Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product...

234
PL-NF-87-001 QizzlM~cehon H'WIK Beehgm. e.x(|II Ave.11ygiz ~ ~ ~ Pennsylvania Power 8 Light Company ~70 870416 8704>2 y, pg000387 PDR A -. PDR P'

Transcript of Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product...

Page 1: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

PL-NF-87-001

QizzlM~cehon

H'WIK

Beehgm. e.x(|II Ave.11ygiz

~ ~ ~

Pennsylvania Power 8 Light Company~70 8704168704>2 y, pg000387

PDR A -. PDRP'

Page 2: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16
Page 3: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

QUALIFICATION OF STEADY STATECORE PHYSICS METHODS FOR BWR DESIGN AND ANALYSIS

PL-NF-87-001Revision 0

March 1987

Princi al Engineers

Andrew DyszelKenneth C. Knoll

Contributing Engineers

John H. EmmettEric R. Jebsen

Chester R. LehmannAnthony J. Roscioli

Robert M. RoseJohn P. Spadaro

William J. Weadon

Jo M. KulickDate: 3/31/87

Supervisor-Nuclear Fuels Engineering

Je e S. Stefanko.-Nuclear Fuels 6 stems Engineering

Date: 3/31/87

Page 4: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16
Page 5: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LEGAL NOTICE

This topical report represents the efforts of Pennsylvania Power 6 LightCompany (PPGL) and reflects the technical capabilities of its nuclear fuelmanagement personnel. The information contained herein is completely true and

accurate to the best of the Company's knowledge. The sole intended purpose ofthis report and the information contained herein is to provide a technicalbasis for PPGL's qualification to perform steady state core physics analyses

of the Susquehanna SES reactors. Any use of this report or the information by

anyone other than PP&L or the U.S. Nuclear Regulatory Commission isunauthorized. With regard to any unauthorized use, Pennsylvania Power 6 LightCompany and its officers, directors, agents, and employees make no warranty,either expressed or implied, as to the accuracy, completeness, or usefulnessof this report or the information, and assume no liability with respect to itsuse.

Page 6: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16
Page 7: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

ABSTRACT

This topical report presents the benchmarking analyses which demonstrate the

validity of Pennsylvania Power 6 Light Company's (PPGL's) analytical methods

as well as PPGL's qualification to perform steady state core physicscalculations for reload design and licensing analysis applications.

PPGL's steady state core physics methods are based mainly on the computer

codes provided by the Electric Power Research Institute. These codes include:the MICBURN gadolinia fuel pin depletion code; the CPM-2 assembly lattice

'I

depletion code; and the SIMULATE-E three-dimensional core simulation code.

The benchmarking analyses contained in this topical report include comparisons

of PPGL's CPM-2 fuel pin and assembly calculations to uniform lattice criticalexperiments and to gamma scan measurements taken from the Quad Cities Unit 1

reactor. Extensive benchmarking of PPGL's SIMULATE-E models is also~ ~presented, including comparisons to measured neutron flux data (i.e.,

Traversing In-core Probe data) and criticals from all available Susquehanna

SES cycles, two cycles of Quad Cities Unit 1, and two cycles of Peach Bottom

Unit 2; the SIMULATE-E models are also benchmarked against gamma scan

measurements from Quad Cities Unit 1. PPGL's calculations with the industrystandard diffusion theory code PDQ7 are also included in this topical report.

In total, the benchmarking results compare very favorably to the measured

data, and thus demonstrate PPGL's qualifications to perform steady state core

physics calculations for reload design and licensing analysis applications.

Page 8: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16
Page 9: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the expert stenographic work provided by

Ms. Evelyn Lugo and Ms. Sandra K. Lines, and the excellent graphics prepared

by Mr. Francis E. Grim and Ms. Denise S. Showalter, all of whose efforts have

contributed to the quality and timely completion of this topical report.

The authors also acknowledge the efforts of Mr. Rocco R. Sgarro for hislicensing reviews and coordination with the NRC.

In addition, the consulting reviews and recommendations provided by

Dr. Jack R. Fisher and Mr. Rodney L. Grow of Utility Resource Associates, and

Mr. Edward D. Kendrick, Dr. Antonio Ancona, and Mr. Demitrios T. Gournelos ofUtilityAssociates International are greatly appreciated.

Page 10: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16
Page 11: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

QUALIPICATION OP STEADY STATECORE PHYSICS METHODS POR BWR DESIGN AND ANALYSIS

TABLE OP CONTENTS

Section Page

1.0 Introduction

2.0 Lattice Physics Methods

2.1 Description of CPM-22.2 Uniform Lattice Criticals2.3 Quad Cities Pin Power Distribution Comparisons2. 4 EPRI'enchmark Evaluations

8192438

3.0 Core Simulation Methods" 49

3.1 Description of SIMULATE-E3.2 Susquehanna SES Units 1 and 2 Benchmark

3.2.1 Hot Critical Core Reactivity Comparisons3.2.2 Cold Critical Core Reactivity Comparisons3.2.3 Traversing In-core Probe Data Comparisons3.2.4 Core Monitoring System Comparisons

3.3 Quad Cities Unit 1 Cycles 1 and 2 Benchmark3.3.1 Hot Critical Core Reactivity Comparisons3.3.2 Cold Critical Core Reactivity Comparisons3.3.3 Traversing In-core Probe Data Comparisons3.3.4 Gamma Scan Comparisons

3.4 Peach Bottom Unit 2 Cycles 1 and 2 Comparisons

505456575965

140141141

'42

143185

4.0 .Special Applications with PDQ7 195

4.1 Description of PDQ74. 2 Uniform Lattice Critica ls4.3 Comparisons to CPM-2

196198201

5.0 Summary and Conclusions

6.0 References

206

209

Page 12: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

0

Page 13: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF TABLES

TableNumber Title Page

2.1.1

General Design and Operating Features of the SusquehannaSES Reactors

V

Sixty-nine Group Energy Boundaries for the CPM and,MICBURN Cross Section Library

12

2.1.2 Energy Group Structure for Macro-Group and Two-DimensionalCalculations

13

2.1.3 Heavy'uclide Chains 14

2.1.4 Fission Product Chains 15

2.1.5 Modifications to ENDF-B/III Data for CPM-2 Cross SectionLibrary

16

2.2.1 TRX Uniform Lattice Critical Test Data 20

2.2.2 ESADA Uniform Lattice Critical Test Data 21

2.2.3

2.2.4

2.3.1

CPM-2 Results for TRX Criticals

CPM-2 Results for ESADA Criticals

Assemblies Used in Rod to Rod Gamma Scan

22

23

27

2.3.2 Quad Cities Unit 1 End of Cycle 2 —Summary ofNormalized LA-140 Activity Pin Comparisons

28

2.3.3 Quad Cities Unit 1 End of Cycle 2 Peak La-140 ActivityComparisons

29

2.4.1

2.4.2

2.4.3

3.2.1

EPRI-CPM Results from the TRX Critical Benchmarking

EPRI-CPM Results from the ESADA Critical Benchmarking

EPRI Isotopic Comparisons to Saxton Data

Measured Core Operating Parameters for SIMULATE-E CoreReactivity Calculations

40

41

42

67

3.2.2

3.2 '

Summary of the Susquehanna SES Benchmarking Data Base

Susquehanna SES Hot Critical Core K-effective Data

68

69

Susquehanna SES Target vs. SIMULATE-E Calculated CriticalCore K-effective Statistics

79

Susquehanna SES Unit 2 Cycle 2 Core K-effectiveSensitivity to Measured Core Operating Data

80

Page 14: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF TABLES(continued)

TableNant>er Title Page

3.2.6 Susquehanna SES Calculated Cold Xenon-Free Critical CoreK-effectives

81

3.2.7

3.2.8

3.2.9

Susquehanna SES Cold Minus Hot Critical Core K-effective

Susquehanna SES Unit 1 Cycle 1 TIP Response Comparisons

Susquehanna SES Unit 1 Cycle 2 TIP Response Comparisons

83

85

86

3.2.10

3.2.11

Susquehanna SES Unit 1 Cycle 3 TIP Response Comparisons

Susquehanna SES Unit 2 Cycle 1 TIP Response Comparisons

87

88

3.2.12 Summary of Susquehanna SES TIP Response Comparisons

3.2.13 Summary of Susquehanna SES TIP Response Asymmetries

89

90

. 3 ~ 3 ~ 1

3.3.2

Quad Cities Unit 1 Cycle 1 Calculated Cold Xenon-FreeCore Critical K-effectives

Quad Cities Unit 1 Cycle 1 In-Sequence Versus LocalCritical Comparison

148

149

3.3.3 Summary of Quad Cities Unit 1 Cycles 1 and 2 TIPResponse Comparisons

151

3.3.4 Quad Cities Unit 1 EOC 1 Gamma Scan Comparisons—Uncontrolled Bundles

152

3.3.5 Quad Cities Unit 1 EOC 1 Gamma Scan Comparisons—Controlled Bundles

153

3.3.6 Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons—Peak to Average La-140 Activities

154

3.3.7

4.1.1

4.2.1

4.2.2

Quad Cities Unit 1 EOC 2 Individual Bundle Comparisons

Energy Group Structure Used in PDQ7 Calculations

PDQ7 Results for TRX Criticals-

PDQ7 Results for ESADA Criticals

156

197

199

200

Page 15: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF FIGURES

FigureNumber Title Page

1.2

Susquehanna SES Units 1 and 2 Core

Typical Core Power vs. Core Flow

1.3 PPaL Steady State Core Physics Methods Computer CodeFlowchart

2.1.1

2.1.2

Calculational Flow in CPM-2

Example of BWR Cell Geometry in the 2-D Calculation

17

18

2.3.1 Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons—Normalized LA-140 Pin Activities —Assembly ID: GEB15993 Inches from Bottom of Core

30

2.3.2 Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons—Normalized LA-140 Pin Activities —Assembly ID: GEB16156 Inches from Bottom of Core

31

2.3.3~ ~ Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons--Normalized LA-140 Pin Activities —Assembly ID: GEH002 '—21 Inches from Bottom of Core

32

2.3.4 Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons—Normalized LA-140 Pin Activities —Assembly ID: GEH00293 Inches from Bottom of Core

33

2.3.5 Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons—Normalized LA-140 Pin Activities —Assembly ID: CX067221 Inches from Bottom of Core

34

2.3.6 Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons—Normalized LA-140 Pin Activities -- Assembly ID: CX067287 Inches from Bottom of, Core

35

2.3.7 Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons—Normalized LA-140 Pin Activities —Assembly ID: CX0214 «-51 Inches from Bottom of Core

36

2.3.8 Quad Cities Unit 1 EOC 2 Gamma Scan Comparisons—Normalized LA-140 Pin Activities —Assembly ID: CX0214129 Inches from Bottom of Core

37

2.4.1 Fission Rate Comparison for an 8x8 BWR Assembly of thePlutonium Island Type —T=245 C

0 43

2.4.2~ ~ Fission Rate Comparison for a 15x15 PWR Mixed OxideAssembly with Water Holes and Absorber Rods —T=245 C

0 44

Page 16: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF FIGURES(continued)

FigureNumber Title Page

2.e4. 3

2.4.4

Fission Rate Comparison for a 14x14 PWR Mixed OxideAssembly Surrounded By UO Assemblies —T=240 C

02

EPRZ-CPM Comparison to Yankee PU-239/PU-240 IsotopicRatios

45

46

2.4.5 EPRI-CPM,Comparison to Yankee PU-240/PU-241 IsotopicRatios

47

2.4.6 EPRI-CPM Comparison to Yankee PU-241/PU-242 IsotopicRatios

48

3.1.1 BWR Fuel Assembly Bypass Flow Paths 53

3.2.1 SIMULATE-E Hot and Cold Critical Core K-effectives vs.'Core Average Exposure

91

3.2.2

3.2.3

SIMULATE-E Hot Critical Core K-effective vs Core ThermalPower

SIMULATE-E Hot Critical Core K-effective vs Total CoreFlow

"093

3.2.4 SIMULATE-E Hot Critical Core K-effective vs Core InletSubcooling

94

3.2.5 SIMULATE-E Hot Critical Core K-effective vs Dome Pressure 95

3.2.6 SIMULATE-E Hot Critical Core K-effective vs CriticalControl Rod Density

96

3.2.7 Target and SIMULATE-E Calculated Hot Critical CoreK-effectives vs. Core Average Exposure

97

3.2.8 Susquehanna SES Units 1 and 2 Core TIP Locations 98

3.2.9 Susquehanna SES Relative Nodal RMS of TZP ResponseComparisons

99

3.2.10 Susquehanna SES Unit 1 Cycle 1 Average Axial TIP ResponseComparison —1.490 GWD/MTU Cycle Exposure

3.00

3.2.11 Susquehanna SES Unit 1 Cycle 1 Radial TIP ResponseComparisons -« 1.490 GWD/MTU Cycle Exposure

3.2.12 Susquehanna SES Unit 1 Cycle 1 Individual TIP ResponseComparisons —1.490 GWD/MTU Cycle Exposure

Page 17: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF FIGURES(continued)

FigureNumber Title Pacae

3 ' '3 Susquehanna SES Unit 1 Cycle 1 Average Axial, TIPResponse Comparison -- 5.918 GWD/MTU Cycle Exposure

103

3.2.14 Susquehanna SES Unit 1 Cycle 1 Radial TIP ResponseComparisons —5.918 GWD/MTU Cycle Exposure

104

3.2.15

3.2.16

3.2.17

Susquehanna SES Unit 1 Cycle 1 Individual TIP ResponseComparisons —5.918 GWD/MTU Cycle Exposure

Susquehanna SES Unit 1 Cycle 1 Average Axial TIPResponse Comparison —11.617 GWD/MTU Cycle Exposure

Susquehanna SES Unit 1 Cycle 1 Radial TIP ResponseComparisons -- 11.617 GWD/MTU Cycle Exposure

105

106

l07

3.2.18 Susquehanna SES Unit 1 Cycle 1 Individual TIP ResponseComparisons —11.617 GWD/MTU Cycle Exposure

108

3.2.19~ ~ Susquehanna SES Unit. 1 Cycle 2 Average Axial TIP ResponseComparison —0.200 GWD/MTU Cycle Exposure

109

3.2.20 Susquehanna SES Unit 1 Cycle 2 Radial TIP ResponseComparisons —0.200 GWD/MTU Cycle Exposure

110

3.2.21 Susquehanna SES Unit 1 Cycle 2 Individual TIP ResponseComparisons -- 0.200 GWD/MTU Cycle Exposure

3.2.22 Susquehanna SES Unit 1 Cycle 2 Average Axial TIP ResponseComparison —2.587 GWD/MTU Cycle Exposure

112

3 '.23 Susquehanna SES Unit 1 Cycle 2 Radial TIP ResponseComparisons —2.587 GWD/MTU Cycle Exposure

113

3.2.24 Susquehanna SES Unit 1 Cycle 2 Individual TIP ResponseComparisons —2.587 GWD/MTU Cycle Exposure

114

3.2.25 Susquehanna SES Unit 1 Cycle 2 Average Axial TIP ResponseComparison -- 4.638 GWD/MTU Cycle Exposure

115

3.2.26 Susquehanna SES Unit 1 Cycle 2 Radial TIP ResponseComparisons -- 4.638 GWD/MTU Cycle Exposure

116

3.2.27 Susquehanna SES Unit 1 Cycle 2 Individual TIP ResponseComparisons —4.638 GWD/MTU Cycle Exposure

3.2.28 Susquehanna SES Unit 1 Cycle 3 Average Axial TIPResponse Comparison -- 0.178 GWD/MTU Cycle Exposure

118

Page 18: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF FIGURES(continued)

FigureNumber Title Page

3.2.29 Susquehanna SES Unit 1 Cycle 3 Radial TIP ResponseComparisons —0.178 GWD/MTU Cycle Exposure

119

3.2.30 Susquehanna SES- Unit 1 Cycle 3 Individual TIP ResponseComparisons —0.178 GWD/MTU Cycle Exposure

120

3.2.31 Susquehanna SES Unit 1 Cycle 3 Average Axial TIPResponse Comparison —2.228 GWD/MTU Cycle Exposure

12l

3.2.32 Susquehanna SES Unit. 1 Cycle 3 Radial TIP ResponseComparisons -« 2.228 GWD/MTU Cycle Exposure

122

3 '.33 Susquehanna SES Unit 1 Cycle 3 Individual TIP ResponseComparisons —2.228 GWD/MTU Cycle Exposure

123

3.2.34

3.2.35

Susquehanna SES Unit 2 Cycle 1 Average Axial TIPResponse Comparison —0.387.GWD/MTU Cycle Exposure

Susquehanna SES Unit 2 Cycle 1 Radial TIP ResponseComparisons —0.387 GWD/MTU Cycle Exposure

124

-3.2.36 Susquehanna SES Unit 2 Cycle 1 Individual TIP Response

Comparisons —0.387 GWD/MTU Cycle Exposurel26

3.2.37 Susquehanna SES Unit 2 Cycle 1 Average Axial TIPResponse Comparison —5.249 GWD/MTU Cycle Exposure

127

3.2.38 Susquehanna SES Unit 2 Cycle 1 Radial TIP ResponseComparisons -- 5.249 GWD/MTU Cycle Exposure

128

3.2.39 Susquehanna SES Unit 2 Cycle 1 Individual TIP ResponseComparisons —5.249 GWD/MTU Cycle Exposure

129

3.2.40 Susquehanna SES Unit 2 Cycle 1 Average Axial TIPResponse Comparison —12.050 GWD/MTU Cycle Exposure

l30

3.2.41 Susquehanna SES Unit 2 Cycle 1 Radial TIP ResponseComparisons —12.050 GWD/MTU Cycle Exposure

131

3.2.42 Susquehanna SES Unit 2 Cycle 1 Individual TIP ResponseComparisons —12.050 GWD/MTU Cycle Exposure

132

3.2.43 Susquehanna SES Unit 1 Cycle 1 SIMULATE-E vs. GE ProcessComputer Core Average Axial Power Distribution

3.2.44 Susquehanna SES Unit 1 Cycle 2 SIMULATE-E vs. POWERPLEXCore Average Axial Power Distribution

Page 19: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF FIGURES(continued)

FigureNumber Title Page

3.2.45 Susquehanna SES Unit 1 Cycle 3 SIMULATE-E vs. POWERPLEXCore Average Axial Power Distribution

l35

3.2.46 Susquehanna SES Unit 2 Cycle 2 SIMULATE-E vs. POWERPLEXCore Average Axial Power Distribution

136

3.2.47 Susquehanna SES Unit 1 Cycle 1 SIMULATE-E vs. GE ProcessComputer Bundle Flows at 1.490 GwD/MTU

137

3.2.48 Susquehanna SES Unit 1 Cycle 3 SIMULATE-E vs. POWERPLEXBundle Flows at 0.178 GWD/MTU

138

3.2.49 Susquehanna SES Unit 2 Cycle 2 SIMULATE-E vs. POWERPLEXBundle Flows at 0.583 GWD/MTU

139

3 '.1 Quad Cities Unit 1 Core TIP Locations 158

SIMULATE-E Hot Critical Core K-effective vs. Core AverageExposure.

Quad Cities Unit 1 Cycle 1 SIMULATE-E Hot and ColdCritical Core K-effectives

159

160

3.3.4 Quad Cities Unit 1 Cycle 1 Average Axial TIP ResponseComparison -- 2.239 GWD/MTU Core Average Exposure

161

3.3.5 Quad Cities Unit 1 Cycle,1 Radial TIP ResponseComparisons —2.239 GWD/MTU Core Average Exposure

162

3.3.6 Quad Cities Unit 1 Cycle 1 Individual TIP ResponseComparisons —2.239 GWD/MTU Core Average Exposure

163

3.3.7 Quad Cities Unit 1 Cycle 1 Average Axial TIP ResponseComparison —7.396 GWD/MTU Core Average Exposure

164

3.3.8 Quad Cities Unit 1 Cycle 1 Radial TIP ResponseComparisons -- 7.396 GWD/MTU Core Average Exposure

165

3.3.9 Quad Cities Unit 1 Cycle 1 Individual TIP ResponseComparisons —7.396 GWD/MTU Core Average Exposure

3.6'6

3.3.10 Quad Cities Unit 1 Cycle 2 Average Axial TZP ResponseComparison —7.532 GWD/MTU Core Average Exposure

167

3.3.11~ ~ Quad Cities Unit 1 Cycle 2 Radial TIP ResponseComparisons —7.532 GWD/MTU Core Average Exposure

168

Page 20: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF FIGURES(continued)

FigureNumber Title ~Pa e

3.3.12 Quad Cities Unit 1 Cycle 2 Individual TIP ResponseComparisons —7.532 GWD/MTU Core Average Exposure

169

3.3.13 Quad Cities Unit 1 Cycle 2 Average Axial TIP ResponseComparison —13.198 GWD/MTU Core Average Exposure

170

3.3.14 Quad Cities Unit 1 Cycle '2 Radial TIP ResponseComparisons —13.198 GWD/MTU Core Average Exposure

17l

3.3.15 Quad Cities Unit 1 Cycle 2 Individual TIP ResponseComparisons —13.198 GWD/MTU Core Average Exposure

172

3.3.16 Quad Cities Unit 1 EOC 1 Gamma Scan Comparison—Normalized Axial La-140 Activity —Bundle Location 23,10

173

3.3.17

3.3.18

Quad Cities Unit 1 EOC 1 Gamma Scan Comparison—Normalized Axial La-140 Activity —Bundle Location 55,40

Quad'Cities Unit 1 EOC 1 Gamma Scan Comparison-Normaiized Axial La-140 Activity —31 Bundle Average

174

-3.3.19 Quad Cities Unit 1 EOC 2 Radial Gamma Scan Comparison 176

3.3.20 Quad Cities Unit 1 EOC 2 Gamma Scan Comparison—Bundle ID: CX0662

177

3 3.21 Quad Cities Unit 1 EOC 2 Gamma Scan Comparison—Bundle ID: CX0399

178

3.3.22 Quad Cities Unit 1 EOC 2 Gamma Scan Comparison—Bundle ID: CX0231

179

3.3.23 Quad Cities Unit 1 EOC 2 Gamma Scan Comparison—Bundle ID: CX0297

180

3.3.24 Quad Cities Unit, 1 EOC 2 Gamma Scan Comparison—Bundle ID: CX0717

181

3.3.25 Quad Cities Unit 1 EOC 2 Gamma Scan Comparison—Bundle ID: CX0378

182

3.3.26

3 '.27

Quad Cities Unit 1 EOC 2 Gamma Scan Comparison—Bundle ID: CX0150

Quad Cities Unit 1 EOC 2 Gamma Scan Comparison—Bundle ID: GEH029

183

1840

Page 21: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

LIST OF FIGURES(continued)

FigureNumber Title Page

3.4.1 Peach Bottom Unit 2 Cycles 1 and 2 Relative Nodal RMS

of TIP Response Comparisons187

3.4.2 Peach Bottom Unit 2 Cycle 1 —Average Axial TIP ResponseComparison —11.133 GWD/MTU Core Average Exposure

188

3.4.3

3.4.4

Peach Bottom Unit 2 Cycle 1 -- Radial TIP ResponseComparisons —11.133 GWD/MTU Core Average Exposure

Peach Bottom Unit 2 Cycle. 1 -- Individual TIP ResponseComparisons —11.133 GWD/MTU Core Average Exposure

189

190

3.4.5 Peach Bottom Unit 2 Cycle 2 —Average Axial TIP ResponseComparison —13.812 GWD/MTU Core Average Exposure

191

3.4.6

3.4.7~ ~

3.4.8

Peach Bottom Unit 2 Cycle 2 —Radial TIP ResponseComparisons —13.812 GWD/MTU Core Average Exposure

Peach Bottom Unit 2 Cycle 2 —Individual TIP ResponseComparisons —13.812 GWD/MTU Core Average Exposure

Peach Bottom Unit, 2 End of Cycle 2 Core Average AxialPower Distributions

192

193

194

4.3.1 CPM-2 vs. PDQ7 Pin Power Distribution Comparison —GEInitial Core High Enriched Fuel Type —Uncontrolled

202

4.3.2 CPM-2 vs. PDQ7 Pin Power Distribution Comparison —GEInitial Core High Enriched Fuel Type —Controlled

203

4.3.3 CPM-2 vs. PDQ7 Pin Power Distribution Comparison —GEInitial Core Medium Enriched Fuel Type -- Uncontrolled

204

4.3.4 CPM-2 vs. PDQ7 Pin Power Distribution Comparison —GEInitial Core Medium Enriched Fuel Type —Controlled

205

Page 22: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.0 INTRODUCTION

Pennsylvania Power 8 Light Company (PPGL) operates the two unit Susquehanna

Steam Electric Station (SES) near Berwick, Pennsylvania. Both of theSusquehanna SES reactors are General Electric Company Boiling Water Reactor

(BWR)-4 product line reactor systems; each has a rated thermal power output of3293 Megawatts. The general core design and operating features are given inTable 1.1, Figure 1.1, and Figure 1.2.

The purpose of this report is to describe the steady state core physicsmethods used by PPGL for BWR core analysis and to provide qualification of theanalytical methodologies which will be used to perform safety related analyses

in support of licensing actions. This report will satisfy the guidelines inReference 1.

PPGL's steady state core physics methods are based on the Electric Power

Research Institute (EPRI) code package (Reference 2), as depicted in theflowchart contained in Figure 1.3. The main computer codes are the CPM-2/PPGL

(hereafter referred to" as CPM-2) fuel bundle lattice physics depletion code

and the SIMULATE-E/PPGL (hereafter referred to as SIMULATE-E)

three-dimensional core simulation code. Both of these codes representstate-of-the-art techniques for reactor analysis and are described further inSections 2.1 and 3.1, respectively. The MICBURN/PPGL code (hereafter referredto as MiCBURN) provides a detailed representation of the depletion of a singlegadolinia (Gd 0 ) bearing fuel pin; the NORGE-B2/PPaL code (hereafter referredto as NORGE-B2) provides a nuclear cross section data link from CPM-2 intoSIMULATE-E as well as the POWERPLEX core monitoring system. The PDQ7 code,

linked to CPM-2 via the COPHIN program, is an industry standard diffusiontheory simulation used by PP&L for special applications. TIPPLOT providesplotting and statistical analysis capabilities. The RODDK-E/PPaL code is used

to determine control rod worth for shutdown margin analyses and to estimatecore shutdown margin.

PPGL utilizes the above mentioned codes and associated methodologies for plantoperations support. applications (e.g., core follow analyses, development of

Page 23: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

target control rod patterns, predictions of startup critical rod patterns-;operating strategy evaluations, etc.), independent design verificationcalculations, reload fuel/core design analyses, safety analyses, and core

monitoring system data bank updates. The steady state core physics methods

described in this report are also used to develop the necessary neutronicsdata input to PPSL's transient analyses.

The qualification of PPaL's steady state core physics methods is based largelyon comparisons of calculated core parameters to measured data from theSusquehanna SES Units 1 and 2, Peach Bottom Unit 2, and Quad Cities Unit 1

reactors. All of the model preparation and benchmarking calculationsrepresent work performed by PPaL. The computer codes and the calculationssupporting this work are documented, reviewed, and controlled by formal

" procedures which are encompassed within PPGL's nuclear quality assurance~ program.

Page 24: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 1.1

GENERAL DESIGN AND OPERATINGFEATURES OF THE SUS UEKQINA SES REACTORS

Reactor Type/Configuration: BWR-4/2 Loop Jet Pump Recirculation System

Rated Core Power: 3,293 MW Thermal

Rated Core Flow: 100x10 ibm/hr6

Reactor Pressure at Rated Conditions: 1020 psia

Number of Fuel Assemblies: 764

r

Number of Control Rods: 185

Number of Traversing Zn-core ProbeLocations: 43

Page 25: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 1.1

SUSQUEHANNA SES UNlTS 1 AND 2 CORE

595755

5351

49

47

++++++++++ + + + + + +

4341

3937

31

29

27252321

++++++++++++++++++++++++

3

1

000204060810 12 14 16 18 2022 24 26283032343638404244464850525456586X

+ Control Rod Location

~ Traversing In—core Probe Location

Page 26: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

120

110

100

90

80C5

I—

70+0

O

O 50

40

30

20

10

0

FIGURE 1.2TYPICAL CORE POWER VS CORE FLOW

APRMSCRAM

r

P,r'

100% XeROD LINE

rr

ROD BLOCKMONITOR

I

rI A

.y . )I

APRMROD BLOCK

I,II P

II

IIIIII

l ~ ~~ ~ ~

~ I

NATCIRC 2-PUMP

MIN FLOW!

I

I I I

30 40 50 60 70

TOTAL CORE FLOW, % RATED

I

802010 90 '00

Page 27: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 1.3

PPSL STEADY STATE CORE PHYSICS METHODSCOMPUTER CODE FLOWCHART

MICBURN

Gd Depletion

POWER PLEX

Core Monitoring System

CPM-2Lattice Physics

NORGE-82

Data Link

SIMULATE-E3-D Simulation

COP HIN

Data Link

PDQ

Diffusion Theory

TIPP LOT

Statistical AnalysisTRANSIENT ANALYSIS

RODDK-E

Shutdown Margin

Page 28: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

2.0 LATTICE PHySICS METHODS

The lattice physics methods currently in use at PPGL are based on the CPM-2

and MICBURN computer codes which were originally developed by EPRI as part ofthe Advanced Recycle Methodology Program (Reference 2). CPM-2 is used at PPaL

to calculate the two energy group cross sections for input to SIMULATE-E and

POWERPLEX., The code is also used to provide detector model response data

which is used by SIMULATE-E to determine calculated Traversing In-core Probe

(TIP) responses. The calculated TIP responses are routinely compared tomeasured TIP data to assess nodal model accuracy and to provide the Rod Block

Monitor (RBM) simulation employed for certain safety analyses (e.g., Rod

Withdrawal Error).

A full description of CPM-2 is provided in Reference 3 but is also summarized

in Section 2.1. Sections 2.2 and 2.3 provide comparisons to both uniformlattice critical and reactor operating data. Several uniform lattice criticalcalculations were performed at PPGL to determine the accuracy of thereactivity calculation. Additional comparisons have been made to pin gamma

~

~

scan measurements from the Quad Cities Unit 1 reactor to benchmark the pinpower distribution.

In addition to PPGL calculations, EPRI sponsored extensive benchmarking of thecode (Reference 4) which was performed during the original development ofEPRI-CPM (Reference 5) . Further development at S. Levy (under EPRI contract)vastly simplified the required user input. This modified version of thecomputer program is distributed by EPRI as CPM-2. The improvements in theinput module greatly reduce the possibility of input errors since onlyphysical dimensions and design values are required for input. CPM-2 generatesall required number densities and determines appropriate thermal expansions.Only the input module was changed leaving the neutronics calculationsidentical to the original EPRI-CPM. Further modifications have been made atPPGL to have the code conform to our computer system operational requirementsas well as to provide additional calculational outputs. These modificationshave not resulted in any changes to the neutronics calculation. Therefore,all EPRI benchmarking on the original EPRI-CPM remains applicable to theversion of CPM-2 used at PPGL. Section 2.4 summarizes the EPRI benchmarking

I

results.

Page 29: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

2.1 Descri tion of CPM-2

The CPM-2 computer code was developed for analysis of both BWR and PWR fuelassemblies. The code performs a two-dimensional calculation which permitsexplicit modeling of fuel pins, water rods, a fuel channel, wide and narzow

water gaps, control elements, and in-core instrumentation tubes. The

neutronics calculation solves the integral neutron transport theory equationby the method of collision probabilities.

1

Figure 2.1.1 presents the normal calculational flow for a BWR fuel assembly.The calculation consists of four basic parts. The resonance calculation isperformed first to determine effective mic."oscopic cross sections in theresonance region. The micro-group calculation is performed next for each

different type of pin cell and the resulting detailed energy group spectra arethen used to collapse the 69 energy group cross sections into several broadgroups. The macro-group calculation uses these broad group cross sections todetermine the neutron spectra 'across an assembly converted to one-dimensionalcylindrical geometry. This spectra is used to further reduce the number ofenergy groups to be used in the final two-dimensional calculation.

The resonance calculation is used to provide effective cross section data inthe resonance region between 4 eV and 9118 eV. All resonance absorption above

this limit is treated as unshielded. The large resonances in Pu-240 at 1.0 eV

and in Pu-239 at 0.3 eV are adequately treated in the detailed thermal spectracalculation by the larger number of thermal groups around each of theseresonances. The nuclides treated in the resonance calculations are U-235,U-236, U-238 and Pu-239.

The resonance calculation makes use of tabulated resonance integrals for a

homogeneous mixture. These are converted to correspond to the heterogeneousgeometry through use of the equivalence theorem. The nuclear data librarycontains tables of the homogeneous integrals for the resonance nuclides as a

function of fuel temperature and potential scattering cross section. The fueltemperature used is the effective Doppler temperature for the mixture. Fuelcollision probabilities used during the resonance integral evaluation areapproximated using the Carlvik approximation (Reference 6). Once effective

Page 30: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

resonance cross sections are calculated for absorption and fission, they are

modified to correct for resonance overlap. Dancoff correction factors are

then calculated for each pin and used to correct the effective cross sectionsIto account for the effects of rod shadowing.

The micro-group calculation is performed in 69 energy groups shown in Table

2.1.1 for each different type of pin in the assembly being modeled. Pins are

differentiated by type (i.e., water rod, fuel rod, absorber rod, etc.). Fuelrods are further differentiated by fuel material, enrichment, pellet or rod

dimensions, etc. Each micro-group calculation models a single pin inone-dimensional cylindrical geometry. For fuel pins, separate regions areused for fuel, cladding, and moderator. An extra region is placed around thepin cell and is used to account for the fuel channel wall and the water gaps.For absorber and water rods, separate regions are included for the absorber orwater region, cladding, and moderator. A buffer region consisting ofhomogenized average fuel. cells with a thickness of 2.5 mean free paths isplaced around the absorber cell. This is used to provide a reasonable neutronspectrum incident on the non-fuel cell. The micro-group calculation is used

to provide a detailed energy spectrum which is used to collapse the 69 groupcross sections to fewer groups averaged over each pin cell. This is necessary

since a two-dimensional calculation in 69 energy groups is not practical.

When homogenizing cross sections over a pin cell for an absorber pin, theaverage cross sections will result in an overestimation of the thermal flux insubsequent homogeneous calculations. This will cause a correspondingoverestimation of the absorber worth. For absorber pin cells, two

calculations are performed. The first calculation uses the heterogeneous

geometry as previously discussed. The second calculation is for a homogenized

absorber pin cell. Correction factors are calculated for each energy group as

the ratio of the heterogeneous problem flux to that of the homogeneous

problem. These factors are used to correct the two-dimensional fluxes in thefinal calculation so that reaction rates and reactivity are conserved.

