Bartlett - The Bond and Impact Resistance of Gigacrete

download Bartlett - The Bond and Impact Resistance of Gigacrete

of 29

Transcript of Bartlett - The Bond and Impact Resistance of Gigacrete

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    1/29

    DEPARTMENT OF CIVIL AND ENIVORNMENTAL ENGINEERING, UNIVERISTY OF UTAH

    TheBondStrengthandImpactResistanceofGigacreteFacingonExpandedPolystyreneforHighway

    Embankments

    Technical Report Prepared by

    StevenF.Bartlett,Ph.D.,P.E.;AurelianC.Trandafir,Ph.D.;BrianJ.Higley

    4/10/2009

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    2/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 2

    ContentsListofFigures................................................................................................................................................ 3

    Introduction.................................................................................................................................................. 4

    TestProceduresandResults......................................................................................................................... 5

    ExpandedPolystyrene............................................................................................................................... 5

    CompressiveStrengthofGigacreteTM....................................................................................................... 6

    InterfaceAxialExtensionAdhesionBondTests........................................................................................ 7

    InterfaceBondDirectShearTests............................................................................................................ 9

    InterfaceShearStrengthwithCyclicUnaxialCompression.................................................................... 11

    ImpactStrengthofGigacreteTM.............................................................................................................. 18

    SummaryandConclusions.......................................................................................................................... 26

    References..................................................................................................................................................

    28

    Appendix1.................................................................................................................................................. 29

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    3/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 3

    ListofFiguresFigure1. UnconfinedUniaxialCompressionStressStrainCurvesforEPS1950mmcubicsamples

    (Bartlettetal.2000)...................................................................................................................................... 5

    Figure2. Cylinderpreparationforunconfinedcompressivestrengthtests................................................ 6

    Figure3. (a)UnconfinedcompressiontestingofGigacreteTMcylinder,(b)FailureofGigacretesample...7

    Figure4. GigacreteTM

    compressivestrengthgainasafunctionofcuretime.............................................. 7

    Figure5. Laminatedmaterialsubjectedtotensilestressnormaltothelaminateplanetodetermine

    adhesionbondstrength................................................................................................................................ 8

    Figure6. TensilefailureoflaminatedGigacreteTM EPSspecimens............................................................ 9

    Figure7. Verticaldeformationversusloadforlaminatedsamples............................................................. 9

    Figure8. Laminatedmaterialsubjectedtoshearstressparalleltolaminateplanetodetermineshear

    bondstrength............................................................................................................................................... 9

    Figure9. UniversityofUtahdirectsheardevicemanufacturedbyELEInternational............................... 10

    Figure10. DirectsheartestresultsforGigacreteTM

    EPSbond................................................................... 10

    Figure11. SamplesofGigacreteTMEPSlaminatetestedindirectshear. EPSsampleislocatedontop

    andhasbeencompressedduringshear. Localshearfailurehasoccurredontheleadingedgeofthe

    sample......................................................................................................................................................... 11

    Figure12. Shearstressesintroducedatlaminateinterfacefromaxialcompressionandextension........11

    Figure13. CyclicloadingwithintheEPSresultingfromthermalexpansioncontractionoftheEPSwall

    system......................................................................................................................................................... 12

    Figure14. CylindricalsampleofGigacreteTMandEPS19casttotestthebondstrengthforcyclicunaxial

    compression................................................................................................................................................ 12

    Figure15. UniversityofUtahcyclictriaxialtestapparatus....................................................................... 13

    Figure16. Plotsofshearstressversusaxialstrainforcyclicuniaxialstresstests,cycles0250.............14

    Figure17. Plotsofshearstressversusaxialstrainforcyclicuniaxialstresstests,cycles251500.........15

    Figure18. Plotsofshearstressversusaxialstrainforcyclicuniaxialstresstests,cycles501750.........15

    Figure19. Plotsofshearstressversusaxialstrainforcyclicuniaxialstresstests,cycles501750.........15

    Figure20. Photographsofthetopofthesamplebefore(top)andafter(bottom)theapplicationof1000

    loadingcycles. Nodamagewasobserved attheEPSGigacreteTMinterface......................................... 17

    Figure21. Photographsofthebottomofthesamplebefore(top)andafter(bottom)theapplicationof

    1000loadingcycles. NodamagewasobservedattheEPSGigacreteTMinterface................................. 17

    Figure22. TheGardnerStrikerUsedinImpactTesting............................................................................. 19

    Figure23. Photographsofthickglassfiberreinforced1x1and6x6samples............................. 24

    Figure24. Photographsofnylonreinforced1x1and6x6samples............................................. 24

    Figure

    25.

