Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos...

26
Baryogenesis, Leptogenesis and Lepton Flavor Violation Heinrich P ¨ as University of Hawaii Honolulu, HI, USA Super B Factory Workshop, Hawaii 2005 H. P ¨ as Baryogenesis, Leptogenesis, LFV SuperB 2005 1

Transcript of Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos...

Page 1: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Baryogenesis, Leptogenesis and Lepton Flavor Violation

Heinrich Pas

University of HawaiiHonolulu, HI, USA

Super B Factory Workshop, Hawaii 2005

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 1

Page 2: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Outline

• Status: Evidence for the baryon asymmetry

• Requisites: Sakharov conditions for baryogenesis

• Realization: Particle physics scenarios

• Focus: Leptogenesis and the seesaw mechanism

• Work out: LFV and the seesaw mechanism

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 2

Page 3: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Evidence for the baryon asymmetry

Observation: there are more baryons than anti-baryons in the universe

• Spectrum of anti-protons in cosmic radiation (BESS/balloon in 35 km altitude)consistent with generation from cosmic primaries

• no anti-nuclei found in cosmic radiation (AMS spectrometer/Discovery)

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 3

Page 4: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Evidence for the baryon asymmetry

• no aniihilation radiation detected in the local galaxy cluster

• no distortion of cosmic microwave background from particle-anti-particleannihilation in the observable universe

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 4

Page 5: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Magnitude of baryon asymmetry

big bang nucleosynthesis:∼ 0.1− 180s after big bang

Synthesis p, n → D,3 He,4 He,7 Lidissociated by collisions withhigh-energetic γ’s

⇒ sensitive to:

ηB = nB−nB

Search for D,3 He,4 He,7 Li in gasclouds and stars with small metallicity

⇒ 2.6 · 10−10 < ηB < 6.2 · 10−10 S. Sarkar, astro-ph/0205116

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 5

Page 6: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Magnitude of baryon asymmetry

Anisotropies in the CMB:

Atomic synthesis ∼ 380000y after big bang

D.N. Spergel, Astrophys. J. Suppl. 148(2003) 175

Acustic oscillations in the early universe

Comparison 1st peak(fundamental wave: gravity ⇒ / ⇒ gaspressure)

to 2nd peak(overtone: gravity ⇔ gas pressure)

⇒ Ratio baryons (gravity + gaspressure)/ cold dark matter (gravity)

⇒ Ratio ρB / ργ ' 1

⇒ ηB = 6.1+0.3−0.2 · 10−10

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 6

Page 7: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Baryon asymmetry as initial condition?

Possibility: ηB = 6 · 10−10 as initial condition?

Inflationary epoch:

ds2 = dt2 −R2(t)(

dr2

1−kr2 + r2dθ2 + r2 sin2 θdφ2)

R(t) ∝ exp(√

Λ/3t)

• ρΛ = Λ/8πG: Vacuum energy of inflaton field

• ⇒ flat, homogenous und empty universe!

• ⇒ end of inflation: decay of inflaton field into thermal plasma

• ⇒ particles and anti-particles in equal abundances

• ⇒ Necessity of baryogenesis after inflationary epoch

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 7

Page 8: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Sakharov-Bedingungen for baryogenesis

• Baryon number violation:Interactions, which generate or annihilate B

• Non-Equilibrium:Γ(i(~pi, ~si) → f(~pf , ~sf )) 6= Γ(f(~pf , ~sf ) → i(~pi, ~si))⇒ arrow of time

• C violation:Γ(i(~pi, ~si) → f(~pf , ~sf )) 6= Γ(i(~pi, ~si) → f(~pf , ~sf ))⇒ different process rates for particles and anti-particles

• CP violation:Γ(i(~pi, ~si) → f(~pf , ~sf )) 6= Γ(i(−~pi, ~si) → f(−~pf , ~sf ))⇒ different process rates for particles and anti-particles of different parities

A.D. Sakharov, 1967; V.A. Kuzmin, 1970

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 8

Page 9: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Sakharov-Bedingungen for baryogenesis

How can the

Sakharov conditions

be realized in a

particle physics model?

Baryon number violation?

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 9

Page 10: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

1st Model: GUT Baryogenesis

L

e ,R

µ , τRR

u ,R

d ,RR

c , s ,R

t ,R

bR

ud L

cs

tbL

Strong

SU(2)

Hypercharge

Leptons

Quarks

leptons <−> (scalar) sleptonsbosons <−> (s=1/2) bosinos

cancels divergenciesbenefits:

dark matter candidatenecessary for gravity

Supersymmetry

Standard Model

symmetry: quarks <−> (scalar) squarks

bosons <−> fermions

coupling unification

Grand Unified Theory

quarks and leptonssame multiplet

in the

Unification of forces

Right handed neutrinos?..."Desert"...

