BCS-BEC CrossoverN. Fukushima, Y. Ohashi, E. Taylor, and A. Griffin, PRA 75 (2007) 033609 c F T T...

41
1 BCS-BEC Crossover Yoji Ohashi July 22, 2009, Colloquium, KEK, Tsukuba, Japan Faculty of Science and Technology Keio University, Japan Allan Griffin (Toronto, Canada) N. Fukushima (Tsukuba (Canon)) S. Tsuchiya (Keio, Japan) collaborators A Unified Description of Fermi and Bose superfluid Phenomena R. Watanabe (Keio, Japan)

Transcript of BCS-BEC CrossoverN. Fukushima, Y. Ohashi, E. Taylor, and A. Griffin, PRA 75 (2007) 033609 c F T T...

  • 2009/7/23 1

    BCS-BEC Crossover

    Yoji Ohashi

    July 22, 2009, Colloquium, KEK, Tsukuba, Japan

    Faculty of Science and Technology

    Keio University, Japan

    Allan Griffin (Toronto, Canada)

    N. Fukushima (Tsukuba (Canon))

    S. Tsuchiya (Keio, Japan)

    collaborators

    A Unified Description of Fermi and Bose superfluid Phenomena

    R. Watanabe (Keio, Japan)

  • 2009/7/23 2

    BCS-BEC crossover

    A unified Description of Fermi and Bose Superfluid Phenomena

    Introduction

    Feshbach resonance and BCS-BEC crossover in cold Fermi gases

    BCS-BEC crossover theory and crossover behavior of Tc

    Pairing fluctuations and pseudogap effect above Tc

    NSR-Gaussian fluctuation theory

    Single-particle excitations and Goldstone mode

    Extension to the superfluid phase below Tc

    Phase diagram of Fermi superfluids in the BCS-BEC crossover region

    Summary

  • 2009/7/23 3

    Recent progress in cold atom physics

    1995

    2002BEC in Bose

    atom gasesMott Transition in

    Superfluid Bose gases

    Superfluid Fermi gas and

    BCS-BEC crossover

    Optical lattice Feshbach resonance

    Trap potential

    Superfluid Fermi gas

    in optical lattice

    2004

    2006

  • 2009/7/23 4

    Fermion Superfluidity in 40K Fermi gas

    C. A. Regal, et al. PRL 92 (2004) 040403.

    4 2/ ~ 0.08 0.2 10 10 ( )c FT T metal

    | 9 / 2, 7 / 2 | 9 / 2, 9 / 2

    0.35FT K510N

    superconductivity

    | 9 / 2, 7 / 2

    | 9 / 2, 9 / 2

    Superfluid Fermi gas

    Cooper pair

  • 2009/7/23 5

    Fermion Superfluidity in 40K and 6Li Fermi gases

    C. A. Regal, et al. PRL 92 (2004) 040403.

    4 2/ ~ 0.08 0.2 10 10 ( )c FT T metal

    | 9 / 2, 7 / 2 | 9 / 2, 9 / 2

    0.35FT K510N

    Cooper-pair formation Superfluidity

    single-particle excitation gap Goldstone sound mode

    C. Chin , et al. Science 305 (2004) 1128.

    gapE

    vortex lattice formation

    M. Zwierlein, et al., PRL 2005

    v

    Thomas et al., PRL 98 (2007) 170401

    6Li

    6Li

    6Li

  • 2009/7/23 6

    Fermion Superfluidity in 40K and 6Li Fermi gases

    C. A. Regal, et al. PRL 92 (2004) 040403.

    Key words to understand this new superfluidity

    Feshbach resonance

    BCS-BEC crossover

    4 2/ ~ 0.08 0.2 10 10 ( )c FT T metal

    | 9 / 2, 7 / 2 | 9 / 2, 9 / 2

    0.35FT K510N

  • 2009/7/23 7

    Feshbach resonance

    Fermi atom

    tunable by magnetic field

    2 1

    2effV g

    molecule

    BCS-BEC crossover tuned by F.R.