Following the micro-group calculation, a macro-group calculation is performed.In this calculation, the fuel assembly is converted to one-dimensional

~

~cylindrical geometry. Each concentric row of pins, starting from the assembly

Page 31: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

center and proceeding outward, occupies one cylindrical shell. The fuelchannel wall, water gap and control rod (if present) also occupy one shelleach. This calculation is performed in 25 energy groups using the collapsedcross section data from the micro-group calculation. The energy groupstructure is given in Table 2.1.2. This calculation is used to determine theenergy spectra in each region to further collapse the cross section data. By

performing this calculation, fewer energy groups are necessary in thetwo-dimensional calculation because the effects of the water gaps are takeninto account.

The final two-dimensional calculation in CPM-2 solves the integral transportequation in X-Y Cartesian coordinates using the method of collisionprobabilities. This calculation is used to determine the multigroup fluxacross the assembly, local pin power distribution, and the assemblyeigenvalue. The pin cells, channel wall, water gaps and control rod arerepresented. Diagonal symmetry is assumed as shown in Figure 2.1.2. Thecalculation is performed in the five energy groups shown in Table 2.1.2 usingcross section data collapsed from the macro-group calculation. Collapsed two'group cross section data averaged over the fuel assembly are then used inSIMULATE-E and POWERPLEX. Few group cross section data can also be determinedover specified regions to provide input to PDQ7.

For fuel rods that contain gadolinia, special calculations are performed withMICBURN (Reference 7) to account for the spatial shielding of the absorber.This calculation is used to provide effective microscopic cross sections forgadolinia in 69 energy groups for use in CPM-2. MICBURN models only theburnable absorber pin cell. The gadolinia fuel rod is usually modeled usingten mesh points to provide sufficient detail to calculate the radial fluxdistribution. These fluxes are expanded to 20 radial zones for the actualgadolinia depletion. From the calculation, effective gadolinia cross sectionsare obtained for use in CPM-2. These are tabulated as a function of thefraction of Gd-155 plus Gd-157 remaining in the pin.

The fuel depletion algorithm in CPM-2 utilizes a predictor-correctormethodology. In the predictor step, the fluxes from the two-dimensionalcalculation from timestep t are used to deplete the nuclide inventories ton 1

10-

Page 32: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

~

~

~ ~

timestep t . A new flux calculation at timestep t is performed using then n

predicted nuclide inventory. Once these fluxes are known, the depletionchains are reevaluated from timestep t to t (i.e., correctoz step). Then-1 nfinal number densities used at timestep,t are the average of the results from

nthe predictor and corrector steps. The primary heavy nuclides plus 22 fissionproducts are explicitly tracked. The remaining fission products are trackedusing two pseudo«isotopes which are used to represent non-saturating and

slowly saturating fission products. The list of heavy nuclides tracked inCPM-2 is provided in Table 2.1.3 and the fission products are shown in Table

2.1.4.

The nuclear data library (Reference 8) used in CPM-2 was developed and

benchmarked with the original EPRI-CPM program (Reference 4). The data

library was generated from ENDF/B-III data with modifications based on

benchmarking studies. The sixty-six elements shown in Tables 2.1.3 and 2.1.4are represented in 69 energy groups. These are divided into 27 fast and 42

thermal groups. The energy group structure was defined with a significantnumber of energy groups around the 0.3 eV Pu-239 and 1.0 eV Pu-240 resonances.

This permits treatment of these resonances during the thermal groupcalculation without the need for a specific resonance calculation.

Several modifications were made to the ENDF/B-III data library based on

extensive EPRI benchmarking (Reference 8). The principal modification to thelibrary is a uniform reduction of the U-238 microscopic absorption crosssections in the resonance region based on Hellstrand's measurements on

isolated rods (Reference 9). This modification for U-238 is within the datauncertainties in the ENDF-B/III data. Other modifications are listed in Table2.1.5. The reduction of the Pu-240 absorption cross section was necessary toaccount for shielding of the higher energy resonances which is not treated inthe resonance calculations.

11

Page 33: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 1 1

SIXTY-NINE GROUP ENERGY BOUNDARIES FOR THECPM 6 MICBURN CROSS SECTION LIBRARY

~Grou

—MeV—

GroupEnergy

Boundary

--eV—

~GrouEnergy

Boundary

—eV--

123456789

1011121314

151617181920212223

10.006.06553.6792.2311.3530.8210.5000.30250.1830.11100.067340.040850.024780.01503

-r eV--

9118.05530.03519.12239.451425.1

906.898367.262148.728

75.501

24„252627282930313233343536373839404142434445464748495051

48.05227.70015.9689.8774.003.302.602.101.501.301.151.1231.0971.0711.0451.0200.9960.9720.9500.9100.8500.7800.6250.5000.4000.3500.3200.300

52535455565758'9

60616263646566676869

0.2800.2500.2200.1800.1400.1000.0800.0670.0580.0500.0420.0350.0300.0250.0200.0150.0100.0050.0

Resonance region consists of groups 15 through 27.

Source: .M. Edenius, et. al., "The EPRI-CPM Data Library," Part II, Chapter 4of EPRI CCM-3, November, 1975.

-12-

Page 34: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 1 2

ENERGY GROUP STRUCTURE FORMACRO-GROUP AND TWO-DIMENSIONAL CALCULATIONS

Macro-Grou Calculation 2-D Grou Calculation

Fine~GtoU S*

1-23-4567-89-10

11-1213-15

EnergyBoundaries

—MeV—10.0 — 3.6793.679 — 1.3531.353 — 0.8210.821 — 0.5000.500 - 0.1830.183 — 0.067340.06734 — 0.024780.02478 — 0.005530

MacroGroup ~Grou s

1-89-17

18-2021-2223-25

EnergyBoundaries

—eV—10.0 x 10 - 5.530 X 10

6 3

5.530 x 10 — 6.25 x 106.25 x'10 — 1.80 x 10

21.80 x 10 — 5.00 x 105.00 x 10 — 0.0

—eV—

91011

1516171819202122232425

16-18,19-2122-25262728-3132-3536-3839-4546-4849-5152-5455-5758-6061-6364-6667-69

55301425.1

148.72815.9689.8774.001.501.0971.0200.6250.3500.2800.1800.0800.0500.0300.015

1425.1148.72815.9689.8774.001.501.0971.0200.6250.3500.2800.1800.0800.0500.0300.0150.0

*From 69 energy group structure.

—. 13

Page 35: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 1.3

Heavy Nuc1ide Chains

1. U235 ~ U236 ~ Np237 ~ Pu238

2. U238 ~ Pu239 ~ Pu240 ~ Pu241 ~ Pu242 ~ Am243 ~ Cm244

(25%)3. U238 ~ Pu239 ~ Pu240 ~ Pu241 ~ Am241 ~ Am242m ~ Am243 ~ Cm244

(75%)4. U238 ~ Pu239 ~ Pu240 ~ Pu241 ~ Am241 ~ Cm242 ~ Pu238

(n,2n)5. U238 ~ Np237 ~ Pu238

Source: A. Ahlin, et. al, "The Collision Probability Module EPRI-CPM,."Part II, Chapter 6 of EPRI CCM-3, November, 1975.

- 14-

Page 36: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2.1.4

FISSION PRODUCT CHAINS

1. Kr83

2. Rh103

3. Rh105

4. Ag109

5. Xel31

6. Csl33 ~ Cs134

7. Xe135 ~ Cs135

8. Nd143

9. Nd145

10.(52.77%)

Pm147 ~ Pm148 ~ Sm149 ~ Sm150 ~ Sm151 ~ Sm152 ~ Eu153 ~ Eu154 ~ Eu155

(47.23%)Pm147 ~ Pm148m ~ Sm149 ~ Sml50 ~ Sm151 ~ Sm152 ~ Eu153 ~ Eu154 ~ Eu155

12. Pm147 ~ Sm147

13. Non-Saturating Fission Products

14. Slowly-Saturating Fission Products

Source: A. Ahlin, et. al, "The Collision Probability Module EPRI-CPM,"Part II, Chapter 6 of EPRI CCM-3, November, 1975.

15—

Page 37: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 1 5

MODIFICATIONS TO ENDF-B/III DATAFOR CPM-2 CROSS SECTION LIBRARY

Nuclide Cross Section Modification

U-238 aa

Increased by 8% for groups1 through 5

a and uZ Increased by 4.5% for groups1 through 5

ag'gag'+gRZ

Reduced by 30% for group 4

Reduced by 20% for group 5

Resonance integral reduced by

0.3

where

1RZ

~aP

RZg

RI

the group lethargy wz. ththe group potentialscattering cross. sectionResonance integral fromENDF-B/ZIZ dataeffective group resonanceintegral in CPM library

Pu-240 aa

Reduced by 50% for groups 16through 27

-16-

Page 38: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.1.1CALCULATIONALFLOW IN CPM-2

INPUT RESTART FILE I

RESONANCECALCULATION

DATALIBRARY

CALC MACROSCOPICCROSS SECTIONS MICBURN

I

MICRO GROUP CALC69 ENERGY GROUPS

CONDENSE TO26 MACRO GROUPS

HOMOGENIZE TO MACROREGIONS

MACRO GROUP CALC INANNULAR GEOMETRY

CONDENSE.TO 6 GROUPS CALCCROSS SECT FOR 2-D REGIONS

2-D ASSEMBLYCALCULATION

CALC FEW GROUP CONSTANTSAND REACTION RATES

BURNUPCORRECTOR

BURNUPPREDICTOR

ZEROBURNUP

END

17-

Page 39: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.1.2EXAMPLE OF BWR CELL GEOMETRY

IN THE 2-D CALCULATION

STEEL

CONTROL ROD

WIDE WATER GAP

FUEL PIN CELL

INNER WATER GAP

CHANNEL,

NARROW WATERGAP

IN-COREDETECTOR

Page 40: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

2.2 Uniform Lattice Criticals

One method to determine the accuracy of the reactivity .calculation in CPM-2 isthrough comparison to uniform lattice critical measurements. The testassembly contains fuel pins with a single enrichment moderated by water atroom temperature and atmospheric pressure. A sufficient number of fuel pinsis added to the assembly until criticality is achieved. Radial and axialbuckling, which are input to the CPM-2 analyses, are determined from themeasured data.

The uniform lattice critical experiments chosen for analysis were obtainedfrom the Westinghouse TRX (Reference 10), and ESADA (Reference 11) criticals.The TRX criticals that were analyzed by PPGL with CPM-2 are the eight UO

2experiments. The rod enrichment for all eight experiments was 1.3 weightpercent, U-235 with U02 pellet densities of 7.52 g/cm for two measurements,3

7.53 g/cm for three measurements, and 10.53 g/cm for the remaining three.3 3

Water-to-metal ratios varied from 3.0 to 5.0. The conditions are summarized

in Table 2.2.1. Six of the.ESADA criticals were analyzed by PPaL. All of~ ~

~

~

these contained 2.0 weight percent PuO in natural uranium. In fourexperiments, eight. percent (by weight) of the plutonium was Pu-240; in .the

remaining two, twenty-four percent (by weight) of the plutonium was Pu-240. A

summary of the conditions is given in Table 2.2.2.

The CPM-2 calculated assembly K-effectives are provided in Tables 2.2.3 and

2.2.4 for the TRX and ESADA criticals, respectively. The CPM-2 calculatedK-effectives for the ESADA criticals have been corrected by -0.4% dk toaccount for the presence of spacers in the core. An additional correction forself-shielding of the plutonium grains has not been included. This correctionvaries from -0.05% to -0.45% bk. The calculated average K-effective from allcriticals is 1.0005 with a standard deviation of 0.0072.

- 19-

Page 41: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 2 1

TRX UNIFORM LATTICE CRITICAL TEST DATA

I

ExperimentIdentification

0-235(wt a)

Densi)y(g/cm )

PelletDiameter

(in-)Water to

Metal RatioCritical Numberof Fuel Rods

TRX1

TRX2

TRX3

TRX4

TRX5

TRX6

1.3

1.3

1.3

1.3

1.3

1.3

7.53

7.53

7.53

7.52

7.52

0.601

0.601

0.601

0.388,

0.388

10.53 " 0.383

1269+3

1027+3

987+3

3045+3

2784+3

2173+3

TRX7

TRX8

1.3

1.3

10.53

10.53

0.383

0.383

3.6 1755+3

1575+3

Source: J. R. Brown, et.al., "Kinetic and Buckling Measurements on Lattices ofSlightly Enriched Uranium or UO Rods In Light Water," WAPD-176,January, 1958.

20-

Page 42: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 2 2

ESADA UNIFORM LATTICE CRITICAL TEST DATA

ExperimentIdentification

Pu-240(wt. %)

LatticePitch(in)

Critical Numberof Rods

ESADA'

ESADA 3

ESADA 4

ESADA 6

ESADA 12

ESADA '13

24

24

0.69

0.75

0.9758

1.0607

0.9758

1.0607

514

321

160

152

247

243

Source: R. D. Learner, et. al. "Pu02-U02 Fueled Critical Experiments,"WCAP-3726-1, July, 1967.

21—

Page 43: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

Table 2.2.3

CPM-2 RESULTS POR TRX CRITICALS

ExperimentIdentification

ExperimentalMaterial guckling

(m )CPM-2

K-effective

TE+1

TRX2

TRX3

TRX4

TRX5

TRX6

TRX7

TRX8

28.37

30.17

29.06

25.28

25.21

32.59

35.47

32.22

0.9934

0.9958

0.9942

0.9939

0.9934

0.9974

0.9970

0.9960

Average K-effective = 0.9951

Standard Deviation = 0.0016

22

Page 44: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 2 4

CPM-2 RESULTS FOR ESADA CRITICALS

ExperimentIdentification

Pu-240(wt.%)

ExperimentalMaterial Buckling

(m )

CPM-2K-effective*

ESADA 1

ESADA 3

ESADA 4

ESADA 6

ESADA 12

ESADA 13

24

24

69.6

90.0

104.72

98.4

79. 5

73.3

1.0026

1.0004

1.0129

1.0116

1.0101

1.0077

Average K-effective = 1.0076

Standard Deviation = 0.0050

*AllCPM-2 calculated K-effectives have been adjusted by -0.4% ~k toaccount for spacer worth.

23

Page 45: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

2.3 uad Cities Pin Power Distribution 'Com arisons

Additional verification of CPM-2 performed by PPGL includes comparisons to thepin gamma scan measurements from Quad Cities Unit 1 at the end of Cycle 2

(Reference 12). In 1976 under EPRI sponsorship, General Electric performed

detailed gamma scan measurements at Quad Cities. These measurements includedpin-by-pin gamma scan measurements for six separate assemblies which includedthree mixed oxide (MO ) and three UO bundles (see Table 2.3.1). Each bundle

was disassembled and scanned at eight separate axial locations. No tie rods

or spacer capture rods from any bundle were scanned and only nine rods from

bundle GEB161 were scanned. The measured La-140 intensities were corrected toP

correspond to activity at shutdown. 'he practical accuracy of the reporteddata including measurement uncertainty and measurement method bias isapproximately 3.0% (Reference 12, Section 4.3).

The gamma scan data itself is a measure of La-140 gamma activity. Duringreactor operation, La-140 is produced both as a fission product and by Ba-140

decay. Since the half-life of Ba-140 is approximately 13 days and that ofLa-140 is approximately 40 hours, the distribution of the Ba-140 and La-140

concentrations will'e representative of the power distribution integratedover the last two to three months of reactor operation. After shutdown, theonly source of La-140 is from decay of Ba-140. Because the half-life ofLa-140 is short with respect to Ba-140,,after about ten days the decay rate ofLa-140 is controlled by the decay of Ba-140. Therefore, the relative measured

La-140 activities are compared to the relative calculated Ba-140

concentrations, and the'La-140 concentration does not need to be calculated.

The local power distributions calculated by CPM-2 were converted to relativeBa-140 concentrations prior to the comparison. The SIMULATE-E code was used

to calculate the exposure and void history conditions for each bundle and

axial elevation for which measurement data existed. The CPM-2 calculatedrelative Ba-140 concentrations for each pin were then determined for each ofthese conditions.

Bundle GEB162 was located on the core periphery. Consequently, a steepneutron flux gradient existed across the bundle. In CPM-2, a zero current

24-

Page 46: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

boundary condition is assumed to exist. This is reasonable for interiorbundles but will cause large errors for peripheral bundles, particularly forthose pins adjacent to the reflector region. Because peripheral bundles are

low power bundles and do not operate close to thermal limits, high accuracy isnot necessary. Therefore, comparisons to the GEB162 bundle are not includedin the results.

A pin comparison is defined as a comparison between the relative measured and

calculated La-140 activities for all scanned pins at a specific axial locationwithin a given bundle. For each comparison, the calculated and measured

La«140 activities are normalized to 1.0 based on the number of pins for which

there were measurements. Samples of these pin comparisons are presented inFigures 2.3.1 through 2.3.8. A difference between the measured and calculatednormalized La-140 activities for each pin is calculated as:

whereI

m. = theX

c. = thei

e. = c. - m.3. 3. '3.

normalized measured La-140 activity for fuel pin i,normalized calculated La-140 activity for fuel pin i.

The standard deviation for each pin comparison is calculated as:

a(x) =

where

N

g(e. - e)

N-1

100x

M

M = the average of the normalized measured data for the comparison= 1.0 for all comparisons due to normalization,

e = the average difference between the measured and calculated normalizedLa-140 activities

= 0.0 for all comparisons due to normalization,

N = the number of pins in the comparison.

A summary of the standard deviations for each of the comparisons is given inTable 2.3.2. The average standard deviation for all comparisons is 4.00%. Ifonly UO bundles are compared, the average standard deviation is only 3.37%.

25

Page 47: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

K

Assuming the standard deviations are.due,to a combination of independent

measurement and calculational uncertainties, the calculational standarddeviation can be determined from the following equation:

where

2 2 26 = a + 0

~ total calc meas

a1

= total standard deviation from the comparisonstotal6 = calculational standard deviation, andcalca = measurement standard deviation

meas

Assuming a measurement accuracy of 3.'0%, the calculational standard deviationis 2.6% for all bundles or 1.5h for UO bundles only.

The CPM-2 code is also used to calculate the Local Peaking Factor (LPF) foreach lattice type. The LPF is the ratio of the maximum pin power in a

six-inch segment to the average pin power in the same six-inch segment of a

fuel assembly.'n accurate calculation is important because the local peakingfactor is input, to the core monitoring system and SIMULATE-E and is used todetermine the linear heat generation rate. Because La-140 activity isproportional to the pin power distribution, an estimate of the LPF can be made

from the gamma sca'n measurements. A comparison between the measured and

calculated ratios of the peak pin La-140 activity to average pin La-140

activity is presented in Table 2.3.3. The average difference from all of thecomparisons is 2.49%. Ifdifference becomes 0.98%.

only the UO fuel bundles are included, the averageAs shown in Table 2.3.3, most of the CPM-2

calculations result in an overestimation of peak La-140 activity, and,

therefore, conservatively estimate the linear heat generation rate.

- 26-

Page 48: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2.3 1

ASSEMBLIES USED IN ROD TO ROD GAMMA SCAN

AssemblyIdentification Bundle

Location~(x. )

Number ofRods Scanned

GEB159 7x7 MO Center Design 31I32 40

GEB162 7x7 MO Peripheral Design 5,48 40

GEB161 7x7 MO Center Design 29,32

GEH002 8x8 UO Reload Core Design 13,36 55

CX0672 7x7 UO Initial Core Design 15,36 40

CX0214 7x7 UO Initial Core Design 33,34 40

27

Page 49: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

Table 2.3.2

QUAD CITIES UNIT 1 END OF CYCLE 2SUMMARY OF NOILIZED LA-140 ACI'IVITYPIN COMPARISIONS

ASSEMBLYID

AXIALELEVATION (IN)

CALCULATED VOID CALCULATEDHISTORY (/) BURNUP (GWD/MIU)

STANDARDDEV (X)

GEB159GEB159GEB159GEB159GEB159GEB159GEB159GEB159GEB161GEB161GEB161GEB161

,GEB161GEB161 .

GEB161GEB161GEH002GEH002GEH002GEH002GEH002GEH002GEH002GEH002CX0672CX0672CX0672CX0672CX0672CX0672CX0672CX0672CX0214CX0214CX0214CX0214.CX0214CX0214CX0214CX0214

152151568793

123129.

152151568793

123129

152151568793

123129

152151568793

123129

152151568793

123129

2.98.0

39.143.558.760.767.968.82.98.1

39.343.658.760.868.068.92.87.7

37.441.757.059.166.767.90.33.4

26.031.050.553.061.161.91.84.3

29.334.051.153.763.464.2

11.5311.8910.2410.169.889.867.796.43

11.5911.9410.2510.179.899.877.796.43

10.7411.09

9.889.759.509.467.536.27

15.8617.4220.2519.5619.0718.9014.9712.6516.0117.5019.5419.4719.4519.0914.7812.58

3. 944.213.794.424.384.775.895.902.612.444.484.815.816.247.537.842.972.382.452.272.592.682.152.255.245.023.513.623.413.763.543.554.085.042.873 '02.903.833.613.54.

OVERTAX AVERAGE:

UO2 BUNDLE AVG:

MO2 BUNDLE AVG:

4.00

3.37

4.94

STANDARD DEVIATION:

DEVIATION:

DEVIATION:

1. 40

0.88

1.52

28—

Page 50: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 3 3

QUAD CITIES UNIT 1 END OF CYCLE 2PEAK LA-140 ACTIVITYCOMPARISONS

AssemblyIdentification

AxialElevation

(IN)Measured Peak

La-140 Activity*Calculated PeakLa-140 Activity*

Difference(~)

GEB159

GEB161

GEH002

CX0672

CX0214

152151568793

123129

152151568793

123129

152151568793

123129

152151568793

123129

152151568793

123129

1.1371.1151.1161.0991.1031.1021.1341.1591.1151.1101.1071.0891.0941.1101.1311.1721.1031.0991.1101.1001.1181.1191.1351.1351.1061.0801.0971.0981.0961.0711.0881.1011.1081.0781.0911.0661.1261.1231.1311.114

1.2491.1861.1661.1561.1361.1351.1721.2021.1391.1371.1581.1601.1701.1711.1941.2121.1331.1291.1241.1161.1131.1201.1391.1471.1241.1191.0961.1001.0941.0921.1111.1191.1251.1151.1031.0971.0931.0921.1191.127

9.856.374.485.192.992.993.353.712.152.434.616.526.955.505.573. 41.2.722.731.261.45

-0.450.090.351.061.633.61

-0.090.18

-0.181.962.111.631.533.431.102.91

-2.93-2 '6-1.06

1.17

Average Difference: 2.49%Average Difference (UO . Bundles Only):Average Difference (MO Bundles Only):

0.98%4.75%

*Peak La-140 Activity = ratio of the peak pin La-140 activity to t:he averagepin La«140 activity in an axial segment of a fuel bundle.

29-

Page 51: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.3.1

QUAD CITIES UNIT 1 EOC 2 GANQ SCAN COMPARISIOiVNORM IZED LA-140 PIN ACZIVITIES

ASSEMBLY ID: GEB159 93 IN. FROM BOTTOM OF CORE

WideWideGap 1.075

1.1110.036

1.0501.1010.051

1.0211.0630.042

1.0681.1010.033

.9680.9940.026

1.0141.0400.026

1.0791 ~ 1220.043

1.0421.040

.002

.8600.822

.038

.9510 '75

.076

1.0171.0630.046

1.0931.1220.029

.9290.875

.054

1.0821.1100.028

. 9380.888

.050

.9760.909

.067

1.0531.0900.037

1.0031.0120.009

. 8480.786

.062

1.0900.980

.110

1.0931.1040.011

1.0101.005

.00S

1.0861.0880.002

MeasCalcCalc-Meas

1 ~ 0601.1100:050

.9250.888

~ 037

1.0020.909

.093

.504 1.0710.564 1.0240.060 .047

1 ~ 0641.0900.026

1.1021.1040.002

.9931.0120.019

1.0061.005

.001

.8210.786

.035

1.0450.980

.065

1,0641.0880.024

1.0631.024

.039

.7400.726

.014

1.0561.1350.079

1.0921.1350.043

1.0481.1190.071

VOID LEVEL (/): 60.7 BURNUP (GWD/hfQJ): 9. 86

STANDARD DEVIATION: 4.77K (40 PINS)

X indicates either tie rod or spacer capture rod (notmeasured)

30—

Page 52: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.3.2

QUAD CITIES UNIT 1 EOC 2 GAhMA SCAN COhPARISIONNORMAK,IZED IA-140 PIN ACTIVITIES

ASSEMBlY ID: GEB161 56 IN. FROM BOTTOM OF CORE

WideWideGap 1 '16

1.0680.052

1.0771.1020.025

MeasCalcCalc-Meas

1.0311.0550.024

1.0891.160

. 0.071

.9800.913

.067

.9550.933

.022

1.0040.978

.026

1.0400.978

.062

.8080.8120.004

eeeeee

VOID IZVEL (X): 43.6 BURNUP (GWD/MTU): 10.17

STANDARD DEVIATION: 4.81K ( 9 PINS)

X indicates either tie rod or spacer capture rod (notmeasured)

31

Page 53: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

WideWide

FIGURE 2.3.3,

QUAD CITIES UNIT 1 EOC 2 GAMMA SCAN COMPARISIONNORMALIZED LA-140 PIN ACTIVITIES

ASSEMBLY ID: GEH002 21 IN. FROM EXAM OF CORE

Gap 0.9960.969

.027

1. 0331. 011

. 022

1.0271.013

.014

1.0321.011

.021

0.9950.969

,026

1.0741.'068

.006

1.0261.0270.001

1,0781.068

.010 .

1.0110.955

,056

0.9480.943

.005

1.0531.013

.040

1.0381.027.Oll

0.9560.943

.013

0.9160.9220.006

1.0301.007

.023

1.0201.018

.002

0.9360.934

.002

0.9400.931

.009

1.0321.0360.004

0.9610.951

.010

0.9290.927

.002

1.0701.049

.021

1.0991.081

.018

0.9940.975

.019

0.9690.963

.006

1.0451.036

.009

1.0131.008

.005

1.0611.0740.013

MeasCalcC-M

1.026 1.0391.007 . 1.018

.019 .021

1.0471.036

.011

0. 9340.9340.000

0.9570.951

.006

0.9490.931

.018

0.9270.927

.000

0.9310.9370.006

0.9350.9370.002

0.9180.9360.018

0.9370.9540.017

0.9610.9720.011

1.0381.0640.026

1 ~ 0541.049

.005

1.0791.0810.002,

0.9920.975

.017

0. 9550.9630.008

0.9320.9540.022

0. 939 .

0.9720.033

0. 9790. 9900.011

1.0881.1290.041

1.028 0.9951.036 1.0080 '08 0.013

1.0341.0740.040

1.0111.0640.053

1. 0721.1290.057

0.9601.0390.079

VOID LEVEL (X'): 7.7 BURNUP (GWD/MTU):11.09'TANDARD

DEVIATION: 2. 38/ (55 PINS)

X indicates either tie rod or spacer capture rod (notmeasured)

W indicates water rod

32-

Page 54: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.3.4

QUAD CITIES UNIT 1 EOC 2 GANQ SCAN COMPARISIONNORhfAK IZED LA-140 PIN ACTIVITIES

ASSEMBLY ID: GEH002 93 IN. FROM BOTTOM OF CORE

WideWideGap 1.085

1.1040.019

1.1011.1120,011

1.0981.1120.014

1.0141.0220.008

1.1191.102

.017

1.1061.077

~ 029

1.0701.043

.027

1.0481.0620.014

1.0481.023

.025

1.0611.036

.025

1.1171.109

.008

1.0831.0830.000

1.1061.1200.014

1.0291.0400.011

MessCalcC-M

1.1051.102

.003

1.0150.961

.054

0.9670.933

.034

0. 9340.913

.021

0.9340.924

.010

0.979 .0.946

.033

1.0791.077

.002

1.0601.043

.017

0.9450.933

.012

0.9150.895

.020

0.9200.891

.

029'.9120.882.030

0.9370.917

.020

1.0621.052

.010

1.0631.062

.001

1.0091.0230.014

0.9130.913

.000

0.9020.891

.011

0.9020.880

.022

0.9150.897

.018

1.0191'. 0310.012

1. 0401. 036

.004

0.9240.9240.000

0.8970.882

.015

0.9130.880

~ 033

0 '760.874

.002

0.9100.9100.000

1.0921.1090.017

1.0751.0830.008

0.9690.946

.023

0.8980.9170.019

0.8890.8970.008

0.8950.9100.015

0.9130.9290.016

1.0391.1000.061

1.0901.1200.030

1.0001.0400.040

1.0151.0520.037

1.0021.0310.029 Agc )g Q gc +

1.0351.1000.065

0.9541.0460.092

VOID tSVEL (K): 59.1 BURNUP (GWD/hfQJ): 9.46

STANDARD DEVIATION: 2.68K (55 PINS)

X indicates either tie rod or spacer capture rod (notmeasured)

W indicates water rod

33

Page 55: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.3,5

QUAD CITIES UNIT 1 EOC 2 GAEA% SCAN COMPARISIOiVNORhNLIZED lA-140 PIN ACZIVITIES

ASSEMBLY ID: CX0672 21 IN. FROM BOTTOM OF CORE

WideWideGap l.049

0.958.091

0.9710.909

.062

1.0010.909

.092

1.0070.932

.075

0.9460.902

.044

0.9110.902

.009

1.0531.006

.047

1.0120.977

.035

1.0661.039

.027

0.9910.987

.004

1.0591.046

.013

0.9860.9940.008

1.0320.997

.035

1.0501 ~ 0710.021

1.0091.0340.025

0.9380.9400.002

0.9810.979

.002

MeasCalcCalc-Mess

1.0310.977

.054

1.0741.039

.035

1.0801.046

.034

1.0020.987

.015

0 ~ 9840.9940.010

0.9710.9770,006

0.9810.977

.004

0. 9140.9810.067

1.0320.991

. 041

1.0101.0200'. 010

1.0011.0980.097

1.0240.997

.027

0.9050.9400.035

1.0781.071

.007

0. 9400.9790.039

1. 0291.0340.005

0.9900.9910.001

0.9961.0200.024

0.9831.0460.063

1. 0201.1190.099

1.0171.1190.102

0.9051.0110.106

VOID LEVEL (X): 3.4 BURNUP (GWD/hfQJ); 17. 42

STANDARD DEVIATION: 5.02/ (39 PINS)

X indicates either tie rod or spacer capture rod (notmeasured)

34

Page 56: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.3.6

QUAD CITIES UNIT 1 EOC 2 GAh5% SCAN COhPARISIONNORhM IZED IA-140 PIN ACTIVITIES

ASSEMBI Y ID: CX0672 87 IN. FROM BOTTOM OF CORE

WideWideGap 1.067

1.0770.010

0.9920.9980.006.

1.0000.998

.002

0.9830.966

.017

0.9190 9230.004

0.9721.0330.061

1.0621.028

.034

1.0621.028

.034

1.0401.0510.011

1.0351.0530.018

0.9931.0260.033

0.9811.0130.032

MessCalcCalc-Meas

0.9360.923

.013

1.016 1.0541.033 1.0280.017 .026

1.0751.028

.047

1.0290.986

.043

0.9760.953

.023

0.9420.9530.011

0.9940.953

.041

0.9480.918

.030

0.9820.953

.029

'.9560.918,

.038

0.9090.9140.005

1.0180.992

.026

0.9810.926

.055

0.9920.956

.036

1.0551.0720.017

X

1.0121.0510.039

0.9841.0260.042

1.0361.0530.017

0.9321.0130.081

.0. 9900.9920.002

0 '690.926

~ 043

1.0491.0720 '23

0. 9380.9560.018

0.9850.985.

.000

1.0071 ~ 0940.087

1.0961.094

.002

1.0361.0380.002

VOID LEVEE (/): 50.5 BURNUP (GWD/hKU): 19,07

STANDARD DEVIATION: 3.41K (40 PINS)

X indicates either tie rod or spacer capture rod (notmeasured)

35

Page 57: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.3.7

QUAD, CITIES UNIT 1 EOC 2 GAMMA SCAN COMPARISIONNORMALIZED LA-140 PIN ACTIVITIES

ASSEMBLY:ID: CX0214 51 IN. FROM EHTOM OF CORE

WideWideGap 1.051

1.021.030

0.9600.959

.001

0.9991.0050.006

0.9841.0230.039

0.9670.9890.022

0.9930.959

.034

0.9840,950

.034

'0. 941;.0.918

.023

l.0541.033

.021

1.0301.0360.006

0.9340.9980.064

0.9330.918

.015

1.0240.974

.050

0.9850.973

.012

0.9930.976

.017

0.9881.0140.026

X

1.0221.005

.017

1.0541.033

.021

1.0010.973

.028

0.9800.951

.029

0.9920.961

.031

1.0841.083

.001

1.0541.036

.018

0.9840.976

.008

0.9480.9510.003

0.9480.9520.004

0.9510.9910.040

1.0571.0590.002

1.0021.0140.012

1. 0100.961

.049

0.9580.9910.033

1.0271.018

.009

1.0731.1030.030

0.9710.9890.018

0.9570.9980.041

1.0351.0830.048

1.0911.1030.012

0.9821.0270.045

MeasCalcCalc-Meas

VOID LEVEL (X): 29.3 BURNUP (GWD/hKU): 19.54

STANDARD DEVIATION: 2.87K (38 PINS)

X indicates either tie rod or spacer capture rod (notmeasured)

36-

Page 58: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.3.8

QUAD CITIES UNIT 1 EOC 2 GNM SCAN COMPARISIONNORhM IZED IA-140 PIN ACTIVITIES

ASSEMBIY ID: CX0214 129 IN. FROM BOTTOM OF CORE

WideWideGap 1.114

1.1270.013

1.0261.021

.005

1.0361.021

.015

1.0340.990

.044

0.9600.922

.038

1.0641.0640.000

1.0581.044

.014

1.0541. 040 ~

.014

1.0561 '870.031

1.0601.0730.013

0.9961.0390.043

1.0091.0220.013

h/easCalcCalc-habeas

0.9690.922

.047

1.0050.988

.017

0.9380.937

.001

0.9270.9310.004

0.'9700.9760.006

1.0931.064

.029

1.062'.044

.018

0.9390. 937.

