Basics on High Frequency Circuit Analysis

31
Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez April 22, 2020 1 1 Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas Sánchez Most of the figures of this presentation were taken from Agilent Technologies Educator’s Corner: 1999 RF Design and Measurement Seminar, David Ballo, Joe Civello, Ed Henicle, Sara Meszaros, Andy Potter, Boyd Shaw, My Le Truong 2 Dr. J. E. Rayas Sánchez Electrical Size Low frequencies wavelengths >> wire length current (I) travels down the wires easily for efficient power transmission measured voltage and current not dependent on position along the wire High frequencies wavelength or < length of transmission medium need transmission lines for efficient power transmission matching to characteristic impedance (Z 0 ) is very important for low reflection and maximum power transfer measured envelope voltage dependent on position along line I

Transcript of Basics on High Frequency Circuit Analysis

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

1

1

Basics on High Frequency Circuit Analysis

Dr. José Ernesto Rayas Sánchez

Most of the figures of this presentation were taken from Agilent Technologies Educator’s Corner: 1999 RF Design and Measurement Seminar, David Ballo, Joe Civello, Ed Henicle, Sara Meszaros, Andy Potter, BoydShaw, My Le Truong

2Dr. J. E. Rayas Sánchez

Electrical Size

Low frequencies wavelengths >> wire length current (I) travels down the wires easily for efficient power transmission measured voltage and current not dependent on position along the wire

High frequencies wavelength or < length of transmission medium need transmission lines for efficient power transmission matching to characteristic impedance (Z0) is very important for low

reflection and maximum power transfer measured envelope voltage dependent on position along line

I

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

2

3Dr. J. E. Rayas Sánchez

The Need of Transmission Line Theory

For analog circuits:

If the physical length of the transmission media is larger 10% of the wavelength of the highest frequency of interest

For digital circuits:

If the propagation time in the longest transmission path is larger than 10% of the fastest transition time

4Dr. J. E. Rayas Sánchez

Common Transmission Media

Uniform Interconnects

microstrip

h

w

coplanar

w1

w2

r

waveguide

twisted-paircoaxial

b

a

h

w

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

r

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

3

5Dr. J. E. Rayas Sánchez

Common Transmission Media (cont.)

Practical interconnects can be decomposed in segments of uniform interconnects (usually necessary)

Components(Chip + Pkg)

PCB(Motherboard)

PCB(add-in card)

Connector

(H. Heck, 2005)

6Dr. J. E. Rayas Sánchez

Common Transmission Media (cont.)

Practical interconnects have discontinuities and imperfections

(M. Resso, 2016)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

4

7Dr. J. E. Rayas Sánchez

Common Transmission Media (cont.)

High-speed BGA (Ball Grid Array) packagesChip

Board

Flip chip interconnect (bump)

Signal layer

Signal layer

Power/ground plane

Power/ground plane

Through via

Burried via

Complete signal path (chip to board)

Chip carrier (substrate)

BGA ball

Blind via

8Dr. J. E. Rayas Sánchez

From Lumped Circuits to Distributed Circuits

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

5

9Dr. J. E. Rayas Sánchez

Transmission Line Model

The interconnect is modeled using an infinite number of RLCG sections

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000)

10Dr. J. E. Rayas Sánchez

Transmission Line Model

The interconnect is modeled using an infinite number of RLCG sections

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

6

11Dr. J. E. Rayas Sánchez

Transmission Line Model

Generic equivalent circuit for each section (R, L, C and G are per unit length)

The interconnect is modeled using an infinite number of these sections, making

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000)

0z

12Dr. J. E. Rayas Sánchez

Transmission Line Equations

Time-Domain (Telegrapher Equations)

Telegrapher Equations in Frequency-Domain

ttzi

LtzRiz

tzv

),(),(

),(

ttzv

CtzGvz

tzi

),(),(

),(

)()()(

zILjRdz

zdV

)()()(

zVCjGdz

zdI

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

7

13Dr. J. E. Rayas Sánchez

Transmission Line Equations (cont.)

Wave equation (frequency-domain)

whereis the complex propagation constant

jCjGLjR ))((

Solutions to the wave equation are

zz eVeVzV 00)( zz eIeIzI 00)(

0)()( 2

2

2

zVdz

zVd 0)()( 2

2

2

zIdz

zId

incident wavesreflected waves

14Dr. J. E. Rayas Sánchez

Transmission Line Equations (cont.)