    (Timmermans (2001), Holland (2001))

    (Ohashi and Griffin, PRL 89, 130402 (2002))

  • 2009/7/23 8

    Bose-Einstein Condensation (BEC)

    thermal de Broglie length

    boson

    / 2T h mT

    cT T

    1/3~1/T d n

    cT T

    1/3~ ~1/T d n

  • 2009/7/23 9

    Essence of the BCS-BEC crossover phenomenon

    weak U strong U

    Ebind (binding energy)

    T

    Tc

    1/3~ ~ ( / 2)MOLT MOLd n

    BCS BEC

    ~c FT

    cT

    weak U

    strong U

  • 2009/7/23 10

    T

    Superfluid phase

    Fermi gas

    Molecular Bose gas

    Tc

    Phase diagram of Fermi superfluids

    BCS regime BEC regime

    Ebind

    crossover region

    weak U strong U

  • 2009/7/23 11

    Model superfluid Fermi gas with a Feshbach resonance

    Coupled Fermion-Boson (CFB) model

    two atomic hyper-fine states:

    2

    Fermion Boson

    2

    22

    q

    qE

    M Feshbach resonance

    2Fermion BosonN N N H N

    2

    2eff

    gV

    † † † † †

    / 2 / 2 / 2 / 2 ' / 2 ' / 2, , , ',

    . .q bgp q p qH c c E b b g b c c h c U c c c c

    p p p q q q p q p q p q p q

    p q p q p p q

  • 2009/7/23 12

    Model superfluid Fermi gas with a Feshbach resonance

    Coupled Fermion-Boson (CFB) model

    two atomic hyper-fine states:

    † † † † †

    / 2 / 2 / 2 / 2 ' / 2 ' / 2, , , ',

    . .q bgp q p qH c c E b b g b c c h c U c c c c

    p p p q q q p q p q p q p q

    p q p q p p q

    2

    2bg

    gU U

    † † †

    / 2 / 2 ' / 2 ' / 2, , ',

    H c c c c cU c

    p p p p q p q p q p qp p p q

    broad Feshbach resonance ( )Fg n

    In a broad FR, one can safely study the BCS-BEC crossover by using the

    ordinary BCS model, without explicitly considering Feshbach molecules.

    Current experiments on 40 K and 6Li are all using a broad Feshbach resonance.

  • 2009/7/23 13

    BCS-BEC crossover theory and crossover behavior at Tc

    NSR-Gaussian Fluctuation theory2

  • 2009/7/23 14

    qp,

    ppqpqpp

    pp ccccUccHp†††

    ,

    )(

    Formulation (broad Feshbach resonance: 40K, 6Li)

    :two atomic hyperfine states = pseudospin ↑↓

    U : effective pairing interaction associated with the F.R.

    U

    uniform gas is assumed.

    Feshbach resonance We treat U as a tunable parameter.

  • 2009/7/23 15

    BCS-BEC crossover theory at Tc

    Equation for Tc: Thouless criterion

    ( , ) q

    Fermion

    U

    1( , ) 0 q

    tanh ( )21

    2( )

    p

    p

    U

    p

    ...

    0 qat cT

    Nozieres and Schmitt-Rink, JLTP (1985)

    1G

    p

    The chemical potential remarkably deviates from the

    Fermi energy F in the BCS-BEC crossover.

  • 2009/7/23 16

    BCS-BEC crossover theory at Tc

    is determined from the number of Fermi atoms.

    0,

    log 1 ( , )n

    F nN T U iN

    q

    q

    MF

    pair correlation function

    U

    .......

    / 2 / 2

    / 2 / 2

    1( , )

    2

    p q p q

    n

    p q p q n

    f fi

    i

    p

    q

    0 2 ( )FN f pp

    pairing fluctuations

  • 2009/7/23 17

    Reguralized Nozieres-Schmitt-Rink (NSR) theory (Tc)

    4 1 11 tanh ( )

    2( ) 2 2

    sp

    p pm

    a

    p

    0

    ,

    41 1ln 1 ( , )

    2 2n

    F n

    q p

    sN N q im

    a

    as: two-body s-wave scattering length

    4

    1 1/ 2

    sa U

    m U

    pp

    The NSR theory is known to include pairing fluctuations within the Gaussian

    fluctuation level around the mean-field (saddle point) solution.

    Gaussian fluctuation theory

    weak-U strong-U

    1

    sa 1sa

    The well-known ultraviolet divergence

    in the BCS theory is absorbed into as.

  • 2009/7/23 18

    Weak-coupling BCS limit

    4 1 11 tanh ( )

    2( ) 2 2

    sp

    p pm

    a

    p

    0

    ,

    41 1ln 1 ( , )

    2 2n

    F n

    q p

    sN N q im

    a

    1

    sa

    ( )F c FT T

    The Tc-equation with =F reproduces the

    ordinary BCS gap equation at Tc.