.002

0.8900.882

.008

0.9570.894

.063

1.0201.0670.047

1.0501.0870.037

1.0461.040

.006

1. 0471.0730.026

0. 9560. 931

.025

0.9560.9760.020

0.9060.882

.024

0.9670.'894

.073

0.8910.874

.017

0.9310.921

.010

0.9190.9210.002

0.9690.957

.012

1.0061.0960.090

1.0621.039

.023

0.9911.0220.031

1.0921.067

.025

1.0301.0960.066

0.9461.0320.086

VOID IZVK (X): 64.2 BURNUP (GWD/hfZU): 12.58

STANDARD DEVIATION: 3,54K (40 PINS)

X indicates either tie rod or spacer capture rod (notmeasured)

37

Page 59: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

2.4 EPRI Benchmark Evaluations

During the original development of EPRI-CPM, benchmarking calculations were

performed against both uniform lattice critical tests and power reactoroperating data. These include:

- hot critical data from the Kritz reactor,

- cold uniform lattice critical data from the TRX and ESADA criticals, and

« isotopic comparisons based on the post irradiation analysis of Yankee

and Saxton spent fuel.

All calculations were made using the current version of the CPM cross sectionlibrary and are documented in Reference 4. The results of those benchmarking

comparisons are reported in this section.

Four experiments from the high temperature Kritz facility were modeled withEPRI-CPM to compare fission rates. The first three experiments involved one

BWR and two PWR fuel lattices. All three lattices contained both mixed oxideand uranium oxide pins. The system temperature for these three experiments

0 0was 245 C (473 F). The fourth experiment was a uniform lattice criticalutilizing 1.35% enriched UO rods. Critical data was taken at 20 C and 210 C

0 0

0 0(68 F and 410 F). Details concerning the experiments and calculations aregiven in Reference 4.

Measured and calculated fission rates for the first three Kritz experimentsare reproduced from Reference 4 and shown in Figures 2.4.1 through 2.4.3. The

fission rates were normalized so that the average of all measured pins was

1.0. In the third experiment, the UO and mixed oxide assemblies were

normalized separately. The respective eigenvalues for each lattice are shown

on the appropriate figures. The only results from the Kritz uniform latticecriticals were the eigenvalues. The calculated eigenvalues were 0.997 and

0.993 for the 20 C and the 210 C criticals, respectively.0 0

38—

Page 60: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

Part of the EPRI-CPM benchmarking also included calculations of uniform

lattice criticals from both the TRX and ESADA critical experiments. The

results from these calculations are presented in Tables 2.4.1 and 2.4.2. The

results reported by EPRI for the TRX criticals include a correction factorbased on comparisons of the EPRI-CPM results to five group radial PDQ

calculations. This correction is on the order of 0.003 to 0.004 ~k. Removing

this adjustment from the EPRI-CPM results would provide excellent agreement

between the original EPRI-CPM benchmarking and the PPaL CPM-2 calculationspresented in Section 2.2. The results reported by EPRI for the ESADA

criticals include correction factors to account for the presence of thespacers and the self-shielding of the plutonium grains. The spacer correctionused was -0.4% ~k for all cases. This adjustment was also made to the CPM-2

calculations presented in Section 2.2. The shielding correction applied inthe EPRI-CPM results varied between -0.05% ~k to -0.45% dk. Specific details

~ concerning the exact correction for each experiment was not available. The

magnitude of this correction is consistent with the difference between theEPRI-CPM and the PPaL CPM-2 calculations.

Isotopic comparisons were also performed using both Yankee'Reference 13) and

Saxton (Reference 14) isotopic data. The results from the Yankee comparisons

are shown in Figures 2.4.4 through 2.4.6. All calculations show good

agreement between the calculated ratios and measured data. The Pu-241/Pu-242

ratio is slightly overpredicted (approximately 3%) at end of life (30

GWD/MTU) . The results from the Saxton comparisons are given in Table 2.4.3.

- 39-

Page 61: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2.4.1

EPRI~M RESDLTS PROM THE TRX CRITICALBENC59IARKING

ExperimentIdentification

HexagonalLatticePitch(in)

PelletDiameter

(in)B (experyental)

(m )EPRI~

K-effective

TRX1

TRX2

TRX3

TRX4

TRX5

TRX6

TRX7

TRX8

0.868

0.929

0.989

0.613

0.650

0.613

0.650

0.711

0.601

0.601

0.601

0.388

0.388

0.383

0.383

0.383

28.4

30.2

29.1

25.3

25.2

32.6

35.5

34.2

0.997

0.999

0.998

0.998

0.997

1.000

1.000

1.000

Average K-effective = 0.999 + 0.001

Source: M. Edenius, "EPRI-CPM Benchmarking," Part I, Chapter 5 ofEPRI CCM-3, November, 1975.

-40-

Page 62: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2 4 2

EPRI~M RESULTS PROM ESADA CRITICALBENCHMARKING

ExperimentIdentification Fuel Ty~

LatticePitch(in)

BoronConcentration B (experynental)2

(m )

EPRI-CPMK-effective

ESADA1, 2

ESADA3

ESADA4,5

ESADA6

ESADA7

ESADA8

ESADA9

SADA10

SADA11

ESADA12

ESADA13

8%, Pu-240

8% Pu-240

8% Pu-240

0.69

0.75

0.9758

8% Pu-240 1.0607

8% Pu-240

8% Pu«240

8% Pu-240

8% Pu-240

1.380

0.69

0.9758

0.69

24% Pu-240

24% Pu-240

0.9758

1.0607

8% Pu-240 0.9758

261

261

526

526

69.1

90.0

105.9

98.4

50.3

62.6

83.7

58.3

63.1

79.5

73.3

0.999

1.000

1.008

1.010

0.997

1.004

1.002

1.002

0.999

1.004

1.002

Average K-effective = 1.002 + 0.004

Source: M. Edenius, "EPRI-CPM Benchmarking," Part I, Chapter 5 ofEPRI CCM-3, November, 1975.

41-

Page 63: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 2.4 3

EPRI ISOTOPIC COMPARISONS TO SAXTON DATA

Nuclide

MeasuredNuclide

Concentration(Atom a)

MeasurementUncertain (4)

Percent .

Difference*(~)

U-234

U-235

U-236

U-238

0.00465

0.574

0.0355

99.386

28.7

0.95.6

0

15.9-0.32.8

0

Pu-238

Pu-239

PQ-240

PG-241

Pu-242

0.109

73.77

19.25

6.29

0.579

2.20

0.20.30.9

-11.4-0.31.60.4

-16.0

calc-meas*Percent Difference = x 100meas

Source: M. Edenius, "EPRI-CPM Benchmarking," Part. I, Chapter 5 ofEPRI -CCM-3, November, 1975.

-42-

Page 64: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.4.1

FISSION RATE COMPARISON FOR AN Sx8 BWR ASSEMBLYOF THE PLUTONIUM ISLAND TYPE T=245 C

WIDE GAP

0 UO~ RODS

+1.9

+0.7 +0.1

+0.6

-o.e i+1.0

+2.9 )+0.1

+2.0 MO~ 8

+0.9

ODS

0

z

I

-o.6. -1.6 +0.6 l

J

-o.e -O.e ~+0.6 +o.e~ +0.6

-2.8 -0.6 -1.3 -1.0 207

NARROW GAP

CPM exThis figure showsP

x 100 for all measured rod positions.exp

Experimental Uncertainty (lc) in MO rods: + 1.4%Experimental Uncertainty (lc) in UO rods: + 0.7%

2

Fission Rate in MO rods relative to UO rods: + 1.6%2 2

Calculated k f = 1.001eff

Source: M. Edenius, "EPRI-CPM Benchmarking," Part I, Chapter 5 ofEPRI CCM-3, November, 1975.

43

Page 65: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.4.2

FISSION RATE COMPARISON FOR A 15x15 PWR MIXED OXIDE ASSEMBLY0

WITH WATER HOLES AND ABSORBER RODS T~245 C

CENTRAL WATER HOLE

ABSORBER ROD

+1.0 MO, RODS

+3.1 -0.1 +1.2

I

~3e3 -1.3 -0.6

+2.2 -0.4 -O.B -0.4

+1.1 -2.2 +1 4 -3.3

+3.7 -2.0 +1.7 +0.3 -3.9 -1.6

+0.7 +2e3 -0.7 +0.2

This figure shows CPM exP

x 100 for all measured rod positions.exp

Experimental Uncertainty (la): + 1.4%*

Calculated k f = 0.999eff*Not including geometric uncertainties.

Source: M. Edenius, "EPRI-CPM Benchmarking," Part I, Chapter 5 ofEPRI CCM-3, November, 1975.

44

Page 66: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.4.3

FXSSXON RATE COMPARISON FOR A 14xl4 PWR MIXED OXIDE ASSEMBLYSURROUNDED BY UO ASSEMBLIES T=240 C

02

CENTER

+1.8 HIGH ENRICHEDMoi RODS

+2.1

+1.0

-0.3

WATERHOLES

+0.9

MQ0

0DIKz

-1.7

+1.2 +1.6 +0.71 -.1.6 -0.6

+0.9 LOW ENRICHEDMO, RODS 307

+0. B ENR UO, RODS -0.8

+1.4 -0.4

-O.B

This figure showsCPM ex x 100 for all measured rod positions.

Pexp

The fission rate was normalized separately for each type of assembly.The average fission rate in each MO assembly relative to the rate inthe UO2 assemblies predicted by DXd was 1.9% lower than the measuredratio.

Experimental uncertainty (lc) for each type of fuel separately: + 0.8%Experimental uncertainty (la) for the average fission rate in MO

rods relative to UO rods: + 1.4%

Calculated k ff = 0.997eff

Source: M. Edenius, "EPRI-CPM Benchmarking," Part I, Chapter 5 ofEPRI CCM-3, November, 1975.

45-

Page 67: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.4.4

EPRI-CPM COMPARISON TO YANKEE PU-239/PU-240 ISOTOPIC'RATIOS

9.0

~ ~

BDII

~ OO

7.0

O

ClcvaIL

CO

cv

0

0

l.o

~ 1

~ ~ ~~t

3.0

0.0 5.0 10.0 15.0 2 .0

F. P. vol. wgt. number density x 105

10 20 30 WVd/kgU

o Measured Dat:a—EPRI-CPM Results

Source: M'. Edenius, "EPRI-CPM Benchmarking," Part I, Chapter 5 ofEPRI CCM-3, November, 1975.

46-

Page 68: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2.4.5

EPRI-CPM COMPARISON TO YANKEE PU-240/PU-241 ISOTOPIC RATIOS

&.0

~ ~

7.0

6.0

~0

O

~w 5.0

n

CI

0

4.0

3.0

2.0

~ y ~ ~

0.0 10.0 15.0 '0.0F. P. vol. wgt number density ~ 10

10

25.0 30.0

30 MWd/kgU

~ Measured Data—EPRI-CPM Results

Source: M. Edenius, "EPRI-CPM Benchmarking," Part. I, Chapter 5 ofEPRI CCM-3, November, 1975.

47

Page 69: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 2..4.6

EPRI-CPM COMPARISON TO YANKEE PU-241/PU-242 ISOTOPIC RATIOS

10.0

9.0

~ y~

'

LO

O

c4aL

nCL

7.0

6.0

~ 0

~ ~~ ~

~ ~

5.0

4.0

4 ~

00 5.0 10.0 15.0 20.0f. P. vd. wgt. number density x 105

30.0

10 20 30 MWd/kgU

~ Measured Data—EPRI-CPM Results

Source: E. Edenius, "EPRI-CPM Benchmarking," Part I, Chapter 5 ofEPRI CCM-3, November, 1975.

48-

Page 70: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.0 CORE SIMULATION METHODS

The three-dimensional nodal simulation code used by PPGL is the SIMULATE-E

(Reference 15) computer program distributed by EPRI. This code has been used

to provide the steady state operations support at PPaL and will be utilizedfor reload core design and licensing analyses. The code is used to calculatecore reactivity, power and flow distributions, thermal limits, and TraversingIn-core Probe (TIP) response. A full description of the SIMULATE-E methodology

is contained in Reference 15. A brief summary is presented in Section 3.1.

SIMULATE-E has been benchmarked by PPaL against extensive reactor operatingdata. The Susquehanna SES benchmarking i.ncludes comparisons to hot and coldcritical data, TIP measurements, and core monitoring system calculations.These comparisons are presented in Section 3.2. Comparisons have also been

made to the Quad Cities Unit 1 hot and cold critical data, TIP measurements,

and end of Cycles 1 and 2 gamma scan data. The Quad Cities comparisons arepresented in Section 3.3. Comparisons were also made to Peach Bottom Unit 2

Cycles 1 and 2 data. The Peach Bottom Unit 2 reactor was modeled primarily to

~

~

prepare input to the transient analysis of the three turbine trip tests.Section 3.4 presents comparisons to several TIP sets through both cycles and

to the core monitoring system power distributions taken prior to each turbinetrip test.

- 49-

Page 71: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.1 Descri tion of SIMULATE-E

The SIMULATE-E computer program was written to perform .three-dimensionalanalyses of light water reactors. The code combines both neutronics and

thermal hydraulics calculations. The neutron balance equation is solved usingresponse matrix techniques developed by Ancona (Reference 16). The responsematrix parameters are determined using the PRESTO option (Reference 17). The

thermal hydraulics module contains the EPRI void correlation (Reference 18)

and the FIBWR (Reference 19) code to determine axial voiding and flowdistribution. The neutronics and thermal hydraulics are solved iterativelyuntil a consistent solution is achieved.

The reactor core is modeled as an array of cubic nodes each containing a

homogenized portion of a fuel assembly. For the Susquehanna SES BWRs, each

fuel assembly is modeled using 25 axial nodes, thus resulting in six inchnodes describing the 150 inch active fuel region. Albedo boundary conditionsare used to account for the reflector zones, thus eliminating the need toexplicitly model the reflector.

The neutronics calculation requires the solution of the neutron balanceequation for each node. This balance equation is first recast in terms ofresponse matrix parameters which describe how a neutron interacts, withadjacent nodes. Several options exist in SIMULATE-E which can be used fordetermination of the response matrix parameters. The option used by PPGL isthe Modified Coarse Mesh Diffusion Theory (MCMDT) also referred to as thePRESTO option (Reference 17). This option calculates the various transmissionprobabilities using node average fluxes. The MCMDT option calculates the node

center and node surface fluxes using Fick's Law. The node average flux isthen determined as a weighted average of the surface and center fluxes. The

weighting factors were developed through model normalization. Once the node

average fluxes are determined, the various transmission probabilities can be

evaluated and the neutron balance equation is solved.

Nodal cross section data are input to SIMULATE-E in two groups for each

different lattice type. If axial zoning of fuel is present (either due toenrichment or gadolinia content), separate lattice types are assigned.

50-

Page 72: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

Cross section dependencies include:

fuel exposure

void history (i.e., exposure-weighted relative moderator density)relative moderator density (hot only)

I

control rod presence

fuel temperature (hot only)control rod historyxenon concentrationmoderator temperature (cold only)

The effect. of each dependency is calculated utilizing CPM-2. The final crosssection data tables are prepared for SIMULATE-E using NORGE-B2 (Reference 20) .

The radial, top, and bottom reflector regions are not modeled explicitly.Instead, these regions are taken into account by use of albedo boundary

conditions. Radial albedos are calculated using the ABLE (Reference 21)t program developed by Science Applications International for EPRI. The top and

bottom albedos were determined based on comparison to plant data during model

normalization. Different albedo boundary conditions are used for cold and hotconditions.

Several of the input data parameters used by SIMULATE-E require adjustment tomatch plant operating data. This normalization process was performed usingSusquehanna SES Unit 1 Cycles 1 and 2 data. All parameters changed in thisfashion were held constant for all other calculations including the Quad

Cities and Peach Bottom calculations.

The thermal hydraulics calculations use the FIBWR. methodology (Reference 19)

developed by Yankee Atomic Electric Company. This calculation determines.

total core pressure drop and core bypass flow. The pressure drop calculationdetermines the frictional pressure drop, local (i.e., form) losses,acceleration (i.e., momentum change) pressure drop, and elevation head. The

core bypass flow calculation allows for modeling the flow paths shown inFigure 3.1.1. FIBWR as a stand-alone code has been benchmarked by Yankee~ ~ ~

Atomic Electric Company against data from for Vermont Yankee and the FriggLoop tests (see Reference 22) .

-51-

Page 73: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

During installation at PPaL minor code modifications have been made to adaptthe SIMULATE-E code to PPGL computer operational requirements.

In addition, code changes were made by PP&L which include:

Critical Power Ratio (CPR) evaluations utilizing the Advanced NuclearFuels Corporation (formerly Exxon Nuclear Company) XN«3 critical heatflux correlation (Reference 23)

Linear Heat Generation Rate (LHGR) and Average Planar Linear HeatGeneration Rate (APLHGR) thermal limits evaluations

calculation of Axial Exposure Ratio

error corrections provided by EPRI

These changes, with the exception of error corrections, have not resulted inany change to the neutronics or thermal hydraulics calculations.

52-

Page 74: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.1.1BWR FUEL ASSEMBLY BYPASS FLOW PATHS

TOP OF CORE

ZCHI

Space height ~ HFSGw2HET

HFSG

HFSGn

Hote: Bottcm entry peripheral fuel supportsare welded into the core support plate.For these bundles, path numbers 1,2,5and 7 do not exist.

Bottomof core

2UHB

2GEO

Lowertie plate

rFuel support

lb

Channel8

Spring plugg Core

6 supportlo 34

2 pf

In-coreguide tubeControl rodguide tube

Shroud

Core length ~ 2CHI +

fuel length + LGEO

Fuel length ~ 2UHA + 2HET + 2UHB

7

1. Control rod guide tube--fuel support2. Control rod guide tube-core support plate3. Core support plate-in-core guide tube4. Core support plate-shr oud5. Control rod guide tube-drive housing6. Fuel support--lower tie plate7. Control rod drive cooling wate~drive housing 8. Channel —lower tie plate9. Lower tie plate holes

10. Spring plug-core suppor t

Source: B. J. Gitnick, "FIBWR: A Steady-State Core Flow DistributionCode for Boiling Water Reactors; Computer Code User's Manual,"EPRI NP-1924-CCM, July, 1981.

53

Page 75: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.2 Sus uehanna SES Units 1 and 2 Benchmark

Comparisons of SIMULATE-E calculations to observed data from the Susquehanna

SES operating reactors provide a direct means of qualifying the accuracy ofSIMULATE-E. Two directly measurable sets of parameters against which

comparisons can be made for Susquehanna SES consist of the core criticalK-effective state point data (hot and cold) and the Traversing In-core Probe

(TIP) neutron flux measurements. This type of benchmarking validates theoverall BNR analysis process from lattice physics to three-dimensionalsimulation.

For core critical K-effective comparisons, the measured steady state core

operating parameters listed in Table 3.2.1 provide the necessary input for a

SIMULATE-E calculation. This data is also used to model the accumul'ation ofcore history through multiple depletions (i.e., core follow) . These

calculations assume constant core conditions during a short time period,usually less than one week.

The core critical calculations at .steady state conditions are used to qualifySIMULATE-E's capability to predict core reactivity throughout a cycle. Design

analyses, such as cycle length, shutdown margin, hot excess reactivity, rodwithdrawal error, misloaded bundle, standby liquid control system worth, and

control rod drop, require the prediction of the core reactivity throughout a

cycle. Because the SIMULATE-E hot and cold models differ, separate hot and

cold critical K-effective comparisons are performed to determine theindividual uncertainties for the above analyses. For the hot critical core

K-effective comparisons, reactivity calculations rely on the statepointparameters listed in Table 3.2.1. The cold critical core reactivity benchmark

involves reactivity calculations for all cold xenon-free criticals for theSusquehanna SES cores. The hot and cold K-effective comparisons are used toestablish the target critical core K-effective and to assess the uncertaintyin reactivity predictions.

TIP comparisons test the ability of SIMULATE-E to calculate the neutron fluxin a local region between four fuel assemblies. The TIP measurements used inthe comparisons are six-inch collapsed detector signals. These are

54-

Page 76: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

synthesized from one-inch axial data that are averaged by the core monitoringsystem through a trapezoidal averaging technique. For Cycle 2 and beyond ofboth units, the core monitoring system, POWERPLEX (Reference 24), alsocorrects the TIP measurements for any axial shift in the measurements. A

Gaussian smoothing procedure compares measured neutron flux dips to theexpected dip locations, based on fixed LPRM and spacer locations, and correctsthe axial alignment of the one-inch data.

The Susquehanna SES core operating histories from Unit 1 Cycles 1, 2, and partof Cycle 3 and Unit 2 Cycle 1 and part of Cycle 2 are contained in thebenchmark data base. The two units share identical core geometry and ratedcore conditions. The Cycle 1 operating cores of both units contain the same

General Electric Sx8 fuel design and core loading pattern. In addition, bothCycle 1 operating strategies have extended cycle operation via bottom burn

spectral shift and coastdown. Cycle 2 of Unit 1 operated with a small 192

Exxon 8x8 bundle reload core that experienced a cycle length less than half ofCycle 1 and less than any planned future cycle. Cycle 3 of Unit 1 was loaded

with 296 Exxon Sx8 bundles and Cycle 2 of Unit 2 was loaded with 324 Exxon 9x9

bundles. The anticipated equilibrium batch size for the planned eighteenmonth cycles is 240 Exxon 9x9 bundles. At the time this report was prepared,Unit 1 was in its third cycle of operation and Unit 2 was in its second cycleof operation. Therefore, the benchmark data base only includes the firstthird of Unit 1 Cycle 3 operation and the early portion of Unit 2 Cycle 2

operation. Table 3.2.2 summarizes the total Susquehanna SES benchmarking database included in this report.

For all Susquehanna SES hot comparisons, only steady state data have been

used. This requires core conditions to remain constant over a period of timeto allow the xenon concentration to equilibriate. This requires no rod pullsor significant. change in core thermal power, flow, or feedwater temperaturewithin approximately three days prior to the data point. For the coldcomparisons, sufficient time at zero power is required to allow for xenon

decay. In addition, a reactivity adjustment is made for the reactor period.

55

Page 77: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.2.1 Hot Critical Core Reactivit Comparisons

The results of the SIMULATE-E core follow calculations that are based on

measured core operating data for the Susquehanna SES cores form the hotcritical core reactivity data base. These calculations result in a total of257 steady state core K-effective comparisons for various core operatingconditions. Table 3.2.3 shows a complete list of the steady state core data

and its corresponding calculated hot critical core K-effective tabulated by

unit and cycle.

Figures 3.2.1 through 3.2.6 show plots of hot critical core K-effective versuscore average exposure, core thermal power, total core flow, core inlet

I

subcooling, dome pressure, and critical control rod density, respectively.These figures provide information on the dependencies and biases inherent inSIMULATE-E. It is apparent that the critical K-effective varies with core

average exposure. The K-effective from Cycle 1 of both units exhibits a

bowl-shaped trend up to 7000 MWD/MTU,cycle exposure, at which point gadoliniacontent is substantially depleted. The available data from Cycle 3 alsoexhibits the same trend. For this cycle, the initial core average gadoliniacontent was almost the same as for the Cycle 1 cores. Unlike Cycles 1 and 3,the K-effective from Cycle 2 of Unit 1 exhibits a very flat trend throughoutthe entire cycle. Cycle 2 of Unit 1 contains approximately one-fourth theinitial gadolinia content. of either Cycle 1 or Cycle 3 of Unit 1. These

trends suggest 'a dependency on gadolinia loading. After the gadolinia has

essentially burned out in Cycle 1, the critical core K-effective increasesslightly with exposure. Therefore, the hot critical core K-effective exhibitsa linear dependence on exposure coupled with a bowl-shaped trend due togadolinia depletion.

PPGL has developed a method which correlates the hot critical core K-effectivedata to the core average exposure and gadolinia content. Using thiscorrelation, target critical core K-effective curves are generated for each

cycle. Figure 3.2.7 shows the comparison of the target critical coreK-effective curves and the SIMULATE-E calculated core K-effective for each

unit and cycle. Table 3.2.4 shows the mean difference and standard deviationbetween the target and SIMULATE-E calculated critical core K-effective for

I

— 56-

Page 78: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

~

~

~each unit and cycle. The overall results show very good agreement with the

target K«effective. For Unit 2 Cycle 2 only three data points are included inthe data base. These data yield a mean difference of 0.00186 ~K from the

target which is larger than two times the standard deviation of the data base

(i.e., 2o is 0.00122 bK). It is anticipated that the Unit 2 Cycle 2

SIMULATE-E calculated core K-effective will follow the target but will be

offset by a constant bias. More recent core follow calculations, which are

not included in this report, support this expected trend. The offset islikely due to differences between 8x8 and 9x9 fuel designs. PPGL continues toperform hot critical core K-effective calculations as part of the routine core

follow analyses, and the results are used to further improve the accuracy ofthe target, critical core K-effective. On a whole, the use of the correlationprovides a good assessment of critical core reactivity and can be used fordesign and analysis of future cycles.

An important consideration in evaluating reactivity results is the measurement

uncertainty in the core operating conditions. Because measured core operatingdata (i.e., the parameters listed in Table 3.2.1) are entered into SIMULATE-E,~ ~ ~ ~

the calculated core reactivity is affected by any errors in the measured

inputs. The changes in core reactivity from measurement uncertainty primarilydepend on two core modeling phenomena, the void and Doppler coefficients ofreactivity. As these coefficients change with core life and designs, thesensitivity of SIMULATE-E to measurement uncertainties changes. Table 3.2.5shows measurement uncertainties based on Reference 25 and their effects on

core reactivity for Susquehanna SES Unit. 2 Cycle 2. The total K-effectivesensitivity due to the measurement uncertainties is 0.00151 ~K. SIMULATE-E

calculations of hot critical core K-effective for the 257 data points analyzed

by PPGL result in a standard deviation which is less than this sensitivity.

3.2.2 Cold Cri.tical Core Reactivit Com arisons

The accuracy of the SIMULATE-E calculation of core shutdown margin and controlrod worths at cold conditions 'depends on its ability to predict cold corereactivity for different core designs, core average exposures, and control rodconfigurations. Shutdown margin calculations also rely on the accuracy of themodified coarse mesh diffusion theory prediction of large neutron flux

— 57-

Page 79: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

gradients characteristic of one-rod-out configurations. Local Critical testsexhibit flux gradients similar to shutdown margin calculations. Therefore,the qualification of the SIMULATE-E code requires benchmarking to both localand in-sequence cold xenon-free criticals. The Susquehanna SES benchmarking

data base contains three local and 36 in-sequence criticals as shown in Table3.2.2. In addition to the Susquehanna SES cold critical benchmarking

calculations, comparisons to the Quad Cities Unit 1 Cycle 1 local and

in-sequence criticals were performed to further support the validation.Section 3.3.2 describes the Quad Cities Unit 1 Cycle 1 benchmarking analyses.

Table 3.2.6 contains results of the Susquehanna SES cold xenon-f'ree criticals.0As shown, the criticals were performed at temperatures between 100 and 212 F

and at various core average exposures. The core K-effective in Table 3.2.6includes a reactor period correction which is typically less than 0.001.Figure 3.2.1 shows these results together with those of the hot. benchmark.

The calculated cold critical core K-effectives consistently follow the hotcritical core K-effective with a constant bias throughout exposure. Thistrend indicates that the cold methods and models also depend on core average

exposure and gadolinia content. A bias between cold and hot core K-effectivehas been reported by others and has been investigated in Reference 26.

A method that accounts for the core average exposure and gadolinia contentdependencies results in an accurate assessment of the cold xenon-free criticalcore K-effective and its uncertainty. Figure 3.2.1 indicates that a bias

Iexists between the hot and cold SIMULATE-E calculated core criticalK-effectives. Reference 26 supports this observation. This bias is constantand is not exposure or gadolinia dependent. Therefore, the target coldcritical core K-effective is determined by adding a bias to the hot criticalcore K-effective.

Table 3.2.7 shows the results for the Susquehanna SES in-sequence and localcold criticals. The mean difference between the SIMULATE-E hot and coldcalculated core K-effective for all 39 criticals is 0.00671 and the standarddeviation is 0.00111. The mean difference between the hot target coreK-effective curve and the SIMULATE-E cold calculated core K-effective for all39 criticals is 0.00659 and the standard deviation is 0.00137. These two

58—

Page 80: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

standard deviations are small and are typical of the calculated core

K-effective variation for criticals at a given exposure. For example, thestandard deviation of the Unit 2 Cycle 1 zero exposure calculated cold

critical K-effectives is 0.00099. Table 3.2.7 also shows that the cold to hotK-effective bias for the local critical tests is not significantly differentthan the bias for the in-sequence criticals.

As in the hot reactivity benchmark, PPGL will continue to perform coldcritical core K-effective comparisons to be used for periodic updating of the

target cold critical core K-effective. The use of this target cold criticalcore K-effective provides a good assessment of critical core reactivity and

can be used for design and analysis of future cycles.

3.2.3 Traversin In-core Probe Data Com arisons

Comparisons to measured TIP data provide an assessment of how well SIMULATE-E

calculates the core power distribution. The TIP detectors are 'located in thewater gap corner opposite the control rod between four fuel assemblies as

shown in Figure 3.2.8. SIMULATE-E calculates a TIP response for each six-inchaxial segment at each radial TIP location by power weighting input detectorresponse functions as follows:

M

ER = — Q R. P.M j=l 3 3

where

M = the number of bundles around a TIP detector(for all plants modeled, M=4),

R. = the detector response function,jP. = the SIMULATE-E calculated nodal power.j

The detector response, R., is a functional relationship which can be expanded

to:

j UNC CT CT EV U

59-

Page 81: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

where

F = the base component of the detector response for an uncontrollednode,

G = the fraction of the node which is controlled,G = 0 node is uncontrolled,G = 1 node is fully controlled,

F = the correction to the base component for a fullycontrolled node,

F F = the correction to the base response to account for moderatordensity.

F , F and F are functions of exposure,and void history(i.e., exposure-weighted relative moderator density). F i a function of the

Urelative moderator density and void history. The detector model in SIMULATE-E

assumes that the detector response from each assembly is not affected by theother three.

The detector response. functions are generated using calculated data fromCPM-2. In CPM-2, a small amount of U-235 is placed in the water gap corneropposite the control blade. The local fi'ssion rate is calculated in thisregion for different conditions of exposure, void history, control state andrelative moderator level. This data is formulated into a polynomial fitdetermined for each separate lattice type.

Both nodal and radial (i.e., axially integrated) TIP comparisons have beenmade to the Susquehanna SES TIP data. For the nodal comparisons, the six-inchaveraged measured data is compared to the calculated nodal TIP'response. Thisprovides an assessment of the accuracy of the nodal power distribution whichaffects calculated margin to operating limits such as the Linear HeatGeneration Rate (LHGR) limit. For the radial comparisons, the average of allTIP measurements at a radial location is compared to the average of thecalculated values at that radial location. This provides an assessment of theaccuracy of the radial (i.e., bundle average) power distribution which affectscalculated margin to operating limits such as Critical Power Ratio (CPR).

— 60—

Page 82: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

Prior to making the comparisons, the calculated data is normalized to themeasured data. Each of the calculated nodal detector responses is multipliedby a normalization factor. The factor is calculated as:

TNF = T/ER

where

T = the average of all measured TIP responses in a given TIP set,ER = the average of all calculated TIP responses in a given TIP set.

A TIP set is defined as a complete'et of TIP measurements from the entireY

core. For Susquehanna SES a TIP set consists of 24 measurements at each ofthe 43 radial locations in the core for a total of 1032 measurements. In eachof the comparisons presented in this section, all radial TIP locations and allaxial elevations have been included.

For the nodal comparisons, the difference between calculated and measured dataI

is determined as:

where

e =ER -Tk,m k,m k,m

ER = the calculated TIP response for axial elevation, k, and radiallocation, m,

Tk = the measured TIP response for axial elevation, k, and radiallocation, m.

The Root Mean Square (RMS) of the differences for each radial TIP location iscalculated as:

K2

BNSZ'k,

m K-1

where

K = the number of axial TIP measurements (i.e., 24) at a radial TIPlocation.

- 61

Page 83: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

The relative RMS of the differences for each TIP set is calculated as:

RMSnod

M

Q RMS 100

where

M = the number of radial TIP locations (i.e., 43 for Susquehanna SES).

For the radial comparisons, a similar RMS is calculated. First, thecalculated and measured individual TIP readings are axially averaged as

follows:

ERm

Tm

QER /K

K

QT /K

where

ER = the average of the calculated TIP responses at a given radiallocation, m,

T = the average of the measured TIP responses at a given radialm location, m;

The difference between the calculated and measured radial TIP response inpercent is:

(ER - T )e

m m x 100m

T

The RMS of the differences for all TIPs for a given TIP set is calculated as:

Z.'MS

radial M-1

An estimate of the TIP measurement uncertainty can be determined bycalculating the nodal and radial TIP response asymmetries. During A-sequences

and all-rods-out core configurations, the control rod pattern is eighth-core

- 62-

Page 84: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

mirror symmetric. In addition, the fuel loading patterns for all of the

Susquehanna SES cycles have been designed to be eighth-core symmetric. Under

these conditions, a line of symmetry exists along the TIP locations as shown

in Figure 3.2.8. For the TIPs not located directly on this symmetry line,there will be a symmetric TIP having nearly the same neutron flux conditions.These symmetric TIP pairs should give the same measurements except forexposure asymmetries which can add approximately 1% nodal asymmetry.

'

To calculate the nodal asymmetry, the nodal difference for each symmetric TIP

pair, n, is calculated as:

where

e =T -Tk,n k,ml k,m2

Tk and T = the six-inch detector measurements at axial location, k,k,ml k,m2and symmetric TIP locations ml and m2.

The RNS of the nodal differences in percent is:

ASYn K-1

100

12x (Tl+T2ml m2

where

T and T = the average measured TIP response for symmetric TIPml m2 locations ml and m2.

The average nodal asymmetry is calculated as the arithmetic average of thesymmetric pair asymmetries:

ASYnod

N

Q ASY

N

where

N = the number of symmetric TIP pairs (i.e., 19 for Susquehanna SES).

- 63

Page 85: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

\

The radial TIP response asymmetry is calculated using the relative differencbetween the a'xially-averaged TIP measurements for each symmetric pair, n.This difference is calculated as:

Dn

T - Tml m2

2 (Tl+T )

x 100

The mean absolute asymmetry is calculated as:

The results of the TIP response comparisons separated by unit and cycle arereported in Tables 3.2.8 through 3.2.11. These include comparisons to allavailable steady state TIP sets. No TIP data have been excluded from thecomparison. An overall summary of the results from the comparisons is givenin Table 3.2.12. A summary of the asymmetries averaged by unit and cycle isgiven in Table 3.2.13 which shows the nodal and radial asymmetries for UnitCycle 1 are approximately 2% worse than the asymmetries for Unit 1 Cycle 1.This larger TIP response asymmetry indicates larger measurement uncertaintyfor Unit 2 Cycle 1 and also explains why the TIP response comparisons for Unit2 Cycle 1 tend to be worse than for Unit 1 Cycle 1 even though the coreloadings were identical'.

