BCS Theory

56
Outlines Cooper-Pairs BCS Theory Finite Temperatures BCS Theory of Superconductivity Thomas Burgener Supervisor: Dr. Christian Iniotakis Proseminar in Theoretical Physics Institut f¨ ur theoretische Physik ETH Z¨ urich June 11, 2007 1 / 52

description

BCS Theory

Transcript of BCS Theory

Page 1: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

BCS Theory of Superconductivity

Thomas BurgenerSupervisor: Dr. Christian Iniotakis

Proseminar in Theoretical PhysicsInstitut fur theoretische Physik

ETH Zurich

June 11, 2007

1 / 52

Page 2: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

What is BCS Theory?

Original publication: Phys. Rev. 108, 1175 (1957)

2 / 52

Page 3: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

What is BCS Theory?

First “working” microscopic theory for superconductors.

It’s a mean-field theory.

In it’s original form only applied for conventionalsuperconductors.

3 / 52

Page 4: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

What is BCS Theory?

First “working” microscopic theory for superconductors.

It’s a mean-field theory.

In it’s original form only applied for conventionalsuperconductors.

3 / 52

Page 5: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

What is BCS Theory?

First “working” microscopic theory for superconductors.

It’s a mean-field theory.

In it’s original form only applied for conventionalsuperconductors.

3 / 52

Page 6: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Outline

1 Cooper-PairsFormation of PairsOrigin of Attractive Interaction

2 BCS TheoryThe model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

3 Finite TemperaturesExcitation Energies and the Energy GapDetermination of Tc

Temperature dependence of the energy gapThermodynamic quantities

4 / 52

Page 7: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Outline

1 Cooper-PairsFormation of PairsOrigin of Attractive Interaction

2 BCS TheoryThe model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

3 Finite TemperaturesExcitation Energies and the Energy GapDetermination of Tc

Temperature dependence of the energy gapThermodynamic quantities

4 / 52

Page 8: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Outline

1 Cooper-PairsFormation of PairsOrigin of Attractive Interaction

2 BCS TheoryThe model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

3 Finite TemperaturesExcitation Energies and the Energy GapDetermination of Tc

Temperature dependence of the energy gapThermodynamic quantities

4 / 52

Page 9: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Formation of PairsOrigin of Attractive Interaction

Outline

1 Cooper-PairsFormation of PairsOrigin of Attractive Interaction

2 BCS TheoryThe model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

3 Finite TemperaturesExcitation Energies and the Energy GapDetermination of Tc

Temperature dependence of the energy gapThermodynamic quantities

5 / 52

Page 10: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Formation of PairsOrigin of Attractive Interaction

Formation of Pairs

Let’s assume the following things:

Consider a material with a filled Fermi sea at T = 0.

Add two more electrons thatinteract attractively with each other butdon’t interact with the other electrons except viaPauli-prinziple.

6 / 52

Page 11: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Formation of PairsOrigin of Attractive Interaction

Formation of Pairs

Look for the groundstate wavefunction for the two added electrons,which has zero momentum:

0(r1, r2) =X

k

⇣g

k

e

ik·r1e

�ik·r2⌘

(|"#i � |#"i)

The total wavefunction has to be antisymmetric with respect toexchange of the two electrons. The spin part is antisymmetric andtherefore the spacial part has to be symmetric.

) g

k

!= g�k

.

7 / 52

Page 12: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Formation of PairsOrigin of Attractive Interaction

Formation of Pairs

Inserting this into the Schrodinger equation of the problem leads tothe following equation for the determination of the coe�cients g

k

and the energy eigenvalue E :

(E � 2✏k

)gk

=X

k>kF

V

kk

0g

k

0 ,

where

V

kk

0 =1

ZV (r)e i(k0�k)·r

dr

(r: distance between the two electrons, ⌦: normalization volume,✏k

: unperturbated plane-wave energies).

