B. Fillon CEA LITEN Grenoble December 2010, Boston Challenges for the future sustainable energy...

44
B. Fillon CEA LITEN Grenoble December 2010, Boston Challenges for the future sustainable energy generation, distribution and use.
  • date post

    18-Dec-2015
  • Category

    Documents

  • view

    215
  • download

    0

Transcript of B. Fillon CEA LITEN Grenoble December 2010, Boston Challenges for the future sustainable energy...

B. FillonCEA LITEN Grenoble

December 2010, Boston

Challenges for the future sustainable energy generation, distribution and use.

ContentIntroduce CEA/LITEN

Critical Material substitutes for energy transport applications

Energy storage

Energy conversion

Critical Material substitutes for solar energy

Bulk silicon

Thin film PV cells

Conclusion

R & Dfor

nuclear

energy

Fundamental

Research Defense

programs

Technological

Research

for industry

One BU of Technological Research Division

15.000 researchers3 Billions Euros annualAREVA industrial group

Getting ready for the New Economy

LITEN : New energy technologies

ElectricTransportsElectric Power

BatteriesFuel Cells

HybridationRecycling

µ-power sources

Nanomaterials

Organic ElectronicEnergy recoveryNano Surfaces

Solar Energy& Buildings

Solar Energy

Solar PV, CSP,CPVElectrical systems

Energetic efficiency

Biomass& Hydrogen

Solid Storage

H2 Production H2 Storage

Usages

30%

30%

20%

20%

Grenoble

Transport électrique & nanomatériaux

550 P.

Chambéry

Solaire & Bâtiments à faible consommation d’énergie

200 p.

Effectif 2010

750 Ingénieurs & Techniciens

Effectif 2010

750 Ingénieurs & Techniciens

Brevets

350 actifs

135 dépôts en 2009

Brevets

350 actifs

135 dépôts en 2009

Budget 2010

120 M€90 M€ de recettes externes

30 M€ de subvention CEA

Budget 2010

120 M€90 M€ de recettes externes

30 M€ de subvention CEA

LITEN: Key numbers

Building/Solar Energy

Transport

Nomad

Large companies SME

• Photovoltaic devices

• Thermal devices

• Fuel cell

• Energy storage

• Hydrogen

• Micro power sources

• Energy scavengingM E T I S

Industrial partnerships

• Positive energy building

• Organic Electronic

Critical materials substitution in alignment with LITEN strategy

Harvesting Storage

Conversion

ContentIntroduce CEA/LITEN

Critical Material substitutes for energy transport applications

Energy storage

Energy conversion

Critical Material substitutes for solar energy

Bulk silicon

Thin film PV cells

Conclusion

-Synthetic fuel – gen 2,-Exhaust system,-Air treatment,-Thermal exchange system.

-Hydrogen storage and production,-Coupling with Renewable energy,

2010 2010-15 2020-2030

Road-Map of motorization technologies

Thermal

Motorisation

Hybride

Motorisation

Fuel Cell

Motorisation

Hybride

Motorisation

2015-20

-High energy batteries

-Energy storage,-Energy management.

Nanotextured surfaces for catalysis

Less catalyst and well disperse:

NanosizedNanosized (dia.= 20 nm)

NanoscatteredNanoscattered (Pt =20 nm)

Cost of Li2CO3

Cost per kg

1°/Cobalt,2°/Nickel3°/Lithium4°/Manganèse5°/Aluminium6°/Fer

Material and cost for the cathode component

25% of cobalt is used for phone market in 2010

Cathode Anode

Li Li ++

Cobalt Cobalt (Li(LiCoCoOO22))

Manganese (LiMn2O4)

Phosphate (LiFePO4)

NCA (LiNiCoAlO2)

NMC (LiNiMnCoO2)

GraphiteGraphite

Hard CarboneHard Carbone

TitanateTitanate

Lithium Oxydes :Lithium Oxydes :

Li-ion picture: courtesy of Prof. M. Winter

Cathode : Avoid cobalt for cost/security

Anode : Replace graphite by Ti oxydes for cost/security

Lithium-ion battery family : multiple contents

+ New materialdevelopment !!