    Photographs

    of

    glass

    fiber

    reinforced

    1

    x

    1

    and

    6

    x

    6

    samples.

    .....................................

    25

    Figure26. Photographsofnylonreinforced1x1and6x6samples............................................. 25

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    4/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 4

    IntroductionThis report discusses the bonding and impact resistant of GigacreteTM used as a nonstructural

    permanent facing for Expanded Polystyrene (EPS) geofoam embankments. GigacreteTM is a mineral

    cement based proprietary product manufactured and distributed by GigaCrete Inc. of Scottsdale,

    Arizona. The intended use of this product is to deploy it as a spray on application (e.g., similar to

    shotcreting)forthepermanentfacingandprotectionoffreestandinggeofoamembankments.

    The exposed sides of a geofoam embankment must be covered to prevent longterm surface

    degradationof theEPS,mainly fromUVdegradationand to incidentaldamageof thegeofoam from

    otherenvironmentalfactorsandfromimpact. TheBostonCentralArteryTunnel(BCAT)Project,known

    astheBigDigproject,deployedanExteriorInsulationandFinishingSystem(EIFS)tocoverandprotect

    theEPSgeofoam. Forthisproject,approximately10,000squarefeetofEPSblockswerecoveredusing

    dry mix process shotcrete (http://www.aulson.com/concreterepair.cfm). The EPS was prepared for

    shotcreteapplicationbyetching recessednotcheswithaheatweldinggunevery12 inchesalong the

    permanentfaceoftheEPSstructureinpreparationforshotcreteadhesion. Awiremeshwasfastened

    tothe

    EPS

    face

    with

    glass

    filled

    nylon

    fasteners

    and

    hook

    bolts

    were

    used

    to

    attach

    the

    wire

    mesh

    to

    the

    castinplaceconcretebarrieralongthetopoftheEPSwall. Subsequently,workersappliedatwoinch

    thick layer ofdrymixprocess shotcrete at 400 feet per second along the EPSwall face creating an

    appearancesimilartorubbedconcrete.

    However, theapplicationexploredherein is thedirectapplicationofaGigacreteTMcoating to theEPS

    withoutrecessednotches.Importanttothisapplicationisthebondstrengththatdevelopsbetweenthe

    EPSandGigacreteTM. BecauseEPSwall systemsare relativelynew in theU.S.andbecause shotcrete

    facing is a developing technology, no AASHTO (American Association of State Highway and

    Transportation Officials) guidelines or specifications exist for this application. An EIFS project

    specificationwas

    developed

    for

    the

    Big

    Dig

    project

    (Appendix

    1),

    which

    can

    be

    used

    aguide

    for

    evaluatingthedesignandconstructionoffuturesystems. However,thisspecificationwasdevelopedfor

    aspecificprojectandproduct. Thus,partsoftheBigDigspecificationmaynotbeapplicabletoother

    productsandapplicationmethods.

    This report evaluates the bond strength of GigacreteTM when applied to EPS geofoam using test

    performance data performed by the University of Utah Departments of Civil and Environmental

    EngineeringandGeologyandGeophysics. TestdataweregatheredandevaluatedfortheGigacreteTM

    EPS interfacefortension,shearandaxialcompression. Inaddition,testswereperformedontheaxial

    compressionstrengthofGigacreteTM.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    5/29

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    6/29

    TheBond

    Embank

    Itshould

    Youngm

    (Figure 1

    embank

    2000)sh

    al.(2000)

    Compr

    ForEIFS,

    Thus the

    material.

    comparat

    Gigacrete

    recomme

    high

    (Figu

    After curi

    (Figure3

    daycure

    showsho

    higher st

    determin

    perform

    Strengthan

    ents

    benoted th

    duliandun

    ) are genera

    entapplicati

    wthatend

    reportYoun

    ssiveStrthefacingm

    BCATProjec

    However,

    ivepurposes

    TM samples

    ndations.Th

    re

    2)

    and

    cur

    F

    ng, the sam

    )inamann

    imeswere5

    w the comp

    rengths tha

    ation of the

    dditionaltes

    ImpactResi

    t the result

    onfinedco

    lly too low

    ons. Testing

    ndedgeeff

    moduli

    valu

    ngthofGaterialisnot

    tdidnot sp

    e performe

    withothers

    were pre

    mixturewa

    ed

    for

    4,

    10,

    igure2. Cylind

    leswerepl

    rsimilartot

    220psi(36

    ressive stren

    those sho

    compressiv

    tsforlonger

    stanceofGig

    shownabo

    pressivestr

    nd do not

    onlargeblo

    ctsundulyi

    esof

    about

    igacreteT

    placed inco

    cifyaperfo

    d three unc

    otcreteand

    ared in i

    splacedin4

    and

    12

    days

    rpreparationf

    ced inana

    hatrequired

    Pa),7100p

    gthofGigac

    n in Figure

    strength

    curetimes.

