B cell epitopes and predictions

41
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU B cell epitopes and predictions Pernille Haste Andersen, Ph.d. student Immunological Bioinformatics CBS, DTU

description

B cell epitopes and predictions. Pernille Haste Andersen, Ph.d. student Immunological Bioinformatics CBS, DTU. Outline. What is a B-cell epitope? How can you predict B-cell epitopes? B-cell epitopes in rational vaccine design. - PowerPoint PPT Presentation

Transcript of B cell epitopes and predictions

Page 1: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

B cell epitopes and predictions

Pernille Haste Andersen,

Ph.d. student

Immunological Bioinformatics

CBS, DTU

Page 2: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Outline

• What is a B-cell epitope?

• How can you predict B-cell epitopes?

• B-cell epitopes in rational vaccine design.– Case story: Using B-cell epitopes in

rational vaccine design against HIV.

Page 3: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

What is a B-cell epitope?

B-cell epitopes Accessible structural

feature of a pathogen molecule.

Antibodies are developed to bind the epitope specifically using the complementary determining regions (CDRs).

Antibody Fabfragment

Page 4: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

The binding interactions

Salt bridges Hydrogen bonds Hydrophobic interactions Van der Waals forces

Binding strength

Page 5: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

B-cell epitopes are dynamic

Many of the charged groups and hydrogen bonding partners are present on highly flexible amino acid side chains.

Most crystal structures of epitopes and antibodies in free and complexed forms have shown conformational rearrangements upon binding.

“Induced fit” model of interactions.

Page 6: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

B-cell epitope classification

Linear epitopes

One segment of the amino acid chain

Discontinuous epitope (with linear determinant)

Discontinuous epitope

Several small segments brought into proximity by the protein fold

B-cell epitope – structural feature of a molecule or pathogen, accessible and recognizable by B-cells

Page 7: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Binding of a discontinuous epitope

Guinea Fowl Lysozyme KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNSQNRNTDGSDYGVLNSRWWCNDGRTPGSRNLCNIPCSALQSSDITATANCAKKIVSDGGMNAWVAWRKCKGTDVRVWIKGCRL

Antibody FAB fragment complexed with Guinea Fowl Lysozyme (1FBI).

Black: Light chain, Blue: Heavy chain, Yellow: Residues with atoms distanced < 5Å from FAB antibody fragments.

Page 8: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

B-cell epitope annotation

• Linear epitopes:– Chop sequence into small pieces and measure

binding to antibody

• Discontinuous epitopes:– Measure binding of whole protein to antibody

• The best annotation method : X-ray crystal structure of the antibody-epitope complex

Page 9: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

B-cell epitope data bases

• Databases: AntiJen, IEDB, BciPep,

Los Alamos HIV database, Protein

Data Bank

• Large amount of data available for

linear epitopes

• Few data available for discontinuous

Page 10: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

B cell epitope prediction

Page 11: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Sequence-based methods for prediction of linear epitopes

Protein hydrophobicity – hydrophilicity algorithms Parker, Fauchere, Janin, Kyte and Doolittle, ManavalanSweet and Eisenberg, Goldman, Engelman and Steitz (GES), von Heijne

Protein flexibility prediction algorithm Karplus and Schulz

Protein secondary structure prediction algorithms GOR II method (Garnier and Robson), Chou and Fasman, Pellequer

Protein “antigenicity” prediction :Hopp and Woods, Welling

TSQDLSVFPLASCCKDNIASTSVTLGCLVTGYLPMSTTVTWDTGSLNKNVTTFPTTFHETYGLHSIVSQVTASGKWAKQRFTCSVAHAESTAINKTFSACALNFIPPTVKLFHSSCNPVGDTHTTIQLLCLISGYVPGDMEVIWLVDGQKATNIFPYTAPGTKEGNVTSTHSELNITQGEWVSQKTYTCQVTYQGFTFKDEARKCSESDPRGVTSYLSPPSPL

Page 12: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Propensity scales: The principle

• The Parker hydrophilicity scale

• Derived from experimental data

D 2.46E 1.86N 1.64S 1.50Q 1.37G 1.28K 1.26T 1.15R 0.87P 0.30H 0.30C 0.11A 0.03Y -0.78V -1.27M -1.41I -2.45 F -2.78L -2.87W -3.00 Hydrophilicity

Page 13: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Propensity scales: The principle

….LISTFVDEKRPGSDIVEDLILKDENKTTVI….

