associated

    costs.

    Costs

    of

    methane

    related

    accidents

    vary

    widely

    from

    country

    to

    countrybutaresignificant.Forexample,a10%workstoppageoridlingatagivenmineduetoagas

  • 8/8/2019 BestPractGuide_MethDrain_es31

    17/86

    relatedincidentoraccidentcouldleadtoUS$8milliontoUS$16millionperyearinlostrevenuesata

    typical highproduction longwall mine. Additional costs of a single fatal accident to a large mining

    operationcould range fromUS$2million tomorethanUS$8million through lostproduction, legal

    costs,compensation,andpunitivefines.

    Atthe

    same

    time,

    gas

    drainage

    creates

    an

    opportunity

    for

    gas

    recovery

    and

    utilisation.

    Such

    energy

    recoveryprojects canbeeconomical in theirown right through saleof thegasor its conversion to

    electricity,vehiclefuel,orothervaluablegasfeedstocks.

    Gas recovery and utilisation projects are increasingly also including revenue streams from carbon

    emission reduction credits in the form of Verified Emission Reductions (VERs), Certified Emission

    Reductions (CERs),orother credits suchasemission reductionunits (ERUs).Thesepotential carbon

    financingoptionsmaybeacriticalfactorinmakingsomeCMMutilisationprojectseconomicallyviable

    thatwouldbeotherwise financiallyunattractive. Inaddition,carbon financingmayprovide theonly

    revenue streams for abatementonly projects, such asVAMoxidation (without energy recovery)or

    CMMflaring.

    VAM can also be used for power generation. At this time, VAMderived power generation is not

    commercially feasible without carbon revenues or other incentives, such as preferential electricity

    pricingorportfoliostandards.

    Currently,investmentdecisionsatmostminesarelikelytofavourexpansionincoalproductionrather

    thandevelopingCMMutilisationprojects(particularlypowergeneration)duetothehighopportunity

    costof investing inpowergeneration capitalequipmentand infrastructure.Tomeetenvironmental

    protection targets in the future, however, mine owners may be required to improve gas drainage

    performancebeyond

    the

    level

    strictly

    required

    tomeet

    the

    mines

    safety

    needs.

    Such

    improvements

    in

    the drainage system that yield relatively highquality gas may provide an additional incentive for

    investmentingasrecoveryandutilisationprojects.

    Conclusions

    Aholisticapproachtomanagingmethanereleasesintocoalmineworkingsandsubsequentemissions

    into the atmosphere will have a number of beneficial impacts on overall mine safety, mine

    productivity,andenvironmentalimpacts,particularlywithregardtoGHGemissions.

    Globalapplicationoftheaccumulatedknowledgeonmethaneoccurrence,prediction,control,

    andmanagementthatiscurrentlyavailablewillimproveminesafety.Implementationofgood

    practices for methane drainage could substantially reduce explosion risks resulting from

    methaneincoalmines.

    Thereisastrongbusinesscaseforinstallingandoperatinghighefficiencygasdrainagesystems

    basedontheircontributionstoincreasemineproductivity.Becausesuchsystemswillincrease

    theavailabilityofgoodqualityCMM, therecanalsobeastrongbusinesscase forexploiting

    andrecoveringenergyfromthecapturedgas.

    Emissionsofmethane,animportantGHG,fromundergroundcoalminescanbesignificantly

    reducedby

    utilising

    the

    drained

    gas,

    flaring

    the

    gas

    that

    cannot

    be

    used,

    and

    mitigating

    VAM

    emissionsbyoxidation.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    18/86

    Chapter1.Introduction

    KeyMessages

    Regardlessofconstraints,mineworkersafetyisparamountandshouldnotbecompromised.

    Ariskassessmentapproachtominimisingexplosionrisksshouldbecombinedwithstrongenforcement

    ofrobustventilationandutilisationsafetyregulations.

    Ideally,moderncoalminingcompaniesrecognisethebenefitsofadoptingaholisticgasmanagement

    systemthatconstructively integratesundergroundgascontrol,methaneutilisation,andreductions in

    greenhousegas(GHG)emissions.

    1.1 ObjectivesofthisGuidanceDocument

    Thisdocumentaimstoprovideguidancetomineownersandoperators,governmentregulators,and

    policymakers in the design and implementation of safe, effective methane capture and control in

    underground coal mines. It is intended primarily to encourage safer mining practices to reduce

    fatalities,injuries,andpropertylossesassociatedwithmethane.

    An importantcobenefitofeffectivemethanedrainageatcoalmines is toallow for the recoveryof

    methane tooptimise theuseofotherwisewastedenergy resources.Thus,an importantmotivation

    behindthedevelopmentofthisguidancedocument isto facilitateandencouragetheutilisationand

    abatement of coal mine methane (CMM) to reduce GHG emissions. Ultimately, adoption of these

    practiceswillhelptoenhancethesustainabilityandlongtermfinancialpositionofcoalminesglobally

    by:

    Strivingtoachieveagoalofzerofatalities,injuries,andpropertylosses.

    Demonstrating the global coal industrys commitment to mine safety, climate change

    mitigation,corporatesocialresponsibility,andgoodcitizenship.

    EstablishingaglobaldialogueonCMMcaptureanduse.

    Creatingcriticallinkagesamongcoalindustry,government,andregulatoryofficials.

    IncorporatingeffectiveCMMcaptureasapartofaneffectiveriskmanagementportfolio.

    Thisguidancedocument is intentionallyprinciplesbased.That is, itdoesnotattempt topresenta

    comprehensive,prescriptive approach thatmaynot adequately account for sitespecific conditions,

    geology,andminingpractices.Theauthorsrecognizethereisnouniversalsolutionandtherefore,have

    establishedabroadsetofprinciplesthatcanbeadaptedasappropriatetoindividualcircumstances.In

    general,thetechnologiesforimplementingtheseprinciplescontinuetoevolveandimproveovertime.

    Internationalindustrybestpracticesareoutlinedinthisdocumentasappropriate.

    This document is not intended to serve as a comprehensive, detailed technical methane drainage

    manual.Referencesandadditionalresourcesareprovidedattheendofthisdocument.

    1.2 TheIssues

    Coal

    is

    an

    essential

    energy

    resource

    in

    both

    industrialised

    countries

    and

    emerging

    economies.

