Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ...

73
Berkovich spaces over Z and Schottky spaces Jérôme Poineau Université de Caen Normandie ERC TOSSIBERG 637027 Alexey Zykin memorial conference June 18, 2020

Transcript of Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ...

Page 1: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Berkovich spaces over Z and Schottky spaces

Jérôme Poineau

Université de Caen NormandieERC TOSSIBERG 637027

Alexey Zykin memorial conferenceJune 18, 2020

Page 2: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Outline

1 Uniformization of curves

2 Berkovich spaces over Z

3 Schottky spaces over Z

4 Applications

Page 3: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Outline

1 Uniformization of curves

2 Berkovich spaces over Z

3 Schottky spaces over Z

4 Applications

Page 4: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Koebe’s theorem

Theorem (Koebe, 1907)Up to isomorphism, there are exactly three possibilities for theuniversal cover of a compact Riemann surface:

I the projective line;I the affine line;I the open unit disc.

What happens in the p-adic setting?

Page 5: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Koebe’s theorem

Theorem (Koebe, 1907)Up to isomorphism, there are exactly three possibilities for theuniversal cover of a compact Riemann surface:

I the projective line;I the affine line;I the open unit disc.

What happens in the p-adic setting?

Page 6: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Elliptic curves

J. Tate’s idea: use a partial uniformization

Over C,E (C) ' C/(Z + Zτ)

exp(2πi ·)−−−−−→∼

C∗/qZ

with Im(τ) > 0.

Over Qp, lattices are not discrete, but

Q∗p/qZ

still makes sense for q ∈ Q∗p with |q|p < 1 and it is then (the set ofQp-points of an) elliptic curve.

RemarkOver Qp, not all elliptic curves arise this way: only those with splitmultiplicative reduction (Tate curves).

Page 7: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Elliptic curves

J. Tate’s idea: use a partial uniformization

Over C,E (C) ' C/(Z + Zτ)

exp(2πi ·)−−−−−→∼

C∗/qZ

with Im(τ) > 0.

Over Qp, lattices are not discrete.

Q∗p/qZ

still makes sense for q ∈ Q∗p with |q|p < 1 and it is then (the set ofQp-points of an) elliptic curve.

RemarkOver Qp, not all elliptic curves arise this way: only those with splitmultiplicative reduction (Tate curves).

Page 8: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Elliptic curvesJ. Tate’s idea: use a partial uniformizationOver C,

E (C) ' C/(Z + Zτ)exp(2πi ·)−−−−−→∼

C∗/qZ

with Im(τ) > 0 and q = exp(2πiτ).

Over Qp, lattices are not discrete.

P1(C)

•∞

|z | > 1

•0

|z | 6 |q|

×q

Q∗p/qZ

still makes sense for q ∈ Q∗p with |q|p < 1 and it is then (the set ofQp-points of an) elliptic curve.

RemarkOver Qp, not all elliptic curves arise this way: only those with splitmultiplicative reduction (Tate curves).

Page 9: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Elliptic curves

J. Tate’s idea: use a partial uniformizationOver C,

E (C) ' C/(Z + Zτ)exp(2πi ·)−−−−−→∼

C∗/qZ

with Im(τ) > 0 and q = exp(2πiτ).

Over Qp, lattices are not discrete, but

Q∗p/qZ

still makes sense for q ∈ Q∗p with |q|p < 1 and it is then (the set ofQp-points of an) elliptic curve.

RemarkOver Qp, not all elliptic curves arise this way: only those with splitmultiplicative reduction (Tate curves).

Page 10: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Elliptic curves

J. Tate’s idea: use a partial uniformizationOver C,

E (C) ' C/(Z + Zτ)exp(2πi ·)−−−−−→∼

C∗/qZ

with Im(τ) > 0 and q = exp(2πiτ).

Over Qp, lattices are not discrete, but

Q∗p/qZ

still makes sense for q ∈ Q∗p with |q|p < 1 and it is then (the set ofQp-points of an) elliptic curve.

RemarkOver Qp, not all elliptic curves arise this way: only those with splitmultiplicative reduction (Tate curves).