The nodal results from the TIP response comparisons are also displayed versuscore average exposure in Figure 3.2.9a. No definite trends with exposure areevident. When the data is displayed versus fraction of cycle length as inFigure 3.2.9b, a trend is apparent. The results in the middle of the cycletend to be worse than at the beginning of the cycle or end of full power. Forthe end-of-cycle power coastdown, the relative RMS from the TIP responsecomparisons increases. This is expected because core operating parametermeasurement uncertainties increase for lower power conditions. In addition,the SIMULATE-E model is developed primarily based on full power operatingconditions. When the cross section tables are developed, dependencies areincluded to correct for Doppler and instantaneous xelative moderator density.

— 64-

Page 86: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

The uncertainties in these corrections increase as conditions deviate from

~

~

full power. Therefore, the corresponding RMS from the TIP response

comparisons will also increase. The results even for the end of cycle power

coastdown comparisons are still good. The Unit 1 end of Cycle 1 RMS was justover 6% at approximately 81% of rated power, and the Unit 2 end of Cycle 1 RMS

was less than 8% at approximately 71% of rated power. Several of thecomparisons for the middle and end of Unit 2 Cycle 1 exhibit approximately 8%

RMS which is larger than expected. During these TIP measurements, there were

suspected problems with some of the TIP machines; this is supported by thelarger nodal asymmetries experienced for these TIP sets. Overall, the resultsfrom the nodal TIP response comparisons are quite good with an average RMS of5.75%.

Graphical results of the TIP response comparisons are included for each unitand cycle. Due to the large number of TIP sets and TIP locations within a TIP

set, figures of TIP response comparisons are presented for beginning, middle,and end of cycle. For each exposure point, core average axial, radial, and

four individual TIP response comparisons are included. The individual TIP

~ ~ ~

~

response comparisons in the figures were selected along a line from the core

periphery to the center as shown in Figure 3.2.8. The same four TIP locationsare always shown. These comparisons are shown in Figures 3.2.10 throughFigure 3.2.42.

3.2.4 Core Monitoring S stem Com arisons

The ability of SIMULATE-E to accurately calculate power distributions isdemonstrated in Sections 3.2.3, 3.3.3, and 3.3.4. The purpose of this sectionis to provide a comparison of the SIMULATE-E calculated power and

flow'istributionsto those of the on-line Core Monitoring Systems (CMS). Fouraxial power comparisons and three bundle flow comparisons are presented. The

data were taken from one point in the Susquehanna SES Unit 1 Cycles 1, 2, and

3, and Unit 2 Cycle 2. This selection provides a good mix regarding thermalhydraulic and neutronic differences in design. Although these comparisons do

not represent a validation of the SIMULATE-E models, they demonstrateconsistency with the systems used to monitor the core. The CMS for Cycle 1 ofboth units is the General Electric Company Process Computer P1 program; for

— 65

Page 87: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

the reload cycles of both units, the. CMS is the ANF (formerly Exxon Nuclear

Company) POWERPLEX CMS.

Figures 3.2.43 through 3.2.46 show the core average axial power distributioncomparisons. These figures show good agreement and indicate consistencybetween the independent core analysis methods for axial power distributiondetermination.

Figures 3.2.47 through 3.2.49 show the core flow distribution comparisons.These figures show excellent agreement between the SIMULATE-E and CMS

calculated bundle flows for the three comparisons. The effects of peripheraland central orificing for the core combinations of GE 8x8 and Exxon 8x8, GE

Sx8 and Exxon 9x9, and all GE Sx8 are accurately modeled.

-66-

Page 88: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 2 1

MEASURED,CORE OPERATING PARAMETERSFOR SIMULATE-E CORE REACTIVITY C2LLCULATIONS

Hot Core ating Condition

Core Thermal Power

Total Core Plow

Core Inlet SubcoolingI

Core Pressure

Control Rod Pattern

Cold Core Condition

Core Moderator Temperature

Reactor Period

Control Rod Pattern

67

Page 89: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 2 2

SUMMARY OF THE SUSQUEHANNA SESBENCHMARKING DATA BASE

Unit a cleNumber of

TIP C arisonsNumber of

Core CriticalsNumber of ColdCore Criticals

U1C1 31 87

U1C2 13 47

U1C3 23 10

U2C1 32 97 13*

U2C2 None

All 82 257 39

*Includes three local criticals.

-68-

Page 90: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.3EHAMA SES HOT CRITICAL COR FFEC I DATA

""——-"-—-—-"-«————————OCT<i CYCLE=l

CASE

1R3456789

10ll121314151617181920Rl2223

25262728R93031323334353637383940

CYCLEEXPOSURE(GHO/HTU)

0.2210.8361.4901.5961,7361.7581.7991.9082.0702.7062.9062.9753.1163.3673.5173.6333.7763.8363.9184.0364.1934.3014.5064.517 ~

5.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723

CORE AVERAGEEXPOSURE( GHD/HTU )

0.2210'.8361.4901.5961.7361.7581.7991.9082.0702.7062.906R.9753.1163.3673.5173.6333.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723

POHERI i%4TH )

1432325032803278329132963291329332933281328932913291329232893292329032933298329032903296328832893290328832813294329132943295328732933289328632883265328632833290

PERCENTPOHERIZ)4399

100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100

99100100100

TOTAL COREFLON(%)

5498

100,88979899989794989796989896969598979698969799999798999999999998969896999898

SUS-COOLING

( STU/LBH )

23.8R3.723.623.624.324.2R3.824.0R4.225.024.2

'24.724.224.224.524.624.S24.024.3-24.524.224.5

23,823.9,24.324 '23.823.7R3.923.8R3.7R4. 124.323.924.323.824.124.0

DONEPRESSURE

(PSIA)

9741001100510021001100110011000

9941000

999999999

1004100210021001100310001003100210031003

— 1004100510051002100210021002100210021001100110001001

999999999999

CONTROL RODDENSITY

l%)

20.412.613. 913.614.014. 114. 114.114.114.815.015.015.015. 915. 915.915.915.916 '16.016.016.116.116.117.617. 618.017. 917. 917.817.817.817.016.716.416.416.316.315.015.0

CALCULATEDCORE

K-EFFECTIVE

0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580 '90610.990800.991000 '91160.991380.991630.991760.992540.9924R0.992190.992670.992940.993500.993580.993670 '93620.993620.994300. 994370.994540.994630.994600.99460

Page 91: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.3 lCONTINUE0 )

SUQQEHAWA SES HOT CRITICAL CORE K-EFFECTIVE OATA

UNIT"-1 CYCLE-"1

CASE

414243

454647484950515253545556575859606162636465666768697071727374757677787980

CYCLEEXPOSURElGHD/HTU)

6.8937.0007.1557.2357.3657.6387.6707.8407.8998.0138.1648.308S.3418.4818.5188.5878.6028.6588.9688.9929.1169.2879.7969.9099.979

10.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010;82810.93311.02211.083

CORE AVERAGEEXPOSURElGHD/NU)

6.8937.0007.1557.2357.3657.6387.6707.8407.8998.013S.1648.3088.3418.4818.5188.5878.6028.6588.9688.9929.1169.2879.7969.9099.979

10.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02R11.083

POHERI CATH)

328232853291327632853273328S32843288328933013290329332883286328632843287328332833287328532693R7932843288328232783281328732853293329432903291328432353202311R3060

PERCENTPOHERNl100100100

99100

99100100100100100100100100100100100100100100100100

99100100100100100100100100100100100100100

98979493

TOTAL COREFLOHl%)

96999794969596979694949796969899999998989996999699939496979899939597

100100100100100100

SUB-COOLING

(BTU/LBN)

24.4R3.7R4.525. 1-24.524.7R4.7R4.324.724.924.824.2R4.5R4.424.023.5R3.523o724.424.423.724.323.6

23.725.5R5.024.424.3R4. 123.8R5.525.0R4.423.623.623.323.122.6R2.2

OOHEPRESSURE

{PSIA)

998998

100810071006

993993992992992987991991990990990990991

10051005

993990

100R1002100210021002100110011002100110021002100110011001

999999996993

CONmOL RODOENSITY

(%]

14.614.614.514.714.313.013.012.612.412.011.7ll 411.310.410.410.410.410.R8.68.68.27.55.44.64.62.72.72.42.42.4R.31.10.00.00.00.00.00.00.00.0

CALCULATESCORE

K-EFFECTIVE

0.994720.995160.994710 '93960.994900.994100. 994110. 994940.994900.995020.994840.995370.995360.995440.995500. 995610.995530.995500.996140. 995910.995690.995520.996280.996500.996650.996960.997080.997120.997070.996950.997000.996850.997240.9973R0.997520.997460.997450.996750.997130.99712

Page 92: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.3 )C

SUSQUEHA)WA SES HOT CRITICAL CO FFECTIVE DATA

UNIT=1 CYCLE=1

CASE

81828384858687

CYCLEEXPOSURE1 GH0/lllUl11.15311.21711.25911.332ll 46411.54211.617

CORE AVERAGEEXPOSURE( GHD/Nll)

11 '5311.21711.25911.33211.46411.54211.617

POHER(HNTH)

2991294328972834277627142669

PERCENTPOHERi/ l

91898886848281

TOTAL COREFLOH(%)

100100100

999999

100

SUB-COOLING

lBTlh LBH)

21:821.621.321.020.820.620.6

DONEPRESSURE

(PSIA)

992990988986987992

1014

CONTROL RODDENSITY

'%)

0.00.00.00.00.00.00.0

CALCULATEDCORE

K-EFFECTIVE

0. 997490. 997420.997610.997700.997180,997460.99806

Page 93: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

4I MQLLI I

d CO Olcl 4h MNOINCOH CHIO N4 H Md thh MNHNO N0 HL4 Md'CO44H CHH tOH0COIIINNNMNCJHLCl04CODCHOMNHlNMNNHlHOCHONCOHCothN0h 0 OH444H H H h H H H H H 44'H H hhh H h H h H h 44444444444 h hCH CH CHCH CHCH MMMMCHCH CHCHCH CH CHCH CH CH CHCH CHCH CHCH CHCH CHCH CHCH CHCH 0 CH

CATCH

CHCHCHCH CHCH CHCH CHCH CHCH CHCH CHCH CHCH WCH CHCH CH CH CHCH CHCH CHIC CHCH CHCH CHCH CHIC CHCH CHCH

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

OOOOOOOOOOOOOOOOOO OOOOOOOO OOOO OOOOOOOOOO

40NNMHlHHHHHHOHNNNNd'44' CO COCO COCO COCO IJI0 MNNHHCO AN NN

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~d'' d'''''' d'' H H h h 4 4 4 4 4 4 4 44 4 4 H H H h H H h 4 4 d NN

4 lU CLCL'

CL

CO CO 4 4 44 NNNH0 0 HH HH HH H0 0 0 0 0 0 0 0 CH 0 CH CH CH CO H HH 0 0 0 CH~HCH CHCH CHCH 00 00 00 00 00 OOOOOOOOOO QCH OCH CH CH CHO 00 00 QCHCH CH CH CH CH CH D0 0 0 0 0 0 0 0 0 0 D 0 D 0 0 0 0 0 0 0 CH 0 CH CH CH CH0 0 0 0 0 0 CHHHHHHHHHHHHHHHHHHHHHH HHHHHH

I

4

ClW

4 IW gI2M co

g CJ

Ih gCIJ

~ gCJ

LLI IO

CCI

I oI

5I

IRIlap

od N0 Hd CON dth 4H OdCHNd0OCOCH4h h 4h00 IJICO CHCHh 0 CHoh d CON~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Icld''ld'''A Llld d Ltld'' IAd''tld''' d''''' M HLIh Md'LMMd'''INNNNNNNNNOJNOINNNNNNNNNNNNNNNN NOJNNNNNNNNN

NII

VCJ

HIII

IIJCC0

%Lac»0I

WW~CJ»Xca 5LllCLCL

d4 HIDE 40d Mhe4d'COh 0dh H 04 ltl44444hs4h CH

CATCH

CHCO CHIC CHH 4 COC LH Ih0 &IH CHf''HCH &CH &CH lh CH IH LH LH CF LH CH &CH CH CH o CH CH CH CH CH CH CH CH w CH CH CH

H

CHO 0000000000000000000000 00000000 00 0000 00CH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

CL Z H40CH N4LIL0dNHLAMNMthd'HHLHHOIH04NCH0dNCONNCHIhHIJL0H4n CO CO COO O O 0 O O O 0 O O O 0 0 O O 0 O'CO 0 O COO O O O O COO,O CO O O COO O 0NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN5 5 IhIhHLHllhthIhHlMIhHlHIIhHlHIHIHIHlthMIhHlIhIhIhHlHIHlIhththHlthHIHlHllhHlHlth

I CL»

NO(

III%6

d'N0Hd'0d'0COd'H H LJICO0N COd'IACH d54H d'MCHCOd'0 H 0 CH00H COH h Ntho COd CH4 N0 CHCO 4CO 4tH d040 4H LtlthNCO NdH Hl4 CO d'Ih 4N dill Hd Ltld'H 6 CO CH H NN th 4 H CO CH 0 NN N Lfl4 CO CO CH 0 0 NN d' h Cl 0 H H Hl HLd 0 CO CH 0

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~

CHIC CHCH CHO 00 00 00 OH HHHHHHHH NN NNNNNN thM th th IhHL MlhIhd'HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

WPWB%CJQ O0 CLG

0 CO IA4 CH0 CHLJlNCO HH COH Ih4 H4 H H IA0H NO'MCHH thCH IAOlh h Nd'IllMIhto0 4 d' LtlN CO H 4 O' IllN4 0 4 th 4 N CO H0 0 O'O 0 th CH NN 0 0 N h' H H 0 H0'NIh+ ItlH AO'HN Hld'4 0 CO CH 0 N Ih d 0 LA4 H CH 0 0 Ihd' 4 H CO 0' 0 d' 0

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~0 0 0 0 0 0 0 0 0 H HH HH H H HN NN NN NN N N Ih Ih NHl Hl Hl N Ih Nd'''d'Q

CECHOHNMg04h COCHOHNHld04h COCHOHNNd04h COCHQHNNd04hLLI

CO O'H CH CH CH CH CH O'H 0 0 0 0 0 0 0 0 0 0 H H HH HH HH HH NN N N NN NNCJ HHHHHHHHHHHHHHHHHHHHHHHHHHHH

72-

Page 94: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 '.3 (C

SUSQUEHA)tQL SES HOT CRITICAL CO FFECTIVE DATA

)NIT>l CYCLE=2

CASE

128129130131132133134

CYCLEEXPOSUREt Q(0/HTU)

4.6384.7754.8814.9535.0385.1285. 175

CORE AVERAGEEXPOSURE(GHD/HTU)

14.08214.22014.32614.39814.48414.57414.621

POWERt )9)TH )

3290328632233290328632923285

PERCENTPOWER

(%)

100100

98100100100100

TOTAL COREFLOWl%)

99100100

98959899

SUB-COOLING

(BTU/LBH)

23.923.523 '24.224.824.023.7

DONEPRESSURE

(PSIA)

1000999996999999999999

CONTROL RODDENSITY

(%)

2.21.91.92.00.20.20.2

CALCULATEDCORE

K-EFFECTIVE

0.997130.997170.997210.997260 '97180.997220.99716

Page 95: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.3 (CONTINUEO)

SUSQUEHAtt)A SES HOT CRITICAL CORE K-EFFECTIVE DATA

LNIT=I CYCLE"-3

CASE

135136137138139140141142143144145146147148149150151152

)~ 153

154155156157

CYCLEEXPOSUREt GHD/HTU)

0.1780.2860.4230.5430.7710.8670.9250.9671.0841.1801.2901.4101.4421.6021.7221.8671.9672.0632.2282.3342.4312.5672.782

CORE AVERAGEEXPOSUREtGHD/HTU)

8.1608.2688.4058.5258.7538.8498.9078.9499.0669.1629.2729.3929.4249.5849.7049.8499.949

10.04510.21010.31610 41310.54910.764

POHERIHHTH)

32943290328832933292329232933288329132883291329132923292329232933287329332933292328932943295

PERCENTPOHER

l%)

100100100100100100100100100100100100100100100100100100100100100100100

TOTAL COREFLOH(%)

9798989795979998959496

94

949393989697969496

SUBCOOLING

( BTU/LBH)

24.424.124.224.424.924.323.824.225.125.424.825.225.325.425.325.525.524.124. 624.524.825.224.8

OOHEPRESSURE

(PSIA)

10021001100010001001100010001000100410031003100310031002100210021001100210011001100110011000

CONTROL RODDENSITY

(%)

7.77.77.77o77.88.08.48.47.77.78.08.0e.o8.18.28.38.49.89'.e9.99.99.9

10.7

CALCULATEDCORE

K-EFFECTIVE

0.993680.993770.993740.993780.993020.993130.993070.992860.992850 '92830.992700.992720.992720.992580.992520.992510.992560.993150.993310.993240.993400.993430+99344

Page 96: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.R.3 (C

SUSQUEHANNA SES HOT CRITICAL COR FFECTIVE DATA

———-"———NIT<2 CYCLE=1

CASE

15815916016116216316416'516616716816917017117R17317417517617717817918018118218318418518618718S189190191192193194195196197

CYCLEEXPORIRE)GHO/HTU)

0. 1310.3870.4870.7590.9761.1171.2841.4461.549l.6411. 7681.8631.9332.0042.0922.1682.263R.3912.6152.7172.7882.8682.906R.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684 '594.8694.9635.0665.1935.2495.357

CORE AVERAGEEXPOSURE( GHO/HTU)

0.1310.3870.4870.7590.976l. 117l.2841.4461.5491.6411.7681.863l.9332.004R.092R.1682.2632.3912.6152 '172.7882.8682.906R.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.R495.357

POHER(HHTH)

1278R347R3413170328232882654329032973293329232903288329332933292329332933294328832863288328932943295329032863286328532883284329032913286329132893291329232933288

PERCENTPOHER

(%)

39717196

10010081

100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100

TOTAL COREFLOH(%)

9898999893729596969796979697969694989897979696969595969394

969796959698999997

St%-COOLING

< STU/LBN )

26.818. 218.223.223.925.628.425.224.724.624 424.624.324.S24.324.724.825.224.224.224.4R4.524.624.824.7R5.124.8R4.625.425.225.2R4.524.424.524.724.724.123.823.624.3

DONEPRESSURE

(PSIA)

94797R971999

10001006

9851020100410041004100210021002100210021002100210031002100210021002100210021002

999997

10001000

999998999

1002100110011001100210011001

CONTROL RODOENSITY

l%)

Rl.B16.816.813.413.613.114. 713.R13.R13.R13.413.413.5.13.513.713.713.913.915.015.015.015.015.015.015.215.015.015.815.815.8.15.816.416.416.416.816.817. 717.817.817. 6

CALCULATEOCORE

K-EFFECTIVE

0.991060,990400.9908R0.989690. 989140.988930.9S8460.988950.988920.988990.989020.989020.989170.988920,988S50.988870.988S30.988810.988310.988760 '88920.989050.989130.989240.989350.9891R0.989700.990040.9901R0.990530.990990.991540.991850.992030.992240.992450.992800.992890.993000.99328

Page 97: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2o3 ( COt)TINJE0 )

SUSQUEHAtNA SES HOT CRITICAL CORE K-EFFECTIVE OAT

T<2 CYCLE 1 "—-"""——————-"——-"-""—""—"———-LNI

CASE

19819920020120R203204205206R07208209210Rll212213214215216217R1821922022122222322422522622722822923023123R233234235236237

CYCLEEXPOSURE( Gtl0/NLJ )

5.5235.6165.7265.8325.9356.0286.12R6.2166.3186.4946.5756.7526.8176.8936,9247. 0477. 14io7.3137,3967.5617.7027.7797.8427.9828.1008.1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.986

10.06710.192

COAE AVERAGEEXPOSUREt GHD/t)TlJ )

5.5235.6165.7265.8325.9356.0286.1RR6.2166.3186.4946.5756.7526.8176.8936.9247.0477. 1407.3137.3967,5617.7027.7797.8427.9828.1008.1788.3908.5968.7678.8808.9739.0539.2759.41R9.5399.6669.8359.986

10.06710. 192

POWER( t%lTH )

32923R90329232843291329132883286328732883294329532923294329232873287329432932671328832933289329232933283328732933288329232923295329032893293328532883290326R3284

PERCENTPOWER

t%)

10010010010010010010010010010010010010010010010010010010081

100100100100100100100100100100100100100100100100100100

99100

TOTAL COREFLOWL%)

979899999899979899989699979898979397997198969898959798959994979996999699949899

100

SUB-COOLING

IBTU/LBN )

R4.324. 123.923.824.123.924.324.023 '24.224.824.024.324.124.024.R25 424.323.829.924.124.724.124.224.924.424.124.823.7R5.124.423.824.523.824.523.625.124.023.523.6

OOHEPRESSURE

IPSZAI

1005100210021002100410041003100410031008100910091001100210021001100110011001

97810051004100410041003100310051002100310031002100310021002100210011001100210011003

CONTROL RODOENSITY

. (%)

17.617.617.617. 617.1

.17.116.816.816.816.816 416.416.116.116. 114.914.414.414.414.713.613 '13.R12.812.612.612.71R.312.08.78.78.67.47.36.36.14.54.44.43.6

CALCULATEOCORE

K-EFFECTIVE

0.993570.993620.993760.993940.993710.993830.993930. 994120.994070.994i000.993850. 994i400.994160.994360 '94290.994330.994010.994480.994560.993310.993960.993850.994180.994590. 994i430.994590.994540 '93800.994510.995010.994980 995340.995110,995010.995150.995240.995290.995250.995250 '9527

Page 98: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.3 lCONT

SUSQUEHAN SES HOT CRITICAL COR FFECTIVE DATA

-"—"—"-—lNIT-"2 CYCLE>1

CASE

238239240241242243244245246247248.249250251252253254

CYCLEEXPOSURElGHD/tlTU)

10.35110.46710.63510.67510.78910.851 .11.00711.10911.28211.33311.43611.51711.64211.82411.9l511.98412.050

CORE AVERAGEEXPOSURElGHD/HTU)

10.35110.46710.63510. 67510. 78910.85111. 00711.10911.28211.33311.43611.51711.64211.82411.91511.98412,050

POWERlHHTH)

32933290327932803288328531633085301629792858278826852575247824042350

PERCENTPOHER

l%)

100100100100100100

9694929087858278757371

TOTAL CORKFLOHl%)

97100

97939799

100100100100100100100100100100100

'UB"COOLING

lBTU/LBH)

24.323.524.225 424.223.722.822.322.322.021 421.020.419.819.118. 718.3

DONEPRESSURE

[PSZ4)

100410031002100210031002

998995

100710071006100610051001

998996994

CONTROL ROD~ DENSITY

l%)

2.92.72.20.00.00.00.00.01.71.71.71.71.73.43.43.43.4

CALCULATEDCORE

K-EFFECTIVE

0.995370.995430.996010.996130.996010.995810.996070.996220.995550.995530.996250.996530.996710.996210.996670.997070.99706

Page 99: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.3 tCONTIt4)ED)

SUSQUEHANNA SES HOT CRITICAL CORE K-E FEC I ATA

- - NITc2 CYCLEc2

CASE

255256257

CYCLEEXPOSUREtGND/NTU)

0.310OA300.583

CORE AVERAGEEXPOSUREt GHD/)tTU)

8.0038. 1238.276

PONERt NHTH)

329032923294

PERCENTPOftER(/ I

100100100

TOTAL COREFLO)tt%)

969696

SUB-COOLINQ

t 8TU/L8N )

24.4

2%A

DONEPRESSURE

[PSZA)

100010001000

CONTROL ROODENSITY

tZ)8.38.38.3

CALCULATEDCORE

K-EFFECTIVE

0.995630 '95580.99525

Page 100: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.4

SVSQVEKLNNA SES TARGET VS SIMULATE-E CALCULATEDCRITICAL CORE K-EFFECTIVE STATISTICS

Numberof Observations

MeanDifference*

StandardDeviation

Ulcl

U2C1

U1C2

U2C2

U1C3

All

87

97

47

3

23

257

0.00035

-0.00026

-0.00020

0.00186

0.00015

0.00002

0.00059

0.00050

0.00046

0.00023

,0.00032

0.00061

*Mean Difference is the average difference of the SIMULATE-E calculatedK-effective minus the target K-effective.

— 79—

Page 101: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 2 5

SUSQUEHANNA SES UNIT 2 CYCLE 2 CORE R-EFFECTIVESENSITIVITY TO MEASURED CORE OPERATING DATA UNCERTAINTIES

Initial Conditions

Core Thermal Power

Total Core Flow

Core Inlet Subcooling

Pressure

3293 MW

100x10 ibm/hr6

24 Btu/ibm

1000 psia

MeasuredParameter

Measurement Standard Deviation*(*)

Core K-effective Sensitivity(dx)

Core Thermal Power 1.8 0.00097

Total Core Flow

Coze Inlet Subcooling

Pressure

2.5

5.2

0.5

dDHS

dpres

0.00098

0.00061

0.00006

Total d + d „+ d +p f 'HS pres

1/20.00151 dK

*Source: "General Electric BWR Thermal Analysis Basis (GETAB): Data,Correlation and Design Application," NED0-10958-A, January, 1977.

-80-

Page 102: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 2 6

SUSQUEHANNA SES CALCULATED COLD XENON-FREECRITICAL CORE K-EFFECTIVES

Core AverageExposure

Case (CWD/NTU)

CycleExposure(GND/NTU)

UNIT 1 CYCLE 1

Control RodDensity

(~)

CoreTemperature

(DEG P)

CalculatedCore

K-Effective

0.0000.0000.0000.0000.0000.9581.4905.1105.185

0.0000.0000.0000.0000'.0000.9581.4905.1105.185

747474737472737474

101.8105.9122.5141.0120.0200.0186.0182.5164.0

1.000451.000270.999140.999851.000400.996980.996740.998770.99821

—- ——-«——————UNIT 1 CYCLE 2

Core AverageExposure

Case (GWD/MTU)

CycleExposure(GND/NTU)

Control RodDensity

(~)

CoreTemperature

(DEG F)

CalculatedCore

K-effective

1011121314

9.4349.4349.4349.4349.434

0.0000.0000.0000.0000.000

7371716868

'157. 1158.1180 '205.8211.1

1.005121.004981.004661.003591.00341

UNIT 1 CYCLE 3

Case

Core AverageExposure(CWO/NTU)

CycleExposure(GWO/NTU)

Control RodDensity

(*)

CoreTemperature

(DEG P)

CalculatedCore

K-effective

15161718

2222324

7.9827.9827.9827.9827.9827.9827.9828.6128.612

10.601

0.0000.0000.0000.0000.0000.0000.0000.6300.6302.619

75757574747474747474

-81-

174.2175.8190.3189.9195.4202.2206.2170.5156.3209.4

1.001101.001121.000671.000861.000671.000461.000291.001281.001710.99950

Page 103: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.6 (continued)-

SUSQUEHANNA SES C2LI~LATED COLD XENON-PREECRITICAL CORE K-EPPECTIVES

IUNIT 2 CYCLE 1

Case

2526*27*28*293031323334353637

Core AverageExposure(cwD/ma)

0.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.390

11.208

CycleExposure(cwD/mo)

0.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.390

11.208

Control, RodDensity

(4)

74989898747574737473737458

CoreTemperature

(DEG P)

111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.0

CalculatedCore

K-effective

0.998270.997060.996960.998350.99756

'.99569

0.998060.996390.997460.996880.994261.002721 '0429

UNIT 2 CYCLE 2

Case

Core AverageExposure.(cwD/mv)

CycleExposure(GwD/mv)

Control RodDensity

(~)

CoreTemperature

(DEG P)

CalculatedCore

K-effective

3839

7.693,7.693

0.0000.000

7575

133.0139.5

1.000841.00083

*Local Criticals

82—

Page 104: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 2 7

SUS UEKLNNA SES COLD MINUS HOT CRITICAL CORE K-INFECTIVE

UNIT 1 CYCLE 1

Core AverageExposure(cwo/MTU)

CycleExposure(cwo/MTU)

CoreTemperature

(DEG F)

K Kcold hotcalc calc

K Kcold hotcalc target

0.0000.0000.0000.0000.0000.9581; 4905.1105.185

0.0000.0000.0000.0000.0000.9581.4905.1105.185

101.8105.9120.0122.5141.0200.0186.0182.5164.0

0.008020.007840.007970.006710.007420.006560.007410.006120.00547

0.007650.007470.007600.006340.007050.007690.007960.006310..00567

U1C1 Average:U1C1 Standard Deviation:

0.007060.00090

0.007080.00079

Core AverageExposure(cwo/MTU)

CycleExposure(cwo/MTU)

UNIT 1 CYCLE 2

CoreTemperature

(DEG F)

K Kcold hotcalc calc

cold hotcalc target

9.4349.4349.4349.4349.434

0.0000.0000.0000.0000.000

157.1158.1180.4205.8211.1

0.008110.007970.007650.006580.00640

0.007860.007720.007400.006330.00615

UlC2 Average:U1C2 Standard Deviation:

0.007340.00080

0.007100.00080

UNIT 1 CYCLE 3-

Core AverageExposure(cwo/MTU)

CycleExposure(Mwo/MTU)

CoreTemperature

(DEG F)

Kcold hotcalc calc

K Kcold hotcalc target

7.9827.9827.9827.9827.9827.9827.9828.6128.612

10.601

0.0000.0000.0000.0000.0000.0000.0000.6300.6302.619

174.2175.8189.9190.3195.4202.2206.2156.3170.5209.4

0.006720.006740.006480.006290.006290.006080.005910.008430.008000.00610

0.006650.006670.006410.006220.00622

, 0.006010.005840.009610.009180.00766

UlC3 Average:U1C3 Standard Deviation:

0.006700.00084

0.007050.00134

83

Page 105: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.2.7 (continued)

SUS UEHANNA SES COLD MINUS HOT CRITICAL CORE K-EFFECTIVE 0UNIT 2 CYCLE 1

Core AverageExposure(MND/MTU)

CycleExposure(MND/MTU)

CoreTemperature

(DEG F)

Kcold hotcalc calc

K.-Kcold hotcalc target

0.0000.000*0.000*0.000*0.0000.0000.1580.8470.9760.9762.3918.390

11.208

0.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.390

11.208

111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.0

0.006590.005380.005280.086670.00588.0.004010.006920.006870.008120.007540.005390.008020.00819

0.005470.004260.004160.005550.004760.002890.00615'.00689

0.008200.007620.005110.007440.00782

U2C1 Average:U2C1 Standard Deviation:

0.006530.00129

0.005870.00164

UNIT 2 CYCLE 2

Core AverageExposure(MND/MTU)

CycleExposure(mm/MTU)

CoreTemperature

(DEG F)

Kcold "hotcalc calc

Kcold hotcalc target

7.6937.963

0.0000.000

133.0139.5

0.004720.00471

0.005480.00547

U2C2 Average:U2C2 Standard Deviation:

0.004720.00001

0.005470.00001

Overall Average:Overall Standard Deviation:

e

0.006710.00111

0.006590.00137

*Local Criticals

— 84-

Page 106: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.2.8

SUS UEEQWNA SES UNIT 1 CYCLE 1 TIP RESPONSE COMPARISONS

Date

12/16/8202/07/8304/04/8306/09/8308/10/8308/19/8309/13/8310/03/8310/18/8311/01/8312/01/8304/03/8404/12/8404/26/8405/24/8405/31/84o6/os/s406/25/8407/24/8408/02/8408/16/8408/24/8408/30/8409/04/8411/30/8412/13/8412/16/8412/21/84**01/10/85**02/01/85**02/08/85**

CycleExposure

(GWD/MTU)

0.2210.8361.4901.7992.7062.9063.3673.8364.1934.5175.0705.4105.6145.9186.5636.7166.8937.2357.6387.8408.1648.3418.4818.602

10.28810.58910.65310.77011.08311.46411.617

ControlRod

~Se ence

B2A2B2B2AlA1B1BlB1B1A2A2A2B2B2A1AlA1B1BlB1A2A2A2B2B2ARO

AROAROAROARO

NodalRMS

(<)

5.094.035.044.975.125.215.625.465.625.605.936.126.145.725.805.825.38

~ 5.004.754.614.534.534.574.524.734.804.684.965.936.076.03

NodalTIP

Asymmetry(~)

2.60

4.264;26

4.724.965.16

4.895.024.60

4.734.844.83

4.454.564.724.80

RadialRMS

(<)

2.781.581.701.791.621.631.711.741.911.911.811.961.85,1. 981.971.89'.881.941.851.871.692.132.142.221.911.701.671.721.731.621.76

RadialTIP

Asymmetry(~)

1.18

1.581.58

1.601.741.63

1.471.751.63

1.601.771.93

1.571.621.641.74

*Reactor conditions for this TIP set: 60% of rated flow40% of rated power

**End of cycle power coastdown data

85-

Page 107: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 2 9

SU UEfQLHNA SES UNIT 1 CYCLE 2 TIP RESPONSE COMPARISONS

Date

06/24/8507/03/8507/19/85os/os/s508/20/8509/06/8509/12/8509/27/8510/04/8510/23/8511/15/8512/12/8501/14/86

CycleExposure

(GWO/MTU)

0.2000.4060.7891.2481.5281.9312.0662.4152.5873.0393.3233.8774.638

ControlRod

~ee ence

A1A1AlBlBlBlA2A2A2A2B2A1A1

NodalRMS

(e)

4.794.894.765.785.175.976.425.585.484.555.044.754.99

NodalTIP

Asymmetry(~)

3.643.67

3.573.753.803.74

4.37

RadialRMS

(~)

2.522.723.282.862.702.752.572 ~ 7d2.722.703.093.022.64

RadialTIP

Asymmetry(4)

2.242.40

2.402.552.562.51

2.49

-. 86—

Page 108: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 2 10

SU UEMHNA UNIT SES 1 CYCLE 3 TIP RESPONSE COMPARISONS

Date

05/05/8607/03/8607/10/8608/20/8608/27/8609/10/86

CycleExposure

(CWO/MTU)

0.1780.9251.0842.0632.2282.567

ControlRod

Sequence

A1A1B1A2A2A2

NodalRMS

(.*)

5.166.065.688.128.719.03

NodalTIP

Asymmetry(*)

3.414.34

3.583.846.28

RadialRMS

(~)

2.744.142.802.822.893.75

RadialTIP

Asymmetry(*)

2.473.58

2.552.695.13

087

Page 109: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

SU UEKLNNA SES UNIT 2 CYCLE 1 TIP RESPONSE COMPARISONS

Date

07/23/8409/12/8410/08/8401/16/8502/07/8503/07/8503/20/8504/04/8504/15/8505/15/8506/10/8506/20/8508/01/8508/12/8508/20/8509/09/8510/01/8510/18/8510/28/8511/19/8512/17/8501/30/8602/19/8603/06/8603/12/8603/25/8604/04/8604/29/8605/15/8606/23/8607/11/86's/os/s6

CycleExposure

(GWO/MTU)

0.1310.3870.7591.1171.4462.0922.3912.6152.8683.3923.8824.1144.8695.0665.2495.7266.2166.5756.8177.3137.7798.5969.0539.4129.5399.835

10.06710.63511.007*11.282*11.642*12.050*

ControlRod

Seyxence

A2A2'2A2B2B2B2A1AlAlB1B1A2A2A2A2B2B2B2A1B1A2A2A2B2B2B2B2AROB2B2B2

NodalRMS

(*)

7.055.374.734.765.515.435.585.655.755.935.795.796.617.837.807.707.815.845.517.554.924.945.756.995.125.565.926.027.216.566.817.81

NodalTIP

Asymmetry(~)

5. 245.095.135.71

5.796.357.30

6.566.187.788.53

9.04

6-. 307.839.58

5.78

RadialRMS

(a)

2.822.582.302.202.582.642.682.312.582.752.442.602.762.593.823 '95.183.042.685.963.082.994.566.352.372.552.682.362.462.382.453.44

RadialTIP

Asymmetry(*)

1. 34.2. 232.182.34

2.512.872.88

2.612.233.584.03

5.96

2.865.126.76

2.91

*End of cycle power coastdown data.