Think recycling

ContentIntroduce CEA/LITEN

Critical Material substitutes for energy transport applications

Energy storage

Energy conversion

Critical Material substitutes for solar energy

Bulk silicon

Thin film PV cells

Conclusion

Membrane-Electrodes Assemblies for PEMFC

Electrodes (carbon support + catalyst + protonic polymer conductor)

Monopolar plate

Oxygen Reduction Reaction (cathode):O2 + 4e- + 4H+ 2H2O

Oxygen Reduction Reaction (cathode):O2 + 4e- + 4H+ 2H2O

Hydrogen Oxidation Reaction (anode)H2 2H+ + 2e-

Hydrogen Oxidation Reaction (anode)H2 2H+ + 2e-

Heat

Heat

Electricity production

Excess Air/O2 output

H2

input

Excess H2

output

Air / O2

input

Polymer membrane

Strength of the CEA: it masters the whole chain, from components to systems, through assemblies and stacks

LITEN PEMFC for transport

EPICEA 2 kWComposite

stack

GENEPAC 20 kW

Metallic stack

SPACT 80 30 kW

Composite stack

GENEPAC 80 kWMetallic stack

Marathon Shell200 W

Graphite stack

RobotPAC200 W

Graphite stack

• Development of new materials and substitution of critical material

• Optimization of materials and membrane electrode assembly

• Design, manufacture and tests of stacks

• Membrane degradation mechanisms analysis

• Development of electrochemical constitutive equations coupled with thermohydraulic analysis

Bipolar plates

Active layer ?

• Catalyst = Pt (1720 US$/oz = 45€/g ; 100kW 30g 1347€ )

PEMFC: Increase the contact surface

Catalysts SynthesisSubstitute noble metal by a

transition metal

Nano-achitecturesof catalyst layers

MEA engineeringDeposition of catalyst at the

most interesting place

Three potential approaches to substitute Pt

Same performances with a third of platinum quantity

Genepac 80KW

PEMFC : development on MEA with less Pt

1) Minimize Pt quantity

1) Minimize Pt quantity

MEA engineeringDeposition of catalyst at the

most interesting place

Optimized dispersion of catalyst in the MEA :

• inlet / outlet

• channel / Ribs

• composition of ink (hydrophilic/ hydrophobic)

Optimize the distribution of catalysts on MEA

for each design of bipolar plate and application

Nano-achitecturesof catalyst layers

Figure  : Pt dendritic structures, K. Yamada et al. J. Power Sources 180 (2008)181-184

Figure  : tetrahexahedrals Pt nanoparticules ,N.Tian, Science Vol.316 may (2007) 732-735

Dr. Michael Brett / GLancing Angle DepositioniCORE, NRC (Can)

Pt nanowire, nanotubes and nanoflowers on carbon support, CEA, (F)

Pt nanowire, on carbon support, Dodelet and Sun (Can)

2) Improve the active layer structure

Catalysts synthesisSubstitute noble metal by a

transition metal

J-P. Dodelet INRS (Can)P. Zelenay, LANL (USA)V. Artero, CEA/IRTSV (F)P. Gouérec, Sté GPMaterials (F)B. Popov, Univ. South carolina (USA)

P. Zelenay, LANL (USA)M.K Debe, 3M (USA)

Multimetallics Core-Shell /

hollow spheres

R. Adzick, BNL (USA)M.K Debe, 3M (USA)P. Strasser, ORNL (USA)

Non noble and / bio-mimetic catalysts

3) Propose new materials

ContentIntroduce CEA/LITEN

Critical Material substitutes for energy transport applications

Energy storage

Energy conversion

Critical Material substitutes for solar energy

Bulk silicon

Thin film PV cells

Conclusion

SiliconLingot

Wafer

Cell

Module

System

2,4 €/Wp

2 €/Wp

0,6 €/Wp

20085 €/Wp

0,8 €/Wp0,2 €/Wp

1 €/Wp

2015/202 €/Wp

Photovoltaic cell : road map

New concepts

3rdgénération cells

Crystalline Si cellsThin film technologies a-Si/mc-Si, CIGS (CuInSe, CdTe)

Three main categories for solar cells

PV Recycling : volume and value recycling

PVTech.

Silicon

Semi-conductorcompounds

Dye –cells

Organic…

New concepts…

Crystal

Thin Film

Multi-junctionIII-V / concen.

