Balaban Poster - Cyclotron Institute

1
Geometry Simula.on 4 He @15MeV/A+ nat Au 228 Th Source Descrip.on of Hill Climbing (HC): Novel Techniques for the Posi3on Calibra3on of FAUST David Balaban, Cyclotron Ins,tute, Texas A&M University (REU student from University of Massachuse@s Amherst) Advisers: Sherry Yennello, Lauren Heilborn, Cyclotron Ins,tute, Texas A&M University. 0. Collect Data Posi.on plot aRer raw data collec.on for detector 21 Apply cuts on signal strength to filter out noise levels. The detectors are also stretched so they can fill region. 1. Signal Processing 2. Rota.on Rotate data by 45 degrees, the expected angle of the slope. This makes projec.ng and fiYng easier. Phase 1, Stripe Iden.fica.on with Kmeans: 3. Run Kmeans Algorithm KMeans is used to iden.fy loca.on of stripes. Colors shown are different Kvalues, best one must be selected. 4. Data Selec.on Kmeans will give approximate loca.on of stripe, can now do a linear fit to data. 5. Linear Fit Rotate lines back by 45 degrees. Colors show which points were used in fit 1. Ini.alize k random points 2. Calculate average posi.on of data associated with each point 3. Reset point to average posi.on 4. Repeat un.l convergence will use this method to iden.fy stripes in data Define set of free parameters P Define method eval(P) to evaluate parameters to a single value Problem: Tungsten mask blocks charged par.cles and creates striped paaern on detectors. Stripes on detectors will be displaced according to detector placement. Goal is to find how far they are from expected posi.ons 2 phase process: 1.) Iden.fy stripes on detector with the Kmeans algorithm 2.) Find set of linear transforma.ons applied to detector which will reposi.on the stripes to the expected values with the Hill Climbing algorithm The Forward Array Using Silicon Technology (FAUST) consists of 68 detectors, which iden.fy and measure the energy of charged par.cles. FAUST was recently upgraded to posi.onsensi.ve detectors which enable higher resolu.on in rela.ve momentum. Many different structural tolerances may result in inaccurate rela.ve posi.oning. This final posi.on must be accurately known for upcoming experiments. Overview: Descrip.on of Kmeans: Picture from: Thomas, Philip. “Midterm Review.” Ar.ficial Intelligence 383. University of Massachuseas Amherst, Amherst, MA. 25 Mar. 2014. Lecture. Plot showing the distribu.on of slopes found by Kmeans. Blue comes from data obtained from a beam, red from radioac.ve source, and orange from a simula.on. Plot showing the distribu.on of slope uncertainty. Less centered stripes give worse fits because the data is more square shape than rectangular. Explains devia.on from 1 in orange data on plot to the leR Phase 2, Ideal Detector Alignment with HC: Beam and source agree closely for detectors with good data Significant differences with the Simula.on Number of stripes Slope of stripes Detectors are in fact moving. Use Hill Climbing to find a set of transforma.ons which make beam and source data look more like simula.on Hill Climbing can be applied to a variety of problems, however it’s performance can also be affected by a variety of factors Extensive tes.ng must be done to fully understand it Presently, only preliminary tests have been done for this algorithm Acknowledgements: Thank you to the SJY Research Group, the Cyclotron Institute, and Texas A&M University. This work was supported by the Robert A. Welch Foundation under Grant No. A-1266 and the U. S. Department of Energy under Grant No. DE-FG03-93ER-40773 and the National Science Foundation under Grant No. PHY-1263281. XPosi.on (cm) XPosi.on (cm) XPosi.on (cm) YPosi.on (cm) XPosi.on (cm) XPosi.on (cm) YPosi.on (cm) YPosi.on (cm) YPosi.on (cm) YPosi.on (cm) Count YPosi.on (cm) YPosi.on XPosi.on YPosi.on YPosi.on XPosi.on XPosi.on Setup: Two ini.ally parallel lines are rotated randomly Hill Climbing is told to make them parallel again through rota.ons 6 free parameters for 3 rota.ons each Angle between Lines aRer Hill Climb (deg) Count beam source simula.on source Setup: Ring of detectors rotated by .5 degrees about beamaxis Each detector is rotated randomly within a given range Hill Climbing is told to rotate ring such that the set of stripes are as close to expected as possible 1 free parameter. eval(P) at the end of Hill Climb (θ.5)/.5 θ in degrees Black min/max rota.on: [.05 ˚, .05 ˚] Red min/max rota.on: [.1 ˚, .1 ˚] Green min/max range: [.2 ˚, .2 ˚] .5˚ Geometry Simula.on “Perfect World” expecta.on Alpha par.cle simula.on perfect elas.c scaaering Black K=1 Red K=2 Green K=3 HC tries to find the global maximum of eval(P) by changing P. The picture to the leR shows a successful Hill Climb with one free parameter. Local maxima causes difficulty for successful HC. Picture from: "Hill Climbing." Wikipedia. Wikimedia Founda.on, 27 July 2014. Web. 03 Aug. 2014. P eval(P)