    acreteTM

    Faci

    eshouldno

    ngthscalcul

    reflect the p

    ksamplesp

    fluencemo

    0MPa

    for

    2

    mpression,b

    mancecrite

    onfined com

    stuccoprod

    door condi

    inch(10cm)

    t

    20

    degree

    orunconfined

    tuator (Figu

    byASTMC3

    i(49MPa)a

    reteTM

    increa

    4 are poss

    as not a pr

    ingonExpan

    tbeused fo

    tedfroms

    roperties of

    rformedat

    ulicalculate

    foot(600

    m

    ecause it is

    ion forcom

    pressive str

    cts.

    tions accor

    diameterm

    C

    prior

    to

    u

    ompressivestr

    re3a)and l

    9. Thecomp

    d8190psi(

    sesasa fun

    ible with lo

    imary object

    dedPolystyr

    rdesignofE

    all(i.e.,50

    largesized

    yracuseUni

    dfrom50m

    )cube

    samp

    nonbearin

    pressive stre

    ngth tests

    ding to th

    oldsthatwer

    confined

    co

    engthtests.

    aded tount

    ressivestren

    57MPa),res

    ctionof cure

    ger cure ti

    ive of this

    neforHigh

    P

    PSembank

    m)cubesa

    EPS block us

    ersity(Elragi

    cubes. Elr

    lesfor

    EPS2

    structuralf

    ngthof the

    n Gigacrete

    manufact

    e8inches(2

    pression

    te

    il failureocc

    gtha4,10a

    ectively. Fi

    time. Obvi

    es, but be

    tudy, we di

    ay

    age 6

    ents.

    ples

    ed in

    etal.

    agiet

    .

    acing.

    acingMfor

    urers

    0cm)

    sting.

    urred

    nd12

    ure4

    ously,

    cause

    d not

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    7/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 7

    Figure3. (a)UnconfinedcompressiontestingofGigacreteTM

    cylinder,(b)FailureofGigacretesample.

    Figure4. GigacreteTM

    compressivestrengthgainasafunctionofcuretime.

    InterfaceAxialExtensionAdhesionBondTestsForEIFSapplications,theamountofadhesionbondthatdevelopsbetweenthefacingmaterialandthe

    EPS isan importantproperty for the longtermperformanceanddurabilityof thepermanent facing.

    TheBCAT

    Project

    acceptance

    criterion

    for

    EIFS

    is:

    No

    failure

    in

    the

    adhesive

    base

    coat

    or

    finish

    coat.

    The insulation board shall fail cohesively except that 25 percent adhesive failure is acceptable. For

    testedvaluesofnineteen(19)psiorgreater,adhesivefailureupto100%isacceptable(Appendix1,p.

    8).

    0

    10000

    2000030000

    40000

    50000

    60000

    0 2 4 6 8 10 12

    ,

    kPa

    Cure Time (days)

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    8/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 8

    ThetestmethodrecommendedbytheBCATprojectfordeterminingbondstrengthisASTMC297. This

    testmethodcoversthedeterminationofthecoreflatwisetensionstrength,orthebondbetweencore

    andfacingsofanassembledsandwichpanel.Thetestconsistsofsubjectingasandwichconstructiontoa

    tensile load normal to the plane of the sandwich (Figure 5). The tensile load is transmitted to the

    sandwichthroughthickloadingblocksbondedtothesandwichfacingsordirectlytothecore.

    Figure5. Laminatedmaterialsubjectedtotensilestressnormaltothelaminateplanetodetermineadhesionbondstrength.

    WeevaluatedthebondstrengthbetweenEPSandGigacreteTMinamannersimilartoASTMC297. A3

    inch (75mm)concretecylinderwasusedtomoldthe laminatedsample. Aneyeboltwasanchored in

    thetoplayeroftheGigacreteTMandathreadedrodwasanchoredinthebottomlayer(Figure5). These

    wereusedtoattachtheweightstoapplythenormaltensileforce.

    Twosampleswerepreparedanallowedtocurvefor5and6days,respectively. Thespecimensfailedat

    atensilestressof39.6psi(273kPa)and39.5psi(272kPa),respectively. Figure6showsthefailureof

    specimens,which

    is

    atensile

    failure

    of

    the

    EPS.

    In

    both

    cases,

    the

    bond

    between

    the

    EPS

    and

    the

    GigacreteTMdidnotdevelopanadhesion failure; insteadacohesive failuredevelopedwith theEPS.