    Meeting

    thevoraciousenergydemand,particularlyinsomerapidlygrowingeconomies,hasplacedpressureon

  • 8/8/2019 BestPractGuide_MethDrain_es31

    19/86

    coalmines to increase theirproductionsometimes to levelsbeyondwhat canbe safely sustained,

    leadingtostressesonoverallminingoperationsandcompromisingsafety.Thepresenceofmethanein

    coalminespresentsaserioussafetyconcernthatneedstobemanagedprofessionallyandeffectively.

    Whilemethaneexplosions inundergroundcoalminesareveryrareoccurrences inmanycoalmining

    countries,theystillcausethousandsofminefatalitiesandinjurieseveryyear.

    Manydeathscan result froma single incident.Table1.1 showssomeof themost serious fatalcoal

    mineexplosions thathaveoccurred in several countries since2000.Witheffectivemanagementof

    minemethane,suchtragediescanbeeliminated.

    Table1.1MajorCoalMineExplosionIncidents,Post2000

    Country Date CoalMineNumberof

    Fatalities

    China 14February2005 Sunjiawan,Haizhoushaft,Fuxin 214

    Kazakhstan 20September2006 Lenina,Karaganda 43

    Russia 19March2007 Ulyanovskaya,Kemerovo 108

    Ukraine 19November2007 Zasyadko,Donetzk 80

    USA 2June2006 Sago,WestVirginia 12

    Accidentscanoccurwhenmethaneenterstheminespacefromthecoalseamandsurroundingstrata

    asaresult

    ofthe

    disturbance

    created

    by

    the

    mining

    operation.

    The

    amount

    ofgas

    released

    into

    the

    mine is a function of both the rate of coal extraction and the in situ gas content of the coal and

    surroundingstrata.

    National regulatory agencies set maximum limits for the methane concentration in underground

    airways.Thus,methanereleasesintothemineworkingscanbealimitingfactorforcoalproduction.

    Guidanceisurgentlyneededtohelpgovernmentsswiftlyimplementsaferworkingpracticestoreduce

    thehazardposedbymethane inunderground coalmines.Basedonavailabledata, there isa large

    range in the fatality rate of underground coal mining in different countries around the world. For

    instance, the rateof fatalitiespermillion tonnescoalminedmaydifferbya factorofmore than30

    timesfromonecountrytoanother.1

    No coal mine is free from safety risks. Gasrelated incidents can occur in even the most modern

    undergroundcoalmines.Advancedtechnology reduces the riskofworker fatalities fromexplosions,

    but technology alone is insufficient to solve the problem. Management, organisational structure,

    workerparticipation,training,andregulatoryandenforcementsystemsareallessentialcomponents

    1Basedon2008data(officialstatistics)forundergroundcoalminingfatalitiesinChinaandtheUnitedStates.In

    2008,Chinareported3,215fatalitiesper2,565billiontonnesofundergroundcoalmined(assuming95%ofthe

    total reported 2.7 billion tonnes is from underground coal mined), for 1.25 fatalities per million tonnes

    underground

    coal

    mined

    (SAWS,

    2009).

    In

    2008,

    the

    United

    States

    reported

    12

    fatalities

    from

    underground

    coal

    mines,withproductionof324million tonnes, for0.037 fatalitiespermillion tonnesunderground coalmined

    (MSHA,2009).

  • 8/8/2019 BestPractGuide_MethDrain_es31

    20/86

    of an effective risk management process. Knowledge and understanding of the basic principles of

    methanegascontrolisfundamentaltodesigneffectivecontrolsandsystems.Ultimately,allexplosion

    accidentsareamanifestationoffailuretoeffectivelyimplementsafepracticesandprocedures.

    Coal mines are a significant emissions source of methane, a potent GHG with a global warming

    potential(GWP)

    ofmore

    than

    20

    times

    that

    ofcarbon

    dioxide

    (IPCC,

    2007).

    Methane

    accounts

    for

    14%

    ofglobalanthropogenicGHGemissions,andCMMemissionscontribute6%ofglobalanthropogenic

    methane emissions or close to 400 million tonnes of carbon dioxide equivalent (MtCO2e) annually

    (EPA,2006a;IPCC,2007;MethanetoMarkets,2008).CMMemissionsareprojectedtoincreaseto793

    MtCO2eby2020(ESMAP,2007).Morethan90%oftheseCMMemissionsarefromundergroundmines

    (EPA, 2006b); of which about 80% is emitted in very dilute form (typically less than 1% methane)

    throughthemineventilationair.

    Technologiesalreadyexistthatcouldsignificantlyreducemethaneemissions fromcoalmining.Their

    successfulimplementationrequiresleadershipfromgovernments,suitablefinancingmechanisms,and

    thecommitment

    ofthe

    global

    coal

    mining

    industry.

    1.3 GasCapture,Utilisation,andAbatement

    Gas capture and use in coal mines is not new, although there have been major improvements in

    technologyanditsapplicationoverseveralcenturies.Thefirstrecordedmethanedrainageoccurredinthe

    UnitedKingdomin1730.Moremodern,controlledmethanedrainagesystemswereintroducedinEurope

    inthefirsthalfofthetwentiethcentury.2Utilisationofminegasforlightingmayhaveoccurredasearlyas

    the18thcenturyandwasrecordedinthe1880s.

    Bythe1950s,systematicandeffectivegascapturemethodsthatwereoriginallydeveloped inGermany

    were being used throughout Europe. Since the 1960s, increasing use has been made of drained gas,

    initiallyformineboilersand industrialprocessesandthen later forpowergeneration,pipelinegas,and

    towngas.

    Figure1.1illustratesathreedimensionalschematic,incutawayperspective,ofanundergroundcoalmine

    workingsandsurfacefacilities.Thisgraphicshowsthecomplexityandinterrelatedaspectsofthemines

    undergrounddrainageandgascollectionsystemswiththesurface facilitiesneededtoconvertCMMto

    electricity.Thegraphicalsoillustratesthesimultaneousabatementofventilationairmethane(VAM)from

    themineventilationshafts.

    2TheseincludedsystemsintheUpperSilesianbasininPolandin1937andinGermanyin1943.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    21/86

    Figure1.1SchematicofanUndergroundCoalMineDrainageSystemandSurfaceFacilities forEnergy

    RecoveryandAbatementofCMM

    (CourtesyofGreenGasInternational)

    Currently, therearehundredsofCMMgas recoveryandutilisationprojectsaround theworld thatare

    operatingorunderdevelopment.Forinstance,theMethanetoMarketsPartnershipestimatesthatmore

    than240projectshaveoperated,arecurrentlyoperating,orare indevelopment inabout14countries

    globally(2009).ThemostprevalentuseforCMMisforpowergeneration;otherusesincludeboilerfuel,

    injectiontonaturalgaspipelines,towngas,industrialgas,feedstockforconversiontovehiclefuelssuchas

    liquefiednaturalgas(LNG)orcompressednaturalgas(CNG),andcoaldrying.