Transcript of Balaban Poster - Cyclotron Institute

Page 1: Balaban Poster - Cyclotron Institute

Geometry  Simula.on  

4He  @15MeV/A+  natAu    228Th  Source  

Descrip.on  of  Hill  Climbing  (HC):  

Novel  Techniques  for  the  Posi3on  Calibra3on  of  FAUST  David  Balaban,  Cyclotron  Ins,tute,  Texas  A&M  University  (REU  student  from  University  of  Massachuse@s  Amherst)  

Advisers:  Sherry  Yennello,  Lauren  Heilborn,  Cyclotron  Ins,tute,  Texas  A&M  University.    

0.    Collect  Data  

Posi.on  plot  aRer  raw  data  collec.on  for  detector  21   Apply  cuts  on  signal  strength  to  filter  

out  noise  levels.  The  detectors  are  also  stretched    so  they  can  fill  region.  

1.    Signal  Processing  

2.    Rota.on  

Rotate  data  by  45  degrees,  the  expected  angle  of  the  slope.  This  makes  projec.ng  and  fiYng  easier.  

Phase  1,  Stripe  Iden.fica.on  with  K-­‐means:  

3.    Run  K-­‐means  Algorithm  

K-­‐Means    is  used  to  iden.fy  loca.on  of  stripes.  Colors  shown  are  different  K-­‐values,  best  one  must  be  selected.  

4.    Data  Selec.on  

K-­‐means  will  give    approximate  loca.on  of  stripe,  can  now  do  a  linear  fit  to  data.  

5.    Linear  Fit  

Rotate  lines  back  by  45  degrees.  Colors  show  which    points  were  used  in  fit  

1.  Ini.alize  k  random  points  2.  Calculate  average  posi.on  of  data  associated  with  each  

point  3.  Reset  point  to  average  posi.on  4.  Repeat  un.l  convergence  will  use  this  method  to  iden.fy  stripes  in  data  

 

•  Define  set  of  free  parameters  P  •  Define  method  eval(P)  to  evaluate  parameters  to  a  single  value    

Problem:  

Tungsten  mask  blocks  charged  par.cles  and  creates  striped  paaern  on  detectors.  Stripes  on  detectors  will  be  displaced  according  to  detector  placement.  Goal  is  to  find  how  far  they  are  from  expected  posi.ons  2  phase  process:    1.)  Iden.fy  stripes  on  detector  with  the  K-­‐means  algorithm  2.)  Find  set  of  linear  transforma.ons  applied  to  detector  which  will  reposi.on  the            stripes  to  the  expected  values  with  the  Hill  Climbing  algorithm  

The  Forward  Array  Using  Silicon  Technology  (FAUST)  consists  of  68  detectors,  which  iden.fy  and  measure  the  energy  of  charged  par.cles.  FAUST  was  recently  upgraded  to  posi.on-­‐sensi.ve  detectors  which  enable  higher  resolu.on  in  rela.ve  momentum.  Many  different    structural  tolerances  may  result  in  inaccurate  rela.ve  posi.oning.  This  final  posi.on  must  be  accurately  known  for  upcoming  experiments.  