88

Page 110: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 2 12

SUMMARY OP SU UEHANNA SES TIP RESPONSE COMPARISONS

Unit 6 cleNumber

of TIP Sets

AverageNodal

RMS

(~)

AverageRadial

RMS

(~)

Ulcl 31 5.24 1.86

U1C2 13 5.24 2.79

U1C3 7.13 3.19

U2C1 32 6.17 3.07

Overall Average 82 5.74 2.58

89—

Page 111: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE'.2.13

SUMMARY OP SUS UEHANNA SES TIP RESPONSE AK9%ETMES

Unit a cleNumber

of TIP sets

Average AverageNodal Radial

Asymmetry Asymmetry(~) (~)

U1C1 16 4.59 1.63

U1C2 3.79 2.45

U1C3 4.29 3.28

U2C1 16 6.76 3.28

Overall Average 44 5.22 2.55

90-

Page 112: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.01-

FIGURE 3.2.1SIMULATE-E HOT AND COLD CRITICAL

CORE K-EFFECTIVES VS CORE AVERAGE EXPOSURE

1.00.

UJ

I—C3

P.SS-I

hC

0'

0.98-

0 ''I~ 6 ~

'III.I

D

~ ~

Legend0 U1C1HOT

0 U2C1HOT

U1C2HOT

... v U2C2HOT

o U1C3HOT

~ U1C1COLD

~ U2C1COLD

U1C2COLD

v U2C2COLD

+ U1C3COLD0.97

0 1 3 4 5 6 7 8 g 10 11 12 13 14 15

CORE AVERAGE EXPOSURE (GWD/MTU)

Page 113: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.01

FIGURE 3.2.2SIMULATE-E HOT CRITICAL CORE

K-EFFECTIVE VS CORE THERMAL POWER

1.00--

LLII

OUJLLLL 0.99-

I

UJCC0O

0.98-

....... Legend

."""0 U1C1

-" p U2C1

U1C2

v U2C2

o UlC3

Ipp: Q o: oo:pp

t 0

:0

9750 60 66 70 76

CORE THERMAL80 85 90

ER (% OF RATED)96 100

Page 114: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.01-

FIGURE 3.2.3SIMULATE-E HOT CRITICAL CORE

K-EFFECTIVE VS TOTAL CORE FLOW

1.00

ILl

I—O

LL 0.99-I

UJCC0O

0.88

'0". i

........ Legend ...:;..........'.'.

'----o U1C1

U2C1

U1C2

U2C2-

U1C5

0C 1

CI

0

~ ~ l

0.97 .

40 60 80 70 80

TOTAL CORE FLOW (% OF RATED)90 100

Page 115: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE S.2.4SIMULATE-E HOT CRITICAL CORE

K-EFFECTIVE VS CORE INLET SUBCOOLING

1.00

UJ

I—O

0.99 ~

I

0O .. Legend

pp:p '':00..:...""p.."--.--9--.0....-:-'g....p,.....

}

OB:~-Cry>

}~ ~ ~

p

-.—o U1C1

0.98- "" p U2C1

U1C2

U2C2

o U1C3

5 16 17 18 19 20 21 22 24 25 N6 27 28 29 30

CORE INLET SUBC LING (BTU/LBM)

Page 116: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.01

FIGURE 3.2.5SIMULATE-E HOT GRITIGAL GORE

K-EFFECTIVE VS DOME PRESSURE

1.00-

IJJ

IJJ

0.99

UJ

OC3

'

~

..... Legend

0:,'L''Op

0'g Oo~~~O"

~ GG'"--"--

g.0

.Q .......;.

O

-"- 0 U1C1

0.98- " " o U2C1

U1C2

U2C2

U1C3

0.97-940 950 960 970 980 990 1000

DOME PRESSURE (PSIA)1010 1020 1030

Page 117: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.01

FIGURE 3.2.6SIMULATE-E HOT CRITICAL CORE

K-EFFECTIVE VS CRITICAL CONTROL ROD DENSITY

1.00

LLI0I-OUJUU 0.99-

I

UJCL00

0.98-

o . n:0; IZI 0: IE: ~:P:Q::R:cD~ ~e." -..'- ~.: ".a -IIo'- lf..""4tgg.

.....,:....... Legend~ "-" " "-o U1C1

""':"""0 U2C1

U1C2

U2C2

o U1C3~ ~ rr

6 8 10 2 14 16

CRITICAL CONTROL OD DENSITY (%)

I l

18 20 -

Page 118: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.7TARGET AND SIMULATE-E CALCULATED HOT CRITICAL CORE

K-EFFECTIVES VS CORE AVERAGE EXPOSURE1.01-

I ' J'

1.00- '1C2 TARGET:-."'.-.-.:-"--'-"-'"-..'"-I ~ ~ ~ ~

LLJ

I—UUJLLu 0.99-

I

UJIX0O

-.:.--'---'-". U1C1 and U2C1 TARGET:---.:---'"-

0'--'--:---'----:-"-: -'--'..--.-:. U2C2 TARGET:--0

r( 'L J'

UIC3 TARGET:

::, -.:', -Legend

0.98- \ I 1 I 1 ~ 1 P l p U2C1

U1C2~ \ 0' 1 c' '1 c

2C2U

:. o U1C3~ ~

0.971 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CORE AVERAGE EXPOSURE (GWD/MTU)

Page 119: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.8

~ SUSQUEHANNA SES UNITS 1 AND 2 CORETIP LOCATIONS

5957555351

49

47

454341

3937

353331 +29

27

25

2321

LINE OF TIPSYMMETRY

Y140 42444648505254565821416 8 20 2 24 26 283032343638

Location For IndividualTIP Response Comparisons

000204060810 1 1 2X

Control Rod Location

~ Traversing In-core Probe Location

Page 120: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGuRE 3.2.9

SUSQUEHANNA SES RELATIVE NODAL RMSOF TIP RESPONSE COMPARISONS

10FIGURE 3.2.9a

U)

lX

Cl0LlJ

~l-

IJJlXCLI-

8

8

4

2

CD p:000

0 0~'.~ "0.~ ".O~..:""g)" -"-..'"-'--.<>~----- 0 pm&> '.

0 OO:. O

oo'. o00

LegendO U1C1

U1C2

o U1C3

0 U2C1

00 2 4 . 8 8 10 12 14

CORE AVERAGE EXPOSURE (GWO/MTU)16

10FIGURE 3.2.9b

aO

0l~

8

8

4

2

O U1C1

U1C2

U1C3

0 U2C1

-lO2 bll

Q LJ

lZ <

i ~ i. ~ ~ 4- KO~~oZ~4J

4

:Q3 0 0

0; 0

~Q0 0 Q O OO 0 0,

0 p<> gp< o ppo o.0:~capo ~ 0oo . oo :4 06d'0 PP: .'~ 'R3p ~ ',"4

~ " ".Q.Legend

I I

0.2 0.4 0.6FRACTION OF CYCLE LENGTH

99-

0.8

Page 121: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.2.10

SUSQUEHANNA SES UNIT 1 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON1.490 t3WD/MTU CYCLE EXPOSURE

,180

140

120I-zD

100LLlzz

eoVCQ

Q.

eo

+ +"" o "o."'og + +

00+

0+ 0

+(p

'8"+

40

20

00 1 2 3 4 5 6 7 8 9 10 1112131415161718192021222324

CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

— 100—

Page 122: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FlGURE 3.2.11

SUSQUEHANNA SES UNIT '1 CYCLE 1

RADIALTIP RESPONSE COMPARISONS1.490 GWD/MTU CYCLE EXPOSURE

61

59

57

55

53

-1.58 0.73 1.56 -2.14

51

49

47

454341

39

35333l29

37

0.53+ +++

0.89

-1.65

.07

-1.23

-3.54

-0 53 2.4

-0.55

-1.91

1 ~ 15

0.89

-0.15

-0.20

27

252321

3.89 16 -1. 63 —2.46 -0.24 -0.81 1.6

19—17

15

13

l

1.7 7++

1.20 -3.47 -0.13 0. 03 -0.81

11

9

7

5

3

1

-0.24 -0 57

I

000204060810 12 14 16X

-1.12 2.000.33

+I I I

I I I I I I I II I

18 2 0 22 24 26 28303234363840 4244 46485052 54565860

Diff = [(Calo - Meas)/Core Avg TiP Response] X 100%

101-

Page 123: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FlGURE 3.2.12

SUSQUEHANNA SES UNIT 1 CYCLE 1

INDIVIDUALTIP RESPONSE COMPARISONS4.490 GWD/MTU CYCLE EXPOSURE

MONITOR LOCATION d!Ldd MONITOR LOCAllON 4d,dd

I II!

4Iet

IO

00

~ 00

40

-0 q J.

I'i

,,oh

I

—.L

r ~O

O

0

foit

lnI

ee

o !

n L

Lo0 8 0 0 o Ii'Leo,

W + 00t

0

I 0

I 0,0 0 ~ 0 T' ~ 1011101 ~ 111010IT101etetlttttelCORK AXIALNODE

+ NUAOU000 Tlr 000000000 OAleeleATUO mr AterON00~ ooNTtoe too ro4110N

0 I ~ 0 ~ 0 ~ T ~ ~ 10 h Ie Ie TI Ie I~ IT I~ I~CORK AXIALHOOt

~ NCAUUNUO Tlr 000rooet0 OAlOUIATU0mr 0etrooet~ ooNTNCL 000 ro4hoN

MONITOR LOCATION $2,8$

100 100

10 ~ nt

I

ee

o«c

d0 o 4 «0

TIO

«a j—

0 «

ee

0o

I obok~ 0

C-

I0

jI

0

Ie

« 0I

I I0

ee~ et< « I

1

0 I t 0 ~ 0 0 1 0 ~ 1011 1110 4 1010 11 leleeeeleteeelCORK AXIAI.NODE

~ NKAOUIICOTlr llterONeto OAIOUIATCOhr lieerokee~ ooNTlloe too roefhoN

00 I 0 0 ~ 0 ~ T ~ ~ 10 11 Ie I~ II I~ I~ IT I~ I~

CORK AXIALNODE« lltAUUIltOhr teerONtto OAIOUIATCOhr SeerONea~ ooNTllol 00D roelTICN

102

Page 124: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.2.13

SUSQUEHANNA SES UNIT 1 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON6.918 GWD/MTU CYCLE EXPOSURE

160

140

120I-

100lll2!Z

80

Co

60

0+

Q': ""0

~ +

0

40

20

0I

I ~

0 1 2 3 4 5 6 7 8 9 10 1112131415161718192021222324CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

103

Page 125: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE', 3,!2.14

SUSQUEHANNA SES UNIT 1 CYCLE 1

RADIALTIP RESPONSE COMPARISONS5.918 GWD/MTU CYCLE EXPOSURE

61

5957

55

53

-2.75 -0.93 1.22 -5.29

51

49

4745

0.07 -0.23 -0 .70 -0 .76 1.67 0.5

4341

3937

++++ 2.56 2.24 0.6

t+++ 40

353331

29

I

2.3 79 2.2 -0 .01 1.24 0.5 0

27

2523

++++ 0.91 -1.40 -1.91 -1.36 -0 .14

a I

19

17

15

2.0 9I

2.4

+-2.67 -0.22 -0.86 -1.52

I

9— -0.76.17-1.78 -2.95~ 26

l

'v'i I !! I I

000204060810 12 14 16 18 20 22 24 26 28303234363840 4244 464850 52545658X

Diff = [(Cele - Mess)/Core Avg TIP Response] X 100%- 104-

Page 126: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.15

SUSQUEHANNA SES UNIT 1 CYCLE 1

INDIVIDUALTIP RESPONSE COMPARISONS6.918 GWD/MTU CYCLE EXPOSURE

MONITOR LOCATION 4438

1st

1st

II~

I

~ I

I ~

o 0I 0

+ o0

+

~0

ls

0

~'' Ise

I5 00 ——-r

I

~ 00

IIII

tLI I

I

r

0o

I I

~ I S. 0 ~ ~ T ~ 10 11 lt 10 ll 10 10 1T IS It et Sl SS tt slCO

+ eeASOOMmr essroeM0 OAIouIAlsomr eseroeM~ coNeos eoo roslmoe

~ I 0 ~ 0 ~ ~ 0 ~ ~ 10111010 11 1010 \T IS It tt SIISSSSICOllK AXIALNOOK

o INAeeeeo mr 0 Streets0 CAIoolAlsomr essroeM~ coNsol eoo rosimoe

MONITOR LOCATION $2,$$

100

~0

00

00 o

> 0 ~

1st

IZ00

0 0o

T

II

O f0A 0.

St

I I

I ~ 0 0 0 ~ T ~ 0 10 11 lt Il ll 10 10 1T 1 ~ lt M Sl SS lt SICOhK AXIALNOOK

+ lleAsielse mr essroese0 OAloslATso Tlr eseroese~ ooNllol100 rosimoe

0 I 0 0 I 0 ~ 1 ~ ~ 10111SISIO101 ~ \T I~ I~ SSIIISSSSICOhK AXIALNOOK

o llfASSOSO mr eleroeMo CAOIIIIAISOTlr IISSroeM~ oosTOCL eoo rostnoe

105—

Page 127: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.2.18

SUSQUEHANNA SES UNIT 1 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON15.617 GWDIMTU CYCLE EXPOSURE

180

140

120

2!

100IIIKKV 8O

CO

0

eo

40 .........Q.

0+

0+

0A y + 1 ~ ~

0

P

0 0 00 0

0

~ ~ ~

2O

00 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

CORE AXIALNODE

+ MEASURED TIP RESPONSEo CALCULATEDTIP RESPONSE

106-

Page 128: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.17

SUSQUEHANNA SES UNIT 1 CYCLE 1

RADIALTIP RESPONSE COMPARISONS11.617 GWD/MTU CYCLE EXPOSURE

61

59

57

55

5351

49

47

45

-0.47

-1.89

.18

-2.88

0.21

0.84

++++

-2.01

++++

+++++

4341

39

353331

29

27

252321

19

17

15

13

"-1.86

-2.60

0.57

1.0

2.07

-0. 39

08

2.0

-0.88

-0.24

++++

4.37

3.6

.70

0.79

-0.38

++++

3.42

-1.08

++++

1.32

-2.45

-0.80

-0.36

-0.10

-0.08

0.24

57 -2.45 -0.28 -0 88

000204060810 12 14 f6 18 2022 24262830323436384042444648505254565860X

Diff= [(Calc - Mess)/Core Avg TIP Response] X 100%

107—

Page 129: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.18

SUSQUEHANNA SES UNIT 1 CYCLE 1

INDIVIDUALTIP RESPONSE COMPARISONS11.617 GWD/MTU CYCI E EXPOSURE

MONTTOR LOCATION 50,SS MONITOR LOCATION 4S,SS

lle

e +

o T+

~4 O

40 0

0S 0 0 +

0Q+-- Zg lN

~4

~e

0

0

~e0e

~ 1 t ~ 0 ~ ~ T ~ ~ Ie ll It Ie li 'll Ie IT le Ie N tl tttt elCO leK AXIALNOOK

0 letAWIMITle «te«O«eeo OAICCIATtoTIr«ecto«ee~ co«IlloL 100 eoelllole

'1 1 1 0 ~ ~ 1 ~ 1 Iellltlele leeellle

CORK AXIALNOOK

0 IeteweeoTIe ««ceo«ee0 OAIOIAATteTle «tete«ee~ COIII«OL100 eoelIION

MOMTOR LOCATION 40,SS MOIKTOR LOCATION SS,SS

Ile lle

IN lee

'Iee

Zz

ee

0

0 +

0o 0+

44

0 4 ~ o

g1N

~4

el

0

0

00 +

0+

0

e t

0T

0

~ I 1 t 0 1 ~ T ~ . ~ Ie 11 Itle II Ie Ie lf llletellNteteCORK AXIALNOOK

0 ILAW«tOTlf tleeo«Wo CAIul«AICOTlr«Cero«et~ CO«1«OL «OO eeeIIIO«

1 t ~ ~ ~ ~ 1 1 ~ Ie

+ IttANltte TIA 1e tee«tto CAIAWIATteTle «ecto«et~ OO«T«OL «OO eetlllo«

II It It Ie Ie le IT I~ ItANALNOOK

108—

Page 130: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

ao

FIGURE 3.2.19

SUSQUEHANNA SES UNIT 1 CYCLE 2

AVERAGE AXIALTIP RESPONSE COMPARISON0.200 GWD/MTU CYCLE EXPOSURE

80

?0

60I-RD

50

R40

CO

0

~ f ~ ~ ~ ~ ~ ~ ~ ~ $ ~ ~ ~ ~ ~

so '

20

10

00 1 2 3 4 6 6 7 8 9 10 11 1213 14 1616 17 18 192021222324

CORE AXIALNODE+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

109—

Page 131: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.20

SUSQUEHANNA SES UNIT 1 CYCLE 2RADIALTIP RESPONSE COMPARISONS

0.200 GWDrMTU CYCLE EXPOSURE

61

59

5755

5351

4947

45

-1.86

-2.65

-1.05

-2.51

0.

4.50

2 0 27

-3.40

0.51 -2 20

4341

3937

353331

29

27

252321

1.53

2.88

-2.54

0.63

-0.30

2.4

-0.33

90

.31

++++

-1.58

15

65

2.60

4.9

-0.82

-0.92

0.5

-1.27

6.5

4.4

15

1 3

9

7i

19I

I

17 -0.13

+1.12

41I

-2.

3.76

97

+0 ,4

++++

-0.77

-5.06

-0. 20

3I

YI I I I

+ +00020<060810 12 14 16 18 20 22 24 26 2830323436384042 44 464850 52 545658X

Diff= [(Calc - Mess)/Core Avg TIP Response] X 100%- 110-

Page 132: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.21

SUSQUEHANNA SES UNIT 1 CYCLE 2INDIVIDUALTIP RESPONSE COMPARISONS

0.200 GWD/MTU CYCLE EXPOSURE

MONITOA LOCATION N,E3 MDNTDALoclcIDN eel

8 o0

00

'0 0

5ee

Q ee

~ ee

0

~ peg eeoc

T—r

~ 1 t ~ 0 ~ ~ t ~ ~ le 11 Tt Te Tt Ie Te Tt Ie lt N tl N N NCOllE AXIALNODE

0 lttleetae Tlt atteoate0 otlooIATte TID taetoeee~ ooNTDoL 4 oo toellloo

~ I t ~ ' e t ~ e Te 11 Tt Tt It Ie Te lf le 1 ~ N tl N N NCO AE ATDALNODE

0 wwevaae TID taetowea0 OAIOOTAfeeTltaaetotee4 OODTDOL DOO toeITIOD

MONITON LOCATION 408$ MONITON LOCATION Et.iS

~ 4

ee

~T+go) +

-$~-4~.S ~O-P——~ 0

~ e0

~ 1 ~ ~ ~ e ~ ~ 0 ~ le 11 lt le ll le Te lt lt lt N tl tt N tiCOILE ATDALNODE

+ lteltellaetlt tateOICeeo OAIDIDAIDDTlt DaNODte

I a ~ ~ ~ t ~ e le ll lt Ia It le Ie It It It N tl te N SICOIIE AXIALNODE

+ Daeeoaaellt taetoteao OAIOVIeleDTItaaetoata~ ooNTtoL Doo toeoleo

Page 133: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

90

FIGURE 3.2.22

SUSQUEHANNA SES UNIT 1 CYCLE 2

AVERAGE AXIALTIP RESPONSE COMPARISON2.587 GWD/MTU CYCLE EXPOSURE

BO

70

CDBO

I-RD

60LURz

40CD

Q.I 30

~ l + +0

p

p

p

1

.0+

20

10

0 I

0 1 2 3 4 6 6 7 8 8 10 1112131416161718182021222324CORE, AXIALNODE

+ MEASURED TIP RESPONSEp CALCULATEDTIP RESPONSE

— 112—

Page 134: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.23

SUSQUEHANNA SES UNIT 1 CYCLE 2RADIALTIP RESPONSE COMPARISONS

2.687 GWD/MTU CYCLE EXPOSURE

61

59575553

-3.57 -1.22 5.71 -1.33

51

4947

45

-2.61 1.5J

I

3J

++1.34 0.5 0.65 .75

43 +41

39 +3.19 1.29 0.0 -2.92 -1.05 -0.33

37

35 i33

+++++ 0.8 2I 39 -3.13 -2.40 0.87

~5.4

29

27

2523 +21

19 +

-0.48 -1.85 -0 02 -2.01 5.9 -0.99+ +

5.11

17

15

13

05 2.6 -1.73 4.3 -1.41 -0 ~ 16 79

11

9

75-3'1

++++ -1.89 15 0.7

I

00 020406 08 10 12 14 16 18 20 22 24 26 28 30 32 343638 40 42 44 464850 52 54 56 58 60e x

Diff=.[(Calc - Measj/Core Avg TIP Response] X 100%

113

Page 135: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.24

SUSQUEHANNA SES UNIT 1 CYCLE 2INDIVIDUALTIP RESPONSE COMPARISONS

2.587 GWD/MTU CYCLE EXPOSURE

MOMTOR LOCAIlON es,SK

4s' 00

0

0

~0

0

i I! I I

I I II I

Ko4 I I i0 I

II I I ~7 T t'

I oI I II-

I I II I II I I

I) I

I 0 ~ ~ ~ t ~ I~ 11 lt Ie la 10 Ie If 10 le ee tl tt ee erCORK AXIAI.NOOS

0 aaeeeeeore stetoNes0 AllOCSAfee TltS~~ Oosfeol sos toeffloN

~ ~ ~ ' ~ ~ ~ 1 ~ ~ 10 11 lt Ie Ir Ie Ie lf aa Ie eeCORK AXIALNODS

o aaeeeasa litNeetoset0 Olaslstfse litseetoses~ OONTNOL NOO toelTION

QONITOR LOCAllON SK,!K

0 0 fl

0o 0

o t

3ee

g re 'J J

~ I t 0 ~ 0 0 1 0 I~ Ia le le Ia Tele If Ie IeeeeleeeeeaCORK AIAINOOK

0 NIADINICDlitSeetsset0 OAIJIIAtfeeTlt SeetONIS~ oosfeoL sos toefNDN

„~~ I e e ~ ~ ~ f ~ ~ 10 ll Ie Ie Ir le I~ lf 11 Ie ae

COIIKNQALNODS+ wsAelascD litIleetoses4 oAIDIsacfeDTItseetoses~ ODNflleLNOD toefllON

- 114—

Page 136: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

90

FIGURE 3.2.25

SUSQUEHANNA SES UNIT 1 CYCLE 2

AVERAGE AXIALTIP RESPONSE COMPARISON

4.638 GWD/MTU CYCLE EXPOSURE

80

70

BOI-KD

50

K40

CD

lL30

0~4

20

0

10

00 1 2 3 4 5 6 7 8 9 1011121314151B17181S2021222324

CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

115—

Page 137: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.26

SUSQUEHANNA SES UNIT 1 CYCLE 2RADIALTIP RESPONSE COMPARISONS.

4.638 GMfD/MTUCYCLE EXPOSURE

61I

5957555351

4947

45

-2.30 -0.73

-2.44

2.39

5.36

3%53

-2.44

3.68 -1.23

4341

3937

2.28 -2.36 -4. 00 -1.59 2.22 0.51

353331

29+

20 28 -1.01 -'0.++

-2.30 . 0.15++ 6.5

J6

27

2523

2% 94 .73 -2.05 -0.21 3.11 2.2JiI

6.01

1

49

17

15

13

-0.46 0.8 -0.36 0.3 0,3 2 0.4I

5

-2.10 32 -4 56

I f II I

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58X

Diff= [(Calc - Mess)/Core Avg TIP Response] X 100%- l16—

Page 138: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.27

SUSQUEHANNA SES UNIT 1 CYCLE 2INDIVIDUALTIP RESPONSE COMPARISONS

4.B38 GND/MTU CYCLE EXPOSURE

MOHIIOALOCATION dodd MOHITOA LOCATION 4d,dd

gobo0"T 00

7I

0 0 0 4+0+i''T

0 0 0+

00

~ 1 ~ 0 0 0 ~ T 0 ~ TS 11 Tt I~ li IS IS IT TS 1$ $$ tl $$ $0$ 1

COAd AXIALHOOD

~ NSASVSNI llP RSSPOIISO0 AILOVIATVOllP RCSPONSV~ CONTROL Roo POSITION

~ I $ ~ ~ ~ ~ T ~ ~ TS111$ 1 ~ II1$ 101TISISPSSTttstslC

+ NSASVRSO TIP RSSPONSS0 CATOVIAltoTIP RSSPONSt~ CONTROl ROO POSITION

MOHITOA LOCATION ~~0 ~0

TS

0

I

+ 0oooO obO0 +0

40

ss

) is~

O t

++~ 0. 0 A a~0 ~

0

0

00

$ 0

10 10 0. 'II I

I

I~ I S $ i 0 ~ P ~ 0 1$ 111$ 1$ 111$ $0111$ 1$ $ $ $1$$ $$ $1

COAS AXIALHODB0 NSA$VRSO llP RSSPCNSOo aWWuno TI~ RS$ PONSt~ OONTRCS AOO POSNION

0 \ ~ ~ ~ 0 ~ P 0 ~ IS 111111 1i 1$ 1 ~ IT I~ I~ $0111$ 1$ $1

CONK AXIALKODC+ NSASVR$0 llP RSSPONSOo CAIOVIATSOTIP RSSPONSS~ CONTROL ROO POSIT+II

117-

Page 139: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

90

FIGURE 3.2.28

SUSQUEHANNA SES UNIT 1 CYCLE 3AVERAGE AXIALTIP RESPONSE COMPARISON

D.178 GWD/MTU CYCLE EXPOSURE

80

70

BOI-K

50LLIKK

40

(iO

L30

~ +

0

0

~ i ~

20

10

00 1 2 3 4 6 6 7 8 9 101112131416161718192021222324

CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

— 118—

Page 140: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.29

SUSQUEHANNA SES UNIT 1 CYCLE 3RADIAI TIP RESPONSE COMPARISONS

0.178 GWD/MTU CYCLE EXPOSURE

61

59

57.

555351

49

47

45

4341

3937

0"31

29

27

252321—19

17

15

13

-1;48

-2.68

++++

0.62

++++

0.54

-2.08

++t+-0.28

3.8

60

-0.14

-2.40

.77

.32

-4.95

-1.62

5.79

0.6

4.9

6.48

2.28

-0.83

0.38

3.3

1.59

-3.36

3.4

2.85

-3.25

-3.09

-3.72

-5.29

0.0

2.0

-0.51

11

9

7

5

3

1

-2.37 25 -1.99 -2.88

I I !, II

II l

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60X

Diff,= [(Cele - Mess)/Core Avg TIP Response] X 100%

Page 141: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.30

SUSQUEHANNA SES UNIT 1 CYCLE 3INDIVIDUALTIP RESPONSE COMPARISONS

O.I78 GWD/MTU CYCLE EXPOSURE

MONITOA LOCATION aa,SS

00

~0 00

t

roT0

4 I

0S ~

0

0

0 I0

SO

4

I

I

III

I 0 ~ 0 ~ T ~ 10 ll lt Is II ls IO It It 10 ts SI tt tt OtCOIlS AXULNODS

r OOASSOOO mr OOSOOOSS0 OALtwsano mr ossroosa~ cooTOCL ooo rosoloN

~ ~ ~ S ~ ~ l ~ 10 II lt It II IO IO It I~ 10

CONE AXIALNODS

4 wasssoo mr otsrooso0 CAICICAnomr otsrooss~ coaICCL ooo roimoll

MONTTOTI LOCNION SSraS

Ss

~ 0

~0

III

T II to )

0

taoEE 0.0

g 'y-a om-g-40

~0

O01

0 O~-L0

r t t 4 ot 0I 4 .IL..O

0

4

0r

tsI II

10 I 10

0 I 0 0 ~ 0 ~ l ~ ~ 1011111 ~ IIISIOITISI~ tstltttttlCOIIE AXIALNODE

t INAsweo mr atsroasao OALCOIATtomraatroosa~ ooottoL Aoo rosITICN

~ I t 0 I ~ ~ 1 ~ ~ IOIIISISIIIOIOITI~ 1st SSSICOIlE AXIALNODE

r NOANOIOOTll'latroata0 OAICOLATKCmf IItsroooa~ cotmloL too roNTIoo

120—

Page 142: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

8O

FIGURE 3.2.31

SUSQUEHANNA SES UNIT 1 CYCLE 3

AVERAGE AXIALTIP RESPONSE COMPARISON2.228 GWD/MTU CYCLE EXPOSURE

80

?0

BoI-z

O'-'0'"0" ':

0 +0

I' ~

z0+ 4o

Ca

'00g0«-O+ +: + +

+ 0

+ 0+

3O

20

10

00 1 2 3 4 e 6 7 8 8 10 1112131416161718182021222324

CORE AXIALNODE+ MEASURED TIP RESPONSE0 CALCULATED TIP RESPONSE

121-

Page 143: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

~ FIGURE 3.2.32

SUSQUEHANNA SES UNIT 1 CYCLE 3RADIALTIP RESPONSE COMPARISONS

2.228 GWD/MTU CYCLE EXPOSURE

61

59

57

55I53

51

49

47

45

4341

39

37

353331

29

-0.94

-2.97

++++

0.84

-3.19

0.8

-2.14

1.58

-0.54

-2.17

-0.06

6.61

3.08

4.52

4.4

-1.24

2.58

3.2

1.97

—0 .10

02

0.8

27

252321

0.61 3.3 -2.87 1.88 -3 98 -1.19

19

17

15

13

++++ -5.43 -2.78 0.60 3.31 .42

11

9 1

7

5

3

1

-0.44 -4.29 -1.91 -2.56 65

000204060810 12 14 16 18 202224 2628303234363840424446485052545658X

Diff=I (Calc - Meas)/Core Avg TlP Response] X 1000%%d

Page 144: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.33

SUSQUEHANNA SES UNIT 1 CYCLE 3INDIVIDUALTIP RESPONSE COMPARISONS

2.228 GWD/MTU CYCLE EXPOSURE

MONITOR LOCATION a0,84

Te ———-1——+

00 I j

II

i

0

0o+ 0

$ o0 s

0

N ——-to

~ $0

Ie

I I ts

i i

I I II II

000

~ ~ 1 ~ $ ~ ~ T ~ ~ te 11 1$ 1$ ll 1$ te lf 1$ te $$ N N $$ $$

CORK AXIALNOOK+ IICA001$Ollt1$$001004 DAICDIATDD~ staetoeee~ coitfDDL$00 toelttoe

1 1 ~ 0 ~ ~ f ~ ~ 10111$ 1$ 1$ teleltltt$ $0N$$ $$ $1

CORK AXULNOOK0 II$AOWlaDTit1$$toeea0 OAIODIATTDT1$ 1 aetoeee~ coef $0L 101 toetttoD

MONIIOR LOOAllON 40,$ K

~0 ~0

I0 0

tooo

I

0$0

XR

000

00 j

0

0

~ $0

te+

~ I $ $ 0 ~ ~ 7 ~ ~ 10111$ 1$ 41$ 1$ 111$ 1$ $ $ $ 1$ $ $ $ $$

COhK AXIALKOOK+ lfaADDDaoTtt aaetoaea0 CAIOOLAfaOTlttaet01$ D~ CDDTDOL IIOO 00$ DtOD

~ ~ ~ 'I ~ I~ 11 1$ 1$ II 1$ 1$ tt I~ I~ 1$ N I$ $ $ $$

COhK AXIALNOOK+ MTAevaaDTIt aaetODeao CALCDIATTDfit 1aetODDD~ OODTDOL 10D teelttOD

— 123

Page 145: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.2.34

SUSQUEHANNA SES UNIT 2 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON0.387 GWO/MTU CYCLE EXPOSURE

1eo

140

120I

z100

LLIKXQ 8O

CO

0eo

+

0Q

~ I

0

Q

0~ +

40 +0

20

0 1 2 3 4 5 B 7 8 9 10 1112131415181718192021222324CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

— 124

Page 146: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.35

SUSQUEHANNA SES UNIT 2 CYCLE 1

RADIALTIP RESPONSE COMPARISONS0.387 GWD/MTU CYCLE EXPOSURE

61

5957555351

49

47

454341

39

-1.06

0.6

0.09

4.7

0.56

3.47

+++ +

0.88

3.60

-2.41

-5.24

1.23

1;89

-1.56 -2.47 0.

31

29

27

25

2321

4.5

-1.29

-0.55

-0.40

-0.89

-1.33

-1.98

-5.22

-1.80

0.7

-2.08

2.23

++++

4.3

19-

17

15

13

20 22 -0.07 -0 .76 -3.68 -0,05 2.9 -2,93

11

9

7

5

3

1

++++ -0 09 -1.85 -0.13 -3.21

000204060810 12 14 16 18 2022 24 2628303234363840424446485052 54565860X

Diff =I (Calc - Mess)/Core Avg TIP Response] X 100%

125—

Page 147: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.36

SUSQUEHANNA SES UNIT 2 CYCLE 1

INDIVIDUALTIP RESPONSE COMPARISONS0.387 GWD/MTU CYCLE EXPOSURE

IIONITOIILOCATION NL$$ $IONITOA LOCATION 4$+4

'+'0

~4

r w r! I I ~ '-: ~L'~ o

I'

I

I

4 1 4 ~ 0 ~ ~ 1 ~ ~ Ie 11 le Ie 10 Ie 14 lt I~ Ie ee el ee ee DICOILS AXIALNODS

0 oeAeoeeo ~ eeeoooee0 4AIDVIATDD~ eeetooee~ COOIDOA DOO toellloo

~ ~ 4 ~ ~ ~ ~ T ~ ~ Ie 11 le Ie Ie Ie 10 If % leCOAS AXIALNOOS

0 IQAloeeo TP eeetooee4 4AIDIAATDD~ eeetooeeo oooteol Doo toellloo

IIONITOIILOCATION 40,$ $ MOKITOIILOCATION $$,$$

o 40

~ ~

+ 4

4 0

0

1 o

~ ~ 4 ~ ~ ~ ~ 1 0 ~ le 11 Ie Ie 11 le Ie lt le Ie ee tl ee ee DI

COIIS AXIALNODS+ DDAeoeeD Tlteletooe%o CAumuTDD TD aeeeoeea~ cooTDDL ooo toellloo

~ I 4 1 ~ 0 ~ 1 ~ 0 le II IAIDIAIAIell lel~ eeeleeeeelCOIIS AXIALNOOS

+ MktUACDTIt eeetOIIDEo OAIDIAAIDDMheetOODC~ oooTDDL eoo toellloo

— 126-

Page 148: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.2.3?