(-2.78 + -1.27 + 2.46 +1.86 + 1.26 + 0.87 + 0.3)/7 = 0.39

Prediction scores:

0.38 0.1 0.6 0.9 1.0 1.2 2.6 1.0 0.9 0.5 -0.5

Epitope

Page 14: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Evaluation of performance

• A Receiver Operator Curve (ROC) is useful for finding a good threshold and rank methods

Page 15: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Turn prediction and B-cell epitopes

• Pellequer found that 50% of the epitopes in a data set of 11 proteins were located in turns

•Turn propensity scales for each position in the turn were used for epitope prediction.

Pellequer et al.,

Immunology letters, 1993

1

2

3

4

Page 16: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Blythe and Flower 2005

• Extensive evaluation of propensity scales for epitope prediction

• Conclusion: – Basically all the classical scales

perform close to random!– Other methods must be used for

epitope prediction

Page 17: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

BepiPred: CBS in-house tool

• Parker hydrophilicity scale • Hidden Markow model• Markow model based on linear epitopes

extracted from the AntiJen database• Combination of the Parker prediction scores

and Markow model leads to prediction score• Tested on the Pellequer dataset and

epitopes in the HIV Los Alamos database

Page 18: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Hidden Markow Model

A C D ………… G S T V W Pos 1 7.28

Pos 2 9.39

Pos 3 0.3

Pos 4 5.2

Pos 5 7.9

….LISTFVDEKRPGSDIVEDLILKDENKTTVI….

2.46+1.86+1.26+0.87+0.3 = 6.75 Prediction value

Page 19: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

ROC evaluation

Evaluation on HIV Los Alamos data set

Page 20: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

BepiPred performance

• Pellequer data set:– Levitt AROC = 0.66– Parker AROC = 0.65 – BepiPred AROC = 0.68

• HIV Los Alamos data set – Levitt AROC = 0.57– Parker AROC = 0.59– BepiPred AROC = 0.60

Page 21: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

BepiPred

• BepiPred conclusion: – On both of the evaluation data sets,

Bepipred was shown to perform better– Still the AROC value is low compared to T-

cell epitope prediction tools!– Bepipred is available as a webserver:

www.cbs.dtu.dk/services/BepiPred

Page 22: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Prediction of linear epitopes

Cononly ~10% of epitopes can

be classified as “linear”

weakly immunogenic in most cases

most epitope peptides do not provide antigen-neutralizing immunity

in many cases represent hypervariable regions

Pro easily predicted computationally

easily identified experimentally

immunodominant epitopes in many cases

do not need 3D structural information

easy to produce and check binding activity experimentally

Page 23: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Sequence based prediction methods

Linear methods for prediction of B cell epitopes have low performances

The problem is analogous to the problems of representing the surface of the earth on a two-dimensional map

Reduction of the dimensions leads to distortions of scales, directions, distances

The world of B-cell epitopes is 3 dimensional and therefore more sophisticated methods must be developed

Regenmortel 1996,Meth. of Enzym. 9.

Page 24: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

So what is more sophisticated?

• Use of the three dimensional structure of the pathogen protein

• Analyze the structure to find surface exposed regions

• Additional use of information about conformational changes, glycosylation and trans-membrane helices

Page 25: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

How can we get information about the three-dimensional structure?