Solutions in the frequency domain

Solutions in the time domain

zz eVeVzV 00)(zz eIeIzI 00)(

zz eztVeztVtzv )cos(||)cos(||),( 00

Phase velocity, wave velocity or propagation speed

2p

f

v

jCjGLjR ))((

Wavelength

dtdz

vp

(speed at which a constant phase point travels down the line)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

8

15Dr. J. E. Rayas Sánchez

Transmission Line Symbol

(Lossy) Transmission line

Length along the line

Z0,

l

Z0,

0l

ZL

z

16Dr. J. E. Rayas Sánchez

Characteristic Impedance

Characteristic impedance of the TL

CjGLjR

Z

0

0

0

0

00 I

VIV

Z

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

9

17Dr. J. E. Rayas Sánchez

Reflection Coefficient

Reflection coefficient along the line, l

Reflection coefficient at the load,

l

l

l

l eVV

eVeV

l

2

0

0

0

0)(

0L

0L

0

0

0

0)0(ZZZZ

II

VV

ll

l

l

l

l eII

eIeI

l

2

0

0

0

0)(

Z0,

0l

ZL

18Dr. J. E. Rayas Sánchez

Input Impedance

Input impedance along the line

)tanh()tanh(

)()(

)(L0

0L0in lZZ

lZZZ

lIlV

lZ

Z0,

0l

ZLZin

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

10

19Dr. J. E. Rayas Sánchez

Modeling Uniform Interconnects

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

20Dr. J. E. Rayas Sánchez

Modeling Uniform Interconnects (cont.)

Parasitic effects associated to each transmission media

– Capacitance between conductors, C

– Resistance of conductors (conductor losses), R

– Inductance of conductor loops, L

– Dielectric conductivity (dielectric losses), G

R, C, L, and G must be determined per unit length

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

11

21Dr. J. E. Rayas Sánchez

Interconnect Shunt Capacitance

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

F/m) 10854.8( 120

22Dr. J. E. Rayas Sánchez

Fringing Capacitance Effect

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

12

23Dr. J. E. Rayas Sánchez

Interconnect Series Inductance

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

H/m) 104( 70

24Dr. J. E. Rayas Sánchez

Interconnect Series DC Resistance

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

13

25Dr. J. E. Rayas Sánchez

Skin Effect

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

26Dr. J. E. Rayas Sánchez

EM-Simulation of Conductor Current Distribution

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

14

27Dr. J. E. Rayas Sánchez

Proximity Effect

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

28Dr. J. E. Rayas Sánchez

Proximity and Skin Effects

E. Bogatin, “Essential principles of signal integrity,” IEEE Microwave Magazine, vol. 12, pp. 34-41, Aug. 2011.

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

15

29Dr. J. E. Rayas Sánchez

Edge and Indy Effects – Example

W = 10 mil L = 40 milH = 5 mil r = 4.2dielectric loss tan = 0.017PCL-FR-226 Polyclad Laminates

EM simulation using SonnetAt 1 MHz:

rH

W

L

L

L

W

30Dr. J. E. Rayas Sánchez

Edge and Indy Effects – Example (cont.)

W = 10 mil L = 40 milH = 5 mil r = 4.2dielectric loss tan = 0.017PCL-FR-226 Polyclad Laminates

EM simulation using SonnetAt 10 MHz:

rH

W

L

L

L

W

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

16

31Dr. J. E. Rayas Sánchez

Edge and Indy Effects – Example (cont.)

W = 10 mil L = 40 milH = 5 mil r = 4.2dielectric loss tan = 0.017PCL-FR-226 Polyclad Laminates

EM simulation using SonnetAt 100 MHz:

rH

W

L

L

L

W

32Dr. J. E. Rayas Sánchez

Edge and Indy Effects – Example (cont.)