8 / 52

Page 13: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Formation of PairsOrigin of Attractive Interaction

Formation of Pairs

Since it is hard to analyze the situation for general V

kk

0 , assume:

V

kk

0 =

⇢ �V , EF < ✏k

< EF + ~!c

0 , otherwise

with ~!c a cuto↵ energy away from EF .

9 / 52

Page 14: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Formation of PairsOrigin of Attractive Interaction

Formation of Pairs

With this approximation we get:

1

V

=X

k>kF

1

2✏k

� E

= N(0)

Z EF +~!c

EF

d✏

2✏� E

=1

2N(0) ln

✓2EF � E + 2~!c

2EF � E

◆.

If N(0)V ⌧ 1, we can solve approximativly for the energy E

E ⇡ 2EF � 2~!ce� 2

N(0)V < 2EF .

10 / 52

Page 15: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Formation of PairsOrigin of Attractive Interaction

Origin of Attractive Interaction

Negative terms come in when one takes the motion of the ioncores into account, e.g. considering electron-phonon interactions.The physical idea is that

the first electron polarizes the medium by attracting positiveions;

these excess positive ions in turn attract the second electron,giving an e↵ective attractive interaction between the electrons.

11 / 52

Page 16: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Outline

1 Cooper-PairsFormation of PairsOrigin of Attractive Interaction

2 BCS TheoryThe model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

3 Finite TemperaturesExcitation Energies and the Energy GapDetermination of Tc

Temperature dependence of the energy gapThermodynamic quantities

12 / 52

Page 17: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

BCS Theory

Having seen that the Fermi sea is unstable against the formation ofa bound Cooper pair when the net interaction is attractive, wemust then expect pairs to condense until an equilibrium point isreached.We need a smart way to write down antisymmetric wavefunctionsfor many electrons. This will be done in the language of second

quantization.

13 / 52

Page 18: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

BCS Theory

Introduce the creation operator c

†k�, which creates an electron of

momentum k and spin �, and the correspondig annihilationoperator c

k�. These operators obey the standard anticommutationrelations for fermions:

{ck�, c†

k

0�0} ⌘ c

k�c

†k

0�0 + c

†k

0�0ck� = �

kk

0���0

{ck�, c

k

0�0} = 0 = {c†k�, c†

k

0�0}.Additionally the particle number operator n

k� is defined by

n

k� ⌘ c

†k�c

k�.

14 / 52

Page 19: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

The model Hamiltonian

We start with the so-called

pairing-hamiltonian

H =X

k�

✏k

n

k� +X

kl

V

kl

c

†k"c

†�k#c�l#cl",

presuming that it includes the terms that are decisive forsuperconductivity, although it omits many other terms whichinvolve electrons not paired as (k ",�k #).

15 / 52

Page 20: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

The model Hamiltonian

We then add a term �µN , where µ is the chemical potential,leading to

H� µN =X

k�

⇠k

n

k� +X

kl

V

kl

c

†k"c

†�k#c�l#cl".

The inclusion of this factor is mathematically equivalent to takingthe zero of kinetic energy to be at µ (or EF ).

16 / 52

Page 21: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Bogoliubov-Valatin-Transformation

Define:

b

k

⌘ hc�k#ck"iBecause of the large number of particles involved, the fluctuationsof c�k#ck" about these expectations values b

k

should be small.Therefor express such products of operators formally as

c�k#ck" = b

k

+ (c�k#ck" � b

k

)

and neglect quantities which are bilinear in the presumably smallfluctuation term in parentheses.

17 / 52

Page 22: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Bogoliubov-Valatin-Transformation

Inserting this in our pairing Hamiltonian we obtain the so-called

model-hamiltonian

HM � µN =X

k�

⇠k

c

†k�c

k� +X

kl

V

kl

(c†k"c

†�k#bl

+ b

⇤k

c�l#cl" � b

⇤k

b

l

)

where the b

k

are to be determined self-consistently.