    Insomecases,methanethatcannotbeeconomicallyrecoveredandusedduetoimpracticalsitespecific

    conditionsormarketsisdestroyed(i.e.,flaredandtherebyconvertedtocarbondioxide).Thisreducesthe

    GWP of the emissions. These emission reductions also have the potential to generate revenue from

    carboncreditsinsomecountries,throughbothvoluntaryandcompliancecarbonmarkets.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    22/86

    Chapter2.FundamentalsofGasControl

    KeyMessages

    Establishing and enforcing regulationsfor safe gas extraction, transport, and utilisation encourages

    highermethane

    drainage

    standards,

    as

    well

    as

    increased

    clean

    energy

    production

    and

    greater

    emission

    reductions.

    There is tremendous global industry knowledge about and experience with managing methane

    explosionrisks.

    Safeworkingconditions ingassymineenvironmentscannotbeachievedsolelythrough legislationor

    eventhemostadvancedtechnology.Rather,rationalandeffectivemanagementsystems,management

    organisation,andmanagementpracticesarefundamentaltosafeoperations.Othercriticalelementsof

    mine safety are appropriate education and trainingfor bothmanagement and theworkforce, and

    encouragingworker

    input

    as

    work

    safety

    practices

    are

    adopted.

    2.1 ObjectivesofMineGasControl

    Theprimaryaimofgascontrolsystemsistopreventexplosionsandasphyxiationrisksinunderground

    coal mines. Controlling methane at an active longwall face so that methane concentrations in the

    return airway do not exceed 1% generally requires only using ventilation techniques. However, if

    highermethaneflowsareexpectedfromtheworkingface,acombinationofventilationandmethane

    drainagemustbeused.Bestpracticegascontrolforsafetywillenhancegasutilisationprospects.

    Protectionmeasuresareavailabletoreducethepropagationofanexplosionafterithasoccurredand

    areimportant

    second

    lines

    ofdefence.

    Post

    failure

    methane

    mitigation

    isno

    substitute

    for

    prevention,

    however,whichisthefocusoftheseguidelines.

    2.2 OccurrenceofGasHazards

    Methanerich gases, generally containing between 80% and 95% methane, occur naturally in coal

    seams and are released whenever these are disturbed by mining. Coal seam gas only becomes

    flammableandcreatesanexplosionhazardwhenallowedtomixwithair.

    Emissionsof largevolumesofcarbondioxidearealsoencountered incoalmines insomegeological

    environments. Carbon dioxideis heavier than air and toxic at concentrations above 5% in air, but

    physiologicaleffectscanbeexperiencedatconcentrationsaslowas1%.

    Methane iscolourless,odourless,andtasteless;therefore,ameasurementdevice isneededtoconfirm

    its presence. Methane is flammable when it is mixed with oxygen in a range of concentrations as

    showninFigure2.1.

    Atatmosphericpressure,themostexplosiveconcentrationofmethaneinairis9.5%byvolume.Inthe

    confinedconditionsunderground,themaximumexplosionpressurecanincreaseastheunburnedgas

    iscompressedaheadoftheflamefront.

    Inoxygen

    deprived

    environments,

    such

    ascan

    occur

    insealed

    goafs,

    explosive

    mixtures

    can

    only

    form

    if air is added. When present at higher concentrations, methane is an asphyxiant due to air

  • 8/8/2019 BestPractGuide_MethDrain_es31

    23/86

    displacement. As underground coal mines are confined, ignition of a substantial accumulation of

    methaneinvariablyleadstoanexplosion.

    Figure2.1FormationofExplosiveMixtures

    (Source:Moreby,2009;basedonCoward,1928)

    Methanehasa tendency to stratifyand formhorizontal layersnear the roofofmineworkingswhere

    thereare insufficientlyhighventilationvelocitiestoprevent layering.Thisphenomenonoccursbecause

    methaneislighterthanair,withadensityofonly0.55thatofair.Inmanyinstances,anairvelocityof0.5

    metrespersecond(m/s)willpreventlayeringbuttherearesomecircumstanceswherethisairvelocity

    will

    be

    insufficient.

    Ventilation

    designers

    should

    be

    aware

    of

    variables

    that

    inhibit

    the

    layering

    of

    methane, sucha layerwidth, inclinationof roadway, gasemission rate,andairflow rate (Creedy&

    Phillips,1997;Kissell,2006).

    Insomecircumstances,wheremixingisnottakingplacedueto insufficientairvelocity,methanelayers

    can formand floweitherwith the floworagainst the flowof theventilation stream.Thesemethane

    layersmaypropagate flame rapidly, thus increasing the riskand severityofexplosionsbyprovidinga

    pathway between ignition sources and large accumulations of flammable mixtures (e.g., in longwall

    goafs).Oncemethaneismixedwithair,however,itwillnotseparatespontaneously.

    Mine

    operators

    actively

    isolate

    areas

    of

    mines

    that

    are

    no

    longer

    being

    worked

    (i.e.,

    workedout

    longwallsandsometimesgoafsofactive longwalls)fromthemineventilationsystembyconstructing

  • 8/8/2019 BestPractGuide_MethDrain_es31

    24/86

    barriersorseals.Theseventilationbarriersorsealsareinvariablyimperfectduetogroundmovement

    andwillnotcompletelypreventgasemissionsfromentering intotheactivemineworkings.Explosive

    gas mixtures can accumulate behind ventilation seals and will flow into airways as a result of

    ventilationfluctuationsorbarometricpressuredepressions.

    Highrisk

    areas

    inacoal

    minewhere

    coal

    seam

    methane

    passes

    through

    the

    explosive

    rangeare

    in

    the goaf (gob)behind longwall faces and in the cutting zoneofmechanised coalcuttingmachines.

    Explosivemixturescanalsoformwithinbadlydesignedorpoorlyoperatedmethanedrainagesystems

    duetoexcessiveairbeingdrawnin.

    Roomandpillarmineworkings(withnopillarrecovery)tendtodisturbconsiderablylowervolumesof

    adjacent strata than longwall methods; therefore, these mines tend tobe less gassy than longwall

    mines.Roomandpillarminesarenotnecessarily lessat risk fromexplosions,however,due to the

    difficultiesofachievingadequate ventilationofworking faces.Thepredominantmethane source in

    roomandpillarworkingsistheworkedseamitself.Layersofflammablegasmixturescanarise inthe

    roofasaresult

    ofinadequate

    ventilation

    ofblind

    headings

    and

    emissions

    from

    roof

    sources

    (see

    Case

    Study4).

