BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University...

40
BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006

Transcript of BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University...

Page 1: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

BCS - BEC Crossover:

Pseudogap, Vortices

& Critical CurrentMohit Randeria

The Ohio State UniversityColumbus, OH 43210, USA

Nordita, June 2006

Page 2: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Outline:

• review of BCS-BEC crossover theory

• pseudogap

• vortex structure

• fermionic bound states in vortex core

• critical current unitary gas is the most robust superfluid

Page 3: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Two routes to Strongly Interacting Fermions in Cold Atom Systems:

• Feshbach resonance enhance interactionsattraction > Ef

3D BCS-BEC crossover

• Optical lattice suppress “kinetic energy” repulsion >> bandwidth 2D Hubbard model high Tc “superconductivity”

• Feshbach Resonance + Optical lattice

goal

Page 4: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Fermi Atoms: Li K

6

40

Experiments:Jin (JILA)Ketterle (MIT)Grimm (Innsbruck)Hulet (Rice)Thomas (Duke)Salamon (ENS)

Typical Numbers:Trap freq. ~ 20 - 100 HzN ~ 10Ef ~ 100 nK -1 KT ~ 0.05 - 0.1 Ef1/kF ~ 0.3 mTF radius ~ 100 m

“up” & “down” species: two different hyperfine statese.g. Li

Pairing of “spin up” and “down” fermions interactingvia a tunable 2-body interaction: Feshbach Resonance

6

6

Page 5: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Feshbach Resonance:external B field tune bound state in closed channel & modify the effective interaction in open channel

Openchannel

Closedchannel

adapted from Ketterle group (MIT)

“Wide” resonance: Linewidth a single-channel effective model is sufficient

Page 6: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

2-body bound state in vacuum size

Two-body problem:

Low-energyeffective interaction:s-wave scattering length

as B field increases decreases

Page 7: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

BCS limit

BEC limit

Unitarity

Many-body Problem:

Dilute gas: range << interparticle distance

Low-energy effective interaction:

Dimensionless Coupling constant

Strongly Interacting regime

Page 8: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

BCS• cooperative Cooper pairing• pair size

BEC• tightly bound molecules• pair size

• D. M. Eagles, PR 186, 456 (1969) T=0 variational BCS gap eqn.

• A.J. Leggett, Karpacz Lectures (1980) plus renormalization

• Ph. Nozieres & S. Schmitt-Rink, JLTP 59, 195 (1985) diagrammatic

theory of Tc

• M. Randeria, in “Bose Einstein Condensation” (1995) T*,Tc, T=0; with C. sa deMelo, J. Engelbrecht; and N. Trivedi pseudogap; 2-dimensions

BCS-BEC Crossover

B

Page 9: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

BCS to BEC crossover at T=0• “gap” • chemical potential • momentum distribution n(k)• collective modes

Engelbrecht, MR & Sa de Melo, PRB 55, 15153 (1997)

Crossover:

Page 10: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

T*: Pairing temperature saddle-point

BCS

BEC

Saha ionization

Sa de Melo, MR & Engelbrecht, PRL 71, 3202 (1993)

Tc:Phase Coherence saddle-point + Gaussian fluctuations

Functional Integral Approach:

Page 11: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

How reliable is “saddle-point + Gaussian fluctuations”?Effect of (static) 4th order terms Ginzburg criterion

Sa de Melo, MR & Engelbrecht, PRL 71, 3202 (1993) PRB 55, 15153 (1997)

Page 12: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Experimental data: K: C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004) Li: M. Zwierlein, et al., PRL 92, 120403 (2004)

406

Theoretical Tc: C. Sa deMelo, MR, J. Engelbrecht, PRL 71, 3202 (1993)

Comparison between Theory & Experiment:“Condensate fraction” measured on molecular (BEC) side after rapid sweep from initial state `Projection’

analysis of projection: R. Diener and T. L. Ho, cond-mat/ 0401517

Page 13: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

*C. Sa deMelo, MR, J. Engelbrecht, PRL (1993) & PRB (1997)

** T= 0 QMC: J. Carlson et al. PRL (2003); G. Astrakharchik et al. PRL(2004) T> 0 QMC: A. Bulgac et al., (2005); E. Burovski et al., (2006); V. Akkineni, D.M. Ceperley & N. Trivedi (2006).