Thin Filmpolycrystal.

SolidElectrolyte

LiquidElectrolyte

m-Si

p-Si

a-Si / µ-cryst.

Crystal.

CIS / CIGS

CdTe

• Material PV wastes upcoming (<> tech.)

• Potential material sourcing risks (rare materials)

Ag

In

In, Ga

In, Pt, Ru

Ga, Ge, In, Au

Te, Cd toxicity

New concepts

3rdgénération cells

Crystalline Si cellsThin film technologies a-Si/mc-Si, CIGS (CuInSe, CdTe)

Three main categories for solar cells

Radial junction silicon nanowire technology

High efficiency (>15%) Enhanced optical absorption of silicon nanowire arrays Effective extraction of photogenerated charges in the radial junction configuration

Low cost Low silicon material usage Metal substrate

Advantage of Si nanowires: enhanced optical absorption

5000 nm

Si nanowire arrays with optimized periodicity offer an enhanced optical absorption compared to Si thin films with same thickness

Si nanowire arrays would allow to reach a higher ultimate efficiency, while reducing Si material usage

J. Li et al., Appl. Phys. Lett. 95, 243113 (2009).

(diameter = periodicity / 2)

State of the art of radial junction Si nanowire technology

Group Substrate Nanowire (or microwire)

Radial junction Front contact Energy conversion efficiency

L. Tsakalakos, General Electric,

Appl. Phys. Lett. 91, 233117 (2007)

Metal CVD (gold) a-Si by PECVD ITO by PVD

Metal grid

0.1%

1.8 cm²

P. Yang, Univ. California, Berkeley,

J. Am. Chem. Soc. 130, 9224 (2008)

c-Si Wet etching (AgNO3 + HF)

c-Si by CVD + RTA Metal grid 0.5%

0.1 cm²

H. A. Atwater, CalTech,

33rd IEEE Photovoltaic Specialist Conf. (2008)

c-Si RIE Diffusion Point contact 6%

0.04 cm²

O. Gunawan and S. Guha, IBM,

Sol. Energy Mater. Sol. Cell. 93, 1388 (2009)

c-Si CVD (gold) c-Si by CVD

Al2O3 by ALD

Metal grid 2%

0.5 cm²

P. Yang, Univ. California, Berkeley,

Nano. Lett. 10, 1082 (2010)

c-Si RIE Diffusion Metal grid 5%

0.25 cm²

T. S. Mayer, Pennsylvania State Univ.,

Appl. Phys. Lett. 96, 213503 (2010)

c-Si RIE Diffusion Point contact 9%

0.07 cm²

H. A. Atwater, CalTech,

Energy Environ. Sci. 3, 1037 (2010)

c-Si CVD (copper) Diffusion ITO by PVD 7.9%

0.0021 cm²

S. Guha, IBM YorktownProg. Photovolt. Res. Appl. (2010)

c-Si RIE Diffusion Metal grid 5%1 cm²

The advantage of CVD over etching is the ability to directly prepare silicon nanowire arrays on large-area, low-cost substrates (as demonstrated by General Electric)

Promising results have been obtained experimentally by CVD (CalTech has demonstrated very recently efficiencies up to 7.9% with an active volume of Si equivalent to a 4 µm thick Si wafer).

New concepts

3rdgénération cells

Crystalline Si cellsThin film technologies a-Si/mc-Si, CIGS (CuInSe, CdTe)

Three main categories for solar cells

2nd generation(thin films)

1st generation(bulk silicon)

Largest potential for improvement among thin film technologies

Potential of CIGS technology

Veeco, Photon’s PV Production Equipment Conf. (2009)

DEPOSITION METHOD FOR CIGS LAYER

EFFICIENCY

Best laboratory cell(~ 1 cm²)

Best pilot line module(30x30 cm²)

Commercial module(~ 1 m²)

Co-evaporation19% - 20%

ZSW, HZB (DE)NREL (US)

14%ZSW (DE)

8% - 12%Würth Solar, Q-Cells, Solarion (DE)

Global Solar, Ascent Solar (US)

Sputtering of precursors+ selenization/sulfurization

-15% - 16%

Solar Frontier (JP)Avancis (DE)

7% - 12%Solar Frontier, Honda Soltec (JP)

Avancis, Sulfurcell, Bosch Solar (DE)Sunshine PV (TW)

Printing of precursors+ selenization/sulfurization

10% - 12%IBM (US)

-8% - 11% (?)