    IgnitionofExplosiveMethaneMixtures

    Methaneair mixtures can be ignited by a number of sources: electrical sparks, high temperatures

    causedbysteelstrikingquartziticrock,adiabaticcompressionfromfallsofrock,aluminiumimpacting

    oniron,lightningstrikes,smokingmaterials,explosivesanddetonators,spontaneouscombustion,and

    nakedflames.

    Theuseofincreasinglypowerfulrock andcoalcuttingmachineryinmoderncoalmineshasgivenrise

    tothe

    serious

    problem

    offrictional

    ignitions.

    The

    high

    frequency

    ofmethane

    ignitions

    caused

    by

    rock

    andcoalcuttingtoolscomparedtoothersourcesindicatesthetechnicaldifficultyinachievingabsolute

    controlofgashazards.

    2.3 ReducingExplosionRisk

    Highlighting theunderlyingprinciplesofexplosionprevention isamajor goalof this guidance.This

    knowledge is essential for effective programme design for controlling gas risks in coal mines. The

    principlesdescribedhereinare synonymouswith thoseembedded in the riskmanagement systems

    that modern mining companies have implemented in striving towards zero accidents and zero

    explosions.

    Managementofcoalminegasexplosionrisks involvesa largenumberofdifferentactivities(seeBox

    2.1),necessitatinggoodorganisationandclearallocationofresponsibilities.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    25/86

    Reducingexplosion riskbypreventing theoccurrenceofexplosivemixtureswhereverpossibleand

    takingmeasurestoensureseparationofexplosivemixtures frompotential ignitionsourcesarethe

    bestsafetypracticesincoalmines.

    Controllingthedilution,dispersion,anddistributionofflammablegasesincoalminestominimisethe

    availabilityoffuelforignitioniscritical.Therisksassociatedwithflammablegasesinundergroundcoal

    minescanbeminimised inseveralways:bydilutingthemtosafeconcentrationswithventilationair;

    byusingproprietarydevices toventilatecoalcuttingmachines;bydivertinggasaway fromworking

    areas;and,

    where

    necessary,

    by

    capturing

    gas

    inboreholes

    orgas

    drainage

    galleries

    before

    itcan

    enter

    mineairways.

    Thefundamentalprinciplesofreducingexplosionriskareasfollows:

    Whereverpossible,preventoccurrenceofexplosivegasmixtures (e.g.,useofhighefficiency

    methane drainage methods, prevention and dispersal of methane layers by ventilation

    velocity).

    Ifexplosivegasmixturesareunavoidable,minimise thevolumesofexplosivemixtures (e.g.,

    rapiddilutioninventilationairtopermissiblemethaneconcentrations).

    Box2.1TypicalCoalMineGasExplosionRiskControlsandProcedures

    Useofflameproofelectricalequipmentandcables

    Controlofexplosivesandtheirusebelowground

    Provisionofadequatefireandrescuefacilities

    Gasdrainage

    planning,

    design,

    and

    implementation

    Controlofthedischargeofdrainedmethanegas

    Controlofaccesstothemineanditsworkingareas

    Restrictionofcontrabandintheundergroundenvironment

    Inspectionofundergroundworkings

    Provisionofantistaticmaterials

    Supervisionofminingoperations

    Useandmaintenanceofmechanicalandelectricalplant

    Provisionforrestrictingtheuseofunsuitableequipment

    Supervisionofmechanicalandelectricaloperations

    Restrictionofsmokingmaterialsbelowground

    Ventilationplanning

    Controlofthemineventilation

    Monitoringandmeasurementofminegasconcentrations

    Useofauxiliaryventilation

    Degassingofheadings

    Frictionalignitionprecautions

    Provisionofmethanedetectors

    Qualificationsofemployees

    Safetytraining

    Provisionofexplosionsuppressionbarriers

    Postingofwarning

    signs

    and

    notices

  • 8/8/2019 BestPractGuide_MethDrain_es31

    26/86

    Separateunavoidablegasmixtureoccurrences frompotential ignitionsources (e.g.,byusing

    specially designed faceend ventilation systems to prevent gas accumulations near electric

    motorsoravoidinguseofelectricityinlongwalldistrictreturnairways).

    Avoidignitionsourcesasmuchaspossible(e.g.,unsafeelectricdevices,nakedflames,smoking).

    Controlgasemissionsfromworkedout,sealedareasoftheminebyusinggasdrainagemethods

    regulatedtomaintaingaspurityandbydraininggastoaccommodatefluctuationsinbarometric

    pressure.

    2.4 RegulatoryandManagementPrinciples

    EffectiveSafetyRegulatoryFramework

    An effective safety regulatory framework will provide coherent and clear guidance to the industry

    under theaegisofa leadsafetyauthority,withclearlydefined rolesand responsibilitiesthatdonot

    overlapwiththoseofotherauthorities.

    Comprehensivecoal

    mine

    gas

    safety

    regulations

    provide

    no

    guarantee

    ofsafe

    working

    conditions.

    To

    be effective, regulations must be understood, applied, and enforced by mine inspectors, mine

    management,supervisorystaff,andmineworkers.Proactiveriskmanagementandbottomupsafety

    responsibilitiesarethekeystopreventionofgasaccidents.Officialsandminerscanonlybeproactiveif

    they understand the underlying principles of gas emission and control processes. Training and

    knowledge transferare thereforenecessary elementsofa successful safetyprogramme, aswell as

    ready access to factual reportson gas incidentsand their causes. Safetymanagement and training

    shouldencompassbothmineemployeesandcontractors.

    Enforcement

    Effective

    government

    inspectors

    audit

    mine

    safety

    conditions

    by

    conducting

    detailed

    underground

    inspections,providingexpertguidancetominemanagement,reviewingtheefficacyofregulations,and

    ensuringcompliancewiththeregulationsbyworkingwithmineoperatorstocorrectanydeficiencies

    or penalise those who conspicuously ignore regulations and endanger life. Effective safety and

    regulatorymanagementsystemsalsoinvolvethosewhoaremostaffectedbyfailuretocontrolgas,the

    minersthemselves.Toensurethemosteffectiveriskmanagement,emphasismustbeonaccidentor

    incidentpreventionratherthanpunishmentafteranevent.