νµ L

ντ LLe

ν

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 10

Page 11: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

1st Model: GUT Baryogenesis

• Baryon number violationen: GUT multiplet

• Non-equilibrium decay of heavy X-bosons for MX > Tuniverse

• CP -violation: Γ(X → qq) > Γ(X → qq)

• Problem: thermal generation of X bosons with mX ∼ MGUT → high reheatingtemperature after inflation Treh ∼ MGUT ' 1016 GeV → powerful generation ofweakly interacting superpartners (gravitinos) in SUSY scenarios → decayproducts prevent successful BBN

Ingnatiev, Krasnikov, Kuzmin, Tavkhelidze, 1978; Yoshimura, Weinberg, 1979

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 11

Page 12: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

2nd Model: Elektroweak baryogenesis

Baryon number violation

already

in the

Standard Model?

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 12

Page 13: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

2nd Model: Elektroweak baryogenesis

Sphalerons: B violation in the Standard Model

Topologically different field configurations ⇒ degenrated vacua with different baryonnumbers t’Hooft 1976T > TEW ⇒ Transitions between vacua, Baryon number violationKuzmin, Rubakov, Shaposhnikov, 1985

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 13

Page 14: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

2nd Model: Elektroweak baryogenesis

Electroweak phase transition ∼ 10−10 s after big bangCondensation of the Higgs field: 〈φ〉 = 0 → 〈φ〉 = v(T < Tc)⇒ Mass generation, CP violationNon-equilibrium: analogy water-steam transition

Requirement: 1st order transition ⇔ competing ground statesdependent of Higgs potential ⇒ depending on Higgs self interactionλ ⇒ mH = v(T = 0)

√2λ < 70 GeV

mH > 114 GeV bei LEP too small!

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 14

Page 15: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

3rd Modell: Leptogenesis

Combination of

Non-equilibrium decay

and

baryogenesis at low energies?

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 15

Page 16: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

3rd Modell: Leptogenesis

Neutrino mass generation in the seesaw mechanism

Motivation: mν � mu,d,e, Standard Model: mν ≡ 0, since no right-handed neutrino

νe( )

LνR

h( )0+

hAssumption: ∃ right-handed neutrino NR:“Normal” Dirac mass term mDνLNR

νR ν LC

However: NR is a SM singlet!⇒ Majorana mass term NRMR(NR)C , MR � mD

E. Majorana 1937

mD+M ≡(

νcL

(NR)

) (0 mD

mD MR

) (νL

(NR)c

)mD � mR ⇒ mlight ' −(mD)2/MR � mD

⇒ ∃ right-handed Neutrino NR with L violating mass MR ∼ 1014 GeV

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 16

Page 17: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

3rd Modell: Leptogenesis

NR decays in the early universe

• Non-equilibrium decay of heavy neutrinos for MR > Tuniverse

• CP violation

Γ(NR → h + νL) > Γ(NR → h + νL)

⇒ L-violation

• B-violation: L-violation + B + L violating sphaleron processes→ B violation

⇒ Relations to neutrino physics + lepton flavor violation!Fukugita, Yanagida, 1986

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 17

Page 18: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

3rd Modell: Leptogenesis

∆ 2m : ∆ 2m atm2 ∆ 2m sun

νL sector

νR sector

θ13θatmθsun , ,

6 R−Matrix elementsseesaw−Relation18 parameters

3 mixing angles:

,

1 Dirac phase

2 Majorana phases1 absolute mass

3 Majorana masses

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 18

Page 19: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

LFV processes

Inverting the seesaw matrix: Y †ν Yν ∝ (mD)2 ∝ MR (∼ M3)

⇒ Look for processes ∝ Y †ν Yν

⇒ Lepton Flavor violating corrections to slepton masses!

l~

i l~

j

h~

2

νR

l~

i l~

j

νR~

h2

µe( m )2δ L

χo~

γ~l ~

elµ~νµ

~eν

χ~

µe( m )2δ L

γ

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 19

Page 20: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Br(µ → eγ) and Br(τ → µγ)

SUSY scenario SPS1, m1 < 0.03 eV

PDG: Br(µ → eγ) < 1.2 · 10−11 (90%C.L.) ⇒ MR < 1014 − 1015 GeVBr(τ → µγ) < 10−8 (90%C.L.) : determination accuracy factor 2!