Page 11: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky uniformization: settingLet g > 1. Let D±1, . . . ,D±g be disjoint open discs in P1(C).Let γ1, . . . , γg ∈ PGL2(C) such that, setting γ−i := γ−1

i , we have

∀i , γi (P1(C)− D−i ) = Di .

P1(C)

D−2

D−1

D1

D2

γ1

Page 12: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky uniformization: settingLet g > 1. Let D±1, . . . ,D±g be disjoint open discs in P1(C).Let γ1, . . . , γg ∈ PGL2(C) such that, setting γ−i := γ−1

i , we have

∀i , γi (P1(C)− D−i ) = Di .

P1(C)

D−2

D−1

D1

D2

γ1

Page 13: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky uniformization: settingLet g > 1. Let D±1, . . . ,D±g be disjoint open discs in P1(C).Let γ1, . . . , γg ∈ PGL2(C) such that, setting γ−i := γ−1

i , we have

∀i , γi (P1(C)− D−i ) = Di .

P1(C)

D−2

D−1

D1

D2

γ1

Page 14: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky uniformization: settingLet g > 1. Let D±1, . . . ,D±g be disjoint open discs in P1(C).Let γ1, . . . , γg ∈ PGL2(C) such that, setting γ−i := γ−1

i , we have

∀i , γi (P1(C)− D−i ) = Di .

P1(C)

D−2

D−1

D1

D2

γ1

Page 15: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky uniformization: settingLet g > 1. Let D±1, . . . ,D±g be disjoint open discs in P1(C).Let γ1, . . . , γg ∈ PGL2(C) such that, setting γ−i := γ−1

i , we have

∀i , γi (P1(C)− D−i ) = Di .

P1(C)

D−2

D−1

D1

D2

γ1

Page 16: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky uniformization: properties

Set Γ := 〈γ1, . . . , γg 〉. It is a free group of rank g , called

Schottky group.

There exists a compact subset L of P1(C) such that1 the action of Γ on P1(C)− L is properly discontinuous;2 (P1(C)− L)/Γ is a compact Riemann surface of genus g .

I Every compact Riemann surface of genus g may be obtainedthis way, possibly replacing the discs by domains bounded byJordan curves.

I D. Mumford (1972) adapted the theory to thenon-archimedean setting. The resulting curves are calledMumford curves.

Page 17: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky uniformization: properties

Set Γ := 〈γ1, . . . , γg 〉. It is a free group of rank g , called

Schottky group.

There exists a compact subset L of P1(C) such that1 the action of Γ on P1(C)− L is properly discontinuous;2 (P1(C)− L)/Γ is a compact Riemann surface of genus g .

I Every compact Riemann surface of genus g may be obtainedthis way, possibly replacing the discs by domains bounded byJordan curves.

I D. Mumford (1972) adapted the theory to thenon-archimedean setting. The resulting curves are calledMumford curves.

Page 18: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky uniformization: properties

Set Γ := 〈γ1, . . . , γg 〉. It is a free group of rank g , called

Schottky group.

There exists a compact subset L of P1(C) such that1 the action of Γ on P1(C)− L is properly discontinuous;2 (P1(C)− L)/Γ is a compact Riemann surface of genus g .

I Every compact Riemann surface of genus g may be obtainedthis way, possibly replacing the discs by domains bounded byJordan curves.

I D. Mumford (1972) adapted the theory to thenon-archimedean setting. The resulting curves are calledMumford curves.

Page 19: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Outline

1 Uniformization of curves

2 Berkovich spaces over Z

3 Schottky spaces over Z

4 Applications

Page 20: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : definition

DefinitionThe analytic space An,an

Z is the set of multiplicative seminorms

| · |x : Z[T1, . . . ,Tn]→ R>0.

It is endowed with the topology generated by the subsets of theform

x ∈ An,anZ : r < |P|x < s,

for P ∈ Z[T1, . . . ,Tn] and r , s ∈ R.