Structural

determination • X-ray crystallography • NMR spectroscopy

Both methods are time consuming and not easily done in a larger scale

Structure prediction

• Homology modeling• Fold recognition

Less time consuming, but there is a possibility of incorrect predictions, specially in loop regions

Page 26: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Protein structure prediction methods

• Homology/comparative modeling

>25% sequence identity (seq 2 seq alignment)• Fold-recognition/threading

<25% sequence identity (Psi-blast search/ seq 2 str alignment)

• Ab initio structure prediction

0% sequence identity

Page 27: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Annotation of protein surface

•Look at the surface of your protein•Analyse for turns and loops•Analyse for amino acid composition•Find exposed Bepipred epitopes

Page 28: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Q: What can antibodies recognize in a protein?

A: Everything accessible to a 10 Å probe on a protein surfaceNovotny J. A static accessibility model of protein antigenicity.Int Rev Immunol 1987 Jul;2(4):379-89

probe

Antibody Fabfragment

Protrusion index

Page 29: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Use the CEP server

• Conformational epitope server

http://202.41.70.74:8080/cgi-bin/cep.pl

• Uses protein structure as input• Finds stretches in sequences which

are surface exposed

Page 30: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Use the DiscoTope server

• CBS server for prediction of discontinuous epitopes

• Uses protein structure as input• Combines propensity scale values of

amino acids in discontinuous epitopes with surface exposure

• Will be available soon (not published yet)

• Contact me for more information

Page 31: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Rational vaccine design

>PATHOGEN PROTEINKVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNF

Rational Vaccine Design

Page 32: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Rational B-cell epitope design

• Protein target choice

• Structural analysis of antigen Known structure or homology model Precise domain structure Physical annotation (flexibility,

electrostatics, hydrophobicity) Functional annotation (sequence

variations, active sites, binding sites, glycosylation sites, etc.)

Known 3D structure

Model

Page 33: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Rational B-cell epitope design

Surface accessibility Protrusion index Conserved sequence Glycosylation status

• Protein target choice• Structural annotation• Epitope prediction and ranking

Page 34: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Rational B-cell epitope design• Protein target choice• Structural annotation• Epitope prediction and ranking• Optimal Epitope presentation

Fold minimization, or Design of structural mimics Choice of carrier (conjugates, DNA

plasmids, virus like particles) Multiple chain protein engineering

Page 35: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Multi-epitope protein design

Rational optimization of epitope-VLP chimeric proteins:

Design a library of possible linkers (<10 aa)

Perform global energy optimization in VLP (virus-like particle) context

Rank according to estimated energy strain

B-cellepitope

T-cellepitope

Page 36: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Case story

Using B-cell epitopes in the rational vaccine design against HIV

The gp120-CD4 epitope

Page 37: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HIV gp120-CD4 epitopeBinding of CD4 receptor

Conformational changes in gp120

Opens chemokine-receptor binding site

New highly conserved epitopes

Kwong et al.(1998) Nature 393, 648-658

Page 38: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Conformational changes in gp120

SIV gp120 no ligands Human gp120 complex with CD4 and 17b antibody

Chen et al. Nature 2005 Kwong et al. Nature 1998

Page 39: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HIV gp120-CD4 epitope

Elicit broadly cross-reactive neutralizing antibodies in rhesus macaques.

This conjugate is too large(~400 aa) and still contains a number of irrelevant loops

Fouts et al. (2000) Journal ofVirology,

74, 11427-11436 Fouts et al. (2002) Proc Natl Acad Sci

U S A. 99, 11842-7.

Efforts to design a epitope fusion protein

Page 40: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HIV gp120-CD4 epitope

reduce to minimal stable fold (iterative)

find alternative scaffold to present epitope (miniprotein mimic)

Martin & Vita, Current Prot. An Pept. Science, 1: 403-430.Vita et al.(1999) PNAS 96:13091-6

Further optimization of the epitope:

Page 41: B cell epitopes and predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Conclusions

• Rational vaccines can be designed to induce strong and epitope-specific B-cell responses

• Selection of protective B-cell epitopes involves structural, functional and immunogenic analysis of the pathogenic proteins

• When you can: Use protein structure for prediction • Structural modeling tools are helpful in prediction of

epitopes, design of epitope mimics and optimal epitope presentation