    Successfulmanagementofhealthandsafetyrisksnotonlyinvolvestheregulatoryauthoritiesandthe

    mine operator, but must include the mine workers as equal participants. As outlined in the

    International

    Labour

    OfficesCode

    of

    Practice

    on

    Safety

    &

    Health

    in

    Underground

    Coal

    Mines

    (ILO,

    2006),workersareentitled toa safeworkingenvironment, including theability to reportpotential

    hazards without fear of retribution. Moreover, as partners in developing safe working conditions,

    workersareobligatedtosupportsafeworkingpracticesandmaintainasafeminingenvironment.

    PermissibleGasConcentrationsforSafeWorkingConditions

    Prescriptive regulations shouldbeusedsparingly,as theycanstifle innovation.Theyarejustifiedby

    physical imperatives such as the explosive range of flammable mine gases in air. All coal mining

    countriessetupper limitsofpermissiblemethaneorflammablegasconcentrationsthatshouldnotbe

    exceededinmineairways.Someapplydifferentmandatorygasconcentrationlimitsindifferentpartsof

    acoal

    mine

    depending

    on

    the

    activity

    and

    the

    risk

    ofexplosive

    levels

    being

    reached,

    and

    set

    minimum

  • 8/8/2019 BestPractGuide_MethDrain_es31

    27/86

    safe concentrations for transporting and using gas to minimise the risk of underground explosions

    (Table2.1).

    Table2.1SelectedExamplesofRegulatoryandAdvisedFlammableMethaneConcentrationLimits

    Limiting

    flammable

    methane

    concentration[%]

    Australia China Germany Indiah

    South

    Africa

    United

    Kingdom USA

    Factors

    ofsafetya

    Maximumbelow

    whichworkingis

    permittedin

    general

    1.25 1.0 1.0 1.25 1.4 1.25 1.0 3.65.0

    Maximumbelow

    whichworkingis

    permittedin

    returnairways

    2.0b 1.5

    g 1.5 0.75 1.4 2.0

    b 2.0

    b 2.56.7

    Minimum

    permittedfor

    utilisation

    nae

    30

    25

    naf

    naf

    40

    25c

    1.72.7

    Minimumfor

    underground

    pipelinetransport

    nae na 22 na

    f na

    f na

    e na

    d 1.5

    (a)Factorsofsafetyindicatetherangeofmultiplesbelowthelowerexplosivelimitof5%orabovetheupperexplosivelimitof

    15%methaneinair;

    (b)Ifnoelectricity;

    (c)TheUnitedStateshandlesmethanedegasificationintheventilationplan,therearenocodesorregulations;

    (d)Notconsideredaproblemaslowerconcentrationgoafgasesaregenerallydrainedatsurfacewells;

    (e)Determinedbylocalriskassessment;

    (f)Fewornoapplicationssonotaddressed;

    (g)2.5%

    for

    anon

    travelling

    return;

    (h)InIndia,methanestandardsarespecifiedinIndianCoalMineRegulation1957,whichisbasedonMinesAct1952.

    The precise action levels for gas concentrations by themselves are insufficient to ensure safe mine

    conditions.Itisjustasimportanttoidentifysuitablelocationsatwhichtheconcentrationsaremeasured,

    the procedures to be used for measurement, and the actions to be taken as a consequence of the

    measurements.Mininglegislationinindustrialisedcountriesgenerallyfocusesonmonitoringandcontrol

    effortsinproportiontothedegreeofexpectedrisk.

    SafeTransportandUtilisationofGas

    Transport

    and

    use

    of

    explosive

    mixtures

    of

    gas

    is

    hazardous

    due

    to

    the

    dangers

    of

    propagating

    an

    explosionintotheworkingareasofamine.Nationalminesafetyregulationsvaryintheirassessment

    of the minimum methane concentration considered safe for transport and utilisation, which varies

    from25%to40%amongcountries.A factorofsafetyofat leasttwotimestheupperexplosive limit

    (i.e.,30%orgreatermethaneconcentration)isgenerallyacknowledgedasagoodpracticeminimum.3

    Accidentsinvolvingpipelinescarryingmethaneatconcentrationswellabovetheupperflammablelimit

    donotresultinexplosionsbecausethegasisattoohighapuritytoburn;inthesecases,afireatthe

    gas/air interfacecanbeextinguishedbyfirefightingtechniques. Incontrast,an ignitionof lowpurity

    3Afactorofsafetyofatleast2.5belowthelowerexplosivelimitofmethane(i.e.,below2%methane)isagood

    practicemaximum,intheabsenceofelectricity;ahigherfactorofsafetybeingnecessaryifelectricityisinuse.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    28/86

  • 8/8/2019 BestPractGuide_MethDrain_es31

    29/86

    Chapter3.Occurrence,Release,andPredictionofGas Emissions in

    CoalMines

    KeyMessages

    Methanegasflowsintocoalminesundernormal,steadystateconditionsaregenerallypredictable.

    Unusualemissionandoutbursteventsarenoteasilypredicted,buttheconditionsunderwhichtheycan

    occurarereasonablywellknown.Detailedmethodsforreducingrisksundertheseconditionshavebeen

    developedandshouldbeappliedwhereversignificantrisksare identified. Insuchcircumstances,safe

    workingconditionsdependontherigorofimplementationandmonitoringofgascontrolmethods.

    Theimportanceofnotonlyinstallingundergroundmonitoringforoperationalminesafetyreasonsbut

    gatheringandusingthedataforsafetyplanningcannotbeoverstated.

    3.1

    Introduction

    Modern, highproduction coal mines encounter increasingly high gas flows as their coal extraction

    rates increaseand theyworkdeeper,highergascontent coal seams.Knowledgeof theoccurrence,

    emissioncharacteristics,andexpectedgasflowsfromacoalmineasafunctionofthecoalproduction

    rate is essential for safety, mine planning, ventilation, gas utilisation, and GHG emission control

    purposes.

    3.2 OccurrenceofGasinCoalSeams

    Thenaturallyoccurringgasfound incoalseamsconsistsmainlyofmethane(typically80%to95%)with

    lowerproportionsofheavierhydrocarbongases,nitrogen,andcarbondioxide.Themixturesofmethane,

    water vapour, air, and associated oxidation products that are encountered in coal mines are often

    collectivelytermed"minegas."