Page 21: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : definition

DefinitionThe analytic space An,an

Z is the set of multiplicative seminorms

| · |x : Z[T1, . . . ,Tn]→ R>0.

It is endowed with the topology generated by the subsets of theform

x ∈ An,anZ : r < |P|x < s,

for P ∈ Z[T1, . . . ,Tn] and r , s ∈ R.

Page 22: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : structure sheaf

To each x ∈ An,anZ , we associate a complete residue field

H(x) := completion of the fraction field of Z[T1, . . . ,Tn]/Ker(| · |x)

and an evaluation map

χx : Z[T1, . . . ,Tn]→ H(x).

For every open subset U of An,anZ , O(U) is the set of maps

f : U →⊔x∈UH(x)

such thatI ∀x ∈ U, f (x) ∈ H(x);I f is locally a uniform limit of rational functions without poles.

Page 23: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : structure sheaf

To each x ∈ An,anZ , we associate a complete residue field

H(x) := completion of the fraction field of Z[T1, . . . ,Tn]/Ker(| · |x)

and an evaluation map

χx : Z[T1, . . . ,Tn]→ H(x).

For every open subset U of An,anZ , O(U) is the set of maps

f : U →⊔x∈UH(x)

such thatI ∀x ∈ U, f (x) ∈ H(x);I f is locally a uniform limit of rational functions without poles.

Page 24: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : examples of points

An,anZ = | · |x : Z[T1, . . . ,Tn]→ R>0

1 For t ∈ Cn,P(T) ∈ Z[T] 7→ |P(t)|∞.

Note that t and t give rise to the same seminorm.2 For u ∈ Qn

p,P(T) ∈ Z[T] 7→ |P(u)|p.

Also: supremum norms on closed polydiscs in Qnp.

3 For v ∈ Fnp,

P(T) ∈ Z[T] 7→ |P(v)|0.

Page 25: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : examples of points

An,anZ = | · |x : Z[T1, . . . ,Tn]→ R>0

1 For t ∈ Cn,P(T) ∈ Z[T] 7→ |P(t)|∞.

Note that t and t give rise to the same seminorm.

2 For u ∈ Qnp,

P(T) ∈ Z[T] 7→ |P(u)|p.

Also: supremum norms on closed polydiscs in Qnp.

3 For v ∈ Fnp,

P(T) ∈ Z[T] 7→ |P(v)|0.

Page 26: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : examples of points

An,anZ = | · |x : Z[T1, . . . ,Tn]→ R>0

1 For t ∈ Cn,P(T) ∈ Z[T] 7→ |P(t)|∞.

Note that t and t give rise to the same seminorm.2 For u ∈ Qn

p,P(T) ∈ Z[T] 7→ |P(u)|p.

Also: supremum norms on closed polydiscs in Qnp.

3 For v ∈ Fnp,

P(T) ∈ Z[T] 7→ |P(v)|0.

Page 27: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : examples of points

An,anZ = | · |x : Z[T1, . . . ,Tn]→ R>0

1 For t ∈ Cn,P(T) ∈ Z[T] 7→ |P(t)|∞.

Note that t and t give rise to the same seminorm.2 For u ∈ Qn

p,P(T) ∈ Z[T] 7→ |P(u)|p.

Also: supremum norms on closed polydiscs in Qnp.

3 For v ∈ Fnp,

P(T) ∈ Z[T] 7→ |P(v)|0.

Page 28: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : examples of points

An,anZ = | · |x : Z[T1, . . . ,Tn]→ R>0

1 For t ∈ Cn,P(T) ∈ Z[T] 7→ |P(t)|∞.

Note that t and t give rise to the same seminorm.2 For u ∈ Qn

p,P(T) ∈ Z[T] 7→ |P(u)|p.

Also: supremum norms on closed polydiscs in Qnp.

3 For v ∈ Fnp,

P(T) ∈ Z[T] 7→ |P(v)|0.