W = 10 mil L = 40 milH = 5 mil r = 4.2dielectric loss tan = 0.017PCL-FR-226 Polyclad Laminates

EM simulation using SonnetAt 1 GHz:

rH

W

L

L

L

W

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

17

33Dr. J. E. Rayas Sánchez

Interconnect Shunt Conductance

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

34Dr. J. E. Rayas Sánchez

Loss Tangent of Typical Materials

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

18

35Dr. J. E. Rayas Sánchez

Power Transfer Efficiency

RS

RL

Maximum power is transferred when RL = RS

RL / RS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Lo

ad

Po

wer

(no

rmaliz

ed

)

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

36Dr. J. E. Rayas Sánchez

Power Transfer Efficiency (cont.)

For complex impedances, maximum power transfer occurs when ZL = ZS* (conjugate match)

Zs = R + jX

ZL = Zs* = R - jX

Zo

Zo

Rs

RL

+jX

-jX

At high frequencies, maximum power transfer occurs when RS = RL = Zo

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

19

37Dr. J. E. Rayas Sánchez

The Smith Chart

-90 o

0o180

o+-

.2

.4

.6

.8

1.0

90o

0 +R

+jX

-jX

Smith Chart maps rectilinear impedanceplane onto polar plane

Rectilinear impedance plane

Polar plane

Z = ZoL

= 0

Constant X

Constant R

Z = L

= 0 O

1

Smith Chart

(open)

LZ = 0

= ±180 O1

(short)

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

38Dr. J. E. Rayas Sánchez

0.2

0.5

1.0

2.0

5.0

+0.2

-0.2

+0.5

-0.5

+1.0

-1.0

+2.0

-2.0

+5.0

-5.0

0.0

The Smith Chart – Interpretation

0L Z LZ

0L ZZ

0L jZZ

0L jZZ

(open circuit)(short circuit)

(pure inductive)

(pure capacitive)

(matched)Circles of constant XL

Circles of constant RL

0

180101

901

901

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

20

39Dr. J. E. Rayas Sánchez

Lightwave Analogy to RF Energy

RF

Incident

Reflected

Transmitted

Lightwave

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

40Dr. J. E. Rayas Sánchez

Transmission Line Terminated with Zo

For reflection, a transmission line terminated in Zo behaves like an infinitely long transmission line

Zs = Zo

Zo

Vrefl = 0 (all the incident power is absorbed in the load)

Vinc

Zo = characteristic impedance of transmission line

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

21

41Dr. J. E. Rayas Sánchez

Transmission Line Terminated with Short, Open

Zs = Zo

Vrefl

V inc

For reflection, a transmission line terminated in a short or open reflects all power back to source

In phase (0°) for openOut of phase (180°) for short

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

42Dr. J. E. Rayas Sánchez

Transmission Line Terminated with 25

Zs = Zo

ZL = 25

Vrefl

V inc

Standing wave pattern does not go to zero as with short or open

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

22

43Dr. J. E. Rayas Sánchez

Reflection Parameters

dB

No reflection(ZL = Zo)

RL

SWR

0 1

Full reflection(ZL = open, short)

0 dB

1

=Z L - Z O

ZL + OZ

ReflectionCoefficient

=Vreflected

Vincident=

= Return loss = -20 log(),

SWR = Emax

Emin

=1 + 1

Standing Wave RatioEmax

Emin

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

44Dr. J. E. Rayas Sánchez

Standing Wave Ratio – EM Simulation

Microstrip lineLaminate: Rogers RO3003

H = 5 mil

r = 3

tan() = 0.0013 at 10 GHz

Lossy metals: Cu = 5.8×107 S/m

t = 0.6 mil (half-once copper)

W = 12.5 mil

L = 187.5 mil

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

23

45Dr. J. E. Rayas Sánchez

Standing Wave Ratio – EM Simulation (cont.)

Using Zport1 = Zport2 = 50

f = 0.1 GHz f = 30 GHz

46Dr. J. E. Rayas Sánchez

Standing Wave Ratio – EM Simulation (cont.)