    Methanewasformed incoalseamsasaresultofthechemicalreactionstakingplaceasthecoalwas

    buried at depth. Plant debris such as that found in modern swamps will slowly change from wet,

    organicdetritustocoal,ifthematerialbecomesburiedatasufficientdepthandremainscoveredfora

    lengthoftimethroughaprocessknownascoalification.Thegreaterthetemperature,pressure,and

    durationof coalburial, thehigher the coalmaturity (i.e., rank) and the greater theamountof gas

    produced.Muchmore gaswasproducedduring this coalificationprocess than isnow found in the

    seams. The gas lost during the coalification process has been emitted at ancient land surfaces,

    removedinsolutionbygroundwaterpassingthrough,orhasmigratedandbeentrappedinthepore

    spacesandstructuresinsurroundingrocks.Thisgasmayhaveaccumulatedinadjacentporousstrata

    suchassandstonesormayhavebeenadsorbedbyorganicshale.Thesereservoirrockscanbecome

    significant sourcesof gas flows into themine if these gasbearing layersare sealedby surrounding

    impermeablestrataandremainundisturbeduntilminingtakesplace.Methaneoccurs inmuchhigher

    concentrationsincoalcomparedtoanyotherrocktypebecauseoftheadsorptionprocess,whichenables

    methanemoleculestobepackedintothecoalsubstancetoadensityalmostresemblingthatofaliquid.In

    averticalsequenceofcoalseams,methanecontentoften increasessystematicallywithdepthandrank.

    Gascontent

    depth

    gradients

    vary

    from

    coalfield

    tocoalfield

    and

    reflect

    the

    geologic

    history

    ofthe

    basin

    in

  • 8/8/2019 BestPractGuide_MethDrain_es31

    30/86

    which the coal formed. In some coal basins, methane contents increase with depth, finally reach a

    maximumandthendecreasebelowthislevel.

    3.3 TheGasReleaseProcess

    The

    gas

    that

    is

    naturally

    produced

    and

    stored

    in

    coal

    and

    surrounding

    strata

    can

    be

    released

    ifdisturbedbyminingactivity.Therateandamountofgasreleaseddependsontheinitialamountofgas

    inthecoal(gascontent),thedistributionandthicknessofcoalseamsdisturbedbymining,thestrength

    ofthecoalbearingstrata, thegeometryof themineworkings,the rateofcoalproduction,andcoal

    seampermeability.Totalgasflowvariesproportionallytotherateofdisturbanceofstratabymining

    activity. Inaparticulargeologicalsetting,therefore,the totalvolumesofgas releasedduringmining

    increase proportionally with the increase in the rate of coal extraction. In certain circumstances,

    however,rapidejection,oroutbursts,ofcoalandgasandsuddenemissionsofgascanalsooccur.

    Some coal seams mined in Australia and elsewhere have adsorbed substantial amounts of carbon

    dioxideaswell

    asmethane.

    Where

    these

    coal

    seams

    are

    mined,

    outbursts

    may

    occur

    atalower

    total

    insitugascontentofthecoalseamthanwouldbeexpectedifonlymethanewaspresent.Therefore,the

    insitucontentofbothgasesshouldbemeasuredtoassesstheneedforpredrainage.

    Europeanstudies(Creedyetal,April1997)haveshownthatadestressedarchorzoneofdisturbance,

    withinwhichgasisreleased,formsabovealongwalltypicallyextending160mto200mintotheroof

    andbelowthelongwalltoabout40mto70mintothefloor.Figure3.1isapictureofaplastermodel

    showingthedistressingofoverlyingmaterialafteravoidspacewascreated.Thismodellingprocedure

    isusefulindeterminingthemagnitudeofdestressingthattakesplaceandtheheightabovethevoid

    thatnoticeablebedseparation,fractureopening,andotherformsofstratarelaxationoccurs,thereby

    increasingthe

    permeability

    and

    creating

    pathways

    for

    gas

    migration.

    Various

    theories

    and

    empirical

    modelshavebeendevelopedtorepresentthisprocess.

    Figure3.1ModelSectionParalleltotheLongwallFaceShowingtheStrataFracturedasaResultof

    RemovingtheCoal,ThusFormingtheGoaf

    (ModeledafterGaskell,1989)

    Coalseamextraction leadstosubsidenceatthesurface.Whilealltheseamsbetweena longwalland

    thesurfacewillbedisturbed,onlygaswithinadestressedarchenterstheworkings.Boreholesfrom

    thesurfaceandshallowexcavationswillsometimesencounterreleasedcoalseamgasthatwouldnot

  • 8/8/2019 BestPractGuide_MethDrain_es31

    31/86

    normally be emitted during mining. Gas production may then occur. However, the borehole or

    excavation can also serve as a migration pathway for gas not captured, resulting in surface and

    subsurfacehazards.

    3.4 RelativeGassinessofCoalMines

    Thespecific(orrelative)emissionrateiscommonlyusedtorepresentthegassinessofamine,or

    ofa longwalldistrict.Itusesthesameunitsasgascontent(i.e.,cubicmetresofmethaneemittedper

    tonneofcoalorm3/t),but it isconceptuallyverydifferent.4Thespecificemissions represent the total

    volumeofmethanereleased fromallsourcesdividedbythetotalamountofcoalproducedduringa

    referencedperiodof time, ideallyaweekormore. Inotherwords, thismeasurement is reallycubic

    metres (m3)ofmethaneemittedper tonne (t)ofcoalminedoveranygivenperiodof time.Thegas

    beingemitted,andmeasured, iscomingnotjust fromthecoalthat isbeingextracted,butallofthe

    strata that is disturbed and becomes relaxed as the void left by the mining process collapses.

    Generally, coal mines with specific emissions of 10 m3/t and higher are considered gassy. Specific

    emissionsashigh

    as50

    m3/t

    to100

    m3/t

    have

    been

    encountered

    inmines

    insome

    countries,

    such

    as

    theUnitedKingdomandtheUnitedStates,buttheselevelsareexceptional(Kisselletal,1973).

    3.5 UnderstandingGasEmissionCharacteristicsofCoalMines

    Peakflowsofgasoccurinthereturnairwaysofworkingdistrictsduringthecoalfacecuttingcycleand

    following roof caving as longwall supports are advanced. Statistical studies have shown that these

    peaks typically rise up to 50% above the mean (Creedy et al, April 1997). Gaspredictionmethods

    commonlyusethisrelationshipinestimatingthevolumeofairthatwillbenecessaryinordertomeet

    mandatorygasdilutionrequirements.