“Universality” forOnly scales in the problem: Energy & Length

Bertsch - Baker (2001); K. O’Hara et al., Science (2002); T. L. Ho, PRL (2004).

At unitarity: Monte Carlo**

BEC limit:

Petrov, Shlyapnikov & Salamon, PRL (2003)

exact4-bodyresult!

Mean field theory* + fluctuations

Page 14: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Outline:

• brief review of BCS-BEC crossover

• pseudogap

• vortex structure

• fermionic bound states in vortex core

• critical current

Page 15: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Qualitatively new physics in Strongly Interacting Fermions: * Breakdown of Landau’s Fermi-liquid Theorye.g.,• Normal states of High Tc cuprate superconductors• pseudogap in BCS-BEC crossover

* Superconductivity/fluidity is not a pairing instability in a normal Fermi liquid.

• Landau’s Fermi-Liquid Theory:

Strongly Interacting Weakly-interactingNormal Fermi systems Quasiparticle gas

e.g., He3; electrons in metals; heavy fermions

• BCS theory: pairing instability in a normal Fermi-liquid

Page 16: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Breakdown of Fermi-liquid theory:

Crossover from toNormal Fermi Gas Normal Bose Gas

Pseudogap: Tc < T < T* Pairing Correlations in a degenerate Fermi system

Pseudo -gap

M. Randeria et al., PRL (1992)N. Trivedi & MR, PRL (1995)

• pairing gap in above Tc• strong T-dep. suppression of spin susceptibility above Tc

• no anomalous features in

Page 17: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Carrier (hole)concentration

d-wave

T*

BEC BCS

Tc Fermi Liquid s-wave

Superfluid

Pseudo -gap

High Tc Cuprates Cold Fermi Gases

0 0 0.2

M. Randeria in “Bose Einstein Condensation” (1995) & Varenna Lectures (1997).

normal Bose gas

Strongly correlated non-Fermi-liquid superconductors normal states

• low-energy pseudogap• high-energy pseudogap• strange metal: scaling Spin-Charge separartion?

T

Page 18: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

High Tc SC in cuprates• Highest known Tc (in K) * electrons

• Repulsive interactions• d-wave pairing• near Mott transition• competing orders: AFM,CDW

• repulsion U >> bandwidth • 10 A• Tc ~ s << • Mean-field theory fails• anomalous normal states - strange metal & pseudogap Breakdown of Fermi-liquid theorySpin-charge separation?

BCS-BEC crossover• Highest known Tc/Ef ~ 0.2 * cold Fermi atoms

• Attractive interactions• s-wave pairing• only pairing instability

• attraction > Ef• kf• Tc ~ s << • Mean-field theory fails• pairing pseudogap

Page 19: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Outline:

• brief review of BCS-BEC crossover

• pseudogap

• vortex structure

• fermionic bound states in vortex core

• critical current

R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006)

See also: N. Nygaard et al., PRL (2003); Bulgac & Y. Yu, PRL(2003).M. Machida & T. Koyama, PRL (2005); K. Levin et al, cond-mat (2005)

Page 20: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Vortices in Rotating Fermi Gases

M.W. Zwierlein et al., Nature, 435, 1047, (2005)

Li Fermi gas through a Feshbach Resonance6

Quantized vortices unambiguous signature of superfluidity

Page 21: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Bogoliubov-DeGennes Theory:mean field theory with a spatially-varying order parameter(can also include external trapping potential; not included here)

T=0 Self-consistency:

vortex

Page 22: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Order Parameter Profile at T=0:

BCS limit (cf. GL theory)

Two length scales!• initial rise: (analytical result)

• approach to on scale:

At Unitarity:

the two scales merge

Page 23: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Density Profiles:

BCS limit: Core density ~ n

Unitarity:Core densitydepleted

BEC limit:“Empty” coreorder parameter ~ density

Page 24: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Outline:

• brief review of BCS-BEC crossover

• pseudogap

• vortex structure

• fermionic bound states in vortex core

• critical current

R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006)

Page 25: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Fermionic Bound States in the Vortex Core:Theoretical prediction (BCS limit):C. Caroli, P. deGennes, J. Matricon, Phys. Lett. 9, 307 (1964)STM Expts. NbSe2: H. Hess et al., PRL (1989).

0

(r)

“Andreev” bound states in the core: “minigap” & spacing

r

STM: Davis group (Cornell)

Very low-energy excitations in vortex core

Page 26: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Spectrum of Fermionic Excitations

at unitarity

continuum

Bound states:Core states“edge” states

Minigap followsC-dG-Mpredictions Through unitarity!

Page 27: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Leggett (1980)MR, Duan, Shieh (1990)

Energy Gap v/s. in BCS-BEC crossover:

Recall:

Page 28: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Fermionic Excitations in BEC regime

E

continuum

Bound state!

Fermion bound state in Vortex core persists into molecular BEC regime!

probe bound states viaRF spectroscopy

Page 29: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Bound state wavefunctions

Page 30: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Outline:

• brief review of BCS-BEC crossover

• pseudogap

• vortex structure

• fermionic bound states in vortex core

• critical current unitary gas is the most robust superfluid

R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006) and unpublished

Page 31: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Qs: Is there anything “special” about the unitary superfluid?

• max but similar for all

• superfluid density (Gallilean invaraince) for all

• (analog of ) hard to define – centrifugal effects

• critical velocity Vc: non-linear response to flow

Page 32: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Current Flow around a vortex:

dependence?

Page 33: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

fromEngelbrecht, MR & Sa de Melo,PRB (1997)

Vortex Core Size from Current flow

BEC BCS

Page 34: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Current Flowaround a vortex:

Critical current:

Page 35: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

• max Tc ~ 0.2Ef (but similar for all 1/kfas > 0)• max critical velocity:

BCS limit:Vc Pair breaking

BEC limit:Vc Collective modes

Landau Criterion:

The unitary gas is the most robust Superfluid

Page 36: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Conclusions:• single-channel model (interaction as) sufficient for wide resonances in Fermi gases

• “mean-field theory + fluctuations” is qualitatively correct for BCS-BEC crossover, but no small parameter near unitarity

• pairing pseudogap: breakdown of Fermi-liquid theory

• Vortices evolve smoothly through crossover Order Parameter, density & current profiles, Fermion bound states

• Fermionic bound states exist even on BEC side

• Critical velocity is nonmonotonic across resonance

• Unitary gas is the most robust superfluid

Page 37: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

The end

Page 38: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Randeria, Trivedi, Moreo & Scalettar, PRL 69, 2001 (1992)Trivedi & Randeria, PRL 75, 381 (1995)

(T,U) + Un/2 + 4 > T

Degenerate “normal” Fermi system

Tc ~ 0.05t < T < t for |U| = 4t

Pseudogap in 2D Attractive Hubbard Model

Page 39: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Randeria, Trivedi, Moreo & Scalettar, PRL 69, 2001 (1992)

• d/dT > 0

• 1/(T1T) T-dep

• 1/(T1T) ~ (T)

Pseudogap AnomalousSpin Corelations

Page 40: BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006.

Trivedi & Randeria, PRL 75, 381 (1995)

• N(0) both strongly T-dep

• dn/d very weakly T-dep

Pseudoagap: Compressibility looks ordinary Spin susceptibility reflects one-particle Energy gap