SUSQUEHANNA SES UNIT 2 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON6.249 GWD/MTU CYCLE EXPOSURE

160

140

120I-X

100

80

Co

CL

60

0

III

4I

0

+ 0 o

Q + 00

0+ + 0

0~ 4 +

~ +{p

40

20

00 1 2 3 4 6 6 7 8 9 10111213'I416161718182021222324

'ORE AXIALNODE+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

127

Page 149: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE- 3.'2.38

SUSQUEHANNA SES UNIT 2 CYCLE 1

RADIALTIP RESPONSE COMPARISONS5.249 GWD/MTU CYCLE EXPOSURE

61

5957—55

5351

4947

45

-4.77

-2.63

0.74

2.68

5.03

1.22

-0.95

-0.92

3.39 -3.73

4341

3937—

-3.29 0.9 8.32 -2.87 -0 .29 -2.33 —3.0 7

353331

29

27

25232I

0.26

.71

I

1.2

6.32

8.3

-1.43

-0. 17

-2.98

0.86

2.18

—0.65

6.2

.17

0.8

49

17

15I

I

1.2-1.78-0.18,5.9.27 2.8 -4.87

13

9

7

5

3

v0

—0.67 45 98-2. -4.53

I > l I I

002 04 0608 10 12 14 16 18 20 22 24 26 2830 3234 36 3840 42 44 46 485 0 52 54 56 58

Diff= l(Calc - Meas)/Core Avg TIP Response] X 'i00%-128-

Page 150: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.3S

SUSQUEHANNA SES UNIT 2 CYCLE 1

INDIYIDUALTIP RESPONSE COMPARISONS6.249 GWD/MTU CYCLE EXPOSURE

QONIIOR LOCATION 44>44 llONTOR LOCATION >I4>44

Iu

us

»s

~ 4)00

0k u.~

oo

+Tor < ~ rg tu

5.$

" se- II

' "T

L

4 Io.

Io i

+ I

f

I I

~ee J

~ ~ s ~ 0 ~ 0 r e ~ ts» u u» u u tr u 1$ se st ss se stCORK AXIALHOOK

+ »esses so Tu essoooee0 OALOVLAT$0 Tlo Nsseoese~ coINNO. Noo soeITICN

~ I s 0 ~ ~ ~ r ~ ~ u 11 u 1$ u u u tr»» ss $1 $$ se $1

CORK ANALHOOK+ Nsseveso Ttl> Nseoooee0 CALCOEAI$0 tu Nsesoess~ CONTNOL NOO SOSNION

IlONITOR LOCATION 40,04 MONITOR LOCATION 44.44

Iu

»s

0s 0 I

.I»s

Xu

~ ee

0~ 0

0

+0

s ~

~ I s s ~ ~ e r ~ ~ ls 11 ts 1$ ts u u tr u 1$ $$ $1 $$ $$ ssCORK AXULLHOOK

+ stsAsvsso Tlp $$$$TN»o0 ALOVIAT$0 Ttr Itssooese~ ooNTACLsoo soeNICN

I s s ~ s 0 r ~ 0 1$ 111$ 1$ » uutr 'Is»seslssssstCORK AIQALHOOK

0 IISAOVI$0 ll$ ItseSONeeo OALOVLA1$01le Iteeroeee~ OONT%OL IIOO SOSNION

129—

Page 151: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.2.40

SUSQUEHANNA SES UNIT 2 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON12.060 GWO/MTU CYCLE EXPOSURE *

180

140

120l-zD

100Illzz

80

CO

IL80

~ ~

0+ ~ ~ ~

~ ~ ~

+ 0 0 0 +0 0

0

40

20

0 1 2 3 4 5 8 7 8 9 1011121314161B1718182021222324CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

130-

Page 152: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.4f

SUSQUEHANNA SES UNIT 2 CYCif 1

RADIALTIP RfSPONSE COMPARISONS't2.060 GWD/MTU CYCLE EXPOSURE

61

59

57555351

49

47

454341

39

2927

252321

19

17

15

13

11

9

7

5

3

Y1

-4.02

-4.34

-0.18

-4.63

-7.45

-3.23

.01

50

-1.68

+++ +

-1.16

2.8

-1.66

0:89

2.9

4.89

++++

-1.35

99

0.34

-1.52

-3.64

0.44

2077

-0.93

0.7

-2.11

6.2

6.66

3.4

7.4

-0.71

3.30

88

.81

-2.00

-2.08

1.46

-0 .51

83

-0.06

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60X

Diff= [(Calc - Meas)/Core Avg TIP Response] X 100%

131-

Page 153: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.42

SUSQUEHANNA SES UNIT 2 CYCLE IINDIVIDUALTIP RESPONSE COMPARISONS

'|2.050 GWD/MTU CYCLE EXPOSURE

QOHIIOh LOCAllOH W00

o t oo,f

0

~ )0~ 0 ~ Db

L g»e1

se

~ ee

0

I $ ~ ~ ~ r ~ e»m»1$ »»»II»»seslssseslCOHK AICALHOOK

+»w¹eo mr Doerooea0 OALDOLASSDT» cseellec~ DDDTDDLDoe rollloD

~ $ ~ c ~ ~ r $ ~ »tl»ls»»lolrle'»COAK AXALHOOK

0 DDAN¹wmr I»srooee0 OALDOLATSDTI~ Dserooea~ cootlloL Doo roslmoD

MOHIIOHLOCA'IlOH a0,$ $ IlOHITOh LOCATIOH KK 00

ILe

0

0 t 0 ~+

+ +0 0 o

0

so

I s $ ~ ~ ~ r ~ ~ 1$ tl ls 1$ »»» Ir»» $ $ $ 1 ss $$ SICOhK AXIALHOOK

+ IILASOASDTlrIlaerollea0 OALDOLAraDmr DaerODea~ DwtsoL Aoo rosmloN

I $ $ $ ~ r ~ » m» ls 14 ls» Ir»» se ~ 1 ss $$ siCOHK AXIALHOOK

L DDASOIICDllrDasroaea0 OALOOLAISDTII'asroaea~ DODTDOL DOD roelmOD

-132-

Page 154: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FlGVRE 3.2.43

SUSQUEHANNA SES UNIT I CYCLE 1

SIMULATE-E VS GE PROCESS COMPUTER

CORE AVERAGE AXIALPOWER DISTRlBUTION

1.5

1.0

O

LLI

I~

0.5SIMULATE-E

GE Process Corn~uter

0.01 2

BOTTOM

4 5 6 7 8 9 10 11 12TOP

Cycle Average Exposure = 1.490 GWD/MTU

Core Power Level = 99.6% of ratedTotal Core Flow = 100 Mlbm/hrReactor Pressure = 1005 pslaCore Inlet Subcooling = 23.6 Btu/Ibm

133

Page 155: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.44

SUSQUEHANNA SES UNIT t CYCLE 2

SIMULATE-E VS POWERPLEX

CORE AVERAGE AXIALPOWER DISTRIBUTION

1.5

1.0LJ

OCLbJ

I—

430.5

SIMULATE-E

POWER PLEX

0.01 3 5 7 9 11

BOTTOM13 15 17 19 21 23 25

TOP

Cycle Average Exposure = 2.587 GWD/MTU'Core Power Level = 99.9% of ratedTotal Core Flow = 95.8 Mlbm/hrReactor Pressure = IOOO psiaCore Inlet Subcoollng = 24.7 Btu/Ibm

134

Page 156: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3-.2.45

SUSQUEHANNA SES UNIT 5 CYCLE 3

SIMULATE-E VS POWERPLEX

CORE AVERAGE AXIALPOWER DISTRIBUTION

1.5

1.0LLI

O0

LIJtL 0.5

//

/

/

/SIMULATE-E

POWER PLEX

0.05 7 9 11 13 15 17 19 21 23 25

BOTTOM TOP

Cycle Average Exposure = 0.178 GWD/MTUCore Power Level = 100% of ratedTotal Core Flow = 96.9 Mlbm/hrReactor Pressure = 1002 psiaCore Inlet Subcooling = 24.4 Btu/Ibm

135—

Page 157: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.46

SUSQUEHANNA SES UNIT 2 CYCI E 2

'SIMULATE-E VS POWERPLEX

CORE AVERAGE AXIALPOWER DISTRIBUTION

1.5

1.0

OCLLJ

I—

cX 0.5

/I'

I

SIMULATE-E

POWER PLEX

0.01 3

BOTTOM5 7 9 11 13 15 17 19 '1 23 25

TOP

Cycle Average Exposure = 0.583 GWD/MTU

Core Power Level = 100% of ratedTotal Core Flow = 96.2 Mlbrn/hrReactor Pressure = 1000 pslaCore Inlet Subcoollng = 24.4 Btu/Ibm

136—

Page 158: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.47SUSQUEHANNA SES UNIT 1 CYCLE I SIMULATE-E VS GE PROCESS

COMPUTER BUNDLE FLOWS AT 1.490 GWD/MTU0.1200.1220.002

0.1190.1210.002

0.1170.1210.004

0.1190'.1210.002

0.1190.1210.002

0.1180.1200.002

0.1160.1190.003

0.1200.1220.002

0.1190. 1200.001

0.1310.1350.004

0.1320.1330.001

0.1190.1210.002

0.1170.1180.001

0.1180.1220.004

0.1310.1330.002

0.1300.1350.005

0.1170.1190.002

0.1180.1200.002

0.1180.1210.003

0.1180.1190.001

0.1160.1190.'003

0.1170.1170.0

0.1170. 1210.004

0.1160.1170.001

0.1160.1190.003

0.1180.1200.002

0.1170.1180. 001

0.1170.1200.003

PROC COMP

SIMULATE-E

DIFFERENCE

Units are Mlbrn/hr

Average Difference: 0.001Standard Deviation: 0.002

0.1160.1190.003

0.1300.1350.005

0.1310.1320.001

0.1180.1200.002

0.1170.1170.0

0.1300.1340.004

0.130 0;1180.131 0.1190.001 0.001

0.1150.1190.004

0.1130.1160.003

0.1300.1310.001

0.1150.1170.002

0.1290.1340.005

0.1140.1150.001

0.1150,1170.002

0.1140.1170.003

0.1160.1190.003

0.1150.1150.0

0.130 0.1300.131 0.1340.001 0.004

0.117 0.1190.119 0.1180.002 -0.001

0.1180.1180.0

0.1190.1190.0

0.1200.119-0.001

0.1220.1220.0

0.1280.127'-0.001

0.1110.1150.004

0.1120.1140.002

0.1120.1160.004

0.1120.1140.002

0.1130.1140.001

0.1140.1160.002

0.1190.1190.0

0.1210.1210.0

0.1310.126-0.005

0. T36 0.0700.135 0.068-0.001 -0.002

0.114

!0.115

I0.001

0.1180.1180.0

0.1170.1190.002

0.1150.1160.001

0.1160.1170.001

0.1190.1200.001

0.1240.1240.0

0.125 0.1350.127 0.1340.002 -0.001

0.0680.0680.0

0.1210.120-0.001

0.1240.123-0.001

0. 125 0.1230.123 0.121-0.002 -0.002

0.1230.122-0.001

0.126 0.135 0.138 0.0690.126 0.130 0.136 0.0680.0 -0.005 -0.002 —0.001

0.0700.068-0.002

0.1280.1290.001

0.1290.1290.0

0.1300.1300.0

0.1300.1300.0

0.1300.1310.001

0.132 0.141 0.0690.134 0. 140 0.0680.002 -0.001 -0.001

0.0690.068-0.001

0.0690.068-0.001

0.069 0.0690.068 0.068-0.001 -0.001

0.0690.068-0.001

0.070 0.0700.068 0.068-0.002 -0.002

l37

Page 159: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.48SUSQUEHANNA SES UNIT 1 CYCLE 3 SIMULATE-E VS POWERPL

BUNDLE FLOWS AT 0.178 GWD/MTU0.1140.1160.002

0.1140.1150.001

0.1180.1210.003

0.1190.1230.004

0.1170.1220.005

0.1190.1200.001

POWER PLEX

SIMULATE-E

DIFFERENCE

Units are Mlbrn/hr

0.1'160.1170.001

0.1190.1220.003

0.120 0.1180.123, 0.1210.003 0.003

0.1180.1180.0

0.1210.1230.002

0.1190.1220.003

0.1170.1210.004

0.1200.1200.0

Average Difference: 0.001Standard Deviation: 0.002

0.1210.1210.0.

0.1310.1330.002

0.1300.1300.0

0.1220. 1240.002

0.121 0.130.0.120 0.132-0.901 0.002

0.1240.1260.002

0.1290.1330.004

0.1310.1330.002

0.1190.1210.002

0.1220.1240.002

0.1270.1300.003

0.1280.1280.0

0.1190.1190.0

0.121 0.1200.123 0.1190.002 -0.001

0.1190.1220.003

0.1180.1180.0

0.1210.1220.001

0.119 0.1190.118 0.122-0.001 0. 003

0.1190.1210.002

0.115 0.1180.119 0.1210.004 0.003

0.1140.1180.004

0.1170.1200.003

0.1150.1190.004

0.1190.1210.002

0 116 0.1200.119 0.119O.OO3 -0.001

0.1170.1170.0

0.1230.003

0.119-0.001

0.120 .'0.120 0.1170.1190.002

0.117 0.1200.116 0.122-0.001 0.002

0. 1200.1200.0

0.1200.1220.002

0.1210.1210.0

0.1240.124

. 0.0

0.1190.1210.002

0.1170.116-0.001

0.1200.1210.001

0.1170.1210.004

0.1190.1200.001

0.1170.1180.001

0.1200.1220.002

0.1180.117-0.001

0.1200.1210.001

0.1140.1170.003

0.1180.1200.002

0.1170.1190.002

0.1180.1200.002

0.1190.118-0.001

0.1210.1220.001

0.1180.1210.003

0.1210.1220.001

0.1200.1220.002

0.1220.1240.002

0.1230.122—0.001

0.1280.1290.001

0.1180.1220.004

0.1260.1270.001

0.1310.1320.001

0.1250.1270;002

0.1290.1310.002

0.0640.063-0.001

0.130 0.0640.132 0.0630.002 -0.001

0.0640.063-0.001

0.0650.064-0.001

0.1230.1230.0

0.1260.125-0.001

I

0.1240.1240.0

0.1270.126-0.001

0.1260.1260.0

0.1280.1280.0

0.136 0.0640.133 0.063-0.003 -0.001

0.064 0.0640.062 0.062-0.002 -0.002

0.0640.062-0.002

0.0640.062-0.002

0.064 0.0640.062 0.063-0.002 -0.001

0.0650.064-0.001

Page 160: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.2.49SUSQUEHANNA SES UNIT 2 CYCLE 2 SIMULATE-E VS POWERPLEX

BUNDLE FLOWS AT 0.583 GWD/MTU0.1180.116-0.002

0.1190.117-0.002

0.1160.1190.003

0.1190.118-0.001

0.1170.1210.004

0.1240.121-0.003

0.1190.1230;004

0.123 0.1210.122 0.124-0.001 0.003

0.117 0.1210.121 0.1190.004 -0.003

0;123 0.1200.121 0.122-0.002 0.002

0.130 0.1330.133 0.1320.003 -0.001

0.1170.1210.004

0.121 0.1180.120 0. 121-0.001,0.0030.120 0.122 0.1260.122 0. 121 0.1290.002 -0.001 0.003

POWERPLEX

SIMULATE-E

DIFFERENCE

Units are Mlbm/hr

II

Average Difference: 0.001Standard Deviation: 0.003

0.1200.1220.002

0.132 0.1300.132 0.1320.0 0.002

0.122 0.1180.120 0.121-0.002 0.003

0.1280.1280.0

0.1240.128.0.004

0.1190.1190.0

0.117 0.1210.120 0.1190.003 -0.002

0.115 0.118 0:115 0.1180.119 0.117 0.119 0.1170.004 -0.001 0.004 -0.001

0.1130.1180.005

0.1130.1180.005

0.118 0.1140.117 0.118-0.001 0.004

0.1160.1160.0

0.112 0.116 0.1120.117 0.115 0.1170.005 -0.001 0.005

0.1160.1160.0

0.1130.1180.005

0.1160.1160.0

0.1120.1160.004

0.1150.1200.005

0.1180.1180.0

0.1180.1180.0

0.1150.1190.004

0.1110.1160.005

0.1150.1150.0

0.1150.1150.0

0.1110.1160.005

0.1130.1180.005

0.1170.1170.0

0.1170.1170.0

0.1150.1200.005

0.1130.1180.005

0.1190.1190.0

0.1180.1190.001

0. 1210.1250.004

0.1210. 1250.004

0.132 0.0640.130 0.063-0.002 -0.001

0.1170.116-0.001

0.113 0.1170.117 0.1150.004 -0.002

0.112 0.117 0.1150.117 0.116 0.1190.005 -0.001 0.004

0.1200.1200.0

0.122 0.1300.126 0.1290.004 -0.001

0.0640.063—0.001

0.1160.1180.002

0.117 0.1160.116 0.119-0.001 0.003

0.118 0.117 0.122 0.1240.117 0.121 0.121 0.127-0.001 0.004 —0.001 0.003

0.133 0.0640.131 0.063-0.002 -0.001

0.0650.064-0.001

0.1250.122-0.0030.0640.062-0.002

0.123 0.1260.124 0.1230.001 -0.003

0.064 0.0640.062 0.062-0.002 -0.002

0.125 0.128 0,129 0.1370.126 0.125 0.130 0.1340.001 -0.003 0.001 -0.003

0.064 0.064 0.065 0.0650.062 0.063 0.063 0.064-0.002 -0.001 -0.002 -0.001

— 139-

0.0650.064—0.001

Page 161: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.3 uad Cities Unit 1 C cles 1 and 2 Benchmark

An additional demonstration of the SIMULATE-E calculational accuracy was

performed by comparing SIMULATE-E results to measurements from the Quad CitiesUnit 1 Cycles 1 and 2 cores. After the end of Cycles 1 and 2, gamma scan

. measurements of selected fuel bundles were taken. This provides an excellentmeasurement of the power distribution averaged over the last two to threemonths of each cycle's operation. This technique for measuring the powerdistribution is not prone to the types of errors that are typical of TIPmeasurements. Reported accuracy of the gamma scan measurements, combiningmeasurement uncertainty and measurement method bias, is approximately 3%

(Reference 12), whereas TIP uncertainty for reload cores is typically 5.1%

(Reference 25).

A significant number of cold critical tests was performed during Cycle 1. The

available cold data include both in-sequence and local criticals. In-sequencecriticals are typical of normal reactor startups with withdrawn control rodsuniformly dispersed throughout the core. Local criticals involve withdrawalof a few control rods (usually from two to four) in a localized area of thecore producing very peaked neutron flux gradients.

In addition to the gamma scan and cold critical data, hot reactivitystatepoint and TIP measurement data are also presented in this section.

The Quad Cities Unit, 1 core (Figure 3.3.1) is slightly smaller than theSusquehanna SES cores (Figure 3.2.8), containing 724 versus 764 fuelassemblies, and its rated core thermal power is approximately 25% less thanthat of the Susquehanna SES units. For the Quad Cities initial cycle, theentire core consisted of General Electric Company (GE) 7x7 fuel with a lowgadolinia loading.- This contrasts the Susquehanna SES cores where a relativelyhigh gadolinia loading was present in the 8x8 fuel. The Quad Cities reloadfuel for Cycle 2 consisted of only 23 GE 7x7 fuel assemblies, 36 GE 8x8 fuelassemblies, and five mixed oxide test assemblies. The GE reload fuelcontained a small gadolinia loading.

— 140

Page 162: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.3.1 Hot Critical Core Reactivit Com arisons

The purpose for benchmarking the hot critical core K-effective for Quad Citiesis to determine if any major differences in results and trends exist between

Susquehanna SES and Quad Cities. Because the Quad Cities core contains mainly7x7 fuel and lower gadolinia content, the benchmark provides a good contrastto the Susquehanna SES benchmark and a test of the steady state methodology.

Figure 3.3.2 shows the Quad Cities Unit 1 Cycles 1 and 2 calculated hotcritical core K-effectives with those of Susquehanna SES. Although Quad

Cities results show more variation, a linearly increasing trend is present.This trend is consistent with the Susquehanna SES results and supports theexposure dependency of the SIMULATE-E calculated critical core K-effective.No bowl-shaped trends are evident in the Quad Cities results. This trend isattributed to the lower gadolinia loading in Quad Cities versus Susquehanna

SES. The large variation in K-effective is possibly due to the inclusion ofdata that does not meet the steady state criteria defined in Section 3.2 forSusquehanna SES data. The measured core operating parameters used as input to~

~

~

~ ~SIMULATE-E are contained in Reference 27. As evident from Figure 3.3.2, theSusqu'ehanna SES data essentially forms a continuous line of data as a resultof a very detailed SIMULATE-E depletion calculations; however, the Quad CitiesK-effectives are quite sparse.

3.3.2 Cold Critical Core Reactivit Com arisons

The benchmark of the SIMULATE-E-calculated cold critical K-effective to theQuad Cities Unit 1 Cycle 1 cold xenon-free in-sequence and local criticalsprovides qualification of PPGL's cold methodology and models to performshutdown margin calculations. Comparisons to the large local criticaldatabase (22 local criticals) test PPGL's calculation of rod worths in largelocal flux gradient locations that are typical of shutdown margincalculations. PPGL's approach in benchmarking to the Quad Cities coldcriticals is to compare the calculated in-sequence critical K-effectives (11

total) to the local critical K-effectives. Table 3.3.1 presents the Quad

Cities Unit 1 Cycle 1'alculated cold critical K-effectives which have been

corrected for reactor period. Comparing local to in-sequence critical results

- 141—

Page 163: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

demonstrates the capability to calculate the same core K-effective forcritical conditions with both peaked and uniform neutron flux distributions.The local critical K-effectives are compared to the average of the in-sequence

critical K-effectives at the same exposure. Table 3.3.2 shows the results ofM

the comparisons. The average difference between the K-effectives is 0.00007

and the standard deviation equals 0.00064. Both of these values are wellwithin the uncertainty in predicting the Susquehanna SES cold critical core

K-effective (i.e., standard deviation equal to 0.00137). This demonstrates

that, no bias exists between in-sequence and local critical calculations.

An additional test of PPGL's methods involves demonstrating that the same

observed bias between hot and cold critical core K-effective for Susquehanna

SES also exists between hot and cold critical core K-.effective for Quad

Cities. Figure 3.3.3 shows the hot and cold critical core K-effectives.Despite the variation in and lack of hot critical core K-effective data, thedifference between the calculated hot and cold K-effectives is similar to thatof the Susquehanna SES data.

3.3.3 'Zraversin'n-core Probe Data Com arisons

Although the primary reason for the development of the Quad Cities model is toperform the gamma scan comparisons, some TIP data is available for comparison

from Reference 27 and 28. This includes 15 TIP sets from Cycle 1 and 13 TIP

sets from Cycle 2. A TIP set contains 24 axial measurements taken at each ofthe 41 radial TIP locations. Radial TIP detector locations are shown inFigure 3.3.1.

The SIMULATE-E code was used to calculate the TIP responses for each of the 28

TIP sets. As described in the Susquehanna SES TIP response comparison

section, the SIMULATE-E calculated TIP responses are renormalized so that the

core average calculated TIP response is the same as the core average measured

TIP response. The average RMS of the differences between the SIMULATE-E

calculated and measured TIP responses for each TIP response comparison iscalculated as described in Section 3.2.3. Results from the nodal and radial

t

comparisons aze given in Table 3.3.3. Comparisons have been reported for allTIP sets with the exception of Case 16. Correct measured TIP response data is

- 142-

Page 164: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

unavailable for this case. Although several of the other TIP sets were taken

before the core had time to reach an equilibrium xenon distribution due tocontrol rod position, power or flow changes, they have been included in thecomparison.

Figures 3.3.4 through 3.3.15 present representative TIP response comparisons

for Cycles 1 and 2. For two exposure points in each cycle, core average

axial, radial, and four individual TIP response comparisons are included. The

individual TIP response comparisons in the figures were selected along a linefrom the core periphery to the core center as shown in Figure 3.3.1. The same

four TIP locations are always shown.

3.3.4 Gamma Scan Comparisons

At the end of Cycles 1 and 2 gamma scan measurements were taken. The

available Cycle 1 data (Reference 29) consist of axial peak to bundle averageLa-140 activities for 31 fuel bundles, individual axial traces from two fuel

~ bundles, and. the axial trace from the average of the 31 individual traces.Use of this data is primarily limited to benchmarking the axial peakingfactor. The Cycle 2 data (Reference 12) are much more extensive. A total of89 fuel bundles were scanned. Of these, 71 were located in one octant of thecore, providing measurement data for most of the fuel bundles in that octant.The remaining 18 fuel bundles were chosen in other octants to check forasymmetries. Seventy-three of the bundles were scanned at 12 axial locations

Iat approximately twelve-inch intervals. The remaining 16 bundles were scanned

at 24 axial locations at approximately six inch intervals. The reportedmeasured activity was corrected to correspond to activity just after shutdown.

The practical accuracy of the reported data including measurement uncertaintyand measurement method bias is approximately 3% (Reference 12, Section 4.3).

As previously discussed in Section 2.3, the gamma scan data itself is a

measure of La-140 gamma activity. During reactor operation, La-140 isproduced both as a fission product and by Ba-140 decay. Since the half-lifeof Ba-140 is approximately 13 days and that of La-140 is approximately 40

hours, the distribution of the Ba-140 and La-140 concentrations will be

- 143-

Page 165: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

representative of the core power distribution integrated over the- last two tothree months of reactor operation. After shutdown, the only source of La-140

is from decay of Ba-140. Because the half-life of La-140 is short withrespect to Ba-140, after about ten days the decay rate of La-140 is controlledby the decay of Ba-140. Therefore, the relative measured La-140 activitiesare compared to the relative calculated Ba-140 concentrations, and the La-140

concentration does not need to be calculated.

The SIMULATE-E code was used to calculate the nodal Ba-140 concentrations atthe end of both cycles. At, the end of Cycle 1, the peak to average Ba-140

concentration was calculated for each of the 31 fuel bundles. Of these, 17

were uncontrolled and 14 were partially controlled. The calculated and

measured peak to average data for the uncontrolled and controlled fuel bundlesis shown in Tables 3.3.4 and 3.3.5, respectively. The average difference forall 31 fuel bundles is 1.2% with a standard deviation of 2.1%. These resultsdemonstrate excellent agreement to the measured axial peaking factor.

Three axial traces from Cycle 1 are also available from Reference 29. The

measured and calculated La-140 activities for each trace are normalized to 1.prior to the comparison. Figure 3.3.16 shows- the comparison for theuncontrolled bundle, and Figure 3.3.17 shows the comparison for the controlledbundle. Figure„ 3.3.18 shows the comparison for the axial 31 bundle averageLa-140 activities. The measured data for these plots were only available ingraphical form from Reference 29. Therefore, no statistics are computed fromthe comparisons, but the figures demonstrate the ability of SIMULATE-E tocalculate axial power shape.

More extensive gamma scan measurements were taken at the end of Cycle 2. The

data supplied in Reference 12 allow for radial, nodal, peak to average, and

bundle (axial) comparisons. For the radial and nodal comparisons, theperipheral bundles have been eliminated. These bundles are low in power and,

consequently, of no concern from a thermal limits perspective. For the nodalcomparisons the top and bottom six inches have also been eliminated. These

nodes are low in power and are, consequently, of little importance from a

safety standpoint. The mixed oxide bundles have also been eliminated from thenodal and radial comparisons since they are atypical of Susquehanna SES reloafuel.

— 144—

Page 166: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

Prior to making any comparison, the measured and calculated data were

normalized such that the core average relative activity was 1.0. However, forthe calculated data only the nodes for which there were measured data were

used in the normalization process.

The comparisons are based on the mean difference between calculated and

measured normalized La-140 activities. This difference is calculated as:

e. = c.-m,l. i i

where

c. = the normalized calculated La-140 activity,m. = the normalized measured La-140 activity.i

The subscript i denotes either the average activity for the bundle for theradial comparisons or the nodal activity for the nodal comparison, The

standard deviations for the comparisons are calculated as:-

a(t) =

N

g (e. - e)

N-1

100

where

M = the average of the normalized measured data for the comparison= 1.0 for all comparisons due to normalization,

e = the average difference between the measured and calculated normalizedLa-140 activities

= 0.0 for all comparisons due to normalization,

N = number of La-140 activities for the comparison.

The radial comparisons were obtained by averaging the nodal La-140 activitiesfor each bundle. The results from the comparisons are shown in Figure 3.3.19.The standard deviation of 1.82% reported on the figure was calculated forthose bundles included in the octant shown in the figure. If the additional11 bundles from the other octants are included in the comparison, the standarddeviation becomes 1.92%. Based on the comparisons, no significant deviation

- 145

Page 167: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

in the radial power shape is >apparent indicating SIMULATE«E will provide an

accurate assessment of the Critical Power Ratio. The standard deviation from~the nodal comparisons is 5.45%. Assuming a 3.0% measurement uncertainty, the~calculational standard deviation is 4.55%.

The SIMULATE-E calculated peak to average La-140 activity was compared to the

measured data. The percent difference for each assembly is calculated as:

c.-m.i iei m

x 100

where

c. = the calculated peak to average La-140 activity for fuel bundle i,m. = the measured peak to average La-140 activity for fuel bundle i.i

C

The results of the comparisons are shown in Table 3.3.6. The average

difference is -0.2% with a standard deviation of 1.5%. These comparisons

'included all assemblies and accounted for all axial nodes. The resultsindicate excellent agreement for the axial peaking factor and are consistentwith the Cycle 1 results.

The results from the individual bundle comparisons are shown in Table 3.3.7.These comparisons are also reported for every bundle and included all axialnodes. For each bundle, the average difference between the calculatedmeasured nodal activities is calculated as:

K

Z'k,n K

where

e = the difference between the measured and calculated normalized nodalLa-140 activities for bundle n, and axial node k,

K = number of axial nodes in the bundle for which measurements weretaken.

146—

Page 168: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

'he standard deviation for each fuel bundle is:

6n

K

g(ek - e ) 100x

K-1 M

Figure 3.3.20 shows the fuel assembly with the best axial agreement (Bundle

CX0662). Although this particular bundle is located on the core periphery, itexhibits excellent agreement for all axial locations. The worst comparison isshown in Figure 3.3.21 (Bundle CX0399) . The calculated average difference of12.2% is mostly due to differences in the top and bottom nodes. However, thecalculated La-140 activity in the center section of the bundle still agrees

well with the measured data. Figures 3.3.22 through 3.3.27 show example

comparisons which are more typical of the rest of the assemblies. Most of thecalculated difference is due to nodal comparisons at the top and bottom of thecore. Different top and bottom albedos could have eliminated much of thiserror. As discussed in Section 3.1, the alhedos, which were developed as a

result of the Susquehanna SES model normalization, were also used in the Quad

Cities calculations. It is expected that due to different core and fueldesigns for Quad Cities, the top and bottom albedos,would differ from theSusquehanna SES values. Although the Susquehanna SES albedos were utilized inthe Quad Cities calculations, the SIMULATE-E model provides an accuratecalculation of the power distribution. This supports the use of theSIMULATE-E model to predict power distributions for fuel designs other thanthose in the normalization database.

147-

Page 169: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3 3 1

QUAD CITIES UNIT 1 CYCLE 1 CAICULATED COLD XENON-FREECORE CRITICAL K-EH.'ECTIVES

Core Average Core ReactorExposure Temperature Period(GWD/MTU) (DEG P) (sec)

Number of CalculatedControlled Local (L) or CoreNotches In-s ence (I) K-effective

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .0.00.00.00.00.0

2.8663.7483.7483.7483.7483.7483.7483.7483.7484.9386.9116.911

152160159159161160159158158159157157160159159160158159158158155163

707577

108120120125178120182179

1806075

160150

503278904165

12565

332245

38423939

169120300

43.747.5

28054

300157140181

45100300

6390840084046344632484048402840284028392

. 84026336631883928392839284168392

8402'394

6412669884388428843084267118837883786830693683946514

I.LLIILLLLLLIILLLLLLLIILLLLILLIILI

0.993140.992890.992070.992880.992840.991920.992090.992810.993240.992570.992700.993040.992780.993660.993530.9920.9920.992520.992680.990820.991710.995900.998470.998400.997600.997180.998180.997900.998120.997300.998291.000261.00041

148

Page 170: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.3.2

QUAD CITIES UNIT 1 CYCLE 1 IN-SEQUENCEVERSUS LOCAL CRITICAL COMPARISON

Core AverageExposure(GWD/MTU)

Control RodsWithdrawn

and Position

Core ReactorTemperature Period In-secpxence Minus

(DEG F) (sec) Local K-efffective

0.0 38,11 9 4842,11 6 48 160 60 -0.00016

0.0 38ill 9 4838,15 I 44

P

159 75 0.00066

0.0 46,1946,23

48 "

44 160 50 0.00081

0.0 46,19 6 4850,19 6 46 159 32 0.00064

0.0 50,23 8 4850,19 9'46 158 78 "0.00008

0.0 46,23 6 4850,23 6 46 158 90 -0.00051

0.026,31 8 4826,35 9 4830,31 I 08

159 41 0.00016

0.0 18,11 6 4822,11 8 46 157 65 0.00003

0.026,27 8 4826,31 9 4830,31 6 08

159 332 -0.00093

0.026,27 8 4830,27 9 4830,31 6 08

159 245 -0.00080

0.026,23 9 4826,27 8 4830,27 I 08

160 38 0.00026

0.022,39 9 4822,35 6 2426,35 6 08

158 42 0.00026

0.026,39 8 4822,39 8 4826,35 8 08

159 39 0.00021

— 149—

Page 171: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.3.2 (continued)

QUAD CITIES UNIT 1 CYCLE 1 IN-SEQUENCE, VERSUS LOCAL CRITICAL COMPARISON

Core Average Control RodsExposure Withdrawn(GWD/MTU) and Position

Core ReactorTemperature Period In-secyxence Minus

(DEG P) (sec.) Local K-effective

0.042,39 I 4842,35 6 3838i35 8 08

158 39 "0.00005

0.038,39 9 4830i35 8 4834,35 9 06

158 169 0.00191

3.748 26,11 6 3822,11 I 20 70 43.7 -0.00073

3.748

3.748

3.748

26,11 9 4822,11 8 20

22,11 I 4822,15 '6 18

50,27 6 4850,23 6 22

75

77

108

47.5

280

54

-0.00066

0.00014

0.00056

3.74826,15 8 4822,11 8 4818,15 9 22

120 157 -0.00016

3.74814,27 6 4810,23 8 4814,19 8 22

125 .140 -0.00038

6.91122,15 8 4822,11 9 4826,11 6 06

182 100 0.00015

Average = 0.00007Standard Deviation = 0.00064

150—

Page 172: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.3.3

SUMMARY OP QUAD CITIES UNIT I CYCLES I AND 2TIP RESPONSE COMPARISONS

CaseNumber Date

Core Average NodalExposure RMS

(GWO/MTU) (a)

RadialRMS

(~)

Cycle I I23456789

10111213141516*

6/29/728/30/729/11/72

11/01/7212/26/723/08/735/16/736/06/737/19/738/30/73

11/01/7312/11/7312/29/732/13/743/05/743/26/74

0.2720.7120.8821.4702.2393.1903.8364.0744.7375.3016.0316.5586.8077.3967.6597.980

9.438.858.26

10.438.389.099.619.879.84

10.7213.8411.119.23

11.4211.72

5.435.675.805.725.615.796.126.465.915.875.365.805.634.975.58

Cycle I Average 10.12 5.71

Cycle 2 17181920212223242526272829

7/26/748/15/749/12/74

10/23/7411/18/7412/11/744/03/756/19/758/08/75

10/20/7511/13/7512/19/7512/31/75

7.3037.5327.9648.4238.7899.141

10.17311.23811.93512.89613.19813.61113.741

12.5510.18

~ 8.8910.308.087.808..077.928.798.168.55

11.6512.73

4.384.854.254.634.664.804.944.425.005.29

~ 4.764.545.03

Cycle 2 Average

Combined Average

9.51

9.84

4.73

5.26

*Correct measured TIP response data is unavailable.

