Bauer2012_06_20DerivationPlasmaFluidEquations

download Bauer2012_06_20DerivationPlasmaFluidEquations

of 51

Transcript of Bauer2012_06_20DerivationPlasmaFluidEquations

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    1/51

    Derivation of Plasma Fluid EquationsPlasma Physics Summer School

    Bruno Bauer

    UNR Physics Department

    Center for Nonlinear Studies, LANLJune 20, 2012

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    2/51

    Abstract

    Plasma physics is of great importance for science and technology.All plasma follows a common set of principles, whether it is thetenuous plasma of interstellar space or the ultradense plasmacreated in inertial confinement fusion experiments; or whether it is

    the cool, chemical plasma used in the processing of semiconductorsor the hot, thermonuclear plasma of stars and fusion devices. Thissecond lecture of the Plasma Physics Summer School continues abroad outline of plasma physics. Starting with particle motion, webuild distribution functions and derive kinetic equations. Takingvelocity moments of the Boltzmann kinetic equation we reduce thedimensionality of the plasma description but increase the number of

    partial differential equations. Through suitable approximations, weobtain and close f luid equations, including those of magnetohydrodynamics. At every stage in this cascade ofderivations, we should pause to solve our equations and admire anew perspective on the wondrous world of plasma equilibria, waves,and instabilities.

    BSB 6/06/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    3/51

    Derivation of Plasma Fluid Eqns1. The challenge of plasma physics

    2. Kinetic equations

    Klimontovich, Boltzmann, Vlasov Distribution functions

    3. Particle motion

    4. Velocity moments of Boltzmann equation

    + approximations=> fluid equations &magnetohydrodynamics

    5. Plasma equilibria, waves, instabilities,self-organization

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    4/51

    Fusion Core150 g/cc, 1.57!107K

    Photosphere2!10-7 g/cc, 5777 K

    Corona: e.g., 10-15

    g/cc, 2!106

    K

    EUV(He-II304A)Image:ESA&NAS

    A,

    SOHO/EIT,um

    bra.nascom.nasa.gov/

    images/eit_19

    970914_

    0121_

    304.jpg

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    5/51

    TPI, BSB 6/15/12

    Solar wind drivesEarth magnetosphere

    Fluid-like flow of the solar windImage:Artist'sConceptionoftheSun-EarthSystem,

    SteveMercer,SpaceScienceInstitute

    pwg.gsfc.nasa.gov/

    istp/news/0005/MercerMural40.jpg

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    6/51

    ! Explain macrostructure from microphysics

    ! Understand & control large collectionsof unbound charged particles & photons

    Classical plasma physics simplifyingassumption:

    " Assume plasma parameters such thatparticles can be described with classical physics

    "

    This is a complete, but intractable, set of equations

    The challenge of plasma physics

    { }

    ( )

    For 1,2,3, , : , , , ,

    with Lorentz force

    where spiky fields are determined by

    the particles via Maxwell's equations

    i i i i i

    ii i i i

    i

    i N q m r v a

    qa E v B

    m

    =

    = +

    ! ! !"

    ! !! !

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    7/51

    Maxwell

    s Equations

    ! ="o

    QAdE

    #

    !!

    RelatesEto charges.(Coulombs law)

    =" 0AdB!!

    Bis continuous.

    No magnetic monopoles.

    Gauss

    Laws

    ! "

    #=$dt

    dldE

    B!!

    ChangingB

    producesE

    Faraday

    sLaw

    ! "+=#

    dt

    d

    IldB Eooo $

    !! Ampre-

    MaxwellLaw

    Ior Changing

    EproducesB

    These equations describe all electric & magnetic phenomena(in the absence of dielectric or magnetic materials).

    RAP, BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    8/51

    Maxwell

    s equations for spiky fields

    0

    E !

    "# =

    ! !" ( )i ext

    1

    ( , ) ( ) ( , )N

    i

    i

    r t q r r t r t ! " !=

    = # +$! ! ! !

    ( ) ext1( , ) ( ) ( ) ( , )

    N

    i i i

    ij r t q v t r r t j r t!

    =

    = " +#! !! ! ! ! !

    0B! ="

    BE

    t

    !"# =$

    !

    ! !

