Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data:...

25
Bayesian Inference for Inverse Problems Using Surrogate Model Dongbin Xiu Department of Mathematics, Purdue University Supported by AFOSR, DOE, NNSA, NSF

Transcript of Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data:...

Page 1: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Bayesian Inference for Inverse Problems Using Surrogate Model

Dongbin Xiu

Department of Mathematics, Purdue University

Supported by AFOSR, DOE, NNSA, NSF

Page 2: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Overview

•  Forward problem: uncertainty propagation •  Brief introduction of generalized polynomial chaos (gPC)

•  Uncertainty quantification (UQ) and stochastic modeling

•  Key Issues: •  Efficiency •  Curse-of-dimensionality

•  Back to the forward problem •  Issues and challenges

•  Inverse problem: Bayesian inference •  Use generalized polynomial chaos (gPC)

Page 3: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

∂u∂t

+ u ∂u∂x

= ν∂2u∂x2

, u(−1) = 1, u(1) =−1•  Burgers’ equation :

•  Steady state solution:

Illustrative Example: Burgers Equation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

perturbed solutionunperturbed solutionmesh distribution

u(x) =−A tanh A

2νx− z( )

⎣⎢⎢

⎦⎥⎥ , where u(z) = 0, A =−

∂u∂x x=z

u(-1)=1

u(-1)=1.01

ν=0.05

Page 4: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Effects of Uncertainty – “Supersensitivity”

∂u∂t

+ u ∂u∂x

= ν∂2u∂x2

, x ∈ −1,1⎡⎣⎢

⎤⎦⎥•  Burgers’ equation :

u(−1) = 1+ δ; u(1) =−1; δ ~ U (0,0.1)•  Boundary conditions :

(Xiu & Karniadakis, Int. J. Numer. Eng., vol. 61, 2004)

Lower bd

upper bd

Mean

Standard dev

Page 5: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

(Re-)Formulation of PDE: Input Parameterization

∂u∂t

(t,x) = L(u) + boundary/initial conditions

•  Goal: To characterize the random inputs by a set of random variables   Finite number   Mutual independence

•  If inputs == parameters   Identify the (smallest) independent set   Prescribe probability distribution

•  Else if inputs == fields/processes   Approximate the field by a function of finite number of RVs   Well-studied for Gaussian processes   Under-developed for non-Gaussian processes   Examples: Karhunen-Loeve expansion, spectral decomposition, etc.

a(x,ω)≈µa (x) + ai (x)Zi (ω)

i=1

d

Page 6: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

The Reformulation

•  Uncertain inputs are characterized by nz random variables Z

∂u∂t

(t,x,Z ) = L(u) + boundary/initial conditions

u(t, x,Z ) : [0,T ]× D × RnZ → R

FZ (s) = Pr(Z ≤ s), s ∈RnZ

•  Probability distribution of Z is prescribed

•  Stochastic PDE:

•  Solution:

Non-trivial task

Page 7: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

uN (t,x,Z ) uk (t,x)Φk (Z )

k =0

N

•  Nth-order gPC expansion:

•  Orthogonal basis:

E Φi (Z )Φj(Z )⎡⎣⎢

⎤⎦⎥ = Φi (z)Φj(z)ρ(z) dz∫ = δij

Generalized Polynomial Chaos (gPC)

uN (Z )∈PN ={space of nZ -variate polynomials of degree up to N}

dimPN =

nz + N

N

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

u(i,Z ) : RnZ → R•  Focus on dependence on Z:

i = (i1,,inZ

), i = i1 ++ inZ

Page 8: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Gaussian distribution Gamma distribution Beta distribution

E g(Z )( ) = g(z)ρ(z) dz

R∫  Expectation:

gPC: Basis

Φi (z)Φj(z)ρ(z) dz∫ = E Φi (Z )Φj(Z )⎡

⎣⎢⎤⎦⎥ = δij

  Orthogonality:

Φi (z)Φj(z)e−z2

dz−∞

∫ = δij

Φi (z)Φj(z)e−z dz

0

∫ = δij

Φi (z)Φj(z) dz

−1

1

∫ = δij

Hermite polynomial Laguerre polynomial Legendre polynomial (Xiu & Karniadakis, SISC, 2002)

Page 9: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

  Example: Uniform random variable o  Convergence o  Non-optimal o  First-order Legendre is exact

gPC Basis: the Choices

Φi (z)Φj(z)ρ(z) dz∫ = E Φi (Z )Φj(Z )⎡

⎣⎢⎤⎦⎥ = δij

  Orthogonality:

Φi (z)Φj(z)e−z2

dz−∞

∫ = δij

  Example: Hermite polynomial

  The polynomials: Z~N(0,1)

Φ0 = 1, Φ1 = Z , Φ2 = Z 2−1, Φ3 = Z 3−3Z ,

  Approximation of arbitrary random variable: Requires L2 integrability

Page 10: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Stochastic Galerkin

uN (t,x,Z ) uk (t,x)Φk (Z )

k =0

N

•  Galerkin method: Seek

E

∂uN

∂t(t,x,Z )Φm (Z )

⎣⎢

⎦⎥ = E L(uN )Φm (Z )⎡⎣ ⎤⎦ , ∀ m ≤ N

Such that

•  The result:   Residue is orthogonal to the gPC space   A set of deterministic equations for the coefficients   The equations are usually coupled – requires new solver

Page 11: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Stochastic Collocation

•  Sampling: (solution statistics only) •  Random (Monte Carlo) •  Deterministic (lattice rule, tensor grid, cubature)

•  Collocation: To satisfy governing equations at selected nodes   Allow one to use existing deterministic codes repetitively

•  Stochastic collocation: To construct polynomial approximations   Node selection is critical to efficiency and accuracy   More than sampling

Let Z1,Z 2 ,…Z Q ∈RnZ , be a set of nodes/samples, then solve∂u∂t

(t, x,Z j ) = L(u), j = 1,…,Q.

Page 12: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Sparse grids: more efficient Tensor grids: inefficient

(Xiu & Hesthaven, SIAM J. Sci. Comput., 05)

Stochastic Collocation: Interpolation

•  Definition: Given a set of nodes and solution ensemble, find uN in a proper polynomial space, such that uN≈u in a proper sense.

•  Interpolation Approaches: uQ (Z ) u(Z j )Lj (Z )

j=1

Q

Li (Z j ) = δij , 1≤ i, j≤Q

•  Optimal nodal distribution in high dimensions…

Page 13: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Stochastic Collocation: Discrete Projection

uN (t,x,Z ) PNu = uk (t,x)Φk (Z )

k =0

N

uk = E[u(Z )Φk (Z )] = u(z)Φk (z)ρ(z) dz∫

•  Orthogonal projection:

wN (t,x,Z ) = wk (t,x)Φk (Z )

k =0

N

wk = u(t,x,Z j )Φk (Z j )α j

j=1

Q

∑ ≈ u(z)Φk (z)ρ(z) dz∫

wk (t,x) → uk (t,x), Q →∞

•  Discrete projection:

εQ uN −wN Lρ

2•  Aliasing Error:

Page 14: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Inverse Parameter Estimation

•  Solution of a stochastic system:

•  Need: Probability distribution of the parameters Z

•  Information of the prior distribution is critical   Requires direct measurements of the parameters   No/not enough direct measurements? (Use experience/intuition …)   How to take advantage of measurements of other variables?