— 151—

Page 173: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE'3 3 4

QUAD CITIES UNIT 1 EOC 1 GAMMA SCAN COMPARISONSUNCONTROLLED BUNDLES

CoreLocation

MeasuredPeak to AverageLa-140 Activity

CalculatedPeak to AverageLa-140 Activity

Difference(~)

39,5841,5841,5617,4855,4257,4257,4007,3409,3207,2609,2431,2647,1823,1025,0831,1033,08

1.2711.2121.2241.2871.1851.1911.2451.1761.1481.

170'.186

1.3541.2501.1781.2391 '721.221

1.2701.2391.2181.2891.2441.2601.2571.2141.1941.2271.2341'. 3291.2591.178

"1.2241. 1821.235

Average Difference = 1.7%

Standard Deviation = 2.3%

-0.12.2

-0.50.25.05.81.03.24.04.94.0

-1.80.70.01 ~ 20..91.1

— 152

Page 174: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE ~ 3~3 5

QUAD CITIES UNIT 1 EOC 1 GAMMA SCAN COMPARISONSCONTROLLED BUNDLES

CoreLocation

MeasuredPeak to Average

CalculatedPeak to AverageLa-140 Activity

Difference(4)

39,5617,5015,4855,4009,3407,3209,2607,2449,1847,1625,1023,0833 i1031,08

1.2821.6091.2801.2691.4181.3221.3661.2311.6021.2831.3581.2511.3851.369

1.2841.6311.3071.2791.3941.3321.3981.2561.6251.3051.3421.2471.3501.373

0.21.42.10.81 ~ 7

0.72 '2.01.41.71 ~ 2

-0.3-2.50.3

Average Difference = 0.5%

Standard Deviation = 1.5%

153

Page 175: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.3. 6

QUAD CITIES UNIT 1 EOC 2 GAMMA SCAN COMPARISONSPEAK TO AVERAGE LA-140 ACI'IVITIES

BUNDLEID

LOCATION(X Y)

PEAK TO AVERAGEMEASURED CALC

DIFFERENCE(X)

CX0214GEB159CX0575CX0588CX0420CX0052CX0287CX0378GEH023CX0150CX0440CX0351CX0453CX0723CX0015CX0316CX0498CX0044CX0327CX0106CX0165CX0306CX0660CX0310CX0523CX0093CX0297CX0611CX0024CX0225CX0617CX0231CX0585CX0631CX0186CX0332CX0161CX0100GEH022GEH029CX0281CX0399CX0396CX0198CX0393GEH002GEB132GEB160

(33,34)(31,32)(31,34)(33,32)t', 7,32)(15,32)(23,34).(17,42)( 9.40)( 7,42)( 9.42)( 7.40)(23,32)(17,40)(15.42)(15,40)(25,34)( 7,34)( 9,34)( 9,32)(25,32)(15,34)(17,34)(27,34)( 3,36)(13,40)(23,38)( 3,40)(15,46)(21,32)( 9,46)(15.38)(19.36)( 5,38)(19,42)(ll,44)(19,38)(13,46)( 9,36)(13,44)(21,36)( 9,38)(11,40)( 5,36)(11,36)(13,36)(17,36)(31,30)

1.19231.13791.19371.18421.24201.19901.18711.20891.20081.31081.25861.27141.19751.20281.18941.21731.18921.24451.22851.23411.19321.20061.18561.18661.34681.21871.19821.39241.18721.18641.30861.21811.21031.32631.20391.21691.22371.22251.19441.16601.18441.25481.20541.28751.20281.16511.15891.1353

1.20041.13651.18811.19731.26201.19661.18561.21201.18871.27331;22001.24171.19451.19791.17761.20011.18691.24571,. 23031.25111.19911.19361.17451.19031.35091.18391.20081.36741.20231.17681.27621.18891.17641.30511.21061.20931.20321.21701.19211.17591.1688.1.19781.18251.27981.19831.17891.15461.1360

0.7-0.1-0.51.11.6

-0.2-0.10.3

-1.0-2.9-3.1

2 ~ 3-0.2-0.4-1.0-1.4-0.20.1

~ 0.11.40.5

-0.6-0.90.30.3

-2.90.2

-1.81.3

-0.8-2.5-2.4-2.8-1.60.5

-0.6-1.7-0.4-0.20.9

-1.3-4.5-1.9-0.6-0.41.2

-0.40.1

— 154-

Page 176: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.3.6 . (continued)I

QUAD CITIES UNIT 1 EOC 2 GAMMA SCAN COMPARISONSPEAK IO AVERAGE LA-140 ACTIVITIES

BUNDLEID

LOCATION(X Y):

PEAK TO AVERAGEMEASURED CALC

DIFFERENCE(X)

GEB161GEB158CX0494

'X0490

CX0174CX0683CX0520CX0394CX0137CX0482CX0717CX0682GEH008GEB123GEB149CX0719CX0672CX0362GEB105CX0546CX0553CX0662CX0643CX0397

~ CX0286CX0191CX0057CX0124CX0414CX0412CX0384CX0318CX0401CX0398CX0359CX0711CX0096CX0622CX0445GEB162CX0162

(29,32)(29.30)( 7.48)( 5.46)( 7,46)( 1',32)( 3,32)(11,32)(.5,32)(27,32)(19,32)( 1.40)(13,48)(17.44)(21,40),( 9,50)(15,36)(13,34)(25.36)( 9,52)( 5,44)( 3,42)( 1,34)(13,38)( 9,48)(11,50)(13,32)(17,10)(47,38)(37,48)(23,14)(13.24)(47,24)

.(23,48)(37,14)(49,10)( 9,18)(47, 6)(41.18)( 5,48)(17,32)

1.13351.13021.34901.34951.33331.33111.31161.22631.27851.18021.15631.41281.21071.16641.1861I'.33281.19841.21441.16731.35901.35831.38271.33571.21031.32661.29331'. 22331.21371.14731.18521.19461.15581.21681.19411.16341.29111.20071.31191.20101.35181.1777

1.13641.13541.35281.34521.33441.35561.34021.23981.28841.18301.16381.43201.20511.17401.18571.32791.18171.20701.14971.37001.31181.39601.36121.18401.29861.28991.22611.21941.18331.19091.19091.18421.18251.18821.18841.31741.24341.35661.20071.35181.1698

0.30.50.3

-0.30.11.82.21.10.80.20.61.4

-0.50.6

-0.0-0.4-1.4-0.6«1.50.8

-3.41.01.92 ~ 2

-2.1-0.30.20.53.10.5

-0.32.5

-2.8-0.52.12.03.63.4

-0.00.0„

-0.7

AVERAGE DIFFEMWlCE:STANDARD DEVIATION:

-0.2X

1.5X'55—

Page 177: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.3.7

UAD CITIES UNIT 1 EOC 2 INDIVIDUALBUNDLE GAhMA SCAM COhPARISIONS

BUNDLEID

LOCATION(X Y>

STANDARDAVERAGE DEVIATION

DIFFERENCE (X)

CX0546CX0719CX0191GEB162CX0494CX0286GEH008CX0398CX0412CX0490CX0174CX0617CX0100CX0024CX0553CX0332GEH029GEB123CX0662CX0150CX0440CX0015CX0378CX0186CX0682CX0611CX0351GEH023CX0396CX0093CX0316CX0723GEB149CX0631CX0399CX0397CX0231CX0161CX0297CX0414CX0523CX0198GEH022CX0393GEH002CX0672GEB132CX0585CX0281

( 9,52)( 9,50)(11,50)( 5,48)( 7,48)( 9,48)(13,48)(23,48)(37,48)( 5,46)( 7,46)( 9,46)(13,46)(15,46)( 5,44)(11.44)(13,44)(17.44)( 3,42)( 7,42)( 9,42)(15,42)(17,42)(19,42)( 1,40)( 3,40)( 7,40)( 9,40)(11,40)(13,40)(15,40)(17,40)(21,40)( 5,38)( 9,38)(13,38)(15,38)(19,38)(23.38)(47,38)( 3,36)( 5,36)( 9,36)(11,36)(13,36)(15,36)(17,36)(19,36)(21,36)

0. 0070.0160.0170.0270.0140.032

-0.0200.045

-0.0070.0380.0210.033 .

0.029„0.0130.0360.016

-0.0260.0270.0030.0050.0200.005

-0.0120.0070.0120.005

-0.003-0.054-0.031-0.0100.007

«0.016-0.006-0.001-0.0120.008

-0.009-0.0030. 007

-0.0350.0120.008

-0.074-0.007-0.045-0.004-0.0330.0070.009

4.344.955.374.28

'.41

6.117.466.325.745.115.936.307.555.735.876.657.428.733.986.687.497.177.926.553.835.226.508.186.757.117.056.92'.71

6.5012.176.176.335.795.785.414.655.967.276.427.706.597.806.646.33

— 156—

Page 178: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 3.3.7 (continued)

UAD CITIES UNIT 1 EOC 2 INDIVIDUALBUNDLE GAMMA SCAN COMPARISIONS

BUNDLEID

GEB105CX0643CX0044CX0327CX0362CX0306CX0660CX0287CX0498CX0310CX0575CX0214CX0683CX0520CX0137CX0420CX0106CX0394CX0057CX0052CX0162CX0717CX0225CX0453CX0165CX0482GEB161GEB159CX0588GEB158GEB160CX0318CX0401CXOOS6CX0445CX0384CX0359CX0124CX0711CX0622

LOCATION(X Y)

(25,36)( 1,34)( 7,34)( 9,34)(13,34)(15,34)(17,34)(23,34)(25,34)'27,34)

(31,34)'33,34)

( 1,32)( 3,32)( 5,32)( 7,32)( 9.32)(11,32)(13.32)(15,32)(17.32)(19,32)(21,32)(23,32)(25,32)(27,32)(29,32)(31,32)(33,32)(29,30)(31,30)(13,24)(47,24)( 9,18)(41,18)(23,14)(37,14)(17.10)(49,10)(47, 6)

AVERAGEDIFFERENCE

-0.0230.043

-0.002-0.008-0.011-0.0220.005

-0.0050.0050.0050.003

«0.0040.0450.0160.0120.014

-0.002-0.016-0.007-0.012-0.015-0.003-0.002-0.009-0.006-0.007-0.034-0.0260.015

-0.038-0.018-0.023-0.001-0.0200.0180.0040.0340.0130.0300.033

STANDARDDEVIATION

7.504.245.776.296.145.975.867.416.136.166.805.

92'.37

4.905 '55.524.995.885.696.435.665.825.316.475.406.568.228.467.377.897.775.566.784.917.706.724;885.625.153.67

— 157—

Page 179: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.1

QUAD CITIES UNIT 1 CORETIP LOCATIONS

61

59

57

55

5351

49

47

45

4341

3937

353331

29

27

25

2321

++

+

LINE OF TIPSYMMETRY

000204060810 12 14 16 18 202224262830323436384042444648505254565860X

Control Rod Location K Location For IndividualTIP Response Comparisons

~ Traversing In-core Probe Location

Page 180: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

'i

1.01

FIGURE 3.3.2SIMLUATE-E HOT CRITICAL CORE K-EFFECTIVE

VS CORE AVERAGE EXPOSURE

-

1.00~ ~

~ ~

~ ~ ~ ~ r

UJ

I-OUJ

w OSS-I

wOO

0.98

a<~~o

0~ ~ r

~ ~ ~ ~

~ . ~, ~ ,:.....:,....:;....,.....:;....,....,......:.... Legendo:r '-"'"""--'"'" '- '-"'"-'-'-"'-..—.o U2C1 HOT

U1C2 HOT

U2C2 HOT

U1C3 HOT

QC1C1 HOT

QC1C2 HOT

0.97-0 1 2 3 4 5 6 7 8

'10 11 12 13 . 14 15

CORE AVERAGE EXPOSURE (GWD/MTU)

Page 181: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.01

~ ~ ~

0

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~0

I

FIGURE 3.3.3QUAD CITIES UNIT 1 CYCLE 1 SIMULATE-E

HOT AND COLD CRITICAL CORE K-EFFECTIVES

100

LLI

I-0 OO QJ

LL

0.99LL

I

UJlZ0O

0.98

.:o

~ ~

~ M ~

I ~ W I

o

'......:.......'........:.......:;.......::.......:.......:......::.......:...... Legend'- .- .'"".-.'"--. - .""..'.-"" '.--".. """.'.""..'".-o QC1C1 HOT

—..-- x QC1C1 COLD""-I

II

0

II

0 70 1 2 3 4 B 7 8 9

CORE AVERAGE E URE (GWD/MTU)10

Page 182: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.3.4

QUAD CITIES UNIT 1 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON2.239 GWD/MTU CORE AVERAGE EXPOSURE

180

140

120I-RD

100

R80

Co

CL

60

++ 00

+ ~

0~ ~ ~ ~

' n""".".".-.~ .

00 0

+

~ ) ~ ~

0 0+ 0

+

40

20

0 1 2 9 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 182021222S24CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

— 161—

Page 183: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.5

QUAD CITIES UNIT 1 CYCLE 1

RADIALTIP RESPONSE COMPARISONS2.239 GWD/MTU CORE AYERAGE EXPOSURE

61

59

57

55

5351

49

47

45

-4.34 6.34

-3.21

—0.58

-0.23

-10.36

-2.86

6.3 2.26

4341

3937

-8.++++ .61 -3.13 2.2 14.

+8.14

353331

2927

252321

19

17

15

13

11

9

7

5

3

1

I

1.6

2.7

2.68

1.54

-3.66

0.91

-4.85

-11.30

5.42

7.8

59

-6.

-3

-0.

66

87

80

2.21

17

-10.58

-2.41

++++

-5.21

000204060810 12 14 16 18 20 22 24 26 283032343638404244464850X

52 5456 58

Diff = [(Calc -'Meas)/Core Avg TIP Response] X.100%- 162-

Page 184: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.6

QUAD CITIES UNIT 1 CYCLE 1

INDIVIDUALTIP RESPONSE COMPARISONS2.239 GWD/MTU CORE AVERAGE EXPOSURE

$IONIIOR LOCATlON 4$ ,$$ $IONIIOR LOCATION 4$ .$$

ISS

c ISS

waI n

soz Q.W ,Vo0

0

~I lla

c ISS0Irr

0Il1

O..IL0

0

J~~ J.

0

~0III

I I 'tI

I a ~ 0 ~ ~ f ~ 0 fs II la I~ 'N Is Is If Is Is as sf aaassICORE AXIALNOOK

0 oaAsoaso fl~ ssstossa0 OAIOIAAJaofloIlastoosa~ ooafaOL 000 tosfTlofl

~ 1 ~ ~ ~ ~ ~ f 0 ~ Is fifa f~ lf Isla ff Islsasalaaa ~ sfCORK AXIALNODE

+ MAIVMOfitIlaatosoao oalooIAfao fitsastossag ooNfaoL soo toaITloo

ICONITOA LOCATION 40,$ $

Ias ISS

ISS

n

00$ 0

r

o0

0+

ss

0t 0

00 0

O'Q0 0

0

00~0

0 j0

la

0

~ I a 0 0 ~ ~ 1 ~ ~ Is 11 Ia ls II Isla lf la la asalasaaslCORE AXIALNOOK

0 IIIAslafaDlitaastoasao Oulauufao fitaaatCOISa~ ooafaoL aoo towfloo

~ I 0 0 ~ 0 ~ f ~ 0 Is II Ia I~ II Ia I~ If Is I~ as fI sf aa sfCORK AXIALNODE

i IcaAsoaao litsastosaso OAAOOIAIasRt aaatOSSS~ 000lllOL IIOO toallloll

- 163-

Page 185: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

RGURE 3.3.7

QUAD CITIES UNIT 1 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON7.39B GWD/MTU CORE AVERAGE EXPOSURE

160

140

120

R100

LLlRR

80

40CL

60

40

20

0~ 0 1 2 3 4 5 6 7 8 S 10 11 121314 1616 17 18182021222324

CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

164-

Page 186: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.8

QUAD CITIES UNIT t CYCLE 1

RADIAI TIP RESPONSE COMPARISONS7.396 GWD/MTU CORE AVERAGE EXPOSURE

61

59

57

55

5351

49

47

454341

353331

29

27

252321

,39

Z7

-7. 61

-4.99

4.89

5.14

5.9

3.4

2.08

-5.23

1.22

-2.00

+'++

5.41

-1.15

-8.69

-2.94

5.32

9.47

-1.54

5.29

2.9

2.6

1.63

+ +++

7.51

-3.54

1.74

6.0

-3.52

-3.69

19

17

15

13

2.5 -7 -3.59 20 05 -4 54 .52

11

9

7

5

3

1

-2.10 -10.13+ +++ 89 0.0

000204060810 12 14 16 18 20 22 24 262830323436384042444648505254565860X

Diff= [{Calc - Meas)/Core Avg TIP Response] X 100%

— 165—

Page 187: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.309

QUAD CITIES UNIT 1 CYCLE 1

INDIVIDUALTIP RESPONSE COMPARISONS7.396 GWD/MTU CORE AVERAGE EXPOSURE

NONITDR LOCATION M,tt llONITDRLOCATION 4S,EE

1 la

ssi

TI

oobtT'

L5g lsa

I~i—I Ii is II —i—~

Saogboo

ss0 I I

+—I

~ 1 ~ 0 4 ~ ~ s ~ 0 sa ll as ls ss ls as st ls ls as sl sa ss asCORE AXIALNODE

0 sssaiwso ala~a0 oaaolsslao ~ aassoos a~ Oosslaoa soo soshloo

~ ~ s s ~ s'0 s ~ ~ ao 11 4 ls as ls ss sf ss lsCOSI t AXIAL.NODE

t wAswwlso'sssoosoo oAsoolssaa 11 0 ocsoosso~ owfMLaoo sosoloN

las

0

o ,oeI

000~oo0

I

ss

IIIj

I II

l I

1 ~ ~ ~ ~ ~ s 0 ~ ss ll ls ls ss ls ls ll ls ls ss al ss ss slCOIIE AXIALNODE

t OSANSISO lla ISSSSOISSS0 OSSOISASSO Ve Sarollaa~ OONISOl SOO SOSOIOSS

~ 1 a s ~ s ~ r ~ ~ ss n ls ls ls ls ss ls ls ls ss sl ss as ssCOIIE AXIALNODE

t INAWSOlP ~SO t0 ossoo lyso litsssooaso~ ooalaoa 000 sosslaas

— 166-

Page 188: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.3.10

QUAD CITIES UNIT 1 CYCLE 2

AVERAGE AXIALTIP RESPONSE COMPARISON

T.532 GWD/MTU CORE AVERAGE EXPOSURE

180I

I

140

120I-2!D

100

0

0

0 o0

0~ ~ ~ ~ ~~ C ~ ~

K80

Co

080

+C>

00

0

40

20

0 1 2 3 4 5 8 7 8 9 10 11 12131418181? 18192021222324CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

167—

Page 189: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.11

QUAD CITIES UNIT 1 CYCLE 2RADIALTIP RESPONSE COMPARISONS

7.532 GWD/MTU CORE AVERAGE EXPOSURE

, 61

5957555351

4947

454341

3937353331

2927252321

19

17

15

13

-5.98

.97

I

1.2

5.6

1 ~ 1 2

0.6

3.0

2\22

.10

-3.46

7.17

3.6

6.31

3.3

32

-1.98

-5.64

-1.49

-1.02

96

I

3.4

-4.09

5.4

4.51

-0.33

-5.89

-0.62

0.92

4.5

-0.16

-10.22

-4.32

+

-5.76

j

7

5

3

I

l. I

++I l I I

00 02 04 0 6 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58X

Diff = [(Calc - Mess)iCore Avg TiP Response] X 100%

— 168—

Page 190: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.12

QUAD CITIES UNIT 1 CYCLE 2INDIVIDUALTIP RESPONSE COMPARISONS

7.632 GWD/MTU CORE AVERAGE EXPOSURE

lee

tte

+4

+0

te

0 I

III

f

0

0 0

0 Ie +

00

0

g tee

I~e

~ eeII—

I

I I

0

I !T

I +j n.

00

0 II t I

I

~ I e ~ 0 e ~ T ~ te tl tt le 11 te 10 IT te te te tl te te ttCOAE AXIALNODE

0 tcaeaaeo litaaetoaea0 oauw Latco tt0 acetoaee~ coataoL aoo toeolott

~ 1 a ~ 4 ~ ~ 1 ~ ~ lelltclettleteltletetetltteeetCORE AXIALNODE

+ atcaeeaaottt acetoaee0 Oattattatte Ter ate~~ ooataoL aeo eoettaal

IeOIEIOR LOCATION 40,$ $

0ct tee r

0

e0

I

S ge

L JIIII 1

Ir

~ I 1 e ~ 1 0 T 1 ~ te tt It tt tt let~ IT tetetetttettttCOhE AXIAI.NODE

+ otaeehto lithtetoaeto OALOutatto Ttt aaetcaea~ ooalaoL aoo toethoa

~ 1 1 1 ~ ~ ~ 1 ~ ~ tetltttet11110IT I~ tetett ~ 11111CORE AXIAI.NODE

+ tetateato ttt a tetoaeto OAIOOLttte Ttt htetoaee~ ooaTaoL aoo eoettloa

169—

Page 191: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.3.13

QUAD CITIES UNIT 1 CYCLE 2

AVERAGE AXIALTIP RESPONSE COMPARISON13.188 GWD/MTU CORE AVERAGE EXPOSURE

1BO

140

120I-z

100lLlzz

80

CO

CL

BO

0

0

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'L

0 0+

O...'........ -.-+--.9 -.0--.$ -"+".-'.-"--"---. ~ ~

+ p g o e tP 0 9: + .o+

+0

~ g ~ ~

r ~ ~ ~ ~ ~ ~

40

20

0 1 2 3 4, 6 6 7 8 9 10 1112131416161718192021222324CORE AXIALNODE

+ MEASURED TIP RESPONSEo CALCULATEDTIP RESPONSE

170—

Page 192: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.14

QUAD CITIES UNIT 1 CYCLE 2RADIALTIP RESPONSE COMPARISONS

'13.198 GWD/MTU CORE AVERAGE EXPOSURE

61

59

5755

5351-

4947

454341

~ 353331

29

39s7

-5.45

-7.62

+ J5.0

+

8.00

-2.90

1.54

-1.53

9.14

3.83

+ +++

-0.38

-5.15

20

2.69

-2.00

-2.01

4.75

5.8

0.13

-1.53

3 072

++-5.47

27

252321

-0.16 .15 9.33++++ 2.01 -3.32 -4 09

19—

17

15

1'3

3 0 32 .15++++++++ -7.13 -5.08

11

9

7 J72 -8.00 2.5 4.40 -0.93

3

Y1

000204060810 12 14 16 18 2022 24 2628303234363840424446485052 54565860X

Diff = [(Calo - Mess)/Core Avg TiP Response] X 100%

171—

Page 193: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.15

QUAD CITIES UNIT 1 CYCLE 2INDIVIDUALTIP RESPONSE COMPARISONS

13.!98 GWD/MTU CORE AVERAGE EXPOSUREMOIETOR LOCATTON i+44 llONITOR LOCATION 40,$ E

o 0 +0-0.~0 + 0

'c

8 o

Xwa

01"

0~oooo0 0

t

'I a a ~ ~ t 0 ~ wnwlacclawltwwaoacaaaaalCORE AXIALNOOE

~ ~ 0 ~ ~ ~ 1 ~ 0 loll wca lc ca'wet I~ 'wCORE AXIALNOOE

11 cl ac

+ saAaaaso ni assroaari oacoacarmnr saaooosa~ oocccaoL 000 cwnlcal

+ Iwawwao 110 aaaooaK0 oacooLAIao no saaooaK~ ooacaoL aoo ooalnoa

4CNETOR LOCATION 40,$ $

cca

gcaa

5

X

ao

000 'll

04

0 0 00

d

waL

0 t

0

tI

oooo o a ~0

I..L..0

\ a 0 ~ 0 0 1 ~ w n w talc cawcf wwaoalaaaaacCO IIEAXIAL

0 WAlanaonp aaaaoaaao oocoscocao no oasroaas~ ooacaoL 000 ooalnoa

1 0 0 0 ~ T 0 wllwwncalactc ~ waacccccaccCORE AXIALNODE

0 WaASOaaonf aaaaoaK to OAIOOLAlaono aasoooK~ oosnloL aoo ooacnoa

172—

Page 194: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.8.

FIG 3.3.16QUAD CITIES UNIT 1 EOC GAMMASCAN COMPARISO

NORMALIZEDAXIALLA-140 ACTIVITYBUNDLE LOCATION 23,10

1.6 ~ ~

~ ~

1.4I—

1.2O

1.0-

0.8—LIJ

0.6-

LLI

0.4

~ J ~ ~ ~ ~ ~ ~ l ~ ~

J

~J

~ / ~/~ /I/

~ ~ /oI //

//

2~ ~ ~ / . ~ ~ . ~ ' .. ~ ~ ~

/ .'

~ ~ J/

>r- ~

~J ~

~ ~

~ gr ~

~ I ~

J J J I

~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~

.:. LegendGAMMA SCAN

SIMULATE-E

~ r ~

h ~ ~ ~ ~ '

~ ~

s ~ ~ ~

~ ~

~ ~

i ~

(I('(

(\

(

o.o $1

BOT1

~ ~T~2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

OM AXIALNODE TOP

Page 195: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.8

FIGURE S.3.17QUAD CITIES UNIT 1 EOC 1 GAMMASCAN COMPARISON

NORMALIZEDAXIALLA-140 ACTIVITYBUNDLE LOCATION 55,40

1.6 ~ ~

1.4

1.2

CONTROL:. RODPOSITION :'

~ i ~ ~ J ~ ~ ~ ~ ~ ~

~ ~ 4

~ ~

1.0-

0.8

0.6

0.4

0.2

~ /I

~ /

~////

/ ~/~ / ~

/// ~

/I

~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ i ~ ~ ~ ~ 4

~ ~

LegendGAMMA SCAN,:,

SIMULATE-E~ I

~ ~ ~

~ t~ ~

~ \

~ r ~

~ i ~

0

~ ~ P

I

%s

\~ - ~ - ~ ---i'

J ~ ~

I

0.0 ~ ~ ~ ~ ~ ~ ~

2 3 4 5 6 7 8 9 10 11 13 14 15 16; 17

TOM AXI NODE18 1S 20 21 22 23

Page 196: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

1.8

r

FIG 3.3.18QUAD CITIES UNIT 1 EOC GAMMASCAN COMPARISON

NORMALIZEDAXIALLA-140 ACTIVITY31 BUNDLE AVERAGE

1.6

1.4I—

1.2

O 1.0

I

0.8LLl

0.6-

Lll0.4

~ ~

~ /i/'

7/

//

/ ~

/ I

r~ i' ~/ ~

I

H ~

~ ~ ~

~ ~

LegendGAMMA SCAN:

SIMULATE-E

~ .

Mh h ~ ~

-r - r

~ h ~

I

~ i ~

~ ~ J ~

0 2- --.-'"-"'"." h ~ ~ ~ ~

~ ~

h ~

0.0-+

BOTT2 3 4 5 6 7 8 9

OM10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

AXIALNODE TOP

Page 197: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.19

QUAD CITIES UNIT 1 EOC 2 RADIAL GAtSA SCAN COMPARISON

52

50 0.608 0+7570.624 0 '740.016 0.017

0.579 0,7370.593 0.7690.014 0.032

1. 1751,157

-0,018

46 0.674 0.8170.695 0.8490.021 0.032

1.015 1.0571.044 1.0700.029 0.013

X.XXX GAttQL SCANX.XXX SIHULATE-EX.XXX DIFFERENCE

I

42 0.828 0.9490.834 0.9690.006 0.020

1.000 1.2911.016 1.2670.016 -0.024

l.2731.3000.027

1.092 1.120 1.0931.098 1.109 1.1000.006 -0.011 0.007

STANDARD DEVIATION! 1.82/

40 0.5730.5780.005

0.890 1.215 1.070 1.0580.888 1.165 1.042 1.049

-0.002 -0.050 -0.028 -0.009

1.062 1.1421.070 l.1270.008 -0.015

1.2341.229

-0.005

38 0.8070.8070.000

1.0351.025

-0.010

1+049 1,0641.057 1.0570.008 "0.007

1.0591.057

"Oo002

1.0261.0340.008

36 0 '80 0.8390.692 0.8480.012 0.009

1.274 1.072 1.284 1.079 1.269 1.060 1.0411. 204 l.067 l.242 l.076 l.238 l.069 l.051

-0.070 -0.005 -0.042 -0.003 -0.031 Oo009 0.010

1.2221. 201

"0.021

0 '42 1.0150.942 1.0080.000 -0.007

1.051 1.066 1.0551.042 1.046 1.060

"Oo009 -0.020 Oo005

1.028 1.035 1 ~ 0391.024 1.041 1.044

-0.004 Oo006 0.005

1.050 1.0381.054 1.0360.004 -0.002

0.703 0.831 0.904 0.973 1.010 1.015 1.040 1.044 1.026 1.005 1,005 1.029 1.0660.719 0.843 0.919 0.972 0.996 1.009 1.030 1.031 1.024 1.005 0 '97 1.024 1.0600.016 0.012 0.015 -0.001 -0 '14 -0.006 -0.010 -0.013 -0.002 0.000 -0.008 -0.005 -0.006

1 ~ 0371 ~ 0520.015

30

1 3 5 7 9 ll 13 15 17 ~ 21 23 25 27 29 31 33

Page 198: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGU 3.3.20QUAD CITIES UNIT I EOC 2 GAMMASCAN COMPARISON

BUNDLE ID'X0662d 0

Legend~ -..'--- 0 =Measured

o = CalculatedI

0

T

aN

X~0z

\ I0

I I

I\

O

0.0 12.0 24.0 3B.O 48.0 BO.O ?2.0 84.0 9B.O 108.0 120.0 132.0 144.0DISTANCE FROM BOTTOM OF CORE (IN)

Page 199: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

OOl

FIGURE 3.3.21QUAD CITIES UNIT 1 EOC 2 GAMMASCAN COMPARISON

BUNDLE ID: CX0399

\

~ ~ ~

Legend~ --.--'.--. 0 =Measured'

= Calculated P 0

) e-'-

V

T

D

DlllN

0Z

0 ~ ~

0

0

0.0 12.0 24.0 36.0 48.0 80.0 72.0 84.0 SB.O 108.0 120.0 132.0 144.0DISTANCE FROM BOTTOM OF CORE (IN)

Page 200: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

C)Ol

FIGU 3.3.22QUAD CITIES UNIT 1 EOC 2 GAMMASCAN COMPARISON

BUNDLE ID: CX0231

I- ~T

O

C)

D

nLLIN

K g)0

Legend~ -----'.-" o Measured

0 Calculated

'0

~ ~

0~ ~

~ ~

~ ~

0Ct

0.0 12.0 24.0 38.0 48.0 BO.O 72.0 84.0 98.0 108.0 120.0 132.0 144.0DISTANCE FROM BOTTOM OF CORE (IN)

Page 201: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.3.23QUAD CITIES UNIT 1 EOC 2 GAMMASCAN COMPARISON

BUNDLE ID: CX0297

COID

I- ~-) e-'-

O

Cl

I oT'

LIN

<o0z

Legend"----:--- o =Measured

o = Calculated

oo

— 0.0 12.0 24.0 36.0 48.0 80.0 72.0 84.0 98.0 108.0 120.0 132.0 144.0DISTANCE FROM BOTTOM OF CORE (IN)

Page 202: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

O

FIG E 3.3.24QUAD CITIES UNIT 1 EOC 2 GAMMASCAN COMPARISON

BUNDLE ID: CX0717

I- Ql) r

Legend~ ---'.-" 0 ~Measured

0 = Calculated

~ ~ ~

Cl

IClT

ClIll

0 I

I 0

0 ~ ~

0 ~ ~ ~ g ~

ClCl.