    Thus, the GigacreteTMEPS laminate tested meets, or greatly exceeds, the requirements of the BCAT

    ProjectperformancecriterionforbondstrengthforEIFS(Appendix1).

    3inch(75mm)diameterby

    2inch(50mm)highEPS19

    samplesandwiched

    betweenGigacreteTMlayers.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    9/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 9

    Figure6. TensilefailureoflaminatedGigacreteTM

    EPSspecimens.

    Inadditiontothepeaktensilestrength,wemeasuretheverticaldeformationofthesampleastheload

    wasapplied. Thesedataareshown inFigure7. Thesedatasuggestthatthetensile failure intheEPS

    occurredat4and20percentaxialstrain.

    Figure7. Verticaldeformationversusloadforlaminatedsamples.

    InterfaceBondDirectShearTestsTheshearbondthatdevelopsbetweenthefacingmaterialandEPSisalsoimportantforthelongterm

    durabilityof thepermanent facing. Sufficientbonding inpure shear is required toprevent slippage

    between the facing material and the EPS when the stress is oriented parallel to the plane of the

    interface(Figure8).

    Figure8. Laminatedmaterialsubjectedtoshearstressparalleltolaminateplanetodetermineshearbondstrength.

    NointerfaceshearperformancecriterionortestswererequiredaspartoftheBCATprojectspecification

    (Appendix 1). However, this is a common test done in Geotechnical Engineering to determine the

    interface shear strengthor bondbetween two dissimilarmaterials and is commonly performed in a

    direct shear device (Figure 9). We evaluated the shear bond strength of GigacreteTM and EPS in a

    mannersimilartoASTMD3080.

    Two2.5inch(62.5mm)diameterby0.5inch(12.5mm)GigacreteTMlayerswerepouredatopanEPS19

    sampleof

    identical

    dimensions.

    The

    GigacreteTM

    was

    allowed

    to

    cure

    for

    9days

    and

    then

    tested

    in

    directshearwithanappliednormalstressof2.2psi(15kPa). (Thisnormalstresswasselectedbecause

    it representsa typicalnormal stress thatdevelops in theelastic rangeof theEPS.) The samplewas

    subjectedtoahorizontaldisplacementrateintheshearboxthatcorrespondsto0.05inches(1.25mm)

    perminuteandtesteduntiladisplacementof0.5inches(12.5mm)wasrealized. Figure10showspeak

    shearbondstrengthsof51.3and55.2kPaforsamples1and2,respectively.

    -2

    0

    2

    4

    6

    8

    10

    12

    0 50VerticalDeformation

    (mm)

    Total Added Mass (kg)

    Sample 1

    Sample 2

    Leading

    edgeofEPS

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    10/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 10

    Figure9. UniversityofUtahdirectsheardevicemanufacturedbyELEInternational.

    Figure10. DirectsheartestresultsforGigacreteTM

    EPSbond.

    0

    10

    20

    30

    40

    50

    60

    0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

    ShearStrength(kPa)

    Horizontal Displacement (mm) Sample 1Sample 2

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    11/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 11

    Afterthetestswereperformed,thesampleswerevisuallyinspected.Therewasasignificantamountof

    compressionoftheEPS,buttheinterfacebondwasnotbrokenbetweenthetwomaterials. Figure11

    showsthelocaldeformationandshearthatdevelopedalongtheleadingedgeofthesample(Figure8);

    however,alongthetrailingedgeofthesample,thebondwasintact. Acarefulinspectionoftheleading

    edgeof the sample showedbeadsofEPSwere stillembedded in theGigacreteTM suggesting that the

    failurewas

    alocalized

    cohesive

    failure

    and

    not

    adhesive

    failure

    of

    the

    interface

    bond.

    Figure11. SamplesofGigacreteTM

    EPSlaminatetestedindirectshear. EPSsampleislocatedontopandhasbeen

    compressedduringshear. Localshearfailurehasoccurredontheleadingedgeofthesample.

    InterfaceShearStrengthwithCyclicUnaxialCompressionShearstressesatGigacreteTMandEPS interfacecandevelop fromcyclicaxial loadingoftheEPS. Such

    loadingscanbea resultofdifferential thermalexpansioncontractionof theEPSblock relative to the

    Gigacrete

    TM

    facing

    or

    can

    be

    caused

    by

    seismic

    and

    traffic

    loadings

    (Figure

    12).

    Figure12. Shearstressesintroducedatlaminateinterfacefromaxialcompressionandextension.

    Forexample,datagatheredfromtheI15ReconstructionProject(Figure13)showscyclicalaxialloading

    withintheEPSduetoseasonalthermalexpansionandcontractionoftheEPSwallsystem(Bartlettetal.