    0 0

    EB j

    t !

    "#$ = +

    "

    ! ! !

    where

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    9/51

    Delta functions: (x)dx= 1,0)=#, x) = 0 forx "0

    Cartoon:S

    .B.Cahn&B.E.Nadgorny,

    AGuideto

    PhysicsProblems,Pa

    rt1,

    PlenumPress,NY1994

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    10/51

    Derivation of Plasma Fluid Eqns1. The challenge of plasma physics

    2. Kinetic equations Klimontovich, Boltzmann, Vlasov Distribution functions

    3. Particle motion

    4. Velocity moments of Boltzmann equation

    + approximations=> fluid equations &magnetohydrodynamics

    5. Plasma equilibria, waves, instabilities,self-organization

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    11/51

    Cartoon: Astrophysics

    Cartoon:NickD.Kim,strang

    e-matter.net

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    12/51

    For each species of particle, $,define the spiky microscopic phase-space

    distribution function of Klimontovich

    Here N$

    = # of particles of species $%

    Take a statistical approach to trackingthe large number of plasma particles

    K

    1

    ( , , ) ( ( )) ( ( ))N

    i i

    i

    f r v t r r t v v t!

    ! " "

    =

    = # #$! ! ! ! ! !

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    13/51

    DifferentiatingKlimontovich distribution=> Klimontovichequation

    K

    1

    ( , , ) ( ( )) ( ( ))N

    i i

    i

    f r v t r r t v v t!

    ! " "

    =

    = # #$! ! ! ! ! !

    K

    K K

    i iv

    f dr dvf ft dt dt

    !

    ! !

    "= # $ # $

    "

    ! !

    " "

    BSB 6/15/12

    ( )K! K K 0vf q

    v f E v B f t m

    ! !

    "+ # + + $ # =

    "

    ! ! ! !! !" "

    K

    K Kv

    fv f a f

    t

    !

    ! !

    "=# $ # $

    "

    ! !! !" "

    Let the delta functions do the localizing to particles:

    Inserting Lorentz force => Klimontovich equation:

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    14/51

    TheKlimontovich equation conservesparticle number and spikiness

    K

    1

    ( , , ) ( ( )) ( ( ))N

    i i

    i

    f r v t r r t v v t!

    ! " "

    =

    = # #$! ! ! ! ! !

    BSB 6/15/12

    K!d

    0d

    f

    t=Recognizing convective derivative:

    ( )K! K K 0vf q

    v f E v B f t m

    ! !

    "+ # + + $ # =

    "

    ! ! ! !! !" "

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    15/51

    Ensemble average to obtain smoothfunctions and the Boltzmannequation

    K

    1

    ( , , ) ( ( )) ( ( ))N

    i i

    i

    f r v t r r t v v t!

    ! " "

    =

    = # #$! ! ! ! ! !

    BSB 6/15/12

    K ,

    ,

    , etc.

    K

    K

    f f

    f f f

    E E

    ! !

    ! ! !"

    # < >

    # $

    # < >

    ! !

    ( )! ! !c

    d

    d v

    f f fqv f E v B f

    t t m t ! !

    " "# $= + % + + & % =' (" ") *

    ! ! ! !! !" "

    Here the right-hand-side is short hand for a

    complex collision term.

    => the Boltzmannequation:

    ( )K! K K 0vf q

    v f E v B f

    t m

    ! !

    "+ # + + $ # =

    "

    ! ! ! !! !" "

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    16/51

    A distribution function f(x,y,z,vx,vy,vz)is a density in phase space

    Figure: F.F. Chen, Introduction to Plasma Physics and

    Controlled Fusion, Vol. 1, 2nded., Plenum Press, NY, 1984.

    This fvariesin space

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    17/51

    Collisions drive the plasmatowardmaximum entropy

    0 M

    ( )( , ) | exp ( )

    q rf r v n f v

    k T

    !! ! "

    # !

    "=

    $ %&= ' (

    ' () *

    !

    ! ! !

    2 2- /

    M 3 3/ 2

    21( ) ,v a

    k Tf v e a

    a m

    ! "

    "#

    = $

    !