Page 29: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : the Qp-points

A1,anQp

ηGauss

η2,|p|

η2,|p2|2

2 + 2p

2 + p

2 + p2

η0,|p|

ηp,|p3|p+ p3

p

02p

η

(type(4))

1

1 + p

p− 1

Page 30: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : picture

M(Z) := A0,anZ = | · |x : Z→ R>0

| · |∞

| · |ε∞

| · |0| · |2,0

| · |ε2

| · |3,0 . . .

| · |p,0| · |εp

. . .

We have a projection morphism π : An,anZ → A0,an

Z .

I π−1(| · |∞) = Cn/Gal(C/R)

I π−1(| · |p) = An,anQp

usual Berkovich analytic space

Page 31: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : picture

M(Z) := A0,anZ = | · |x : Z→ R>0

| · |∞

| · |ε∞

| · |0| · |2,0

| · |ε2

| · |3,0 . . .

| · |p,0| · |εp

. . .

We have a projection morphism π : An,anZ → A0,an

Z .

I π−1(| · |∞) = Cn/Gal(C/R)

I π−1(| · |p) = An,anQp

usual Berkovich analytic space

Page 32: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : picture

M(Z) := A0,anZ = | · |x : Z→ R>0

| · |∞

| · |ε∞

| · |0| · |2,0

| · |ε2

| · |3,0 . . .

| · |p,0| · |εp

. . .

We have a projection morphism π : An,anZ → A0,an

Z .

I π−1(| · |∞) = Cn/Gal(C/R)

I π−1(| · |p) = An,anQp

usual Berkovich analytic space

Page 33: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : picture

M(Z) := A0,anZ = | · |x : Z→ R>0

| · |∞

| · |ε∞

| · |0| · |2,0

| · |ε2

| · |3,0 . . .

| · |p,0| · |εp

. . .

We have a projection morphism π : An,anZ → A0,an

Z .

I π−1(| · |∞) = Cn/Gal(C/R)

I π−1(| · |p) = An,anQp

usual Berkovich analytic space

Page 34: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : functions

Let D be the open unit disk in An,anZ . Then H0(D,O) is a ring of

convergent arithmetic power series (D. Harbater):

H0(D,O) = Z[[T1, . . . ,Tn]]1−

= f ∈ Z[[T ]] with complex radius of convergence > 1.

The local ring at the point 0 over | · |0 is the subring ofQ[[T1, . . . ,Tn]] consisting of the power series f such thati) ∃N ∈ N∗, f ∈ Z[ 1

N ][[T1, . . . ,Tn]];ii) the complex radius of convergence of f is > 0;iii) for each p|N, the p-adic radius of convergence of f is > 0.

Page 35: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

The Berkovich analytic space An,anZ : functions

Let D be the open unit disk in An,anZ . Then H0(D,O) is a ring of

convergent arithmetic power series (D. Harbater):

H0(D,O) = Z[[T1, . . . ,Tn]]1−

= f ∈ Z[[T ]] with complex radius of convergence > 1.

The local ring at the point 0 over | · |0 is the subring ofQ[[T1, . . . ,Tn]] consisting of the power series f such thati) ∃N ∈ N∗, f ∈ Z[ 1

N ][[T1, . . . ,Tn]];ii) the complex radius of convergence of f is > 0;iii) for each p|N, the p-adic radius of convergence of f is > 0.

Page 36: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Properties of An,anZ

Theorem (V. Berkovich)

The space An,anZ is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space An,anZ is locally path-connected.

Theorem (J. P.)I For every x in An,an

Z , the local ring Ox is Henselian,Noetherian, regular, excellent.

I The structure sheaf of An,anZ is coherent.

Theorem (T. Lemanissier - J. P.)Relative closed and open discs over Z are Stein.

Page 37: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Properties of An,anZ

Theorem (V. Berkovich)

The space An,anZ is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space An,anZ is locally path-connected.

Theorem (J. P.)I For every x in An,an

Z , the local ring Ox is Henselian,Noetherian, regular, excellent.

I The structure sheaf of An,anZ is coherent.

Theorem (T. Lemanissier - J. P.)Relative closed and open discs over Z are Stein.

Page 38: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Properties of An,anZ

Theorem (V. Berkovich)

The space An,anZ is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space An,anZ is locally path-connected.

