Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata...

29
logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Backward SDE with quadratic growth Magdalena Kobylanski (1999) Jan Gairing, Plamen Turkedijev Department of Mathematics Humboldt Universit ¨ at zu Berlin January 13, 2009 Gairing, Turkedijev BSDE

Transcript of Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata...

Page 1: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Backward SDE with quadratic growthMagdalena Kobylanski (1999)

Jan Gairing, Plamen Turkedijev

Department of MathematicsHumboldt Universitat zu Berlin

January 13, 2009

[?] [?] [?]

Gairing, Turkedijev BSDE

Page 2: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Table of Contents

1 Errata and Proof of Existence

2 Preliminary statements

3 Comparison Theorem

Gairing, Turkedijev BSDE

Page 3: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

(H1)

Let α0, β0, b ∈ R and c a continous increasing function.We say F satisfies condition (H1) with α0, β0, b, c if for all(t, v, z) ∈ R+ ×R ×Rd,

F(t, v, z) = a0(t, v, z)v + F0(t, v, z)

with

β0 ≤ a0(t, v, z) ≤ α0, |F0(t, v, z)| ≤ b + c(|v|)|z|2 a.s.

Gairing, Turkedijev BSDE

Page 4: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Monotone stability

Let (F, τ, ξ) and (Fn, τ, ξn)n be sets of parameters s.t.

(i) (Fn)n converges to F in the sense thatFn(t, un, zn)→ F(t, un, zn) for (un, zn)→ (u, z) ∈ R ×Rd

(ii) |Fn(t, u, z)| ≤ kt + C|z|2, k ≤ 0 ∈ L1[0,T ], C > 0

(iii) For each n we have solutions to (Fn, τ, ξn)n

(Yn,Zn) ∈ H∞τ (R) ×H2τ(R

d), ‖Yn‖∞ ≤ M,M > 0 and (Yn)n is monotone.

(iv) τ < ∞ a.s.

Gairing, Turkedijev BSDE

Page 5: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Monotone stability

Then there exists a solution (Y,Z) ∈ H∞τ (R) ×H2τ(R

d) to the BSDEwith (F, τ, ξ), and for all T ∈ R+

Yn → Y uniformly on [0,T ], (Zn)n → Z in H2τ(R

d)

Gairing, Turkedijev BSDE

Page 6: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Existence Theorem

Let (F, τ, ξ) be a set of parameters of the BSDE. Suppose Fsatisfies (H1) with α0, β0, b ∈ R, and c : R+ → R+ continuousincreasing, ξ ∈ L∞(Ω), and either of:

(i) The terminal time τ is bounded, (τ < T a.s.), or

(ii) The τ is unbounded, α0 < 0 and E(eλτ) < ∞ for all λ > 0.

Then there exists a solution (Y,Z) ∈ H∞τ (R) ×H2τ(R

d) to the BSDE.Moreover, there exists a maximal solution (Y,Z) of (F, τ, ξ) in thesense that if (G, τ, ζ) are another set of parameters with G ≤ F andψ ≤ ξ, the YG ≤ Y for any solution (YG,ZG) of the BSDE (G, τ, ζ).

Gairing, Turkedijev BSDE

Page 7: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Existence Theorem

Let (F, τ, ξ) be a set of parameters of the BSDE. Suppose Fsatisfies (H1) with α0, β0, b ∈ R, and c : R+ → R+ continuousincreasing, ξ ∈ L∞(Ω), and either of:

(i) The terminal time τ is bounded, (τ < T a.s.), or

(ii) The τ is unbounded, α0 < 0 and E(eλτ) < ∞ for all λ > 0.

Then there exists a solution (Y,Z) ∈ H∞τ (R) ×H2τ(R

d) to the BSDE.Moreover, there exists a maximal solution (Y,Z) of (F, τ, ξ) in thesense that if (G, τ, ζ) are another set of parameters with G ≤ F andψ ≤ ξ, the YG ≤ Y for any solution (YG,ZG) of the BSDE (G, τ, ζ).

Gairing, Turkedijev BSDE

Page 8: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Existence Theorem

Let (F, τ, ξ) be a set of parameters of the BSDE. Suppose Fsatisfies (H1) with α0, β0, b ∈ R, and c : R+ → R+ continuousincreasing, ξ ∈ L∞(Ω), and either of:

(i) The terminal time τ is bounded, (τ < T a.s.), or

(ii) The τ is unbounded, α0 < 0 and E(eλτ) < ∞ for all λ > 0.