Using Zport1 = 50 , Zport2 = 1 K

f = 0.1 GHz f = 30 GHz

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

24

47Dr. J. E. Rayas Sánchez

Transmission Parameters

VTransmitted

VIncident

Transmission Coefficient   =  =VTransmitted

V Incident= 

DUT

Gain  (dB)   =  20 Log VTrans

V Inc

=  20 log

Insertion Loss (dB)   =   ‐ 20 Log VTrans

V Inc

=   - 20 log

Insertion Phase (deg)   =    

VTrans

V Inc

48Dr. J. E. Rayas Sánchez

N-Ports Networks (Linear Circuits)

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000)

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

25

49Dr. J. E. Rayas Sánchez

Impedance Matrix Representation (Z)

Each element of matrix Z is given by

NV

V

V

2

1

V

NI

I

I

2

1

I

ZIV

NNNN

N

N

ZZZ

ZZZ

ZZZ

21

22221

11211

Z

jkIj

iij

k

IV

Z

for 0

50Dr. J. E. Rayas Sánchez

Admittance Matrix Representation (Y)

Each element of matrix Y is given by

NV

V

V

2

1

V

NI

I

I

2

1

I

YVI

NNNN

N

N

YYY

YYY

YYY

21

22221

11211

Y

jkVj

iij

k

VI

Y

for 0

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

26

51Dr. J. E. Rayas Sánchez

Z-Parameters for 2-Port Networks

2

1

V

VV

2

1

I

II

ZIV

2221

1211

ZZ

ZZZ

Equivalent circuit:

52Dr. J. E. Rayas Sánchez

Y-Parameters for 2-Port Networks

2

1

V

VV

2

1

I

II

YVI

2221

1211

YY

YYY

Equivalent circuit:

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

27

53Dr. J. E. Rayas Sánchez

H-Parameters (Hybrid) for 2-Port Networks

2

1

2

1

V

I

I

VH

2221

1211

HH

HHH

Equivalent circuit:

54Dr. J. E. Rayas Sánchez

The Scattering Matrix (S)

NV

V

V

2

1

V

NV

V

V

2

1

V

SVV

NNNN

N

N

SSS

SSS

SSS

21

22221

11211

S

jkVj

iij

k

VV

S

for 0

Vk+ = 0 if we terminate port k with a matched load (ZLk = Z0k)

V1

I1I1

+V1+

I1V1

Z01

Vk

IkIk

+ Vk+

Ik Vk

Z0k

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

28

55Dr. J. E. Rayas Sánchez

The Scattering Matrix Representation (S)

They can be more easily obtained at high frequencies:

– Incident and reflected waves can be measured using a Vector Network Analyzer (VNA)

– They do not require “shorts” or “opens” (active devices might oscillate or self-destroy)

They are more directly related to high-frequency effects (, T, IL, RL, SWR, etc.)

We can convert back and forth between S, Y and Z parameters

56Dr. J. E. Rayas Sánchez

Measuring S-Parameters

S 11 =Reflected

Incident=

b 1

a 1 a 2 = 0

S 21 =Transmitted

Incident=

b2

a 1 a 2 = 0

S 22 =Reflected

Incident=

b 2

a 2 a 1 = 0

S 12 =Transmitted

Incident=

b1

a 2 a 1 = 0

Incident TransmittedS 21

S 11Reflected

b 1

a 1

b 2

Z 0

Loada2 = 0

DUTForward

1IncidentTransmitted S 12

S 22

Reflected

b 2

a2

b

a1 = 0

DUTZ 0

Load Reverse

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

29

57Dr. J. E. Rayas Sánchez

Meaning of the S-parameters (cont.)

S11 : forward reflection coefficient (input match)

S22 : reverse reflection coefficient (output match)

S21 : forward transmission coefficient (gain or loss)

S12 : reverse transmission coefficient (isolation)

ikVi

ikVi

iii

k

kVV

S

for 0

for 0

iiiS

jiij TS jkVji

jkVj

iij

k

k

TVV

S

for 0

for 0

58Dr. J. E. Rayas Sánchez

An RF Prototype

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

30

59Dr. J. E. Rayas Sánchez

Hybrid Microwave Integrated Circuits (cont.)

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

60Dr. J. E. Rayas Sánchez

Monolithic Microwave Integrated Circuits (MMIC)

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 22, 2020

31

61Dr. J. E. Rayas Sánchez

High Speed Interconnects

J.C. Rautio, Rigorous Evaluation of Worst Case Total Crosstalk in the Time Domain Using Frequency Domain Scattering Parameters, 2001 High-Performance System Design Conference

62Dr. J. E. Rayas Sánchez

High Speed Interconnects (cont.)

J.C. Rautio, Rigorous Evaluation of Worst Case Total Crosstalk in the Time Domain Using Frequency Domain Scattering Parameters, 2001 High-Performance System Design Conference