Theorem (J. P.)I For every x in An,an

Z , the local ring Ox is Henselian,Noetherian, regular, excellent.

I The structure sheaf of An,anZ is coherent.

Theorem (T. Lemanissier - J. P.)Relative closed and open discs over Z are Stein.

Page 39: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Properties of An,anZ

Theorem (V. Berkovich)

The space An,anZ is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space An,anZ is locally path-connected.

Theorem (J. P.)I For every x in An,an

Z , the local ring Ox is Henselian,Noetherian, regular, excellent.

I The structure sheaf of An,anZ is coherent.

Theorem (T. Lemanissier - J. P.)Relative closed and open discs over Z are Stein.

Page 40: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Outline

1 Uniformization of curves

2 Berkovich spaces over Z

3 Schottky spaces over Z

4 Applications

Page 41: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Koebe coordinates

Let (k , | · |) be a complete valued field, Archimedean or not.

To γ ∈ PGL2(k) hyperbolic, we associateI α ∈ P1(k) its attracting fixed point;I α′ ∈ P1(k) its repelling fixed point;I β ∈ k the quotient of its eigenvalues with absolute value < 1.

For α, α′, β ∈ k with |β| ∈ (0, 1), we have

M(α, α′, β) =

(α− βα′ (β − 1)αα′

1− β βα− α′).

Page 42: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Koebe coordinates

Let (k , | · |) be a complete valued field, Archimedean or not.

To γ ∈ PGL2(k) hyperbolic, we associateI α ∈ P1(k) its attracting fixed point;I α′ ∈ P1(k) its repelling fixed point;I β ∈ k the quotient of its eigenvalues with absolute value < 1.

For α, α′, β ∈ k with |β| ∈ (0, 1), we have

M(α, α′, β) =

(α− βα′ (β − 1)αα′

1− β βα− α′).

Page 43: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Koebe coordinates

Let (k , | · |) be a complete valued field, Archimedean or not.

To γ ∈ PGL2(k) hyperbolic, we associateI α ∈ P1(k) its attracting fixed point;I α′ ∈ P1(k) its repelling fixed point;I β ∈ k the quotient of its eigenvalues with absolute value < 1.

For α, α′, β ∈ k with |β| ∈ (0, 1), we have

M(α, α′, β) =

(α− βα′ (β − 1)αα′

1− β βα− α′).

Page 44: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky space

Definition

For g > 2, the Schottky space Sg is the subset of A3g−3,anZ

consisting of the points

z = (x3, . . . , xg , x′2, . . . , x

′g , y1, . . . , yg )

such that the subgroup of PGL2(H(z)) defined by

Γz := 〈M(0,∞, y1),M(1, x ′2, y2),M(x3, x′3, y3), . . . ,M(xg , x

′g , yg )〉

is a Schottky group.

Theorem (J. P. - D. Turchetti)

The Schottky space Sg is a connected open subset of A3g−3,anZ .

Page 45: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky space

Definition

For g > 2, the Schottky space Sg is the subset of A3g−3,anZ

consisting of the points

z = (x3, . . . , xg , x′2, . . . , x

′g , y1, . . . , yg )

such that the subgroup of PGL2(H(z)) defined by

Γz := 〈M(0,∞, y1),M(1, x ′2, y2),M(x3, x′3, y3), . . . ,M(xg , x

′g , yg )〉

is a Schottky group.

Theorem (J. P. - D. Turchetti)

The Schottky space Sg is a connected open subset of A3g−3,anZ .

Page 46: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Universal Mumford curve

Denote by (X3, . . . ,Xg ,X′2, . . . ,X

′g ,Y1, . . . ,Yg ) the coordinates

on A3g−3,anZ and consider the subgroup of PGL2(O(Sg )):

Γ = 〈M(0,∞,Y1),M(1,X ′2,Y2),M(X3,X′3,Y3), . . . ,M(Xg ,X

′g ,Yg )〉.