    2001). Thesedatasuggestaseasonalcyclingofabout2psi (13.8kPa). (Note that the initialvertical

    stress of about 5 psi (34.5 kPa) results from the initial placement of the load distribution slab and

    overlyingpavementmaterials.) It shouldalsobenoted that theyield stress (i.e., stressat2percent

    EPSblocks

    undergoingaxial

    compressionand

    extensionfrom

    thermal,trafficor

    earthquakeloadings

    GigacreteTM

    facing

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    12/29

    TheBond

    Embank

    strain) is

    Figure13

    Fig

    Wedevis

    case of

    environm

    Gigacrete

    curedfor

    Subseque

    alternatin

    capsfor

    ring. Int

    Figure

    Pressure

    (psi)

    Strengthan

    ents

    approximate

    arewithinth

    re13. Cycliclo

    damodifie

    n EPS emb

    ental loadinTM

    was cast

    7days.

    ntly in a ser

    g compressi

    heload

    fra

    ismannero

    14. Cylindrical

    1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    Mar-99

    ImpactResi

    ly80 to100

    eelasticran

    adingwithinth

    testmetho

    ankment wi

    s (e.g., ther

    arounda3i

    ies of stress

    onextension

    ecompletel

    lyverticalst

    ampleofGigac

    Mar-00

    stanceofGig

    kPa (Figure

    eoftheEPS

    eEPSresulting

    dtomeasur

    h Gigacrete

    mal, seismic,

    nch (75mm)

    controlled c

    using a cycl

    contacted

    resswastra

    reteTM

    andEPS

    Ma

    acreteTM

    Faci

    1); thus the

    .

    fromthermale

    theperforTM

    placed i

    etc). A4i

    outsidedia

    yclic uniaxial

    ic triaxialde

    heEPS

    core

    sferredtoth

    19casttotestt

    r-01

    ingonExpan

    magnitude

    pansioncontr

    anceofthe

    cyclic axia

    ch (100m

    eterofEP

    tests, the

    vice (Figure

    ,but

    did

    not

    eEPS(Figur

    hebondstreng

    Mar-02

    dedPolystyr

    f the cyclic

    ctionoftheEP

    GigacreteTM

    l compressi

    )outsidedi

    19as show

    PS central c

    15). The 3

    contact

    the

    14).

    hforcyclicuna

    Mar-03

    neforHigh

    Pa

    loadings sho

    Swallsystem.

    EPSbondf

    nextension

    meter cylin

    inFigure1

    orewaspla

    inch (75mm

    GigacreteTM

    xialcompressio

    ay

    ge 12

    n in

    rthe

    from

    erof

    and

    ed in

    ) end

    outer

    n.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    13/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 13

    InitialtestingofanEPS19cylinderwithouttheGigacreteTMcoatingshowedthatcreepdeformationwas

    initiatedina3inch(75mm)EPS19samplewhenastaticaxialstressofabout30kPawasappliedtothe

    sample. DesignofEPSembankmentrequiresthattheallowableworkingstressintheEPSembankment

    tobeapproximately50percentoftheyieldstress,soweselectedan initialaxialcompressivestressof

    15kPaforthetesting.

    Once itwasverifiedthatthesamplewasnotundergoingcreepunderthisaxialstress,additionalcyclic

    axialstressof11kPawasappliedtothesample. Thus,theamplitudeoftheaxialstressonthesample

    varied from +26 kPa to + 4 kPa, where + indicates compression. This is approximately twice the

    magnitudeofthethermalstresscyclingoccurringintheEPSembankment(Figure13).

    Thesample inFigure14wassubjectto4setsof250cycleseachwithan initialstaticaxialstressof15

    kPAandanaxialcyclicstressof11kPaappliedatafrequencyof1Hz. Theresultsforthesetestsare

    showninFigures1619.

    Figure15. UniversityofUtahcyclictriaxialtestapparatus.

    (Intheseplots,theshearstressisplottedinsteadoftheaxialstressontheleftaxisofthefigures. The

    shearstressistheaxialstressdividedby2forthecaseofuniaxialloading.) Figure16showsthatslightly

    lessthan0.2percent inelastic (i.e.,plastic)axialstrainaccumulated in theEPSsampleduringthe first

    250cycleloadingset. Thissuggeststhatthecombinationofinitialstaticandcyclic loadinghadslightly

    exceeded the elastic limit of the EPS. However, subsequent sets on the same sample showed less

    inelasticbehavior,suggestingtheinelasticdeformationdecreaseswiththenumberofcycles.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    14/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 14

    Wenotethatthesamplewascompletelyunloadedaftereachsetof250cycles. (Thiswasdonesothat

    thesystemssolenoidcouldcooldownbeforethenextsetof250cycleswasapplied.) Becauseofthis,

    the permanent deformations shown in Figures 16 through 19 cannot be added to get the total

    permanentaxialstrainduring1000cycles.