Then there exists a solution (Y,Z) ∈ H∞τ (R) ×H2τ(R

d) to the BSDE.Moreover, there exists a maximal solution (Y,Z) of (F, τ, ξ) in thesense that if (G, τ, ζ) are another set of parameters with G ≤ F andψ ≤ ξ, the YG ≤ Y for any solution (YG,ZG) of the BSDE (G, τ, ζ).

Gairing, Turkedijev BSDE

Page 9: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Existence Theorem

Let (F, τ, ξ) be a set of parameters of the BSDE. Suppose Fsatisfies (H1) with α0, β0, b ∈ R, and c : R+ → R+ continuousincreasing, ξ ∈ L∞(Ω), and either of:

(i) The terminal time τ is bounded, (τ < T a.s.), or

(ii) The τ is unbounded, α0 < 0 and E(eλτ) < ∞ for all λ > 0.

Then there exists a solution (Y,Z) ∈ H∞τ (R) ×H2τ(R

d) to the BSDE.Moreover, there exists a maximal solution (Y,Z) of (F, τ, ξ) in thesense that if (G, τ, ζ) are another set of parameters with G ≤ F andψ ≤ ξ, the YG ≤ Y for any solution (YG,ZG) of the BSDE (G, τ, ζ).

Gairing, Turkedijev BSDE

Page 10: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Existence Theorem

Let (F, τ, ξ) be a set of parameters of the BSDE. Suppose Fsatisfies (H1) with α0, β0, b ∈ R, and c : R+ → R+ continuousincreasing, ξ ∈ L∞(Ω), and either of:

(i) The terminal time τ is bounded, (τ < T a.s.), or

(ii) The τ is unbounded, α0 < 0 and E(eλτ) < ∞ for all λ > 0.

Then there exists a solution (Y,Z) ∈ H∞τ (R) ×H2τ(R

d) to the BSDE.

Moreover, there exists a maximal solution (Y,Z) of (F, τ, ξ) in thesense that if (G, τ, ζ) are another set of parameters with G ≤ F andψ ≤ ξ, the YG ≤ Y for any solution (YG,ZG) of the BSDE (G, τ, ζ).

Gairing, Turkedijev BSDE

Page 11: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Existence Theorem

Let (F, τ, ξ) be a set of parameters of the BSDE. Suppose Fsatisfies (H1) with α0, β0, b ∈ R, and c : R+ → R+ continuousincreasing, ξ ∈ L∞(Ω), and either of:

(i) The terminal time τ is bounded, (τ < T a.s.), or

(ii) The τ is unbounded, α0 < 0 and E(eλτ) < ∞ for all λ > 0.

Then there exists a solution (Y,Z) ∈ H∞τ (R) ×H2τ(R

d) to the BSDE.Moreover, there exists a maximal solution (Y,Z) of (F, τ, ξ) in thesense that if (G, τ, ζ) are another set of parameters with G ≤ F andψ ≤ ξ, the YG ≤ Y for any solution (YG,ZG) of the BSDE (G, τ, ζ).

Gairing, Turkedijev BSDE

Page 12: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Additional Lemmas and results

Approximation LemmaThere exists a decreasing sequence of uniformly Lipschitzcontinuous functions f n that converges to f in the same sense asin the Stability Theorem, and f ≤ f n ≤ l.

Existence Theorem for Standard ParametersLet ( f , τ, ξ) be standard parameters and β > 2L + L2. AssumeE[eβτ|ξ|2] < ∞. and that

∫ τ

0 eβs f (s, 0, 0)2ds < ∞. Then there isunique solution (y, z) ∈ H2

τ(R) ×H2τ(R

d).

LemmaLet ( f , τ, ξ) be standard parameters with bounded τ ≤ T a.s.,| f (·, ·, 0)| ≤ c and ξ bounded. Then ||Yt∧τ|| ≤ ||ξ||∞ + c(T − t) for allt ≤ T .

Gairing, Turkedijev BSDE

Page 13: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Additional Lemmas and results

Approximation LemmaThere exists a decreasing sequence of uniformly Lipschitzcontinuous functions f n that converges to f in the same sense asin the Stability Theorem, and f ≤ f n ≤ l.

Existence Theorem for Standard ParametersLet ( f , τ, ξ) be standard parameters and β > 2L + L2. AssumeE[eβτ|ξ|2] < ∞. and that

∫ τ

0 eβs f (s, 0, 0)2ds < ∞. Then there isunique solution (y, z) ∈ H2

τ(R) ×H2τ(R

d).

LemmaLet ( f , τ, ξ) be standard parameters with bounded τ ≤ T a.s.,| f (·, ·, 0)| ≤ c and ξ bounded. Then ||Yt∧τ|| ≤ ||ξ||∞ + c(T − t) for allt ≤ T .

Gairing, Turkedijev BSDE

Page 14: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Additional Lemmas and results

Approximation LemmaThere exists a decreasing sequence of uniformly Lipschitzcontinuous functions f n that converges to f in the same sense asin the Stability Theorem, and f ≤ f n ≤ l.

Existence Theorem for Standard ParametersLet ( f , τ, ξ) be standard parameters and β > 2L + L2. AssumeE[eβτ|ξ|2] < ∞. and that

∫ τ

0 eβs f (s, 0, 0)2ds < ∞. Then there isunique solution (y, z) ∈ H2

τ(R) ×H2τ(R

d).

LemmaLet ( f , τ, ξ) be standard parameters with bounded τ ≤ T a.s.,| f (·, ·, 0)| ≤ c and ξ bounded. Then ||Yt∧τ|| ≤ ||ξ||∞ + c(T − t) for allt ≤ T .

Gairing, Turkedijev BSDE

Page 15: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Additional Lemmas and results

Approximation LemmaThere exists a decreasing sequence of uniformly Lipschitzcontinuous functions f n that converges to f in the same sense asin the Stability Theorem, and f ≤ f n ≤ l.

Existence Theorem for Standard ParametersLet ( f , τ, ξ) be standard parameters and β > 2L + L2. AssumeE[eβτ|ξ|2] < ∞. and that

∫ τ

0 eβs f (s, 0, 0)2ds < ∞. Then there isunique solution (y, z) ∈ H2

τ(R) ×H2τ(R

d).

LemmaLet ( f , τ, ξ) be standard parameters with bounded τ ≤ T a.s.,| f (·, ·, 0)| ≤ c and ξ bounded. Then ||Yt∧τ|| ≤ ||ξ||∞ + c(T − t) for allt ≤ T .

Gairing, Turkedijev BSDE

Page 16: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Supersolutions

A supersolution (resp. subsolution) of a BSDE with parameters(F, τ, ξ) is an adapted triple (Y,Z,C) such that for all T > 0 and t < T

Yt = ξ +

∫ T∧τ

t∧τF(s,Ys,Zs)ds −

∫ T∧τ

t∧τZsdWs +

∫ T∧τ

t∧τdCs(

resp.Yt = ξ +

∫ T∧τ

t∧τF(s,Ys,Zs)ds −

∫ T∧τ

t∧τZsdWs −

∫ T∧τ

t∧τdCs

)C is right continuous and increasing on 0 < t < T . We will refer toall such functions as RCI(R). (Y,Z) ∈ H∞τ (R) ×H2

τ(Rd).

Gairing, Turkedijev BSDE

Page 17: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Supersolutions

A supersolution (resp. subsolution) of a BSDE with parameters(F, τ, ξ) is an adapted triple (Y,Z,C) such that for all T > 0 and t < T

Yt = ξ +

∫ T∧τ

t∧τF(s,Ys,Zs)ds −

∫ T∧τ

t∧τZsdWs +

∫ T∧τ

t∧τdCs(

resp.Yt = ξ +

∫ T∧τ

t∧τF(s,Ys,Zs)ds −

∫ T∧τ

t∧τZsdWs −

∫ T∧τ

t∧τdCs

)C is right continuous and increasing on 0 < t < T . We will refer toall such functions as RCI(R). (Y,Z) ∈ H∞τ (R) ×H2

τ(Rd).

Gairing, Turkedijev BSDE

Page 18: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Growth Conditions

The coefficient satisfies condition (H2) on [−M,M] with l, k and Cif for all t ≥ 0, u ∈ [−M,M], and z ∈ Rd

|F(t, u, z)| ≤ l(t) + C|z|2 a.e.|∇zF| ≤ k(t) + C|z| a.e.

(H2)

The coefficient satisfies condition (H3) with cε and ε > 0 if for allt ≥ 0, u ∈ R, and z ∈ Rd

∂F∂u≤ cε(t) + ε|z|2 (H3)

l, k and cε satisfy some integrability conditions.

Gairing, Turkedijev BSDE

Page 19: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Growth Conditions

The coefficient satisfies condition (H2) on [−M,M] with l, k and Cif for all t ≥ 0, u ∈ [−M,M], and z ∈ Rd

|F(t, u, z)| ≤ l(t) + C|z|2 a.e.|∇zF| ≤ k(t) + C|z| a.e.

(H2)

The coefficient satisfies condition (H3) with cε and ε > 0 if for allt ≥ 0, u ∈ R, and z ∈ Rd

∂F∂u≤ cε(t) + ε|z|2 (H3)

l, k and cε satisfy some integrability conditions.

Gairing, Turkedijev BSDE

Page 20: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Growth Conditions

The coefficient satisfies condition (H2) on [−M,M] with l, k and Cif for all t ≥ 0, u ∈ [−M,M], and z ∈ Rd

|F(t, u, z)| ≤ l(t) + C|z|2 a.e.|∇zF| ≤ k(t) + C|z| a.e.

(H2)

The coefficient satisfies condition (H3) with cε and ε > 0 if for allt ≥ 0, u ∈ R, and z ∈ Rd

∂F∂u≤ cε(t) + ε|z|2 (H3)

l, k and cε satisfy some integrability conditions.

Gairing, Turkedijev BSDE

Page 21: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Comparison Theorem

Let (Y1t ,Z

1t ,C

1t )0≤t≤τ ∈ H

∞τ (R) ×H2

τ(Rd) × RCI(R) a subsolution of

parameters (F1, τ, ξ1), and (Y2t ,Z

2t ,C

2t )0≤t≤τ is a supersolution of

parameters (F2, τ, ξ2). Let M = max(||Y1||∞, ||Y2||∞).

Assumefurther

(i) ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y1t ,Z

1t ) ≤ F2(t,Y1

t ,Z1t )

a.s.

(ii) For all ε > 0 there exist l, lε ∈ L1loc(0, ||τ||∞), k ∈ L2

loc(0, ||τ||∞),C > 0 such that F2 satisfies both conditions (H2) a.s. on[−M,M] with l, k,C and (H3) on [−M,M] a.s. with lε and ε.

(iii) For all T > 0, E∫ T∧τ

0 | f 1(s,Y1s ,Z

1s )|ds < ∞.

Then

Y1t ≤ Y2

t a.s. ∀t > 0

Gairing, Turkedijev BSDE

Page 22: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Comparison Theorem

Let (Y1t ,Z

1t ,C

1t )0≤t≤τ ∈ H

∞τ (R) ×H2

τ(Rd) × RCI(R) a subsolution of

parameters (F1, τ, ξ1), and (Y2t ,Z

2t ,C

2t )0≤t≤τ is a supersolution of

parameters (F2, τ, ξ2). Let M = max(||Y1||∞, ||Y2||∞). Assumefurther

(i) ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y1t ,Z

1t ) ≤ F2(t,Y1

t ,Z1t )

a.s.

(ii) For all ε > 0 there exist l, lε ∈ L1loc(0, ||τ||∞), k ∈ L2

loc(0, ||τ||∞),C > 0 such that F2 satisfies both conditions (H2) a.s. on[−M,M] with l, k,C and (H3) on [−M,M] a.s. with lε and ε.

(iii) For all T > 0, E∫ T∧τ

0 | f 1(s,Y1s ,Z

1s )|ds < ∞.

Then

Y1t ≤ Y2

t a.s. ∀t > 0

Gairing, Turkedijev BSDE

Page 23: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Comparison Theorem

Let (Y1t ,Z

1t ,C

1t )0≤t≤τ ∈ H

∞τ (R) ×H2

τ(Rd) × RCI(R) a subsolution of

parameters (F1, τ, ξ1), and (Y2t ,Z

2t ,C

2t )0≤t≤τ is a supersolution of

parameters (F2, τ, ξ2). Let M = max(||Y1||∞, ||Y2||∞). Assumefurther

(i) ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y1t ,Z

1t ) ≤ F2(t,Y1

t ,Z1t )

a.s.

(ii) For all ε > 0 there exist l, lε ∈ L1loc(0, ||τ||∞), k ∈ L2

loc(0, ||τ||∞),C > 0 such that F2 satisfies both conditions (H2) a.s. on[−M,M] with l, k,C and (H3) on [−M,M] a.s. with lε and ε.

(iii) For all T > 0, E∫ T∧τ

0 | f 1(s,Y1s ,Z

1s )|ds < ∞.

Then

Y1t ≤ Y2

t a.s. ∀t > 0

Gairing, Turkedijev BSDE

Page 24: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Comparison Theorem

Let (Y1t ,Z

1t ,C

1t )0≤t≤τ ∈ H

∞τ (R) ×H2

τ(Rd) × RCI(R) a subsolution of

parameters (F1, τ, ξ1), and (Y2t ,Z

2t ,C

2t )0≤t≤τ is a supersolution of

parameters (F2, τ, ξ2). Let M = max(||Y1||∞, ||Y2||∞). Assumefurther

(i) ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y1t ,Z

1t ) ≤ F2(t,Y1

t ,Z1t )

a.s.

(ii) For all ε > 0 there exist l, lε ∈ L1loc(0, ||τ||∞), k ∈ L2

loc(0, ||τ||∞),C > 0 such that F2 satisfies both conditions (H2) a.s. on[−M,M] with l, k,C and (H3) on [−M,M] a.s. with lε and ε.

(iii) For all T > 0, E∫ T∧τ

0 | f 1(s,Y1s ,Z

1s )|ds < ∞.

Then

Y1t ≤ Y2

t a.s. ∀t > 0

Gairing, Turkedijev BSDE

Page 25: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Comparison Theorem

Let (Y1t ,Z

1t ,C

1t )0≤t≤τ ∈ H

∞τ (R) ×H2

τ(Rd) × RCI(R) a subsolution of

parameters (F1, τ, ξ1), and (Y2t ,Z

2t ,C

2t )0≤t≤τ is a supersolution of

parameters (F2, τ, ξ2). Let M = max(||Y1||∞, ||Y2||∞). Assumefurther

(i) ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y1t ,Z

1t ) ≤ F2(t,Y1

t ,Z1t )

a.s.

(ii) For all ε > 0 there exist l, lε ∈ L1loc(0, ||τ||∞), k ∈ L2

loc(0, ||τ||∞),C > 0 such that F2 satisfies both conditions (H2) a.s. on[−M,M] with l, k,C and (H3) on [−M,M] a.s. with lε and ε.

(iii) For all T > 0, E∫ T∧τ

0 | f 1(s,Y1s ,Z

1s )|ds < ∞.

Then

Y1t ≤ Y2

t a.s. ∀t > 0

Gairing, Turkedijev BSDE

Page 26: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Remarks

The result is also true if, instead of (i) and (ii) above, we have

(i)’ ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y2t ,Z

2t ) ≤ F2(t,Y2

t ,Z2t )

a.s.(ii)’ F1 satisfies (H2) and (H3) under the same conditions as in (ii).

The hypotheses of the theorem make no assumptions on theintegrability or boundedness of the terminal condition.

Gairing, Turkedijev BSDE

Page 27: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Remarks

The result is also true if, instead of (i) and (ii) above, we have

(i)’ ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y2t ,Z

2t ) ≤ F2(t,Y2

t ,Z2t )

a.s.(ii)’ F1 satisfies (H2) and (H3) under the same conditions as in (ii).

The hypotheses of the theorem make no assumptions on theintegrability or boundedness of the terminal condition.

Gairing, Turkedijev BSDE

Page 28: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Remarks

The result is also true if, instead of (i) and (ii) above, we have

(i)’ ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y2t ,Z

2t ) ≤ F2(t,Y2

t ,Z2t )

a.s.(ii)’ F1 satisfies (H2) and (H3) under the same conditions as in (ii).

The hypotheses of the theorem make no assumptions on theintegrability or boundedness of the terminal condition.

Gairing, Turkedijev BSDE

Page 29: Backward SDE with quadratic growth - hu-berlin.debecherer/BSDESem08/bsde_Seminar... · logo1 Errata and Proof of Existence Preliminary statements Comparison Theorem Existence Theorem

logo1

Errata and Proof of ExistencePreliminary statements

Comparison Theorem

Remarks

The result is also true if, instead of (i) and (ii) above, we have

(i)’ ξ1 ≤ ξ2 a.s. and for all t we have F1(t,Y2t ,Z

2t ) ≤ F2(t,Y2

t ,Z2t )

a.s.(ii)’ F1 satisfies (H2) and (H3) under the same conditions as in (ii).

The hypotheses of the theorem make no assumptions on theintegrability or boundedness of the terminal condition.

Gairing, Turkedijev BSDE