There exists a closed subset L of Sg ×M(Z) P1,anZ such that

1 for each z ∈ Sg , L ∩ pr−11 (z) is the limit set of Γz ;

2 we have a commutative diagram of analytic morphismsSg ×M(Z) P1,an

Z − L

**

(Sg ×M(Z) P1,anZ − L)/Γ .

ttSg

Page 47: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Outline

1 Uniformization of curves

2 Berkovich spaces over Z

3 Schottky spaces over Z

4 Applications

Page 48: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Teichmüller modular forms

Mg moduli space of smooth and proper curves of genus gπ : Cg → Mg universal curve over Mg

λ :=∧g π∗Ω

1Cg/Mg

DefinitionA Teichmüller modular form of genus g and weight h over a ring Ris an element of

Tg ,h(R) := Γ(Mg ⊗ R, λ⊗h).

The Torelli map τ gives rise to

τ∗ : Sg ,h(R)→ Tg ,h(R),

where Sg ,h(R) denotes Siegel modular forms.

Page 49: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Teichmüller modular forms

Mg moduli space of smooth and proper curves of genus gπ : Cg → Mg universal curve over Mg

λ :=∧g π∗Ω

1Cg/Mg

DefinitionA Teichmüller modular form of genus g and weight h over a ring Ris an element of

Tg ,h(R) := Γ(Mg ⊗ R, λ⊗h).

The Torelli map τ gives rise to

τ∗ : Sg ,h(R)→ Tg ,h(R),

where Sg ,h(R) denotes Siegel modular forms.

Page 50: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Teichmüller modular forms

Mg moduli space of smooth and proper curves of genus gπ : Cg → Mg universal curve over Mg

λ :=∧g π∗Ω

1Cg/Mg

DefinitionA Teichmüller modular form of genus g and weight h over a ring Ris an element of

Tg ,h(R) := Γ(Mg ⊗ R, λ⊗h).

The Torelli map τ gives rise to

τ∗ : Sg ,h(R)→ Tg ,h(R),

where Sg ,h(R) denotes Siegel modular forms.

Page 51: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Expansions

T. Ichikawa (1994) defined an expansion map

κR : Tg ,h(R)→ R[x±1, . . . , x±g ,

1xi − xj

][[y1, . . . , yg ]].

I could be upgraded to

κR : Tg ,h(R)→ R ⊗O(Sg )

providing additional convergence conditionsI related to the Fourier expansions of Siegel modular forms

(using Yu. Manin - V. Drinfeld “Periods of p-adic Schottkygroups”, 1972)

I may be helpful for the Schottky problem(characterizing Jacobian varieties among Abelian varieties)

Page 52: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Expansions

T. Ichikawa (1994) defined an expansion map

κR : Tg ,h(R)→ R[x±1, . . . , x±g ,

1xi − xj

][[y1, . . . , yg ]].

I could be upgraded to

κR : Tg ,h(R)→ R ⊗O(Sg )

providing additional convergence conditions

I related to the Fourier expansions of Siegel modular forms(using Yu. Manin - V. Drinfeld “Periods of p-adic Schottkygroups”, 1972)

I may be helpful for the Schottky problem(characterizing Jacobian varieties among Abelian varieties)

Page 53: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Expansions

T. Ichikawa (1994) defined an expansion map

κR : Tg ,h(R)→ R[x±1, . . . , x±g ,

1xi − xj

][[y1, . . . , yg ]].

I could be upgraded to

κR : Tg ,h(R)→ R ⊗O(Sg )

providing additional convergence conditionsI related to the Fourier expansions of Siegel modular forms

(using Yu. Manin - V. Drinfeld “Periods of p-adic Schottkygroups”, 1972)

I may be helpful for the Schottky problem(characterizing Jacobian varieties among Abelian varieties)

Page 54: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Expansions

T. Ichikawa (1994) defined an expansion map

κR : Tg ,h(R)→ R[x±1, . . . , x±g ,

1xi − xj

][[y1, . . . , yg ]].