Nanosolar (US)

25th European Photovoltaic Solar Energy Conference (2010)

Cu(In,Ga)Se2 (1-2 µm)

Absorber layer (p type)

Buffer layer (n type)

Back contact

Substrate

Mo (0.2 µm) by sputtering

CdS or ZnS or In2S3 (0.05 µm) in chemical bath

ZnO:Al (0.5 µm) by sputtering

Glass, metal, polymer

Intrinsic ZnO (0.05 µm) by sputteringTransparent conductive oxide

State of the art of CIGS technology

M. A. Green, Prog. Photovolt. Res. Appl. 17, 347 (2009).G. Phipps et al., Renewable Energy Focus, July/August 2008, 56-59.

• Forecast: supply of « virgin » In can be increased up to 1000 tons/year at prices consistent with photovoltaic use (<1600 $/kg).

• Demand of In for CIGS module fabrication < 0.1 g/Wp

In is abundant enough for 10 GWp/year of production capacity

Cu(In,Ga)(S,Se)2 (CIGS) Cu2(Zn,Sn)(S,Se)4 (CZTS)

Deposition method for CZTS layer Best laboratory cell ( 1 cm²)

Sputtering

+ selenization/sulfurization

6.7%

Nagaoka National College of Technology 1

Wet deposition11.2%

IBM 2

1 H. Katagiri et al., Applied Physics Express 1, 041204 (2008)2 T. K. Todorov et al., 25th European Photovoltaic Solar Energy Conference (2010)

Indium supply issue

State of the art of CZTS technology

ContentIntroduce CEA/LITEN

Critical Material substitutes for energy transport applications

Energy storage

Energy conversion

Critical Material substitutes for solar energy

Bulk silicon

Thin film PV cells

Conclusion

High price volatility prior to current crisis

The Hype Cycle: Five stages

New product

“take off”

From revolution to evolution

Lithium

Hyper-entusiasm

Market saturation

Productivity

plateau

Rare earth

Gallium

De

ma

nd

an

d p

rice

Mass production

R&D

Indium

Selenium

Conclusion

Lithium for batteries Indium, Tellurium,.. for photovoltaics Pt for fuel cell

1) Three examples of potential crisis at short, medium and long term for sustainable energy components.

2) Three potential approaches to avoid the crisis Decrease the amount of material in the component Develop new architectures Replacement with non noble or non rare earth materials

3) Think « Life Cycle » Integrate recycling considerations in R&D for new

technologies

Thank youThank you for your attention

A bientôt

Bertrand FILLONTel:0033685324833

[email protected]

CxHy

CONOx

CO2

H2ON2

O2

Pt ou Pd for CO et CxHy oxydation

Rh for NOx reduction

Transport : Exhaust gas

Today technology TWC

Washcoat Al2O3 (20-60 µm)+ catalyst (Pt(Pd)/Rh) par imprégnation (1-2% wt)

DECADE

LCA studies & evaluation

Technical & economical evaluations

Life cycle analysis (LCA)

Optimisation of energy process

Support to technology development : targeting prioritary R&D

Ecoinvent

Evaluation

Design /Dimens.

Demonstration

Active layer ?

• Catalyst = Pt (1720 US$/oz = 45€/g ; 100kW 30g 1347€ )

Minimize the Pt quantity Improve the active layer structure Propose new materials

PEMFC: Increase the contact surface

• Bottlenecks :Turn over frequency !(more reactions)

f (s-1)= i / (eN)

i – current (A.cm-2),e – electron charge(1.6 10-19 C)N – Active site density (cm-2)

Non noble metal

Gasteiger et al. Science 324, 48 (2009) recent progress : Iron based catalyst similar of Pt nanoparticules

3) Propose new materials

Lefèvre et al, Science, 324, 71 (2009)

Los Alamos Nat Lab. (2010)

Durability?

• Specific properties obtain with some architecture of transition metal oxide.

3) Propose new materials