F. Deppisch, H. Pas, A. Redelbach, R. Ruckl, Y. Shimizu, Eur.Phys.J. C28 (2003) 365-374

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 20

Page 21: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Gravitino bound and R-matrix elements

mSUGRA problem: overabundance of gravitinos for TR > 1010 GeV (m3/2 ' 1 TeV)⇒ M1 < 10TR < 1011 GeV ⇒ x2,3 ' 0, π, 2π

Contours: yi = 0.1, best fit νL

F. Deppisch, H. Pas, A. Redelbach, R. Ruckl, in preparation

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 21

Page 22: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Br(µ → eγ/Br(τ → µγ and x1

Strong variation of Br(µ → eγ)/Br(τ → µγ) with x1

SuperB: Br(τ → µγ) ' 108

⇒ Sensitivity: Br(µ → eγ)/Br(τ → µγ) < O10−3

F. Deppisch, H. Pas, A. Redelbach, R. Ruckl, in preparation

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 22

Page 23: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Conclusions

• Cosmological evidence for baryon asymmetry

• Inflation destroys initial asymmetry

• Sakharov conditions: B violation, C- and CP violation, thermalNon-equilibrium

• GUT baryogenesis: overproduction of gravitinos

• Elektroweak baryogenesis: Phase transition too weak

• Leptogenesis: decays of heavy neutrino ⇒ L violation ⇒ B violation

– Seesaw mechanism: 18 parameters

– ⇒ Neutrino mass constraints

– ⇒ Lepton flavor violations of charged leptons: τ → µγ

– ⇒ constraints on right-handed neutrino masses

– Seesaw benchmark model, learn GUT scale physics!

Martin Heidegger: “Das Nichts nichtet (the nothing noths)”

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 23

Page 24: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Conclusions

CP-Verletzung und komplexe Phasen

Massenbasis: (d, s, b)T

Wechselwirkungsbasis: (d′, s′, b′)T

Unitare Transformation: (d, s, b)T = U(d′, s′, b′)T

U : MischungsmatrixQuarkstrom: Jµ = (u, c, t)OU(d, s, b)T

Amplitude fur Prozess(ab → cd):M∼ Jµ

caJ†µbd ∼ UcaU∗

bd(ucOua)(udOub)†

Amplitude fur CP-gespiegelten Prozess:MCP ∼ CP (Jµ

ca)CP (J†µbd) ∼ UcaU∗

bd(uaOuc)(ubOud)†

Beobachtung: MCP = M† ⇔ U reell

⇒ CP -Verletzung ⇔ komplexe Phasen in Kopplungen ⇒ CP -Verletzung erfordertnichtverschwindende Massen!

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 24

Page 25: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Alternativen

• Affleck-Dine Baryogenese: Skalare Superpartner von Baryonen erhalten VEVsSupersymmetrie: flache Richtungen im Potential

• Baryogenese an topologischen Defekten

• Baryogenese in schwarzen LochernSchwarze Locher sind vollstandig durch Masse, Ladung, Drehimpulsbeschrieben (“No-hair”)⇒ Quantengravitation verletzt alle globalen Symmetrien B, L

• Sneutrino ist das Inflaton: Nichtthermische Leptogenese im InflatonzerfallNeutrinophysik ⇔ Inflation

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 25

Page 26: Baryogenesis, Leptogenesis and Lepton Flavor Violation•Non-equilibrium decay of heavy neutrinos forM R > T universe •CP violation Γ(N R → ¯h + ¯ν L) > Γ(N R → h + ν L)

Alternativen

Beziehungen zur Neutrinophysik

• Niedrige Reheatingtemperatur ⇒ kleine MR-MasseDavidson, Ibarra, 2002

• CP -Verletzung in Neutrinooszillationen ⇒ Neutrino Factories und Superbeams

• Lepton Flavor Verletzung in Prozessen mit geladenen Leptonen (selteneZerfalle, Beschleuniger)

l~

i l~

j

h~

2

νR

µe( m )2δ L

χo~

γ~l ~

elµ

Borzumati, Masiero, 1986; Casas, Ibarra, 2001

• Washout fur zu große Leptonenzahlverletzung: Grenze auf die Neutrinomasseim minimalen Modell mν <∼ 0.1 eVBuchmuller, di Bari, Plumacher, 2002

H. Pas Baryogenesis, Leptogenesis, LFV SuperB 2005 26