I could be upgraded to

κR : Tg ,h(R)→ R ⊗O(Sg )

providing additional convergence conditionsI related to the Fourier expansions of Siegel modular forms

(using Yu. Manin - V. Drinfeld “Periods of p-adic Schottkygroups”, 1972)

I may be helpful for the Schottky problem(characterizing Jacobian varieties among Abelian varieties)

Page 55: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Genus 3

χ18 ∈ S3,18(Z) product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000)There exists µ9 ∈ T3,9(Z) such that

τ∗(χ18) = µ29.

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)Let k ⊂ C. Let A/k be a principally polarized indecomposableAbelian threefold that is isomorphic to a Jacobian over C.Then, A is isomorphic to a Jacobian over k if, and only if,

χ18(A) ∈ k2.

Page 56: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Genus 3

χ18 ∈ S3,18(Z) product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000)There exists µ9 ∈ T3,9(Z) such that

τ∗(χ18) = µ29.

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)Let k ⊂ C. Let A/k be a principally polarized indecomposableAbelian threefold that is isomorphic to a Jacobian over C.Then, A is isomorphic to a Jacobian over k if, and only if,

χ18(A) ∈ k2.

Page 57: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Genus 3

χ18 ∈ S3,18(Z) product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000)There exists µ9 ∈ T3,9(Z) such that

τ∗(χ18) = µ29.

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)Let k ⊂ C. Let A/k be a principally polarized indecomposableAbelian threefold that is isomorphic to a Jacobian over C.

Then, A is isomorphic to a Jacobian over k if, and only if,

χ18(A) ∈ k2.

Page 58: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Genus 3

χ18 ∈ S3,18(Z) product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000)There exists µ9 ∈ T3,9(Z) such that

τ∗(χ18) = µ29.

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)Let k ⊂ C. Let A/k be a principally polarized indecomposableAbelian threefold that is isomorphic to a Jacobian over C.Then, A is isomorphic to a Jacobian over k if, and only if,

χ18(A) ∈ k2.

Page 59: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference
Page 60: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky groups

Let (k , | · |) be a complete valued field. We denote by P1,ank

I the Berkovich projective line if k is non-archimedean;I P1(C) if k = C;I P1(C)/Gal(C/R) if k = R.

Let Γ be a subgroup of PGL2(k). It acts on P1,ank .

We say that Γ acts discontinuously at x ∈ P1,ank if there exists a

neighborhood Ux of x such that

γ ∈ Γ | γ(Ux) ∩ Ux 6= ∅ is finite.

A Schottky group over k is a finitely generated free subgroup ofPGL2(k) containing only hyperbolic elements and with a nonemptydiscontinuity locus.

Page 61: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky groups

Let (k , | · |) be a complete valued field. We denote by P1,ank

I the Berkovich projective line if k is non-archimedean;I P1(C) if k = C;I P1(C)/Gal(C/R) if k = R.

Let Γ be a subgroup of PGL2(k). It acts on P1,ank .

We say that Γ acts discontinuously at x ∈ P1,ank if there exists a

neighborhood Ux of x such that

γ ∈ Γ | γ(Ux) ∩ Ux 6= ∅ is finite.

A Schottky group over k is a finitely generated free subgroup ofPGL2(k) containing only hyperbolic elements and with a nonemptydiscontinuity locus.

Page 62: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Schottky groups

Let (k , | · |) be a complete valued field. We denote by P1,ank

I the Berkovich projective line if k is non-archimedean;I P1(C) if k = C;I P1(C)/Gal(C/R) if k = R.

Let Γ be a subgroup of PGL2(k). It acts on P1,ank .

We say that Γ acts discontinuously at x ∈ P1,ank if there exists a

neighborhood Ux of x such that

γ ∈ Γ | γ(Ux) ∩ Ux 6= ∅ is finite.

A Schottky group over k is a finitely generated free subgroup ofPGL2(k) containing only hyperbolic elements and with a nonemptydiscontinuity locus.

Page 63: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Action of Out(Fg)Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .

The action factors through Out(Fg ).

LemmaFor each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) → Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg isI the space of Mumford curves (inside Mg ) on the

non-Archimedean part;I the whole Mg on the Archimedean part.