  • 2009/7/23 19

    Strong-coupling BEC limit

    4 1 11 tanh ( )

    2( ) 2 2

    sp

    p pm

    a

    p

    ,

    41 12 ( ) ln 1 ( , )

    2 2n

    n

    q p

    sN f q im

    a

    pp

    1

    sa

    220

    1

    sma

    2

    2

    1bbind

    s

    Ema

    2-body bound state energy

    2

    2(2 )

    1

    21m

    q

    N

    e

    q

    BEC of (N/2,2m)

    molecular Bose gas

  • 2009/7/23 20

    BCS-BEC crossover at Tc

    c

    F

    T

    TF

    1( )F sp a

    1( )F sp a

    2

    1

    2BEC

    sma 0.218 FT

    BCS

    cT

    BCS BECBEC BCS

    cT

    40K

    Jin, 2004

    experimental result

  • 2009/7/23 21

    Superfluid properties in the crossover region

    Single-particle and collective excitations

    N. Fukushima, Y. Ohashi, E. Taylor, and A. Griffin, PRA 75 (2007) 033609

    c

    F

    T

    T

    1( )F sp a

    BCS BEC

    superfluid

    phase

    3

  • 2009/7/23 22

    Extension to the superfluid phase below Tc

    pairing fluctuations

    ( , )ni q

    ie

    cT T cT T

    phase fluctuations

    amplidude fluctuations

    ( , )ni

    q

    4 1 11 tanh ,

    2 2 2

    ps

    p p p

    Ea

    m E

    2 2( )p pE

    phason, ampliton, and their coupled fluctuations

    0

    ,

    41 1ln det 1 ,

    2 2( , )

    n p

    ns

    F

    q

    aN N

    mi

    q

  • 2009/7/23 23

    BCS-BEC crossover below Tc

    F F

    FT FT

    )/(1 sFak)/(1 sFak

    0

    2 2( )p pE

    Energy gap

    22 | |

    (BCS)

    (BEC)

    single-particle excitations:

  • 2009/7/23 24

    Goldstone collective mode in the BCS-BEC crossover

    / Fv v

    / FT T 1( )F sk a

    Anderson-Bogoliubov

    mode

    Bogoliubov phonon

    of a molecular BEC

    / 3 ( 0)Fv v T

    experiment on 6Li

    theory

    F

    v

    v

    Thomas et al., PRL 98 (2007) 170401

    v q

  • 2009/7/23 25

    E

    2

    q0

    single-particle

    excitations

    E

    q0

    single-particle excitations

    Collective excitations are important

    only in a small momentum region.

    BCS region BEC region

    Large single-particle excitation gap

    reflecting a strong binding energy.

    From single-particle excitations to collective excitations

  • 2009/7/23 26

    Superfluid density rs in the BCS-BEC crossover

    ( )s nnr r F

    n

    B

    n nr r r Normal fluid density

    22 ( )3

    n p

    p

    F

    p

    p f Em E

    r

    mean-field part fluctuation part

    2 2( )p pE

    This part is dominant in the BCS regime.

    2

    2,

    0

    42 1ln det 1 ( , )

    2n

    z

    sn n

    zQ

    B

    q p

    amq i

    Q m

    r

    22 ( )3

    B q

    qB q

    q nM

    p v q

    This part is dominant in the BEC regime.

    (BEC)

  • 2009/7/23 27

    Superfluid density in the BCS-BEC crossover

    N

    N S

    FTT / 1)( sF ak

    Superfluid density

    BCS

    BEC

    /s nr

    BCSF

    nn r

    BECB

    nn r

    The origin of the normal fluid density continuously changes from single-

    particle excitations to collective excitations in the BCS-BEC crossover.

  • 2009/7/23 28

    Effective interaction between Cooper pairs in the BEC regime

    4MOL Beff

    B

    aV

    M

    + +…..MOL

    effV 0.6B sa a

    2 0B sa a

    2-body renormalization

    MOL

    effV

    Petrov et al., PRL 93 (2004) 090404.

  • 2009/7/23 29

    Effective interaction between Cooper pairs in the BEC regime

    two-body renormalization

    level (Petrov, et al, 2004)

    Many-body-renormalized molecular

    interaction vanishes at Tc.

    (Renormalization Group (1-loop))

    Y. Ohashi; JPSJ 74 (2005) 2659

    Many-body renormalization

    bare interaction / 2B Fa a

  • 2009/7/23 30

    Recovery of the second order transition in the BEC regime

    1/( ) 2F sp a

    Many-body renormalization effects

    on molecular interaction is included.present theory

    0 /n n0 /n n

    / FT T

  • 2009/7/23 31

    Normal state properties in the crossover region

    pairing fluctuations and pseudogap effect

    S. Tsuchiya, R. Watanabe, and Y. Ohashi, cond-mat/0906.3983

    c

    F

    T

    T

    1( )F sp a

    BCS BEC

    normal

    state

    4

  • 2009/7/23 32

    Pseudogap in high-Tc cuprates

    Bi2212 (under dope, Tc=83[K])

    C.Renner et al., PRL 80 (1997) 149

    cT T

    strong pairing fluctuations above Tc

    strong AF spin fluctuations

    hidden order (DDW)

    origin of pseudogap

    We can expect pseudogap phenomenon originating from strong pairing

    fluctuations in the BCS-BEC crossover regime of cold Fermi gases

  • 2009/7/23 33

    Single-particle density of states (DOS) in the normal state

    1( ) Im ( , )nN G i i

    p

    p

    G involves the self-energy correction describing pairing fluctuations

    + + + …U

    ( , )ni p

    N()(m

    pF/2

    2)

    N()(m

    pF/2

    2)

    Free Fermi gas (=F) BCS state (=0.2F)

    / F / F

    2

  • 2009/7/23 34

    N()(m

    pF/2

    2)

    N()(m

    pF/2

    2)

    Free Fermi gas (=F) BCS state (=0.2F)

    / F / F

    2

    Single-particle density of states (DOS) in the normal state

    BCS

    BEC

    cT T

    0!

  • 2009/7/23 35

    Single-particle density of states (DOS) in the normal state

    BCS

    BEC

    cT T

    cT T

    1( ) 0.6F sp a

    cT T

    One can define the

    pseudogap temperature

    T* as the temperature

    where the dip structure

    vanishes.

  • 2009/7/23 36

    Pseudogap region in the BCS-BEC crossover

    cT

    MF

    cT *T2 | |bindE

    *T =“pseudogap temperature”

  • 2009/7/23 37

    “phase diagram” of cold Fermi gases

    cT

    *T 2 | |bindE

    pseudogap

    Fermi atom gas

    Molecular

    Bose gas

    Superfluid phase

    (Fermion like) (Boson like)

  • 2009/7/23 38

    Spectral weight at Tc in the BCS-BEC crossover

    1( , ) Im ( , )nA G i

    p p

    / Fp p

    Free Fermi gasweak-coupling

    BCS state at T=0

    / Fp p

    / 1F

    2

    / 0.2F

    ( , ) ( ( ))A pp

    Fp p Fp p

    A(p,)

    /

    F

    /

    F

    ( , )A p

    p

    2 2( , ) ( ) ( )p p p pEA u v E p

    ( , )A p

    pE

    pE

    2

    pu2

    pv

    2 2( )p pE 2 / 2p p m

    ( ) ( , )Ar p

    p

  • 2009/7/23 39

    Single-particle excitations in the BCS state

    / Fp p

    Fp p

    :p

    / Fp p

    particle band

    ( ) :p hole band

    2 2( )pE

    2 2( )pE

    † †

    p ppp pc v cu

    Bogoliubov excitation = particle + hole:

    / F

    A(p,)

  • 2009/7/23 40

    Spectral weight at Tc in the BCS-BEC crossover

    1( ) 0.6F sp a

    / Fp p

    1( , ) Im ( , )nA G i

    p p

    /

    F

    A(p,)

    Pairing fluctuations induce a particle-hole coupling in the normal

    state above Tc, leading to the pseudogap in DOS.

    ( ) ( , )Ar p

    p

    BCS state (T

  • 2009/7/23 41

    Summary

    We have discussed the BCS-BEC crossover in ultra-cold Fermi gases.

    superfluid phase

    Molecular

    Bose gas

    Fermi gas

    pseudogap

    *T

    BCS region BEC region

    Fermion SF Boson SF

    cT

    Tunable pairing interaction associated with a Feshbach resonance

    Unified description of Fermi and (molecular) Bose superfluids

    Importance of pairing fluctuations in the crossover theory