    Figure16. Plotsofshearstressversusaxialstrainforcyclicuniaxialstresstests,cycles0250.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    15/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 15

    Figure17. Plotsofshearstressversusaxialstrainforcyclicuniaxialstresstests,cycles251500.

    Figure18. Plotsofshearstressversusaxialstrainforcyclicuniaxialstresstests,cycles501750.

    Figure19. Plotsofshearstressversusaxialstrainforcyclicuniaxialstresstests,cycles501750.

    Once1000cycleshadbeenappliedtothesample,weinspectedtheGigacreteTMEPSinterfaceforany

    signsofdamagedue tocycling. Nodebondingordamagewasobservedat this interface (Figures20

    and21).

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    16/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 16

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    17/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 17

    Figure20. Photographsofthetopofthesamplebefore(top)andafter(bottom)theapplicationof1000loadingcycles. No

    damagewasobserved attheEPSGigacreteTM

    interface.

    Figure21. Photographsofthebottomofthesamplebefore(top)andafter(bottom)theapplicationof1000loadingcycles.

    NodamagewasobservedattheEPSGigacreteTM

    interface.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    18/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 18

    ImpactStrengthofGigacreteTMInitially,squaresamplesofEPS19,measuring1footby1foot(0.3mby0.3m)and0.5ft(0.15m)thick,

    were coated with inch (12.5 mm) of unreinforced GigacreteTM for impact testing. A striker was

    constructedusinga cylindrical shapedweightanda steelballbearing.This strikerwasdropped from

    predeterminedheightsandimpactedtheGigacreteTMcoatingappliedtotheEPSbacking. Theseinitial

    impacttests

    showed

    that

    even

    at

    relatively

    small

    drop

    heights,

    the

    unreinforced

    samples

    on

    EPS

    backing

    will fracture. After discussing the results of the initial impact tests with the manufacturer, it was

    decidedthatreinforcedsamplesshouldbepreparedforadditionalimpacttesting.

    Subsequently, two types of reinforcing meshes were used in the samples: glassfiber and nylon

    reinforcingmesh. TwelveEPS19samples,measuring0.5ftby0.5ft(0.15mby0.15m)and2in(50mm)

    thick, were prepared and coated with GigacreteTM for impact testing. Six of these samples were

    reinforced with glassfiber and six were reinforced with a nylon reinforcing mesh. In addition, an

    identicalsetofsampleswereprepared,butusingaGigacreteTMcoatingthicknessofinch(18.75mm).

    This was done to evaluate how the impact performance may improved as the thickness of the

    GigacreteTMis

    increased.

    It

    should

    be

    noted

    that

    a2in

    (50

    mm)

    thickness

    of

    EPS19

    was

    chosen

    for

    all

    testssothatthesamplespreparedwithaGigacreteTMcoatingcouldfitunderneaththestriker.

    Anadditiontothe0.5ft(0.15m)squaresamples,largersizedsquareEPS19sampleswerealsoprepared

    andtested. Thesesamplesmeasured1 footby1 foot (0.3mby0.3m)and2 in (50mm)thick. One

    samplewaspreparedforeachthicknessofGigacreteTM(i.e.,12.5and18.75mmthickness)andforeach

    meshtypeforatotalof4samples.

    For all of samples, the reinforcing mesh was placed at middepth within the GigacreteTM coating.

    However,forthenylonmeshwitha12.5mmcoatingofGigacreteTM,thesmallmeshopeningsizemade

    preparationofthesesamplesdifficult. TheGigacreteTMcoatingwasbarelysufficienttofullycoverthe

    nylonmesh.

    Allsampleswerecuredforsevendaysandthentestedusingvariousimpactenergies. Afterimpacting,

    eachspecimenwasinspectedforcracks,breaks,depthofindentationandtoseeifthemeshhadbeen

    penetrated or broken by the impact. A Gardner Striker (ASTM D 5420) apparatus was used for the

    impact testing (Figure 22). This shape of head producesmore concentrated impact than the larger

    diametersteelballsorweightedbagsadaptedfromothermethodsandproducesagoodcompromise

    betweenpuncturingandcrackingaction. Inthistest,thesamplerestsonabaseplateoveranopening.

    An impactorsitsontopofthetestsampleandaweight israisedtoapredeterminedheight,then it is

    released todroponto the top of the sample. Thedropheight,dropweight, and the test result are

    recorded.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    19/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 19

    Figure22. TheGardnerStrikerUsedinImpactTesting.