Page 64: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Action of Out(Fg)Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .The action factors through Out(Fg ).

LemmaFor each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) → Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg isI the space of Mumford curves (inside Mg ) on the

non-Archimedean part;I the whole Mg on the Archimedean part.

Page 65: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Action of Out(Fg)Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .The action factors through Out(Fg ).

LemmaFor each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) → Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg isI the space of Mumford curves (inside Mg ) on the

non-Archimedean part;I the whole Mg on the Archimedean part.

Page 66: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Action of Out(Fg)Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .The action factors through Out(Fg ).

LemmaFor each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) → Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg isI the space of Mumford curves (inside Mg ) on the

non-Archimedean part;I the whole Mg on the Archimedean part.

Page 67: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Action of Out(Fg)Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .The action factors through Out(Fg ).

LemmaFor each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) → Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg is

I the space of Mumford curves (inside Mg ) on thenon-Archimedean part;

I the whole Mg on the Archimedean part.

Page 68: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Action of Out(Fg)Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .The action factors through Out(Fg ).

LemmaFor each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) → Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg isI the space of Mumford curves (inside Mg ) on the

non-Archimedean part;

I the whole Mg on the Archimedean part.

Page 69: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Action of Out(Fg)Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .The action factors through Out(Fg ).

LemmaFor each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) → Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg isI the space of Mumford curves (inside Mg ) on the

non-Archimedean part;I the whole Mg on the Archimedean part.

Page 70: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)The Outer Space CVg is a space of metric graphs X of genus gendowed with a marking (isomorphism Fg

∼−→ π1(X )).

Applications:

I CVg is contractibleI vcd(Fg ) = 2g − 3

Let (k, | · |) be a complete non-Archimedean valued field. EachMumford curve of genus g over k retracts onto a canonical“skeleton” that is a metric graph of genus g .We have a continuous surjective map

Sg ,k → CVg ×Mtropg

Mumfg ,k .

See also M. Ulirsch “Non-Archimedean Schottky Space and itsTropicalization”, 2020

Page 71: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)The Outer Space CVg is a space of metric graphs X of genus gendowed with a marking (isomorphism Fg

∼−→ π1(X )).

Applications:

I CVg is contractibleI vcd(Fg ) = 2g − 3

Let (k, | · |) be a complete non-Archimedean valued field. EachMumford curve of genus g over k retracts onto a canonical“skeleton” that is a metric graph of genus g .We have a continuous surjective map

Sg ,k → CVg ×Mtropg

Mumfg ,k .

See also M. Ulirsch “Non-Archimedean Schottky Space and itsTropicalization”, 2020

Page 72: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)The Outer Space CVg is a space of metric graphs X of genus gendowed with a marking (isomorphism Fg

∼−→ π1(X )).

Applications:

I CVg is contractibleI vcd(Fg ) = 2g − 3

Let (k, | · |) be a complete non-Archimedean valued field. EachMumford curve of genus g over k retracts onto a canonical“skeleton” that is a metric graph of genus g .

We have a continuous surjective map

Sg ,k → CVg ×Mtropg

Mumfg ,k .

See also M. Ulirsch “Non-Archimedean Schottky Space and itsTropicalization”, 2020

Page 73: Berkovich spaces over Z and Schottky spaces · 2020. 6. 18. · BerkovichspacesoverZ andSchottkyspaces JérômePoineau Université de Caen Normandie ERC TOSSIBERG 637027 AlexeyZykinmemorialconference

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)The Outer Space CVg is a space of metric graphs X of genus gendowed with a marking (isomorphism Fg

∼−→ π1(X )).

Applications:

I CVg is contractibleI vcd(Fg ) = 2g − 3

Let (k, | · |) be a complete non-Archimedean valued field. EachMumford curve of genus g over k retracts onto a canonical“skeleton” that is a metric graph of genus g .We have a continuous surjective map

Sg ,k → CVg ×Mtropg

Mumfg ,k .

See also M. Ulirsch “Non-Archimedean Schottky Space and itsTropicalization”, 2020