18 / 52

Page 23: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Bogoliubov-Valatin-Transformation

Defining further

�k

= �X

l

V

kl

b

l

= �X

l

V

kl

hc�k#ck"i

leads to the following form of the

model-hamiltonian

HM � µN =X

k�

⇠k

c

†k�c

k� �X

k

(�k

c

†k"c

†�k# +�⇤

k

c�k#ck" ��k

b

⇤k

)

19 / 52

Page 24: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Bogoliubov-Valatin-Transformation

This hamiltonian can be diagonalized by a suitable lineartransformation to define new Fermi operators �

k

:

Bogoliubov-Valatin-Transformation

c

k" = u

⇤k

�k" + v

k

�†�k#

c

†�k# = �v

⇤k

�k" + u

k

�†�k#

with |uk

|2 + |vk

|2 = 1. Our “job” is now to determine the values ofv

k

and u

k

.

20 / 52

Page 25: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Bogoliubov-Valatin-Transformation

Inserting these operators in the model-hamiltonian gives

HM � µN =X

k

⇠k

⇣(|u

k

|2 � |vk

|2)(�†k"�k" + �†

�k#��k#)

+2|vk

|2 + 2u

⇤k

v

⇤k

��k#�k" + 2u

k

v

k

�†k"�

†�k#

+X

k

⇣(�

k

u

k

v

⇤k

+�⇤k

u

⇤k

v

k

)(�†k"�k" + �†

�k#��k# � 1)

+(�k

v

⇤k

2 ��⇤k

u

⇤k

2)��k#�k"

+(�⇤k

v

2k

��k

u

2k

)�†k"�

†�k# +�

k

b

⇤k

⌘.

21 / 52

Page 26: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Bogoliubov-Valatin-Transformation

Choose u

k

and v

k

so that the coe�cients of ��k#�k" and �†k"�

†�k#

vanish.

) 2⇠k

u

k

v

k

+�⇤k

v

2k

��k

u

2k

= 0

����·�⇤

k

u

2k

)✓�⇤

k

v

k

u

k

◆2

+ 2⇠k

✓�⇤

k

v

k

u

k

◆� |�

k

|2 = 0

) �⇤k

v

k

u

k

=q⇠2k

+ |�k

|2 � ⇠k

⌘ E

k

� ⇠k

22 / 52

Page 27: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Bogoliubov-Valatin-Transformation

This gives us an equation for the v

k

and u

k

as

|vk

|2 = 1� |uk

|2 =1

2

✓1� ⇠

k

E

k

◆.

23 / 52

Page 28: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

The BCS ground state

BCS took as their form for the ground state

| G i =Y

k

(uk

+ v

k

c

†k"c

†�k#) |0i

where |uk

|2 + |vk

|2 = 1. This form implies that the probability ofthe pair (k ",�k #) being occupied is |v

k

|2, whereas the probabilitythat it is unoccupied is |u

k

|2 = 1� |vk

|2.Note: | G i is the vacuum state for the � operators, e.g.

�k" | G i = 0 = ��k# | G i

24 / 52

Page 29: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Calculation of the condensation energy

We can now calculate the groundstate energy to be

h G |H� µN | G i = 2X

k

⇠k

v

2k

+X

kl

V

kl

u

k

v

k

u

l

v

l

=X

k

✓⇠k

� ⇠2k

E

k

◆� �

2

V

The energy of the normal state at T = 0 corresponds to the BCSstate with � = 0 and E