0.0 12.0 24.0 36.0 48.0 60.0 72.0 84.0 S6.0 108.0 120.0 132.0 144.0DISTANCE F,ROM BOTTOM OF CORE (IN)

Page 203: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

OOl

FIGURE 3.3.25QUAD CITIES UNIT 1 EOC 2 GAMMASCAN COMPARISON

BUNDLE ID: CX0378

) v'-

0

O1

QILIr>

< ci0Z

Legend~ -.-...'-.- 0 =Measured

o = Calculated0

0

~ ~0 0

0

P

0

0

0

0

0

o

0.0 12.0 24.0 36.0 48.0 60.0 72.0 8,4.0 96.0 108.0 120.0 132.0 144.0DISTANCE FROM BOTTOM OF CORE (IN)

Page 204: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIG 3.3.28QUAD CITIES UNIT 1 EOC 2 GAMMASCAN COMPARISON

BUNDLE ID:.CX0160

lOI-

Legend~ -..'-" D =Measured

o = Calculated

\

\

II

I \

'4

I

. ~

IO

QLLIN

~ ~ '4

~ ~ ~

I

I

~ ~

I

0

~ ~ ~ ~ ~ ~

~ ~ ~

CI

0.0 12.0 24.0 38.0 48.0 80.0 72.0 84.0 88.0 108.0 120.0 132.0 144.0

DISTANCE FROM BOTTOM OF GORE (lN)

Page 205: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

Cl

FIGURE 3.3.27QUAD CITIES UNIT 1 EOC 2 GAMMASCAN COMPARISON

BUNDLE ID: GEH029

0

Legend";- - 0 Measured

0 Calculated~ ~

I- ~

lO

C)

I O

CllUhl

P \I

0

\

tx-'o0

I0

0.0 12.0 24.0 38.0 48.0 80.0 72.0 84.0 98.0 108.0 120.0 '132.0 144.0

DISTANCE FROM BOTTOM OF CORE (IN)

Page 206: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

3.4 Peach Bottom Unit 2 C cles 1 and 2 Com arisons

One specific application of PPGL's steady state core physics methods and

models is to provide input to the transient analysis benchmarking of the Peach

Bottom Unit 2 end of Cycle 2 turbine trip tests. In order to provide thenecessary input, SIMULATE-E models of the Peach Bottom Unit 2 Cycles 1 and 2

cores were developed. These models were then, used to simulate the Peach

Bottom Unit 2 core depletion through Cycles 1 and 2. Comparisons to TIP

measurements taken during Cycles 1 and 2 and to General Electric Company (GE)

process computer Pl power distributions taken prior to the turbine trip testsassess the accuracy of the core depletion calculations.

Peach Bottom Unit 2 is a General Electric BWR-4 core that. consists of 764 fuelassemblies with an active core height of 144 inches. The initial cyclecontained 764 General Electric 7x7 fuel assemblies; Cycle 2 contained 576

initial-core fuel assemblies and 188 Sx8 fresh fuel assemblies. Althoughreactor design and rated conditions are quite similar to Susquehanna SES, thePeach Bottom Unit 2 core loading pattern, fuel bundle design, inlet flow

~

~

orifices, and core support plate bypass flow paths are significantlydifferent. These design differences were taken into account in development ofthe Peach Bottom Unit 2 SIMULATE-E model. A more detailed description of thePeach Bottom Unit 2 core is found in Reference 30.

The average RMS of the differences between the SIMULATE-E calculated and

measured TIP responses, for each Peach Bottom Unit 2 TIP response comparison iscalculated as described in Section 3.2.3. Figure 3.4.1 shows the RMS of theTIP response comparisons for Peach Bottom Unit 2 Cycles 1 and 2. These

comparisons are slightly worse than Susquehanna SES results but are stillquite good. The Peach Bottom Unit 2 core operating data (Reference 30) usedfor modeling the core depletion was less detailed than the data used forSusquehanna SES. This lack of detailed data may be the cause of theseslightly worse results.

Figures 3.4.2 through 3.4.4 show the end of Cycle 1 core average axial,radial, and four individual TIP response comparisons, respectively. Figures3.4.5 through 3.4.7 present the same comparisons for end of Cycle 2. As shown

- 185-

Page 207: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

in these figures, the calculated TIP response agrees well with the'measured

data. These results therefore indicate that the SIMULATE-E models accuratelcalculate three-dimensional core exposure, void history, and control historyarrays for the end of each cycle.

As previously stated, the primary purpose for developing the Peach Bottom

Unit 2 models was to generate the necessary transient analysis inputs (e.g.,I

cross sections and kinetics parameters). The end of Cycle 2 TIP response

comparison indicates that the core history arrays have been accuratelycalculated. Because the turbine trip tests were performed over a span of a

few weeks with a core power history plagued by nonsteady state operation,careful analysis of power maneuvers was required to adequately calculate theactual xenon concentration at the time of the tests. The accuracy of thecalculated xenon concentration immediately prior to each turbine trip test can

be assessed by comparing the SIMULATE-E calculated power distribution to theavailable GE process computer Pl power distribution (Reference 31).Figure 3.4.8 shows each axial power distribution comparison. The SIMULATE-E

calculated power distributions are based on actual core conditions prior to"the tests as reported'n Reference 31. The figure shows the three differentpower distributions (i.e., top peaked, middle peaked, and slightly bottom

peaked) that existed at the time of the three turbine trip tests. Thisindicates that the core conditions were considerably different for each test,and that the SIMULATE-E model is capable of calculating these differences.Typical reload design and licensing applications do not require modeling thecomplexity of nonequilibrium xenon. Therefore, this benchmark provides a good

test of PPGL's steady state physics models and methods in an application which

is more difficult than the normal reload analyses.

— 186—

Page 208: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.4.1PEACH BOTTOM UNIT 2 CYCLES 1 AND 2 RELATIVE NODAL

RMS OF TIP RESPONSE COMPARISONS12.0

11.0

10.0-

9.0- .

M8.0

7.0- .

D6O

Llle.O- .

I~

4.0- .

IZCL 30-.

2.0-

I

I

~ ~ ~ ~ ~

J'egend

0 PB2C1

PB2C2

I ~

~ ~ ~

P

I

~ ~ ~

: X.x.Q........::....N.: ..........

XX

1.0-

0.0-0 3 4 6 6 7 8 9 10 11

CORE AVERAGE EXPOSURE (GWD/MTU)12 13 14

Page 209: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

90

FIGURE 3.4.2

PEACH BOTTOM UNIT 2 CYCLE 1

AVERAGE AXIALTIP RESPONSE COMPARISON'1.133 GWD/MTU CORE AVERAGE EXPOSURE

80

70+ 0

+ + +p p

0+ 0

eoI-zD

50LLIRR

40

40

LL

so

0

0 p+

0+ 9

+ '0~E ~ ~ ~

p

20

10

00 1 2 3 4 5 6 ? 8 9 10 11 121S 14 16 16 17 18 192021222S24

CORE AXIALNODE

+ MEASUAED TIP RESPONSEo CALCULATEDTIP RESPONSE

— 188—

Page 210: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.4.3

PEACH BOTTOM UNIT 2 CYCLE 1

RADIALTIP RESPONSE COMPARISONS11. I33 GWD/MTU CORE AVERAGE EXPOSURE

61

595755

5351

49

47

454341

39s7

3331

2927

252321

19

17

15

13

11

9

75

3

1

+'4.93

-0 56

-0 89

-3.30

—,3.03 1.67

-0.20 9.5

11.53+++ +

3.50 -4.16

-3.09 2.2

3.I

++++++

+ +-4.36 0. 12++

3.81 -5.06

-1.27 -6.44

3.4 0.06

-0.65 -3.11

1.27 -3.79

-0.09 -0.11

I I I I

++++++++

+-0.17

+++++ ++ +

-1.63

-4.66

-5.47

-0.43

-1 48

000204060810 12 14 16 18 20 22 24 2628303234363840 42 4446485052 54 565860X

Diff=I (Cele - Meas)/Core Avg TiP Response] X 100%

189—

Page 211: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.4.4

PEACH BOTTOM UNIT 2 CYCLE 1

INDIVIDUALTIP RESPONSE COMPARISONS11.133 GWD/MTU CORE AVERAGE EXPOSURE

MONITOR LOCATION ILSS MONITOR LOCATION 4O,SS

14

cc 14~I

i „I.0+oo

00

11 IO 10 IT IO TO 4 Cl CC CC OO,NODS

+ NCAOOCCO litNCCPONCC0 OAIlÃNNTCOTltACOPONCC

~ OONTCOL NOO POROON

I

I

~ ~ ~ ~ ~ C ~ T ~ ~ IOR ToloCOAS AXIAL

II I

~ob ~ 0 gr,z I-

II

t

0+

0

~ 1 C ~ 4 ~ ~ T 0 ~ Io ff % Io TT lo IO TT IO IOCOAS'AXIALNODS

0 NCARPRO fftNCCPONCC0 OALOWATCOlitCCCPONCC~ CCNANR NOO PORTION

o0

TC CO ST

MONITOR LOCATION 4D,SS MONITOR LOCATION Sf SS

14 14

14

cR4

0

4 0 0 ~

+ o

oo

L

40

I-+ 4

0

II

0

4.»0

0+ o

00

~ I C O ~ C 0 T ~ ~ IO ff lo Io 'N IO IO 11 10 10 Co Cl CC CC OlCONS AXIALNODS

+ IICACMIICOlltNCotONOCo OAIOOTATCOTlt IICOtONOC~ OONTAOL IIOO POOIIION

~ I ~ $ ~ ~ ~ T ~ ~ IO ff ff 11 4 IC Io IT I~ I~ TO 11 ll CO OICONS AXIALNODS

+ NCAOCNCO TltNCOPONOCO OAAOINATKOllt IICOPONOC~ OONTCOL NOO PORTION

190—

Page 212: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

180

FIGURE 3.4.5

PEACH BOTTOM,UNIT 2 CYCLE 2

AVERAGE AXIALTIP RESPONSE COMPARISON13.812 GND/MTU CORE AVERAGE EXPOSURE

180

140

120l-R

g 100

RR

80CO

eo

Q ..........

0

400

~ +-.--

20

00 1 2 3 4 6 6 7 8 9 10 1112131415161718182021222324

CORE AXIALNODE

+ MEASURED TIP RESPONSE0 CALCULATEDTIP RESPONSE

191—

Page 213: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.4.6

PEACH BOTTOM UNIT 2 CYCLE 2RADIALTIP RESPONSE COMPARISONS

13.812 GWD/MTU CORE AVERAGE EXPOSURE

61

595755

5351

4947

45

-8.41

-3.02

6.8

3.93 6.04

.78

-9.96

3.2

+5.3

4341

3937

-5.20 0.47 -0 35 -0.36 -0.93 -2. —7 99

353331

29

4.14 .70 -3.90 2.6

27

252321

19

17

15

13

-0.19

.12 85

3.

-0.13

-3.21

0.45

3.9

++++

-4

-3

07

26

-0.02

-2.56

6.32 7.51 -0.21 2.29 .21

000204060810 12 14 16 18 2022 24 2628303234363840424446485052545658X

Diff = [(Calc - Meas)/Core Avg TIP Response] X 100%— 192—

Page 214: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 3.4.7"

PEACH BOTTOM UNIT 2 CYCLE 2INDIVIDUALTIP RESPONSE COMPARISONS

48.812 GWD/MTU CORE AVERAGE EXPOSURE

$IONIIOR LOCATION $0s$ $ LIONITOR LOCATION 4$ ,$ $

tao

~ 4$$ o

0

4

+ o

L .'LI

N ~ p

~ It-

4

0

~ '

~ 1 t t 4 t ~ 7 ~ 0'«1111«CORE AIQAL

0 OltttJLNIaoTlo NaotCNOti CONITNtLOOO POONION

e «» tt »» te at at at tlNODE

~ ~ t ~ ~ ~ ~ Z ~ ~ '» ll tt lt tt lt lt Tt «» to tl tt tt tlCORK AXIALKODK

+ MAOISMt» Ntttooto0 AAtowttaoTl~ Ntttoooo~ CONTNOL NOO tOttTNNI

$$OIETOR LOCATTON 40,$ $ IIONITOR LOCATION $$,$$

Iat

44

o. 4

+ 4+ $4 0 0 4 o 4

40 4

IJ.

0L

b

~ I 0 0 ~ 0 0 t ~ 0 Ittl»la tt'«lait to»tttltttttlCORE AXIALNODE

4 NtAtottoTlfl«tOONOO4 OALOINAtaoTlo NaotONta~ OONI%0L too tOOITION

~ ~ ~ ~ ~ 0 ~ r ~ «Lt tt It tt lt lt e tt It at tl at at ttCORE AXIALNODE

4 NOAt»ttO W'attoo at0 OALCOIATao Tl~ Oat tONto~ CONTNOL OOO totII»N

193

Page 215: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FlGURE 3.4.8PEACH BOTTOM UNIT 2 END OF CYCLE 2

CORE AVERAGE AXIALPOWER DISTRIBUTIONS1.5

oQ

I—

1.0

0.5

LegendP1 Data

SIMULATE-E

0.0

1.5

1 3 12 15 21 24

4J1.0

oQ

Ld)I—

0.5LLICL

LegendP1 Data

SIMULATE-E

CL

o0QJ

I—

LLI

0.0

1.5

1.0

0.5

1 3

, ~TTB

12 15

LegendP1 Data

SIMULATE-E

18 21I

24

0.01 3

BOTTOM

I

9 12 15

AXIALNODE194—

18 21 24TOP

Page 216: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

4.0 SPECIAL APPLICATIONS WITH PD 7

Occasionally, applications require multiple assembly calculations. The

lattice physics code CPM-2 is a single assembly code which is not capable ofperforming multiple bundle calculations. For these cases, the PDQ7 program isused. PDQ7 has been used for criticality analyses and to provide input to thethree-dimensional nodal simulation codes.

To demonstrate PPaL's ability to use PDQ7, two sets of problems are presented.The first set contains calculations of the uniform lattice criticals presentedin Section 2.2 which were analyzed with CPM-2. The second set contains singlefuel bundle calculations with both CPM-2 and PDQ7. For these cases, pin power

distributions and assembly reactivities are compared.

- 195-

Page 217: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

4.1 Descri tion of PD 7

The PDQ7 computer program (Reference 32) was developed for fine mesh few groupdiffusion theory analysis. The program solves the neutron diffusion equationin one, two or three dimensions. Available options include rectangular,hexagonal, cylindrical or spherical geometries. A maximum of five energygroups are permitted. The mesh spacing is flexible allowing the user todefine as much geometric detail as appropriate for the specific problem.

Cross sections for each problem may be input to PDQ7 as either macroscopic ormicroscopic data. At PPGL, this data would typically be CPK-2 generatedmacroscopic cross sections. For most applications, four group cross sectionsare used with energy boundaries as, defined in Table 4.1.1.

— 196 «

Page 218: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 4 1 1

ENERGY GROUP STRUCTURE USED IN PDQ7CALCULATIONS

~GrouEnergy Boundaries

(eV)

1.0 x 10 - 8.21 x 107 5

8.21 x 10 - 5.53 x 105 3

5.53 x 10 - 0.6253

0.625. - 0.0

197

Page 219: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

4.2 Uniform Lattice Criticals

The same uniform lattice criticals evaluated with CPM-2 in Section 2.2 were

also analyzed with PDQ7. One-dimensional cylindrical geometry was used to'model each uniform lattice critical. The critical radius was defined toconserve the core cross sectional area and was determined from the criticalnumber of pins. PDQ7 cross sections for the core region were obtained fromCPM-2 pin cell calculations. The reflector cross sections were obtained fromReference 33. Because a radial reflector region was included in the PDQ-7

model, only an axial buckling term was required to account for the leakage.

As with the CPM«2 uniform lattice critical calculations presented inSection 2.2, the TRX and ESADA experiments were modeled with PDQ7. Tables4.2.1 and 4.2.2 show the results of the PDQ7 calculations. The CPM-2 resultsfrom Section 2.2 are also included for comparison. The results from the TRX

and ESADA calculations yield similar K-effectives.

- 198—

Page 220: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE 4 2 1

P 7 RESULTS FOR TRX CRITICALS

ExperimentIdentification

CPM-2K-effective

Experimental AxialMaterial guckling

(m )PDQ7

K-effective

TRX1

TRX2

TRX3

TRX4

TRX5

TRX6

TRX8

0.9934

0.9958

0.9942

0.9939

0.9934

0.9974'.9970

0.9960

5.04

5.12

5.32

5.11

5. 26.

5.25

5.25

5.31

0.9969

0.9973

0.9954

0.9961

0.9950

0.9996

0.9996

0.9978

Average K-effective

Standard Deviation

0.9951

0.0016

0.9972

0.0017

199—

Page 221: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

TABLE,4.2 2

P 7 RESULTS FOR ESADA CRITICALS

ExperimentIdentification

CPM-2K«effective*

Experimental AxialMaterial pxckling

(m )PDQ7

K-effective*

ESADA 1

ESADA 3

ESADA 4

ESADA 6

ESADA 12

ESADA 13

1.0026

1.0004

1.0129

1.0116

1.0101

1.0077

8.56

8.967

9.466

9.471

9.436

9.639

1.0122

1.0158

1.0152

1.0133

1.0162

1.0140

Average K-effective.

Standard Deviation

1.0076

0.0050

1.0144

0.0016

*AllCPM-2 and PDQ7 calculated K-effectives have been adjusted by -0.4% <Kto account for spacer worth.

200—

Page 222: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

A second qualification of the use of PDQ7 at PPaL is through comparison tosingle assembly CPM-2 lattice physics calculations. To facilitate generationof the PDQ7 cross section data, the COPHIN (Reference 34) code was used.

Separate planar regions are defined for different fuel pin types, water rods

and other regions (i.e., control rod, water gap, etc.) . Fuel pin regions are

grouped according to fuel pin enrichment and location. The mesh descriptionis defined to explicitly model each pin and to conserve the volumes of each

region.

When the fuel assembly being modeled contains gadolinia or a control rod, theneutron flux depression caused by the presence of the strong absorber can be

reproduced using diffusion theory with a shielding factor. Without. a

shielding factor diffusion theory results in an overestimation of the neutronflux in the absorber region and a corresponding overestimation of the absorber

.worth. Shielding factors are developed and applied to the Group 4 (thermal) ~~

~absorption and fission cross sections for gadolinia bearing fuel pins and theGroup 3 and 4 absorption cross sections for control rods. These factors are

derived by conserving the CPM-2 calculated abs'orption rate in the absorber.

The fuel assemblies chosen for the comparison are the Susquehanna SES initialcore bundle designs. Two separate fuel designs were chosen for the analysis.The results are shown in Figures 4.3.1 through 4.3.4. The agreement in power

distribution for a single assembly is very good. The assembly eigenvalues(K«infinities) also agree well between the two codes, differing by less than 1

mk (or 0.1% ~k) . This demonstrates that PPGL can perform accurate PDQ7

assembly calculations.

201—

Page 223: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 4.3.1CPM-2 VS PDQ7 PIN POWER DISTRIBUTION COMPARISON

GE INITIALCORE HIGH ENRICHED FUEL TYPEUNCONTROLLED

WIDEGAP

WIOEGAP

1.0271.055

2.71.1041.1130.8

1.1171.115-0.21.1471.140»0.61.1241.126-0.2

0.9800.969

-1.1

1.0471.029-1.7

1.0761.060-1.6

1.0221.0220.0

0.9650.95B .

-0.90.8600'.87e

1.70.8420.862

2.4

0.1140.1150.9

0.9931.0010.8

CPM-2PDQ7

% DIFFERENCE

1.0741.0810.7

1.0661.081

1.5

0.9971.033

3.6

1.0291.0370.8

0.9880.987-0.1

;1.0691.084

1A

0.1100.109-0.9

1.0401.045'o.e

1.0851.0890.4

0.893 0.9920.901 0.9730.9 -1.9

'l.057 1.0121.049 0.992-0.8 -2.01.14B 1.1791.143 1.166-0.3 -1.1

0.9480.923-2.6

1.099 1.0131.0B9 0.994-2.7 -1.91.148 1.132 1.0501.140 1.134 1.073-0.7 0.2 2.2

LINE OFSYMMETRY

CPM-2 K-INFINITY= 1.1428

PDQ7 K-INFINITY= 1.1426

202-

Page 224: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 4.3.2CPM-2 VS PDQ7 PIN POWER DISTRIBUTION COMPARISON

GE INITIALCORE HIGH ENRICHED FUEL TYPECONTROLLED

WIDEGAP

WIDE 0'380GAP Oe400

5.30.4860.523

7.60.5490.578

5.30.6070.632

4.1O.B450.666

3.30.6900.703

1.9

0.5910.6123.6

0.7400.786

6.20.8370.876

4.70.8550.898

5.00.9240.966

4.5

0.8260.853

3.30.824 0.1290.877 0.133

B.4 3.1

0.8770.924

5.40.128 1.1010.130 1.103

1.6 0.2

1.2321.2390.6

1.276 1.2601.236 1.214-3.1 -3.7

CPM-2PDQ7

% DIFFERENCE

0.8240.832

1.00.9520.973

2.2

0.9890.995

0.61.1661.1730.6

1.210 1.3341.19B 1.293-1.2 -3.1

1.300 1.4651.288 1.433-0.9 -2.2

1.335 1A93 1A041.284 1.420 1.353-3.8 -4.9 -3.61.573 1.577 1.5861.519 1.524 1.539-3A -3A -3.0

1.4871.465-1.5

LINE OFSYMMETRY

CPM-2 K-INFINITY= 0.9623PDQ7 I|'-INFINITY= 0.9615

203

Page 225: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 4.3.3CPM-2 VS PDQ7 PIN POWER DISTRIBUTION COMPARISON

GE INITIALCORE MEDIUM ENRICHED FUEL TYPEUNCONTROLLED

WIDEGAP

WIDEGAP

1.0641.0963.0

1.1041.116

1.1

1.1201.1210.1

1.0821.078-0.4

1.0801.079-0.11.1221.1220.0

0.9880.979-0.91.0841.067-1.6

1.0321.018-1.4

1.0391.026-1.3

1.0961.078-1.6

0.9210.915-0.7

0.8470.854

0.80.9070.908

0.10.9B20.952-1.0

0.1390.1390.0

0.8850.889

0.5

0.1240.126

1.60.7940.809

1.9

0.9000.898-0.2

CPM-2PDQ7

% DIFFERENCE

1.1061.1160.9

1.0601.094

3.2

0.9930.982

-1.1

1.1041.1151.0

1.0911.074-1.B1.1171.1180.1

1.0281.018-1.0

1.0721.073

0.1

1.0211.011-1.0

1.0751.073-0.2

0.8750.863-1.41.1161.1200.4

0.9890.'985-0.41.097 1.0541.112 1.0881.4 3.2

LINE OFSYMMETRY

CPM-2 K-INFINITY= 1.1107

PDQ7 K-INFINITY= 1.1100

204—

Page 226: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

FIGURE 4.3.4CPM-2 VS PDQ7 PIN POWER DISTRIBUTION COMPARISON

Gf INITIALCORE MEDIUM ENRICHED FUEL TYPECONTROLLED

WIDEGAP

WIDEGAP

0.3990.4196.0

0.496 0.6040.631 0.6267.3 3.6

0.662 0.7760.688 0.801

4.6 3.20.688 0.8140.610 0.836

3.7 2.60.640 0.8900.654 0.897

2.2 0.8

0.7940.8213.4

0.8130.866

6.20.9460.969

2.6

0.1670.1623.2

0.1660.169

2.6

CPM-2PDQ7

% DIFFERENCE

0.742 1.0140.743 1.028

0.1 1.40.869 1.0060.868 0.998-0.1 -0.7

1.019 1.2111.034 1.212

1.5 0.1

1.0611.060-0.1

1.2651.244

107

1.3421.326-1.2

1.075 1.0281.075 1.0330.0 0.6

1.290 1.3611.266 1.313-1.9 -2.8

1.373 1A401.348 1.406-1.8 -2.4

1.2081.192

103

1.197 1.3811.163 1.349-2.8 -2.3

1.643 1.648 1.6061.609 1.621 1.600-2.2 -1.7 -0.4

LINE OFSYMMETRY

CPM-2 I|'-INFINITY= .0.9230PDQ7 K-INFINITY= 0.9238

205

Page 227: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

5.0 SUMMARY AND CONCLUSIONS

The analyses presented in this topical report demonstrate the validity ofPPGL's analytical methods as well as PPGL's qualifications to perform steady

state core physics calculations for reload design and licensing analysisapplications.

The lattice physics qualification has been accomplished through comparison ofthe CPM-2 computer code results to various measurement. data. Comparisons to14 uniform lattice critical experiments yields an average K-effective of1.0005 with a standard deviation of 0.0072. The average K-effective for the

UO, criticals is, 0.9951 and the average K-effective for the plutoniumcr'iticals is 1.0076. The pin power distribution and hence local peaking

factor calculation, has been benchmarked to the gamma scan data from Quad

Cities Unit. 1 which was taken at the end of Cycle 2. The average standard

deviation from all of the comparisons is .4.0%. Zf only the UO bundles are

considered, the average standard deviation reduces to 3.37%; this is close tothe reported 3.0% practical accuracy of the data. The qualification of the~

~

lattice physics methods also relies on the original benchmarking of EPRZ-CPM

provided by EPRZ. Because the neutronics methods in CPM-2 are identical tothose in EPRI-CPM, this benchmarking remains valid for CPM-2. Some of theuniform lattice criticals .analyzed in the EPRI benchmarking are the same

experiments as those analyzed by PPGL. After compensation was made for thecorrection factors applied to the EPRZ-CPM results, the results from EPRZ-CPM

agreed very well with those from CPM-2.

The qualification of the core simulation methods not only demonstrates theaccuracy of SIMULATE-E but also provides a demonstration of the entire steadystate core physics methodology. The benchmarking results show that the

calculated hot critical core K-effectives from SIMULATE-E can be accuratelypredicted by a correlation which considers both core gadolinia content and

core average exposure. The mean difference between the SIMULATE-E calculatedcore K-effective and the correlation is only 0.00002 ~k with a standarddeviation of 0.00061 ~k. The cold critical core K-effective from SIMULATE-E

can be accurately predicted by adding a constant bias of 0.00659 ~k to the hotcritical K-effective correlation. Comparisons of cold critical calculations

206

Page 228: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

to the target results in a standard deviation of 0.00137 bk. Xn addition,there is no significant difference between the cold in-sequence and localcritical calculations.

Comparisons of predicted TIP responses to measured TIP response data were

performed as a means of assessing the accuracy of 'the SIMULATE-E power

distribution calculation. Susquehanna SES nodal TIP response comparisons,

which demonstrate the accuracy of the detailed power distribution, show an

average RMS of 5.74%. Radial TIP response comparisons were also performed inorder to demonstrate the accuracy of the bundle power distribution, and theaverage RMS for Susquehanna SES is 2.58%,. The same types of TXP response

comparisons were also made for the first two cycles of Quad Cities. The

average nodal TIP RMS is 9.84% and the average radial RMS is 5.26%.

Additionally, the SXMULATE-E power distribution calculations have been

compared to the gamma scan measurements taken at the end of the first and

second cycles of Quad Cities Unit 1; These measurements are representative ofthe core power distribution averaged over the last two to three months ofoperation. SIMULATE-E was used to calculate the nodal.Ia-140 concentrationsfor comparison to the measured data. The results of the nodal comparisons,

neglecting peripheral and axial end nodes, yield an RMS of 5.45%. For theradial comparison, neglecting peripheral bundles, an RMS of 1.92% was ,

obtained. The axial peaking factor (on a nodal basis) was also compared tothe measured gamma scan data. The average difference in the axial peakingfactor was 1.2% with a standard deviation of 2.1% for Cycle 1 and -0.2% with a

standard deviation of 1.54 for Cycle 2.

This report also included SXMULATE-E calculations for Cycles 1 and 2 of Peach

Bottom Unit 2. These calculations were performed in order to generate theneutronics input to PPGL's transient analysis methods benchmarking against thePeach Bottom end of Cycle 2 turbine trip tests. The predicted power

distributions for each of the three turbine trip tests show excellentagreement to reported plant process computer data.

The PDQ7 computer program is used for special applications to perform. multiplebundle criticality analyses and to augment nodal simulation code input. A

demonstration of PPaL's use of the PDQ7 program includes comparisons to'I

— 207-

Page 229: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

uniform lattice critical experiments and pin power distribution calculationswith CPM-2.

In conclusion, the analysis results contained in this topical reportdemonstrate PPaL's qualifications to perform steady state core physicscalculations. Extensive comparison to measured data from Susquehanna SES,

Quad Cities Unit 1, and Peach Bottom Unit 2 demonstrate the validity of theanalytical methods as well as PPaL's capability to set up and properly applythe models. Comparisons to reactor designs other than PPaL's Susquehanna SES

demonstrates PPaL's ability to extend the core modeling techniques developedfor Susquehanna SES to other fuel and core designs.

PPGL is committed to maintaining a strong in-house core analysis capabilityand as part of that commitment we continually evaluate the accuracy of ourcore simulation methods and make modeling improvements when appropriate.Although PPSL's day-to-day core follow analyses are aimed primarily at plantoperations support, the comparisons of SIMULATE-E calculations (e.g., TIP

response, K-effective, thermal margins) to the plant data also serve as a

continuing methods benchmarking effort.

208—

Page 230: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16
Page 231: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

6.0 REFERENCES

11. NRC Generic Letter Number 83-11, "Licensee Qualification for Performing

Safety Analyses in Support of Licensing Actions," February 8, 1983.

2. "Advanced Recycle Methodology Program," EPRI CCM-3, September, 1977.

3. D. B. Jones, "CPM-2 Computer Code User's Manual," Part II, Chapter 6 ofEPRI NP-4574-CCM, February, 1987.

4. M. Edenius, "EPRI-CPM Benchmarking," Part 1, Chapter 5 of EPRI CCM-3,

November, 1975.

5. A. Ahlin, et. al., "The Collision Probability Module EPRI-CPM," Part II,Chapter 6 of EPRI CCM-3, November, 1975.

6. R. Stamm'ler, et. al., "Equivalence Relations For Resonance IntegralCalculations," Journal of Nuclear Energy, Volume 27, page 885, 1973.

~ ~ ~7. M. Edenius, A. Ahlin, "MICBURN: Microscopic Burnup In Gadolinia Fuel

Pins," Part II, Chapter 7 of EPRI CCM-3, November, 1975.

8. M. Edenius, et. al., "The EPRI-CPM Data Library," Part II, Chapter 4 ofEPRI CCM-3, November, 1975.

9. L. Hellstrand, "Measurements of Resonance Integrals Reactor Physics inthe Resonance and Thermal Regions," Proceedings of the National TopicalMeeting, San Diego, CA, Volume II, page 157, February, 1966.

10. J. R. Brown, et. al., "Kinetic and Buckling Measurements on Lattices ofSlightly Enriched Uranium or UO Rods In Light Water," WAPD-176, January,

1958.

11. R. D. Learner, et. al., "PuO - UO Fueled Critical Experiments,"

WCAP 3726 1 g July g 1967 ~

209-

Page 232: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

12. '. B. Cutrone and G. F. 'Valby, "Gamma Scan Measurements at Quad'CitiesNuclear Power Station Unit 1 Following Cycle 2," EPRI NP-214, July, 19

13. R. J. Nodvik, "Supplementary Report on Evaluation of Mass Spectrometricand Radiochemical Analysis of Yankee Core I Spent Fuel, IncludingIsotopes of Elements Thorium Through Curium," WCAP-6086, 1969.

14. R. J. Nodvik, "Saxton Core ZZ Fuel Performance Evaluation," Part IZWCAP-3385-56.

15. D. M. VerPlanck, "SIMULATE-E: A Nodal Core Analysis Program for LightWater Reactors," EPRZ NP-2792«CCM, March, 1983.

16. A. Ancona, "Reactor Nodal Method Using Response Matrix Parameters," Ph.D. Thesis Rensselaer Polytechnical Institute, 1977.

17. S. Borresen, "A Simplified, Coarse Mesh, Three-Dimensional DiffusionScheme for Calculating the Gross Power Distribution in a Boiling WaterReactor," Nuclear Science and Engineering, Volume 44, pages 37-43, 1971

I

18. G. S. Lellouche and B. A. Zolotar, "Mechanistic Model For PredictingTwo«Phase Void Fraction For Water in Vertical Tubes," EPRI NP-2246-SR,

February, 1982.

19. B. J. Gitnick, "FIBWR: A Steady-State Core Flow Distribution Code forBoiling Water Reactorst Computer Code, User's Manual," EPRI NP-1924-CCM,

July, 1981.

20. D. B. Jones and M. J. Anderson, "ARMP-02 Documentation: Part IZ, Chapter12-NORGE-B2 Computer Code Manual," EPRZ NP-4574-CCM, Part ZZ, Chapter 12,December, 1986.

21. B. L. Darnell, et. al., "SIMULATE-E: A Nodal Core Analysis Program forLight Water Reactors," EPRI NP-2792-CCM (Draft Revision), Appendix D,May, 1986.

— 210—

Page 233: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

22. A. F. Ansari, et. al., "FIBWR: A Steady-State Core Flow DistributionCode for Boiling Water Reactors," EPRI NP-1923, July, 1981.

23. R. B. Macduff and T. W. Patten, "XN-3 Critical Power Correlation,"XN-NF-512(P)(A) Revision 1 and Supplement 1, Revision 1, October 21,

1982.

24. S. W. Jones, et. al., "POWERPLEX Core Monitoring Software System SoftwareSpecification for the Susquehanna Steam Electric Station Susquehanna

Units 1 and 2," XN-NF-83-35(P), Revision 1, August, 1986.4

25. "General Electric BWR Thermal Analysis Basis (GETAB): Data, Correlationand Design Application," NEDO-10958-A, January, 1977.

26. M. Edenius, "Studies of the Reactivity Temperature Coefficient in LightWater Reactors," AE-RF-76-3160, A. B. Atomenergi, 1976.

27. N. H. Larsen, et. al., ".Core Design and Operating Data for Cycles 1 and 2~

~

~ ~

of Quad Cities 1," EPRI NP-240, November, 1976.

28. N. H. Larsen, "Core Design and Operating Data for Quad Cities 1 Cycle 3,"EPRI NP-552, March, 1983.

29. G. R. Parkos, "BWR Simulator Methods Verification," NED0-20946A, January,1977.

30. N. H. Larseh, "Core Design and Operating Data For Cycles 1 and 2 of Peach

Bottom 2," EPRI NP-563, June, 1978.

31. L. A. Carmichael and R. D. Niemi, "Transient and Stability Tests at Peach

Bottom Atomic Power Station Unit 2 at the End of Cycle 2," EPRI NP-564,

June, 1978.

32. W. R. Cadwell, "PDQ7 Reference Manual," WAPD-TM-678, January, 1967.

211-

Page 234: Beehgm. e.x(|II Ave.11ygiz - NRC: Home Page · 2.1.3 Heavy'uclide Chains 14 2.1.4 Fission Product Chains 15 2.1.5 Modifications to ENDF-B/IIIData for CPM-2 Cross Section Library 16

33. W. J. Eich, et. al., "Few Group Baffle and/or Reflector Constants forDiffusion Calculation Application," EPRI NP-3642-SR, August, 1984.

34. R. D. Mosteller and R. S. Borland, "COPHIN Code Description,"EPRI NP-1385, April, 1980.

- 212—