    Maxwellian distribution function

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    18/51

    Plasma distribution functions areoften non-Maxwellian

    Figure: F.F. Chen, Introduction to Plasma Physics andControlled Fusion, Vol. 1, 2nded., Plenum Press, NY, 1984.

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    19/51

    Plasma distribution functions areoften anisotropic

    Figure: F.F. Chen, Introduction to Plasma Physics and

    Controlled Fusion, Vol. 1, 2nd

    ed., Plenum Press, NY, 1984. BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    20/51

    Phase-space evolution can becomplex and beautiful

    Figure: Electron 2-stream instability,

    H.L. Berk, C.E. Nielson, and K.V.Roberts, Phys. Fluids 13, 986 (1970).In F.F. Chen, Introduction to PlasmaPhysics and Controlled Fusion, Vol. 1,2nded., Plenum Press, NY, 1984.

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    21/51

    To better understand Boltzmann equation, followparticles in phase space & calculate collisions

    BSB 6/16/12

    One Boltzmann equation per species of particle

    ! Describes the evolution of the distributionof particles in phase-space

    How do particles flow in phase space?

    ! What is the effect of the collision term (on rhs)?

    How would fevolve without collisions?

    Neglect collisions => Vlasov equation

    ( )! ! !c

    d

    d v

    f f fqv f E v B f

    t t m t ! !

    " "# $= + % + + & % =' (" ") *

    ! ! ! !! !" "

    ( )! !d

    0d

    v

    f f qv f E v B f

    t t m

    ! !

    "= + # + + $ # =

    "

    ! ! ! !! !" "

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    22/51

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    23/51

    Derivation of Plasma Fluid Eqns

    1. The challenge of plasma physics

    2. Kinetic equations Klimontovich, Boltzmann, Vlasov Distribution functions

    3. Particle motion

    4. Velocity moments of Boltzmann equation+ approximations=> fluid equations &magnetohydrodynamics

    5. Plasma equilibria, waves, instabilities,self-organization

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    24/51

    Charged Particles Curve in a

    Magnetic Field

    !A magnetic field can change the velocity of amoving charged particle, but not its speed.

    !A moving particle

    s direction will bechanged by a magnetic field if it has avelocity component perpendicular to thefield.

    sin

    F qv B

    F qvB !

    = "

    =

    !

    !Magnetic force on a

    moving charged particle:

    RAP, BSB 6/19/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    25/51

    Cyclotron Motion

    Orbital Period T:

    2 2 2mv!R m

    T v v qB qB

    ! !"

    " "

    = = =

    Orbital Frequencyfc:1

    2c

    qBf

    T m!= =

    Cyclotron

    Frequency

    . . . . . .. . . . . .

    . . . . . .

    . . . . . .

    . . . . . .

    out of plane

    R

    vIf a moving charged particles

    trajectory is entirely within

    a uniform transverse

    magnetic field, its

    orbit is closed and circular.

    B

    !

    RAP, BSB 6/19/12

    2mv

    F qv BR

    !

    ! != =

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    26/51

    Motion of a charged particle in an arbitrarydirection relative to a magnetic field

    Such motion of positiveions from the solar wind

    ionizes the atmosphereand is responsible for thephenomenon of theAurora Borealis(northern lights)

    v

    !

    B

    !

    B

    !

    If is neither perpendicular

    nor parallel to , a helical

    (spiral) motion about the

    direction of results.

    RAP, BSB 6/20/12

    Fig.:H.D.Yo

    ungandR.A.Freedman

    ,

    Sears

    and

    Zemanskys

    University

    Physics,11the

    d.,Pearson/Addison

    Wesley,San

    Francisco,CA,2004.

    Figure:D.C.Giancoli,Physics

    for

    Scientists

    &

    Engineers

    withModernPhysics,

    3rde

    d.,

    PrenticeHall,NJ,2000.

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    27/51

    Solar storms make the news

    BSB 6/20/12

    The Daily Show with Jon StewartComedy Central, 2004

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    28/51

    A Magnetic Bottlefor Charged Particles

    Magnetic fields are used to confine thecharged particles in hot ionized plasmas

    (e.g., in fusion energy research).RAP, BSB 6/20/12

    Fig.:H.D.YoungandR.A.Freedman,

    SearsandZemanskysUnivers

    ity

    Physics,11the

    d.,Pe

    arson/AddisonWesley,SanFrancisco,CA,2004.