k

= |⇠k

|. Thus

h n|H� µN | ni =X

|k|<kF

2⇠k

25 / 52

Page 30: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

The model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

Calculation of the condensation energy

Thus, the condensation energy is given by

hE is � hE in =X

|k|>kF

✓⇠k

� ⇠2k

E

k

◆+

X

|k|<kF

✓�⇠

k

� ⇠2k

E

k

◆� �

2

V

= 2X

|k|>kF

✓⇠k

� ⇠2k

E

k

◆� �

2

V

=

✓�2

V

� 1

2N(0)�2

◆� �

2

V

= �1

2N(0)�2

26 / 52

Page 31: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Outline

1 Cooper-PairsFormation of PairsOrigin of Attractive Interaction

2 BCS TheoryThe model HamiltonianBogoliubov-Valatin-TransformationCalculation of the condensation energy

3 Finite TemperaturesExcitation Energies and the Energy GapDetermination of Tc

Temperature dependence of the energy gapThermodynamic quantities

27 / 52

Page 32: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Excitation Energies and the Energy Gap

With the above choice of the u

k

and v

k

, the model-hamiltonianbecomes

HM � µN =X

k

(⇠k

� E

k

+�k

b

⇤k

) +X

k

E

k

(�†k"�k" + �†

�k#��k#).

E

k

=q�2

k

+ ⇠2k

28 / 52

Page 33: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Excitation Energies and the Energy Gap

0

0.5

1

1.5

2

2.5

3

3.5

4

-3 -2 -1 0 1 2 3

E k/∆

ξk/∆

EksEkn

Figure: Energies of elementary excitations in the normal andsuperconducting states as functions of ⇠

k

.

29 / 52

Page 34: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Excitation Energies and the Energy Gap

Inserting the � operators in the definition of �k

gives

�k

= �X

l

V

kl

hc�l#cl"i

= �X

l

V

kl

u

⇤l

v

l

D1� �†

l"�l" � �†�l#��l#

E

= �X

l

V

kl

u

⇤l

v

l

(1� 2f (El

))

= �X

l

V

kl

�l

2E

l

tanh�E

l

2

30 / 52

Page 35: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Excitation Energies and the Energy Gap

Using again the approximated potential V

kl

= �V , we have�

k

= �l

= � and therefor

1

V

=1

2

X

k

tanh(�E

k

/2)

E

k

.

This formula determines the critical temperature Tc !

31 / 52

Page 36: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Determination of Tc

The critical temperature Tc is the temperature at which �k

! 0and thus E

k

! ⇠k

. By inserting this in the above formula,rewriting the sum as an integral and changing to a dimensionlessvariable we find

1

N(0)V=

Z �c~!c/2

0

tanh x

x

dx = ln

✓2e

⇡�c~!c

(� ⇡ 0.577...: the Euler constant)

32 / 52

Page 37: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Determination of Tc

Critical temperatur Tc

kTc = ��1c ⇡ 1.13~!ce

�1/N(0)V

33 / 52

Page 38: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Determination of Tc

For small temperatures we find

1

N(0)V=

Z ~!c

0

d⇠

(⇠2 +�2)1/2

) � =~!c

sinh(1/N(0)V )⇡ 2~!ce

�1/N(0)V ,

which shows that Tc and �(0) are not independent from eachother

�(0)

kTc⇡ 2

1.13⇡ 1.764

34 / 52

Page 39: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Temperature dependence of the energy gap

Rewriting again1

V

=1

2

X

k

tanh(�E

k

/2)

E

k

.

in an integral form and inserting E

k

gives

1

N(0)V=

Z ~!c

0

tanh 12�(⇠2 +�2)1/2

(⇠2 +�2)1/2d⇠,

which can be evaluated numerically.

35 / 52

Page 40: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Temperature dependence of the energy gap

Figure: Temperature dependence of the energy gap with someexperimental data (Phys. Rev. 122, 1101 (1961))

36 / 52

Page 41: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Temperature dependence of the energy gap

Near Tc we get

Temperature dependence of �

�(T )

�(0)⇡ 1.74

✓1� T

Tc

◆1/2

, T ⇡ Tc ,

which shows the typical square root dependence of the orderparameter for a mean-field theory.