    The0.5ftby0.5 ft (0.15mby0.15m)samplesweretested first.Becauseoftheirsmallersize, itwas

    assumed thatcrackswould format lower impactenergies; therefore theobjectiveof thispartof the

    testing was to evaluate the approximate impact energy required to penetrate or break the mesh.

    Subsequently, the1 footby1 foot (0.3mby0.3m) sampleswere tested to find the impact energy

    requiredtocrackthecoating. TheresultsareshowninTable2below.

    Thetestresultsshowedthatforthethickfiberreinforcedsamples,theimpactstrengthrequiredto

    crackthesamplesisestimatedtobe280inlbs.Theimpactstrengthrequiredtopenetratethemeshis

    consistentlyhigher than themaximumavailableof320 inlbsenergydeliveredby theGardnerStriker

    (Figure23).

    Incomparison,thethicknylonreinforcedsamplesof1x1dimensionscrackedat200inlbs. Alsoat

    304inlbs,thestrikerpenetratedthroughthemeshandintotheEPS(Figure24). Inaddition,atimpact

    energyof 200 inlbs,ormore, thedamage to the 6 x 6 sampleswas severe, including cracks that

    propagated into theEPS. Also, thebondbetween theEPSandGigacreteTM failedat thecornersand

    edges (Figure24).However,thenylonmeshwasnotpenetrateduntil impactsofover300 inlbswere

    used.

    Whenthethick1x1sampleswithglassfiberreinforcementwasstruckwith200inlbs,smallcracks

    formed;butat thehighestenergyof320 inlbs, themeshwasnot ruptured (Figure25). Also, it is

    interestingtonotethatforsample1ofthe6x6samplesdidnotcrackat200inlbsofimpactenergy

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    20/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 20

    (Table 2). Furthermore, none of the 6 x 6 glassfiber samples were penetrated at the maximum

    impactenergyof320inlbs(Table2).

    Incomparison,thenylonreinforced1x1samplehadsmallcracksat240inlbsbutthemeshwas

    notpenetratedwhenstruckagainat320inlbs(seeFigure26).The6x6samplesalsocrackedatlower

    energies,but

    the

    mesh

    remained

    un

    penetrated

    at

    maximum

    impact

    or

    320

    in

    lbs.

    Table2.ImpactTestingResultsforGigacreteTM

    coating,

    GigacreteTM thickness: 1/2" Sample Size: 6" x 6" x 2 EPS

    Reinforcement: Glass Fiber

    Sample Drop Indentation Penetrated

    Number Energy (inlbs) Depth (in) Mesh? (Y/N) Observations:

    1 152 N No cracks

    200 0.162 N Cracked to edges, small chips

    2 200 0.015 N No cracks, no chips

    224 0.078 N Cracked to edges, small chips

    3 224 0.171 N Cracks to edges

    4 280 0.177 N Cracks to edges

    5 304 0.080 N Cracks to edges

    6 320* 0.037 N Cracks to edges

    GigacreteTM thickness: 1/2" Sample Size: 1' x 1' x 2 EPS

    Reinforcement: Glass Fiber

    Sample Drop Indentation Penetrated

    Number Energy (inlbs) Depth (in) Mesh? (Y/N) Observations:

    1 280 0.184 N 1 small crack

    304 0.386 N Cracked to edges

    320* 0.201 N Cracked to edges

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    21/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 21

    GigacreteTM thickness: 3/4" Sample Size: 6" x 6" x 2 EPS

    Reinforcement: Glass Fiber

    Sample Drop Indentation Penetrated

    Number Energy (inlbs) Depth (in) Mesh? (Y/N) Observations:

    1 200 N No cracks

    248 N Cracked to edges, small chips

    2 320* 0.013 N Cracks to edges

    3 320* 0.013 N Cracks to edges

    4 320* 0.010 N Cracks to edges

    5 320* 0.038 N Cracks to edges

    6 320* 0.022 N Cracks to edges

    GigacreteTM thickness: 3/4" Sample Size: 1' x 1' x 2 EPS

    Reinforcement: Glass Fiber

    Sample Drop Indentation Penetrated

    Number Energy (inlbs) Depth (in) Mesh? (Y/N) Observations:

    1 320* 0.076 N Cracks to edges

    2 200 0.026 N Cracks to edges

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    22/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 22

    GigacreteTM thickness: 1/2" Sample Size: 6" x 6" x 2 EPS

    Reinforcement: Nylon

    Sample Drop Indentation Penetrated

    Number Energy (inlbs) Depth (in) Mesh? (Y/N) Observations:

    1 248 0.024 N Large Cracks to edges and into EPS

    2 200 0.045 N Large Cracks to edges and into EPS

    3 152 0.008 N Cracks to edges

    4 120 0.012 N Cracks to edges

    5 96 0.005 N Cracks to edges

    280 N Large Cracks to edges and into EPS

    6 320* Y Large Cracks to edges and into EPS

    GigacreteTM thickness: 1/2" Sample Size: 1' x 1' x 2 EPS

    Reinforcement: Nylon

    Sample Drop Indentation Penetrated

    Number Energy (inlbs) Depth (in) Mesh? (Y/N) Observations:

    1 104 0.019 N No Cracks

    200 0.182 N Cracks to edges

    304 Y Penetrated into EPS

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    23/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 23

    GigacreteTM thickness: 3/4" Sample Size: 6" x 6" x 2 EPS

    Reinforcement: Nylon

    Sample Drop Indentation Penetrated

    Number Energy (inlbs) Depth (in) Mesh? (Y/N) Observations:

    1 200 N Cracks to edges

    248 N Cracks to edges, small chips

    2 320* 0.013 N Cracks to edges

    3 320* 0.013 N Cracks to edges

    4 320* 0.010 N Cracks to edges

    5 320* 0.038 N Cracks to edges

    6 320* 0.022 N Cracks to edges

    GigacreteTM thickness: 3/4" Sample Size: 1' x 1' x 2 EPS

    Reinforcement: Nylon

    Sample Drop Indentation Penetrated

    Number Energy (inlbs) Depth (in) Mesh? (Y/N) Observations:

    1 240 0.016 N Cracks to edges

    304 N Cracks to edges, small chips

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    24/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 24

    Figure23. Photographsofthickglassfiberreinforced1x1and6x6samples.

    Figure24. Photographsofnylonreinforced1x1and6x6samples.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    25/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 25

    Figure25. Photographsofglassfiberreinforced1x1and6x6samples.

    Figure26. Photographsofnylonreinforced1x1and6x6samples.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    26/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 26

    SummaryandConclusionsTheimpacttestingresultsaresummarizedinTable3.Becauseofthesmallnumberofsamplestestedfor

    eachcase (i.e.,maximumofsixsamples),theresultsbelowarenotstatisticallyrobust,butdosuggest

    therelativeperformanceforeachcase.

    Table3.

    Summary

    of

    Impact

    Testing

    GigacreteTM

    Thickness: Reinforcement

    Impact to

    Crack (inlbs)*

    Impact to

    Penetrate Mesh

    (inlbs)

    1/2" GlassFiber >280 >320

    1/2" Nylon 200

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    27/29

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    28/29

    TheBondStrengthandImpactResistanceofGigacreteTMFacingonExpandedPolystyreneforHighway

    Embankments Page 28

    ReferencesASTC39,StandardTestMethod forCompressiveStrengthofCylindricalConcreteSpecimens, ASTM

    International,WestConshohocken,PA,2005,DOI:10.1520/C0039_C0039M05E01.

    ASTM C297 / C297M, 2004, Standard Test Method for Flatwise Tensile Strength of Sandwich

    Constructions,ASTM

    International,

    West

    Conshohocken,

    PA,

    2004,

    DOI:

    10.1520/C0297_C0297M

    04.

    ASTM C578, 2008, Standard Specification for Rigid, Cellular Polystrene Thermal Insulation, ASTM

    International,WestConshohocken,PA,2008,DOI:10.1520/C057808.

    ASTMD080,2004, StandardTestMethod forDirectShearTestofSoilsUnderConsolidatedDrained

    Conditions,ASTMInternational,WestConshohocken,PA,2004,DOI:10.1520/D308004.

    Bartlett,S.F.,Negussey,D.,Kimball,M.,2000,DesignandUseofGeofoamontheI15Reconstruction

    Project,TransportationResearchBoard,January9thto13th,2000,Washington,D.C.,20p.

    BartlettS.F.,Farnsworth,C.,Negussey,D.,andStuedlein,A.W.,2001,InstrumentationandLongTerm

    MonitoringofGeofoamEmbankments,I15ReconstructionProject,SaltLakeCity,Utah,EPSGeofoam

    2001,3rdInternationalConference,Dec.10thto12th,2001,SaltLakeCity,Utah,23p.

    Elragi,A.F.,Negussey,D.andKyanka,G.,2000,SampleSizeEffectsontheBehaviorofEPSGeofoam,

    ProceedingsoftheSoftGroundTechnologyConference,ASCESpecialPublication112,theNetherlands.

  • 8/2/2019 Bartlett - The Bond and Impact Resistance of Gigacrete

    29/29

    The Bond Strength and Impact Resistance of GigacreteTM Facing on Expanded Polystyrene for Highway

    Appendix1Section909.300

    Exterior

    Insulation

    and

    Finish

    Systems

    (EIFS)

    Boston'sCentralArteryTunnelProject