    Thevolumeofgasreleased fromanycoaldisturbedbyminingdecreasesovertime,whilecontinued

    miningactivityaddsnewgassources.Theresultantemissionsarethereforedeterminedbythesumof

    allthesourcesovertime.Asaconsequence,thespecificemission(i.e.,theamountofgasemittedper

    tonne of coal mined) can increase over the life of a longwall. When coal production stops, gas

    continues todesorb from the coal seamand flow from thenoncoal strata,butatadeclining rate.

    Whenaminecommencescoalextractionaftera fewdaysofstoppage,gasemissionwillbe initially

    lowerthanatsteadyproduction.

    Most empirical emission calculations assume steadystate coal production and uniform emission

    characteristics. While this approach suits most planning needs, mine operators must also consider

    other lesspredictable factors.Therefore,riskcontrolmethodsarecriticaltoreducethe likelihoodof

    seriousoccurrences.Forexample, suddenoutburstsofgasandcoal (and sometimes rock) from the

    workedseamareencounteredincertainmineswithhighgascontentsandlowpermeabilitycoal.The

    principalgeologicalandminingfactors,whichgiverisetothehighestriskofanoutburstoccurrence,

    canoftenbe identified,but theactual incidence cannotbepredictedwithany certainty.Coalmine

    managementcanaddressthissafetyissuebyimplementingrigorousoutburstpreventionandcontrol

    methods. These methods typically involve reducing the gas content of the coal to below a critical

    amountbydrainingthegasbeforemining.

    4GascontentisdefinedanddescribedinSection3.6.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    32/86

    Suddenemissionsofgascanoccurfromthefloorofalongwallworking,eitherontothefaceorintothe

    roadwaysneartheface.Thistypeofemissionisconsideredespeciallylikelywhenthefloorcontainsa

    strong sandstone bed and another coal seam lies within 40 m to 60 m below the working seam.

    Althoughpredictinganoccurrence isproblematic,prevention cangenerallybeassuredbydrillinga

    regularseriesoffloorboreholestopreventaccumulationofgaspressure.

    Suddenemissionsandoutburstscancauseconsiderabledamageandresultininjuriesandfatalities.If

    theair/methanemixtureisintheflammablerange,sparksfromrockstrikingmetalscanalsoignitethe

    minegas.

    Coalmineworkings can sometimesdisturbnatural gas reservoirs, leading toemissionsup to twice

    thoseexpectedfromcoalseamsourcesalone.Thenaturalgasreservoirsmaybestrata interbedded

    withthecoalseamsandoccurringasanormalpartofthecoalbearingsequence,butbecausegeologic

    processesobstructedorsealedoffgasmigrationpathways,thetrappedgas issubsequentlyreleased

    duringmining.Suchsituationsarenoteasily identifiedbeforemining,butmineoperatorsshouldbe

    vigilantabout

    this

    possibility

    by

    comparing

    measured

    and

    predicted

    data.

    The

    importance

    ofnot

    only

    installing undergroundmonitoring foroperationalmine safety reasonsbut gathering andusing the

    dataforsafetyplanningcannotbeoverstated.

    3.6 MeasurementoftheInSituGasContentofCoal

    Planning gas drainage and ventilation systems to ensure safe mining requires knowledge of the

    amount of gas adsorbed in the coal substance and, to a negligible extent, the amount of gas

    compressedinthelargerporespaces.Gascontentisexpressedinvolumeofgascontainedpermassof

    coal substance in situ (m3/t) and should not be confused with specific emissions.5 The general

    approachfor

    measuring

    the

    gas

    content

    istoobtain

    and

    seal

    coal

    samples

    incanisters

    inasfresh

    a

    stateaspossible.Thesesamplesaremaintainedatnearreservoirtemperaturewhilegasisallowedto

    desorb.Themeasuredreleaserateallowsestimationofthegas lostpriortosampling.Figure3.2 isa

    diagram showing an apparatus designed to collect and measure gas as it is desorbed from coal

    containedbyasealedcanister.Theprocedureforusingthissystem includescollectingthesampleof

    coal fromaboreholeand sequestering the coal ina canister.Periodically, thegas in the canister is

    allowed to flow into the measuring cylinder and the volume of gas measured and recorded. The

    compositionofthegasmaybeanalyzedbycapturingasampleandsubmittingitforchemicalanalysis.

    Thegasremaining inthecoalafterthe initialtests isdeterminedbycrushingthecoalandmeasuring

    thequantityreleased.TheU.S.BureauofMines(USBM)gascontentmeasurementmethodisthemost

    commonlyused

    technique

    and

    usually

    requires

    aperiod

    ofdays

    toseveral

    weeks

    (Diamond

    &Levine,

    1981).QuickdesorptionmethodshavebeendevelopedinEuropeandAustraliatoproviderapidresults

    tosuitoperationalminingneeds(Janas&Opahle,1986).Inaddition,forlowpermeabilitycoals,partial

    pressureandstatisticalmethodshavealsobeendevised (Creedy,1986).Becausecoalseams include

    mineralmatteraswellascoalsubstance(gas ispredominantlyadsorbedonorganicsubstances),gas

    contents are generally adjusted to an ashfree basis. The gaseous components are sometimes

    measuredseparately;inmostinstances,thegasispredominantlymethane.Typicalmethanecoalseam

    contentsfoundinnaturerangefromtracelevelstoaround30m3/t.

    5Themeasureofgasemittedduringminingoperationscomparedtotheamountofcoalproduced.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    33/86

    Figure3.2GasContentMeasurementEquipment(AustralianStandard)

    (BasedonDiamond&Schatzel,1998)

    3.7 PracticalEstimationofGasFlowsinCoalMines

    Rigoroustheoreticalgasemissionflowandsimulationmodelshavebeendevelopedwithinacademia

    andbyresearchinstitutes.Forpracticalpurposes,minesgenerallyuseempiricalgasemissionmodels

    that have been proven to be very reliable when used in conjunction with local knowledge and

    expertise. These models require inputs of parameters including seam gas contents, mechanical

    propertiesof the rockand coal strata,mininggeometry,andcoalproduction rates.Users canbuild

    their own models using published information, or they can purchase proprietary software. Flow

    estimates are expressed in either relative terms of cubic metresof gas releasedper tonneof coal

    mined(specificemissionsinm3/t)orinabsoluteterms,asasteadystateflowrateofcubicmetresper

    minute(m3/min)orlitrespersecond(l/s).

    Modelsmaypredicttheeffectsofincreasedcoalproductionratesongasflows.Theycanalsoforecastthe

    maximumcontrollablegasflowandtheassociatedmaximumcoalproductionaffectedbythefollowing

    parameters:

    Thestatutoryflammablegasconcentrationlimitinlongwalldistrictreturnairways.