37 / 52

Page 42: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Thermodynamic quantities

With �(T ) determined, we know the fermion excitation energies

E

k

=q⇠2k

+�(T )2. Then the quasi-particle occupation numbers

will follow the Fermi-function f

k

= (1 + e

�Ek)�1, which determine

the

electronic entropy for a fermion gas

Ses = �2k

X

k

((1� f

k

) ln(1� f

k

) + f

k

ln f

k

).

38 / 52

Page 43: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Thermodynamic quantities

Figure: Electronic entropy in the superconducting and normal state.

39 / 52

Page 44: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Thermodynamic quantities

Given Ses(T ), we find the

specific heat

Ces = �� dSes

d�= 2�k

X

k

� @f

k

@E

k

✓E

2k

+1

2�

d�2

d�

In the normal state we have

Cen =2⇡2

3N(0)k2

T .

40 / 52

Page 45: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Thermodynamic quantities

We expect a jump in the specific heat from the superconducting tothe normal state:

�C = (Ces � Cen)|Tc= N(0)

✓�d�2

dT

◆����Tc

⇡ 9.4N(0)k2Tc

41 / 52

Page 46: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Thermodynamic quantities

Figure: Experimental data for the specific heat in the superconductingand normal state (Phys. Rev. 114, 676 (1959))

42 / 52

Page 47: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Type I superconductors

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

H

T/Tc

M-O-State

Normal-State

Figure: Phase diagram of a Type I superconductor

43 / 52

Page 48: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Vortex-State

Original publication: Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)(Sov. Phys. - JETP 5, 1174 (1957))

44 / 52

Page 49: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Type I and Type II superconductors

By applying Ginzburg-Landau theory for superconductors one findstwo characteristic lengths:

1 The Landau penetration depth for external magnetic fields �and

2 the Ginzburg-Landau coherence length ⇠, which characterizesthe distance over which can vary without undue energyincrease.

45 / 52

Page 50: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Type I and Type II superconductors

Define

Ginzburg-Landau parameter

⌘ �

By linearizing the GL equations near Tc one can find:

< 1p2: Type I superconductor

> 1p2: Type II superconductor

46 / 52

Page 51: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Type II superconductors

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

H

T/Tc

M-O-State

Vortex-State

Normal-State

Figure: Phase diagram of a Type II superconductor

47 / 52

Page 52: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

As a solution of the GL equation, one could find the following formof the orderparameter:

(x , y) =1

N1X

n=�1exp

✓⇡(ixy � y

2)

!1=!2+ i⇡n

+i⇡(2n + 1)

!1(x + iy) + i⇡

!2

!1n(n + 1)

N =

✓!1

2=!2exp

✓⇡=!2

!1

◆◆1/4

48 / 52

Page 53: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Vortex-State

-2 -1 0 1 2-2

-1

0

1

2

-2 -1 0 1 2-2

-1

0

1

2

Figure: Square and triangle symmetric state of the vortex lattice in adensity plot of | |2.

49 / 52

Page 54: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Vortex-State

-2-1

01

2x

-2

-1

0

1

2

y0

0.5

1!!!2

-2-1

01

2x

-2-1

01

2x

-2

-1

0

1

2

y0

0.5

1!!!2

-2-1

01

2x

Figure: Square and triangle symmetric state of the vortex lattice in a 3Dplot.

50 / 52

Page 55: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

Summary

An attractive interaction between electrons will result informing bound Cooper pairs.

The model-hamiltonian can be diagonalized using aBogoliubov-Valatin-Transformation.

The order parameter in a superconductor is the energy-gap �.

BCS-Theory gives a prediction of the critical temperature Tc

and the energy gap �(T ).

Vortices will be observed in Type II superconductors.

51 / 52

Page 56: BCS Theory

OutlinesCooper-PairsBCS Theory

Finite Temperatures

Excitation Energies and the Energy GapDetermination of TcTemperature dependence of the energy gapThermodynamic quantities

The END

Thank you for your attention!

Are there any questions?

52 / 52