Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

13
Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft

Transcript of Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

Page 1: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

Béla BollobásMemphis

Guy KindlerMicrosoft

Imre LeaderCambridge

Ryan O’DonnellMicrosoft

Page 2: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

Q: How many

vertices need be

deleted to block

non-trivial cycles?

Page 3: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

(with “L1 edge structure”)

Q: How many

vertices need be

deleted to block

non-trivial cycles?

Upper bound: d ¢

md−1

Upper bound: d ¢

md−1

Page 4: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

(with “L1 edge structure”)

Q: How many

vertices need be

deleted to block

non-trivial cycles?

Upper bound: d ¢

md−1

Lower bound: 1 ¢

md−1

A: ? ¢ md−1

Lower bound:

Page 5: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

Motivation

Upper:

Lower: m

2 ¢

m

¢

m

Best:

Page 6: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.
Page 7: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.
Page 8: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

tiling of with period

(with discretized boundary)

Page 9: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

tiling of with period

(with discretized boundary)

Page 10: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

0

m

# of vertices:

Theorem 1:

upper bound, for d = 2r.

(Hadamard matrix)

In dimension d = 2r…

Page 11: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

Motivation

• “L1 structure”:

• [SSZ04]: Asymptotically tight lower bound.

(Yields integrality gap for DIRECTED MIN MULTICUT.)

• Our Theorem 2: Exactly tight lower bound.

• Edge-deletion version: Our original motivation.

Connected to quantitative aspects of Raz’s Parallel Repetition Theorem.

Page 12: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.

Open questions

• Obviously, better upper/lower bounds for various versions?

(L1 / L1, vertex deletion / edge deletion)

• Continuous, Euclidean version:

“What tiling of with period has minimal surface area?”

Trivial upper bound: d

Easy lower bound:

No essential improvement known.

Best for d = 2:

Page 13: Béla Bollobás Memphis Guy Kindler Microsoft Imre Leader Cambridge Ryan O’Donnell Microsoft.