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    29/51

    Theoretical Physicists Design

    Magnetic

    Confinement

    Device

    Cartoon:ZT-H, LANL

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    30/51

    1953: Perhapsatron, LANL

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    31/51

    Cartoon: State-of-art

    wheel

    Cartoon:S.

    Harris,

    EinsteinSimplified:CartoonsonScience

    ,

    RutgersUniversityPress,NewBrunswick,NJ,1989.

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    32/51

    Achieving a long &E~1srequires a large (10 m) plasma

    InternationalThermonuclearExperimentalReactor (ITER)

    500 MW400 seconds

    Gain Q>10

    $21 billion(July 2010)

    RES, BSB 6/20/12Figure: ITER, www.iter.org

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    33/51

    E perpendicular to B makes acharged particle drift sideways

    Figure: D.R. Nicholson, Introduction to Plasma Theory, Wiley, NY, 1983.

    2, the " " drift

    E

    E Bv E BB

    != !

    ! !!

    +

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    34/51

    Bonus Quiz

    An electron in vacuum is released from rest at alocation near the Earth

    s surface where E= 0,B= 0.5 G north, and g= 9.8 m/s2down. Describe andsketch the motion of the electron.

    BSB 6/15/12

    gWest East

    B

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    35/51

    The electron makes a cusp motion,falling then rising, drifting west

    !"! $%$&%&'

    g

    West East

    B

    This image is not quitecorrect: because v(0)=0,the tops of the orbit

    have radius r = 0,i.e., they are points

    Figure: F.F. Chen, Introduction to Plasma Physics and

    Controlled Fusion, Vol. 1, 2nd

    ed., Plenum Press, NY, 1984.

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    36/51

    Derivation of Plasma Fluid Eqns

    1. The challenge of plasma physics

    2. Kinetic equations Klimontovich, Boltzmann, Vlasov

    Distribution functions

    3. Particle motion

    4. Velocity moments of Boltzmann equation+ approximations=> fluid equations & magnetohydrodynamics

    5. Plasma equilibria, waves, instabilities,self-organization

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    37/51

    Integrate f(x,y,z,vx,vy,vz) over 3D velocity spaceto obtain density & other fluid quantities

    BSB 6/20/12

    ( , , ) ( , , , , , )x y z x y zn x y z dv dv dv f x y z v v v! !

    " " "

    #" #" #"

    $ % % %

    ( , , , , , )x y z x y zn dv dv dv v f x y z v v v! ! !

    " " "

    #" #" #"

    $ % % %u! !

    ( , , ) ( , , )x y z q n x y z! !!

    " =#

    ( , , ) ( , , ) ( , , )x y z q n x y z x y z! ! !!

    =

    "j u!

    Figure: F.F. Chen, Introduction to Plasma Physics and

    Controlled Fusion, Vol. 1, 2nded., Plenum Press, NY, 1984.

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    38/51

    Integrate Boltzmann eqn to obtain fluid eqns thatcapture the main plasma collective properties

    BSB 2/20/09

    ( )n

    n St

    !

    ! ! !

    "+#=

    "u

    ! !"

    For each species $:

    Mass conservation

    Momentumconservation

    Energy conservation: Heat equation#simplest to use Equation of State

    dm n n q m S dt

    !! ! ! ! ! ! ! ! ! !"

    "

    # $= + % & ' & +( ) *u

    E u B P u R ! ! ! !! !

    "

    ( )m n!" ! ! !" ! " "! #= $ $ = $R u u R ! !

    d

    dt t !

    "= + #"

    u

    !!"! Convective derivative:

    !

    Resistive drag force density:

    p

    p nT Cn!

    =

    = =

    P I

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    39/51

    With further approximations, obtain single fluidmagnetohydrodynamics (MHD), describing an electricallyconducting fluid in the presence of magnetic field

    collision

    1,L

    C!

    "

    >>

    e in n Z!

    0 0B j j! " = # !="

    , 0B

    E Bt

    !" # = $ "=

    !

    ! ! ! !"

    Slow

    Quasi-neutral Thermal equilibrium

    Equations:

    Big mean freepath De L, ,L r! !>>

    e iT T!