  Prior distribution:

Page 15: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

•  Error:

Bayesian Inference for Parameter Estimation

π (Z | d) ∝π (d | Z )π (Z )

•  Likelihood function:

•  Posterior distribution:

•  Notes:   Difficult to manipulate   Classical sampling approaches can be time consuming (MCMC, etc)

•  Setup:   Prior distribution of the parameters Z: π(z)   Forward problem simulation: y=G(Z)   Measurement/data: d

•  Goal: To estimation the distribution of Z --- posterior distribution

Page 16: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Surrogate-based Bayesian Estimation

•  Surrogate: yN = GN (Z )

•  Approximate Bayes rule:

π N (Z | d) ∝π N (d | Z )π (Z )

where π N (d | Z ) = π ei

(di − GN ,i (Z ))i=1

nd

•  Properties:   Allows direct sampling with arbitrarily large samples   No additional simulations – forward problem solver only

Page 17: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Convergence Analysis

•  Kullback-Leibler divergence:

•  Basic assumption: observation error is i.i.d. Gaussian

•  Notes:   Fast (exponential) convergence rate is retained

Theorem. If the gPC expansion GN converges to G in LπZ

2 , then the posterior density

π Nd converges to π d in the sense

D π Nd π d( ) → 0, N →∞.

Moreover, if

Gi (Z ) − GN ,i (Z )Lπ z

2≤ CN −α , 1≤ i ≤ nd ,α > 0, C independent of N ,

then for sufficiently large N ,

D π Nd π d( ) N −α .

(Marzouk & Xiu, Comm. Comput. Phys.,vol. 6, 08)   So is the slow convergence

Page 18: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Parameter Estimation: Supersensitivity Example

∂u∂t

+ u ∂u∂x

= ν∂2u∂x2

, x ∈ −1,1⎡⎣⎢

⎤⎦⎥•  Burgers’ equation :

u(−1) = 1+ δ(Z ); u(1) =−1; 0 < δ 1•  Boundary conditions :

δ

noisy observation of transition layer location (contrived numerically)

Page 19: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Measurement noise: e~N(0,0.052)

Prior distribution is uniform Z~(0,0.1)

Page 20: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Parameter Estimation: Step Function

•  Assume the forward model is a step function •  Posterior distribution is discontinuous •  Gibb’s oscillations exist •  Slow convergence with global gPC basis functions

Forward model and its approximation Posterior distribution and its approximation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

z

G(z

) or G

N(z

)

exact forward solutiongPC approximation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

z

!d (z)

exact posteriorgPC posterior

Page 21: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed
Page 22: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Biological Application •  Example: estimate kinetic parameters in a genetic toggle switch

–  Differential-algebraic equations model from [Gardner et al, Nature, 2000] –  Real experimental data: steady-state expression levels of one gene (v)

•  6 uncertain parameters •  Assumed to be independent and uniform in the forward problem •  Good agreement with measurement --- but let’s now use the data again

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2

0

0.2

0.4

0.6

0.8

1

log10(IPTG)

Nor

mal

ized

GFP

exp

ress

ion

Page 23: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

1-parameter and 2-parameter marginal posterior densities (dim = 6, N = 4, 6-level sparse grid forward problem solver)

Using the Data Again – Parameter estimation

Page 24: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

An (almost) Industrial Application: Free-Cantilever Damping

24

Gas damping of freely-vibrating cantilever

3-parameter marginal posterior densities Level 2 sparse grid in thickness, gas density and frequency

MEMOSA for damping simulation

Page 25: Bayesian Inference for Inverse Problems Using Surrogate Model · – Real experimental data: steady-state expression levels of one gene (v) • 6 uncertain parameters • Assumed

Summary

  Generalized polynomial chaos (gPC) •  Multivariate approximation theory •  An highly efficient uncertainty propagation strategy •  Makes many UQ tasks “post processing”

  Data, any data, can help •  UQ simulation needs to be dynamically data driven.

  Uncertainty Analysis: To provide improved prediction •  Input characterization •  Uncertainty propagation •  Post processing

•  NSF: •  DMS-0645035 •  IIS-0914447 •  IIS-1028291

•  AFOSR: FA9550-08-1-0353 •  DOE:

•  DE-FC52-08NA28617 •  DE-SC0005713

  Support: