B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar...

27
B. Gentry/GSFC SLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW B. Gentry, J. Comer, M. McGill NASA / GSFC

Transcript of B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar...

B. Gentry/GSFC SLWG 06/29/05

Scaling Ground-Based Molecular Direct Detection Doppler Lidar

Measurements to Space Using Wind Profile Measurements from

GLOW

B. Gentry, J. Comer, M. McGillNASA / GSFC

B. Gentry/GSFC SLWG 06/29/05

Q: How can we use ground based measurements to refine and validate future space based lidar system designs?

1) Validate the instrument performance behaves predictably versus measurable quantity (signal photocounts; signal to noise) under a variety of conditions.

2) Establish reference system designs to examine impact of performance trades (e.g. spatial and temporal averaging schemes) or engineering trades

3) Scaling of ground based system performance to equivalent space-based system reveals where improvements are required and provides direction for technology and instrument system development programs

4) Scaling also provides a sanity check for space based designs

B. Gentry/GSFC SLWG 06/29/05

Mobile Lidar Optical Layout

B. Gentry/GSFC SLWG 06/29/05

-0.5

0

0.5

1

1.5

2

2.5

3

-6 -4 -2 0 2 4 6

Lidar Signal vs. Etalon Transmision

Frequency (GHz)

Edge2 Filter

Locking Filter

Edge1 Filter

Aerosol Spectrum

Rayleigh Spectrum

Double Edge Etalon Channels

B. Gentry/GSFC SLWG 06/29/05

Wind Measurement and Error Analysis

• Case study: Field measurements of wind speedand direction in stable atmospheric conditions

• HARGLO-2, November 16, 2001 • Algorithms used to determine wind speed and direction• Error analysis based on shot noise limited error

B. Gentry/GSFC SLWG 06/29/05

101 102 103 104 105 106

Edge 1 Detected Photocounts

0

5

10

15

20

25

30

Altitude (km)

11/15/01 23:48 (80 mJ)11/16/01 12:58 (65 mJ)11/16/01 16:14 ( 2 mJ)11/16/01 22:30 (30 mJ)11/17/01 16:48 ( 2 mJ)11/19/01 22:23 ( 3 mJ)

HARGLO-2: GLOW Signal LevelsEdge Channel 1 PMT Detected Counts

Gate On

B. Gentry/GSFC SLWG 06/29/05

Θ+−

=

Θ+−

=

+=

==

Θ

cos*

1*

)(

)(v

cos*

1*

)(

)(v

vv v

bygiven is vspeed windthe

,,,;2

1

ratios theand y sensitivit aGiven

degrees. ofelevation at EW,S,N, azimuths 4 from

obtained are from Edg2 and Edg1 signals Measured

y

x

2y

2x

SensRR

RR

SensRR

RR

where

WESNiEdg

EdgR

Sens

SN

SN

EW

EW

i

ii

1

2

3

4

5

B. Gentry/GSFC SLWG 06/29/05

Combined Molecular Sensitivity vs. T and vT= 150K to 350K , v = 0 to 100 m/s

B. Gentry/GSFC SLWG 06/29/05

0 10 20 30

Speed (m/s)

0

5

10

15

Height (km)

GLOWLoran Sonde

HARGLO-2 11/16/01 12:58Z

0 100 200 300

Direction (deg)

0

5

10

15

Height (km)

GLOWLoran Sonde

B. Gentry/GSFC SLWG 06/29/05

v

v

v

v v

v

v

gives Edg2 and Edg1 signals detected the in

noise shot the by dominated is s velocitiecomponent measured in error Assuming

v

v

v

v and

v

v

v

v

vv

v v

v

v v

by given is v, speed measured the

in error the ,v and v errors their andv, vs velocitiecomponent Given

y

x2

y

x

y

y

x

x

yy

xx

2

y x y x

⎟⎟⎠

⎞⎜⎜⎝

⎛+++⎟⎟

⎞⎜⎜⎝

⎛Θ+

+⎟⎟⎠

⎞⎜⎜⎝

⎛+++⎟⎟

⎞⎜⎜⎝

⎛Θ+

+++Θ+

+++Θ+

=∂∂

=∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛Δ

∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛Δ

∂∂

Δ

ΔΔ

SSNNSN

SN

WEWWEW

EW

SSNNSN

SN

WEWWEW

EW

EdgEdgEdgEdgSensRRRR

EdgEdgEdgEdgSensRRRR

EdgEdgEdgEdgSensRRRR

and

EdgEdgEdgEdgSensRRRR

where

21

11

21

11

*cos*1

*)(

2*

...2

11

12

11

1*

cos*1

*)(

2*

21

11

21

11

*cos*1

*)(

2

21

11

21

11

*cos*1

*)(

2

2

2

2

2

2

2

22

B. Gentry/GSFC SLWG 06/29/05

0 2 4 6 8 10

Speed error (m/s)

0

5

10

15

20

Altitude (km)

Std dev all profilesShot noise error 12:58Shot noise error 13:30Shot noise error 14:01Shot noise error 14:33Shot noise error 15:04

Wind Errors - mcs0111161258Δz=200 m

0 5 10 15 20 25 30

Direction error (deg)

0

5

10

15

20

( )Altitude km

B. Gentry/GSFC SLWG 06/29/05

Q: How can we use ground based measurements to refine and validate future space based lidar system designs?

1) Validate the instrument performance behaves predictably versus measurable quantity (signal photocounts; signal to noise).

2) Establish reference system designs to examine impact of performance trades (e.g. spatial and temporal averaging schemes) or engineering trades

3) Scaling of ground based system performance to equivalent space-based system reveals where improvements are required and provide direction for technology and instrument system development programs

4) Scaling also provides a sanity check for space based designs

B. Gentry/GSFC SLWG 06/29/05

NS= number of laser shots atm()=1 way atmos transmission

A= telescope area a()= aerosol backscatter E= laser pulse energy m()=molecular backscatter= detection efficiency R= range to sample volumeopt= optical efficiency ΔR= range resolutionh= photon energy

Direct Detection Doppler Lidar SNR

NS EAopt atm2

() [a()+ m()]ΔR

hR2

SNR=sqrt

B. Gentry/GSFC SLWG 06/29/05

Wavelength 354.7 nmTelescope/Scanner Area 0.116 m2

Laser Linewidth (FWHH) 80 MHzLaser Energy/Pulse 25 mJ @ 50ppsEtalon FSR 12 GHzEtalon FWHH 1.7 GHzEdge Channel Separation 5.1 GHzLocking Channel Separation 1.7 GHzInterference filter BW (FWHH) 150 pmPMT Quantum Efficiency 22%

GLOW Lidar System Parameters-- June 21, 2005

B. Gentry/GSFC SLWG 06/29/05

GLOW System Efficiencies (6/21/2005)

Energy Monitor Channel

Edge Channels

Telescope/Scanner 0.26 0.26

FO Attenuation 0.82 0.82

FO Coupling 0.75* 0.75*

Interference Filter 0.42 0.42

Receiver Optics 0.93 0.90

Optical efficiency (w/o BS and Etalon)

0.083 0.080

BS 0.056 0.41

Etalon Trans (Mol. Edge)

-- 0.154

PMT PD 0.22 0.22

Total efficiency 0.001 0.0011* Estimated value. Includes Fresnel losses, boresight and alignment losses.

B. Gentry/GSFC SLWG 06/29/05

Comparison of Measured and Simulated SignalsJune 21, 2005

100 101 102 103 104 105 106

Detected Photocounts

0

5

10

15

20

Altitude (km)

Edge 1, 90 deg: Simulated Edge 1, 90 deg: Jun 21,2005Edge 1, 45 deg: Simulated Edge 1, 45 deg: Jun 21,2005

t= 10 sec

ΔR= 45 mE= 25 mJPRF = 50 pps

B. Gentry/GSFC SLWG 06/29/05

GLOW LOS Error Δz=0.5 km; t=1 min

B. Gentry/GSFC SLWG 06/29/05

Scaling GLOW to 400 km at z=10km

Ground Space Scaling factor parameters

Integration Time (s) 60 10 6

Δz/cos (km) 0.707 1.41 0.5

Laser Power J/s 1.25 W(50 Hz, 0.025 J)

30W(100 Hz, 0.3 J)

0.0417

Telescope area (m2) 0.116 0.75 0.155

Atmospheric transmission 0.2 0.95 0.21

Detector quantum efficiency

0.22 0.3 0.73

Optics transmission 0.06 0.30 0.2

Range to Target Volume (km)

14.14 551.6 1522

Scale factor product = 0.9

B. Gentry/GSFC SLWG 06/29/05

Edge Signals from 400 km

B. Gentry/GSFC SLWG 06/29/05

Simulated LOS Error from 400 km Δz=1 km; t=10 sec

B. Gentry/GSFC SLWG 06/29/05

Summary

• Ground based lidar measurements provide important insight into performance of future air and space based lidar systems– Measurements provide experimental validation of

atmospheric and instrument models– Inversion of lidar measurement performance can be

scaled to space for a single altitude/signal level – This information can be used to guide technology

development and explore sysetem trades for future designs

B. Gentry/GSFC SLWG 06/29/05

1.000e-8 1.000e-7 1.000e-6 1.000e-5 1.000e-42 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Backscatter (m-1 sr-1)

0

5

10

15

Altitude (km)

MolecularAerosol

Model Backscatter Coefficient 355 nm

B. Gentry/GSFC SLWG 06/29/05

0.2 0.4 0.6 0.8 1.0

2 way atmos transmission

0

5

10

15

Altitude at 45 deg elevation

2-Way Atmospheric Transmission at 355nm

B. Gentry/GSFC SLWG 06/29/05

Incident Photon Count Rate

B. Gentry/GSFC SLWG 06/29/05

2-way atmospheric transmission

B. Gentry/GSFC SLWG 06/29/05

B. Gentry/GSFC SLWG 06/29/05

-60 -40 -20 0 20

0

5

10

15

Altitude (km)

GLOW Simulated wind error profile File: mcs0009251442 - 1.65 microsec; 600 shots