Overview:  

Descrip.on  of  K-­‐means:  

Picture  from:    Thomas,  Philip.  “Midterm  Review.”    Ar.ficial  Intelligence  383.  University  of  

Massachuseas  Amherst,  Amherst,  MA.  25  Mar.  2014.    Lecture.    

Plot  showing  the  distribu.on  of  slopes  found  by  K-­‐means.  Blue  comes  from  data  obtained  from  a  beam,  red  from  radioac.ve  source,  and  orange  from  a  simula.on.  

Plot  showing  the  distribu.on  of  slope  uncertainty.  Less  centered  stripes  give  worse  fits  because  the  data  is  more  square  shape  than  rectangular.  Explains  devia.on  from  1  in  orange  data  on  plot  to  the  leR  

Phase  2,    Ideal  Detector  Alignment  with  HC:  

• Beam  and  source  agree  closely  for  detectors  with  good  data  • Significant  differences  with  the  Simula.on    

• Number  of  stripes  • Slope  of  stripes  

• Detectors  are  in  fact  moving.  

• Use  Hill  Climbing  to  find  a  set  of  transforma.ons  which  make  beam  and  source  data  look  more  like  simula.on  • Hill  Climbing  can  be  applied  to  a  variety  of  problems,  however  it’s  performance  can  also  be  affected  by  a  variety  of  factors    • Extensive  tes.ng  must  be  done  to  fully  understand  it    • Presently,  only  preliminary  tests  have  been  done  for  this  algorithm  

Acknowledgements:  Thank you to the SJY Research Group, the Cyclotron Institute, and Texas

A&M University.  This work was supported by the Robert A. Welch Foundation under Grant No. A-1266 and the U. S. Department of Energy under Grant No. DE-FG03-93ER-40773 and the National Science Foundation under Grant No. PHY-1263281.

X-­‐Posi.on  (cm)   X-­‐Posi.on  (cm)  

X-­‐Posi.on  (cm)  Y-­‐Posi.on  (cm)  

X-­‐Posi.on  (cm)  

X-­‐Posi.on  (cm)  

Y-­‐Posi.on  (cm)  

Y-­‐Posi.on  (cm)  

Y-­‐Posi.on  (cm)  

Y-­‐Posi.on  (cm)  

Count  Y-­‐Posi.on  (cm

)  

Y-­‐Posi.on  

X-­‐Posi.on    

Y-­‐Posi.on  

Y-­‐Posi.on  

X-­‐Posi.on    X-­‐Posi.on    

Setup:    •  Two  ini.ally  parallel  lines  are  rotated  randomly  •  Hill  Climbing  is  told  to  make  them  parallel  again  through  rota.ons  •  6  free  parameters  for  3  rota.ons  each    

Angle  between  Lines  aRer  Hill  Climb  (deg)    

Count  

beam  source  simula.on  

source  

Setup:    •  Ring  of  detectors  rotated  by  .5  degrees  about  beam-­‐axis  •  Each  detector  is  rotated  randomly  within  a  given  range    •  Hill  Climbing  is  told  to  rotate  ring  such  that  the  set  of  stripes  

are  as  close  to  expected  as  possible  •  1  free  parameter.  

eval(P)  at  the  end  of  Hill  Climb    

(θ-­‐.5)/.5    θ  in  degrees  

Black  min/max  rota.on:  [-­‐.05  ˚,  .05  ˚]  Red  min/max  rota.on:    [-­‐.1  ˚,  .1  ˚]  Green  min/max  range:  [-­‐.2  ˚,  .2  ˚]  

.5˚  

• Geometry  Simula.on  • “Perfect  World”  expecta.on  • Alpha  par.cle  simula.on  perfect  elas.c  scaaering  

Black  K=1  Red  K=2  Green  K=3  

HC  tries  to  find  the  global  maximum  of  eval(P)  by  changing  P.  

The  picture  to  the  leR  shows  a  successful  Hill  Climb  with  one  free  parameter.  Local  maxima  causes  difficulty  for  successful  HC.  

Picture  from:    "Hill  Climbing."  Wikipedia.  Wikimedia  Founda.on,  27  July  2014.  

Web.  03  Aug.  2014.  

P  

eval(P)