    Ventilation air quantities available and airflow volumes that can be circulated around the

    workingdistricts.Theairflowvolumethatcanbedeliveredtoaworkinglongwalldependson

    thenumberof roadways,ventilation configurationof theproductiondistrict,andmaximum

    acceptablevelocity

    for

    miner

    comfort.

    Thegasdrainagecapturethatcanbeconsistentlymaintained,ifgasdrainageisused.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    34/86

    Chapter4.MineVentilation

    KeyMessages

    Mineventilationsystemsarecriticalcomponentsofanoverallsystemtoeffectivelyremovemethane

    frommine

    workings.

    A

    mine

    ventilation

    system

    is

    designed

    to

    achieve

    three

    objectives:

    1)

    deliver

    breathablefreshair to theworkers,2)controlmineair temperatureandhumidity,and3)effectively

    diluteorremovehazardousgasesandairbornerespirabledust.

    Improvementstomethanedrainagesystemscanoftenprovideamorerapidandcosteffectivesolution

    tominegasproblemsthansimplyincreasingtheminesairsupply.

    4.1 VentilationChallenges

    Achievingeffectiveventilation in coalmines isultimately the factor that limits coalproductionata

    given

    mine.

    The

    maximum

    rate

    of

    coal

    extraction

    that

    can

    be

    safely

    achieved

    on

    a

    gassy

    working

    coalface isdeterminedby thecombinationofventilation capacity todilutepollutants toacceptable

    concentrationsandmethanedrainageefficiency.

    Ventilation is the primary means of diluting and dispersing hazardous gases in underground mine

    roadways.Airvelocitiesandquantitiesareoptimised toensuredilutionof gas,dust,andheat.The

    greaterthefreshairquantitysuppliedtothecoalface,thegreatertheinflowofgasthatcanbediluted.

    Thisdilutionprocessisinherentlylimitedbyairavailabilitywithinthemineandmaximumtolerableair

    velocities.

    Ventilationpressureisproportionaltothesquareoftheairflowvolume.Amodestriseinairquantity

    thereforerequires

    asignificant

    increase

    inpressure,

    which

    leads

    togreater

    leakages

    across

    goafs

    and

    ventilationdoors.Excessiveleakageflowsacrossthegoafsmayalsoincreasespontaneouscombustion

    risksandcanimpairgasdrainagesystems.

    The volume of air required to ventilate the underground workings and the permissible level of

    pollutants is often mandated by local government agencies. A ventilation system that is designed

    simplytocomplywith legalminimumairflowsorairvelocitiesmaybe inadequateforthepurposeof

    maintainingasafeandsatisfactoryenvironmentinanactivemine.Forthisreason,ventilationsystem

    designspecificationsmusttakeintoaccounttheexpectedworstcasepollutantlevels.

    Methane

    is

    considered

    the

    principal

    pollutant

    and

    the

    most

    hazardous

    gas

    for

    ventilation

    system

    specifications. If the selected ventilation system design is capable of removing or satisfactorily

    controllingtheprimarypollutant,itisassumedthatthelesserpollutantswillbeadequatelycontrolled

    orremovedatthesametime.

    4.2 KeyVentilationDesignFeatures

    Generally,air isdrawn(sucked)throughaminebyexhaustfans locatedonthesurface.Thus,theair

    pressure in the mine is below atmospheric pressure. In the event of fan failure, the ventilation

    pressureintheminerises,preventinganinstantaneousreleaseofgasfromworkedareas.

  • 8/8/2019 BestPractGuide_MethDrain_es31

    35/86

    Thedeeperandmoreextensivethemine,themorecomplextheventilationcircuitandthegreaterthe

    propensity for leakage losses through communicatingdoors in theminebetween intakeand return

    airways. Thus complex, larger mines have limited quantities of fresh air available for use in blind

    headingsandonworkingcoalfaces,whichrequirestheuseofauxiliaryventilationducts.Nevertheless,

    sufficientairmustbesuppliedtoallowheadingstobeventilatedinparallelandnotinseries;withthe

    latterarrangement,agasprobleminoneheadingwillberapidlytransmittedtothenext.Bestpractice

    istomakearrangementsforthesupplyofelectricitytobecutofffromallworkingplacesdownstream

    ofaworkingplaceinwhichthemethaneconcentrationhasexceededthestatutorymaximum.

    Ventilation requirementsaredynamic.Ventilationairdemand increasesasamine isdevelopedand

    theareabeingventilated increases, sometimes requiring installationofadditionalventilationshafts,

    upgradingfans,orenlargingexistingairways.

    Proprietarysoftwareisavailableformodellingventilationnetworks.Actualpressureandflowsurveys

    should be made at regular intervals to calibrate the model and check the system performance as

    changesare

    made.

    Wheneverpossible,theventilationsystemshouldbedesignedsothatthevariousventilationsplits

    orbranchesarenaturallybalanced.Thisactionreducestheneedtoinstallflowcontroldevicessuchas

    air locks.Theopeningandclosingofsuchdevicestoallowthepassageofpersonnelhasaprofound

    effectontheairflowsinthebranch.

    Thesurface fan(s)shouldbedesigned tosatisfythemineventilation requirements.Surface fanscan

    generally be adjusted within certain limits to ensure that they meet the requirements without

    suffering aerodynamic instability. Older surface fans installed at some mature mines are often

    operatingattheir

    design

    maximum

    duty.

    Insuch

    cases,

    any

    increase

    inairflows

    tothe

    more

    remote

    partsoftheminecanonlybeachievedbyimprovementstotheventilationairnetwork.

    4.3 VentilationofGassyWorkingFaces

    Differentcoalfacelayoutscontrolthegas,dust,andheatthatresultfromcoalextractionwithvarying

    degreesofeffectiveness.Theprincipalgasrisksareassociatedwithareasofcoalworkingsinwhichthe

    seamhasbeenpartiallyorwhollyextracted(whetherbylongwallorroomandpillarmethods)andare

    no longersafelyaccessible(i.e.,goafs).All longwallorpillarrecoveryoperationsare indirectcontact

    with minedout areas where methane, oxygendeficient air, and other hazardous gases can

    accumulate. These gases includemethanenot capturedby gasdrainage,plus continuing emissions

    fromcoalleftinthegoaf.

    Thesegasesarehandledinoneoftwoways.First,theymaybeallowedtoenterthemineairstream

    where sufficient air is available to dilute the maximum expected gas flows in the airways to safe

    concentrations(Figure4.1).Asanexampleonlya longwallwithUv