    Mass Continuity

    Equation of state

    Ampere

    s Law

    Faraday Law

    Ohm

    s Law E u B j!+ " =!

    !

    d0, ( 1)

    d

    p Tp Z

    t M

    !

    !

    " #= = +$ %

    & '

    d ( ) 0d

    u

    t

    !!+"=

    ! !"

    Momentum Equationd

    d

    uj B p g

    t! != " # $ +

    ! !! !

    BSB 6/16/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    40/51

    Derivation of Plasma Fluid Eqns

    1. The challenge of plasma physics

    2. Kinetic equations Klimontovich, Boltzmann, Vlasov

    Distribution functions

    3. Particle motion

    4. Velocity moments of Boltzmann equation+ approximations=> fluid equations &magnetohydrodynamics

    5. Plasma equilibria, waves, instabilities,self-organization

    BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    41/51

    Plasmas are complex systems

    !Plasmas can exhibit self-organizedbehavior of high complexity

    !Self-organization occurs in many areas"Space & astrophysics, biosystems,

    micro- and nano- components, protein folding

    "Selective decayprocesses, thermodynamics

    Dissipation of some quantity on small scales(e.g., energy in eddies, turbulence)

    Persistence of other quantities on larger spatialscales (e.g., helicity)

    TPI, BSB 6/15/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    42/51

    Example of self-organization (numericalsimulation): reorganization of plasmapressure into stable profile

    Plasma

    Inner conductor

    Vacuum

    Hard core currentPlasma current

    Pressure

    Radius

    Wall

    Stableconcaveregion

    Stable if'p and (are within

    Kadomtsevbounds

    %

    RS, SF, VM, BSB 6/20/12

    Outer conductor (implodes for MTF)

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    43/51

    Movie of dynamic formation phase

    RES, VM, BSB 5/26/03

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    44/51

    Movie of equilibration phase

    RES, VM, BSB 5/26/03

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    45/51

    Simulated plasma finds Kadomtsevmarginally stable profile

    Point marked with xiswhere beta for simulated

    profile is matched to

    Kadomtsev beta

    2 4 6 8 10 r, cm0

    1

    2

    3

    p, MPa

    marginallystable

    pressure

    profile

    !max"0.401

    RS, VM, BSB 5/26/03

    Through m=0 turbulence,the plasma organizes itselfinto the marginally stable

    Kadomtsev state

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    46/51

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    47/51

    Field Reversed Configuration

    high-(self-organized plasma ~ 1

    compact torus

    like spheromak

    Can translateinto liner

    The LANL FRC has parameters orders ofmagnitude different than previous FRCs.How will FRC behave under compression?How will liner interact with FRC?

    RES , BSB 8/24/08

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    48/51

    Experiment on 1-MA/100-ns Zebra (UNR) studiesplasma formed by multi-MG field on aluminum

    BSB, NLG 4/22/08

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    49/51

    Zebra Megagauss Experiment

    Movie: Stephan Fuelling, UNR, Oct 2006

    SF, BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    50/51

    Some good plasma references

    # P.M. Bellan, Fundamentals of Plasma Physics, CambridgeUniversity Press, Cambridge, United Kingdom, 2006.

    # J.A. Bittencourt, Fundamentals of Plasma Physics, 3rded.,Springer Science, New York, NY, 2004.

    # F.F. Chen, Introduction to Plasma Physics and Controlled Fusion,Vol. 1: Plasma Physics, 2nded., Plenum Press, New York, NY, 1984.

    # R.P. Drake, High-Energy-Density Physics: Fundamentals, InertialFusion and Experimental Astrophysics, Springer Verlag, New York,NY, 2006.

    #

    R.J. Goldston and P.H. Rutherford , Introduction to PlasmaPhysics, Institute of Physics Publishing, Philadelphia, PA, 1995.

    # D.R. Nicholson, Introduction to Plasma Theory, John Wiley & Sons,New York, NY, 1983.

    BSB 6/20/12

  • 8/11/2019 Bauer2012_06_20DerivationPlasmaFluidEquations

    51/51

    Thanks!

    BSB 6/20/12Photo: University of Nevada Reno www unr edu