B. Bettler Institute of Physiology - unibas.ch

74
Neurotransmitter receptors: Structure and function B. Bettler Institute of Physiology Basel March 30, 2010

Transcript of B. Bettler Institute of Physiology - unibas.ch

Page 1: B. Bettler Institute of Physiology - unibas.ch

Neurotransmitter receptors: Structure and function

B. BettlerInstitute of Physiology

BaselMarch 30, 2010

Page 2: B. Bettler Institute of Physiology - unibas.ch

History

Ionotropic receptors: - Structure and synaptic functions- Pathology

Metabotropic receptors: - Structure and synaptic functions- New insights (structure/signaling/pharmacology)

Overview

Page 3: B. Bettler Institute of Physiology - unibas.ch

“Electrical Synapses” “Chemical Synapses”

Camillo GolgiNobelprize 1906

Santiago Ramon y CajalNobelprize 1906

John EcclesNobelprize 1963

Bernard KatzNobelprize 1970

Electrical versus Chemical Synapses 2

Page 4: B. Bettler Institute of Physiology - unibas.ch

bidirectional

no information processing atthe synapse

Schmidt/Unsicker Fig 2-1

Electrical Synapses4

Page 5: B. Bettler Institute of Physiology - unibas.ch

directional

information processing at synapse: excitation can be changed in inhibition

Schmidt/UnsickerFig 2-2

Chemical Synapses: Possibility for reversal of signal 11

Page 6: B. Bettler Institute of Physiology - unibas.ch

presynaptic postsynaptic

Chemical Synapses: Inhibitory and excitatory postsynaptic ionchannels

Ca++

Na+

x

Cl-

K+

ionotropic

metabotropic

metabotropic

Ca++

Page 7: B. Bettler Institute of Physiology - unibas.ch

Kandel Fig 10.1

17

Page 8: B. Bettler Institute of Physiology - unibas.ch

History

Ionotropic receptors: - Structure and synaptic functions

Metabotropic receptors: - Structure and synaptic functions- New insights (structure/signaling/pharmacology)

Overview

Page 9: B. Bettler Institute of Physiology - unibas.ch

Purves 3rd Fig. 1.7

excitatory

inhibitory

A fundamental principle: Excitatory and inhibitory synapses

Page 10: B. Bettler Institute of Physiology - unibas.ch

Purves 3rd Fig 1.8

Frequency of actionpotentials in neurons of a reflex arc 19

Page 11: B. Bettler Institute of Physiology - unibas.ch

Ca++

Na+

x

Cl-

Ca++

Na+

Cl-

Hyperpolarisation:Inhibition

Depolarisation:Excitability

Permeabilites of ions at excitatory and inhibitory synapses (1)

GABA, glycine

glutamate, acetylcholine, serotonin, ATP

Page 12: B. Bettler Institute of Physiology - unibas.ch

Excitatory: postsynaptic depolarisation Na+, Ca2+

Inhibitory: postsynaptic hyperpolarisation (mostly) Cl-, K+

Purves Tab 2.1

Permeabilites of ions at excitatory and inhibitory synapses (2)

-91mV+60mV-82mV

+125mV

EquiPot

Page 13: B. Bettler Institute of Physiology - unibas.ch

Cl--permeable ion channels are inhibitory even if they lead todepolarization

Purves 3rd Fig 5.19

Hyperpolarisation Depolarisation

Cl-influx Cl-efflux

6

Page 14: B. Bettler Institute of Physiology - unibas.ch

IPSPs und EPSPs act simultaneously on individual neurons

∑ Erregung∑ Hemmung

Aktionspotentiale ↑

∑ Erregung ∑ Hemmung

Aktionspotentiale ↓

Page 15: B. Bettler Institute of Physiology - unibas.ch

InhibitionExcitation

ExcitationInhibition

EPSPs actionpotentialLearning/Memory

ExcitationInhibition

IPSPs no actionpotentialSleep

Normal balance between excitation and inhibition

Page 16: B. Bettler Institute of Physiology - unibas.ch

InhibitionExcitation

Excitation

ExcitationInhibition

Inhibition

epilepsy,anxiety, depression, insomnia,

spasticity

cognitive problems, loss of muscle tone,

coma, respiratory arrest

Abnormal balance between excitation and inhibition

Page 17: B. Bettler Institute of Physiology - unibas.ch

Excitatory and inhibitory neurotransmitter receptors

Purves Fig 7.11

localisation (pre-, post-, extrasynaptic)

affinity for the neurotransmitter

kinetics

ion selectivity (Ca2+)

Page 18: B. Bettler Institute of Physiology - unibas.ch

Cells express distinct subunits receptors with distinct properties

NR2CNR2A NR2BNR1

Example NMDA receptors: Overlapping mRNA distribution of receptor subunits

Klinke/Pape Fig 5.12

9

Page 19: B. Bettler Institute of Physiology - unibas.ch

Kandel Fig 11.14

Structure of ionotropic neurotransmitter receptors

Page 20: B. Bettler Institute of Physiology - unibas.ch

Molecular basis for the ion selectivity of ionotropic acetylcholine receptors

Kandel Fig 11.15

Page 21: B. Bettler Institute of Physiology - unibas.ch

Ionotropic GABAA receptors: Site of action of the benzodiazepines

L-GlutamateGABA

IPSPs ↑sleep, anti-epileptic

Page 22: B. Bettler Institute of Physiology - unibas.ch

AMPA NMDA

Ca2+ influx Mg2+ block

“no” Ca2+ influx

Ionotropic glutamate receptors

Kainate

Ca2+ influx

Page 23: B. Bettler Institute of Physiology - unibas.ch

Auxiliary AMPA receptor subunits influence surface trafficking,pharmacology and kinetics of the receptor response

Nature 2000

Science 2010 Nature 2009

TARPs: transmembraneAMPA receptor regulatory proteins

Page 24: B. Bettler Institute of Physiology - unibas.ch

TARPs influence pharmacology and kinetics of the AMPA receptor

Kato et al., TINS, in press

Page 25: B. Bettler Institute of Physiology - unibas.ch

Purves 3rd Fig 6.7

NMDA receptors: Voltage-sensitive Mg2+ block

Einwärtsstrom

Auswärtsstrom

Page 26: B. Bettler Institute of Physiology - unibas.ch

Purves 3rd Fig 6.7

Kinetics of AMPA and NMDA receptors:

+50 mV

+50 mV

+50 mV

EPSPKainate/AMPA > EPSPNMDA

Page 27: B. Bettler Institute of Physiology - unibas.ch

KandelFig 12.7

NMDA receptors do not contribute much to EPSCs at hyperpolarized membrane potentials

Page 28: B. Bettler Institute of Physiology - unibas.ch

Ca2

Glutamate

NMDA-R

AMPA-R

+

+

Mg+2

Ca2+-dependentprocesses

Na+

NMDA receptors act as coincidence detectors during synapticplasticity processes

presynaptic activity: glutamate release postsynaptic activity: depolarisation

Page 29: B. Bettler Institute of Physiology - unibas.ch

Longterm potentiation (LTP) after tetanic stimulation

Purves 3rd Fig 24.6

After tetanusto pathway 1

Before tetanusto pathway 1

(1h) (1h)

LTP is specificfor tetanically stimulatedsynapse 1

Page 30: B. Bettler Institute of Physiology - unibas.ch

1957 junge Mäuse mit Glutamat-Diät: neuronaler Zelltod Retina

1967 neuronaler Zelltod Gehirn

Olney: “Glutamat bewirkt neuronalen Zelltod durch langandauernde

exzitatorische synaptische Transmission”

NMDA Antagonisten blockieren neuronalen Zelltod

Kainat induziert neuronalen Zelltod (epileptischen Anfälle)

übermässige [Ca2+]i induziert Apoptose (programmierter Zelltod,

Proteasen werden aktiviert)

Neurodegenerative Prozesse: ExzitotoxizitätExcitotoxicity

Page 31: B. Bettler Institute of Physiology - unibas.ch

Ischämie: O2, Glucose ATP (Glutamat uptake, Em, NMDAR, [Ca2+]i, Apoptose) Tote Neurone entlassen: [K+]e, [Glu]e

Hypoglykämie (Diabetes): Glucose

Epilepsie (status epilepticus)

“Chinese Food Syndrome”, MSG (Mono Sodium Glutamate), “Aromat”

Domoat/Kainat Vergiftungen (verdorbene Muscheln)

Exzitotoxische Prozesse finden statt bei:

Page 32: B. Bettler Institute of Physiology - unibas.ch

AMPA kainate

Kainate und AMPA receptors are distinct

Ca2+ Ca2+

Nature 392, 1998

GluR6 is activated by kainate und domoate, butnot by AMPA

GluR6 subunit makes kainate receptorspermeable for Ca2+

(Ca2+)

Page 33: B. Bettler Institute of Physiology - unibas.ch

GluR6 is predominantly expressed in the CA1 and CA3 regions,which are most susceptible to seizure-induced brain damage

Can GluR6 directly mediate excitotoxicty?

Page 34: B. Bettler Institute of Physiology - unibas.ch

GluR6 mediates kainate-mediated excitotoxicity

Nature 392, 1998

Page 35: B. Bettler Institute of Physiology - unibas.ch

GluR6 antagonists as anti-epileptic drugs in preclinical trials

Page 36: B. Bettler Institute of Physiology - unibas.ch

History

Ionotropic receptors: - Structure and synaptic functions- Pathology

Metabotropic receptors: - Structure and synaptic functions- New insights (structure/signaling/pharmacology)

Overview

Page 37: B. Bettler Institute of Physiology - unibas.ch

Ionotropic

Metabotropic

Purves 3rd Fig 6.5+ Neuropeptides

Classical neurotransmitters activate ionotropic and metabotropic„G-protein coupled receptors“

Page 38: B. Bettler Institute of Physiology - unibas.ch

- 6 families

- 7TM domains

- no sequence homologybetween families(evolutionary convergence)

- binding sites differ

Classification and diversity of GPCRs: Neurotransmitter receptorsbelong to different gene families

Page 39: B. Bettler Institute of Physiology - unibas.ch

GPCRs activate G-proteins

Page 40: B. Bettler Institute of Physiology - unibas.ch

Crystal structure of the human 2-adrenergic receptor bound to the partial inverse agonist carazolol

rhodopsin 2000 / 2-adrenergic 2007

Page 41: B. Bettler Institute of Physiology - unibas.ch

Illustration of the central core of rhodopsin in its inactive and activeconformation viewed from the cytoplasm

Inactive Active

Change in TMIII/TMVI domain conformation unmasks G-protein binding site (C-term G) and activates the G-protein

Page 42: B. Bettler Institute of Physiology - unibas.ch

Crystal structure of a heterotrimeric G-protein bound to a GPCR

Page 43: B. Bettler Institute of Physiology - unibas.ch

Classical signaling pathways of GPCRs: How can they influenceto synaptic transmission?

Page 44: B. Bettler Institute of Physiology - unibas.ch

GABABHeteroreceptors

Auto-receptors

G effector systems: Regulation of K+ and Ca2+ channels (1)

.

SpilloverGABA

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

..

.

..

. .

.

.

Page 45: B. Bettler Institute of Physiology - unibas.ch

Activation of Kir3-type K+-channels

G effector systems: Regulation of K+- and Ca2+-channels (2)

Inhibition of PQ-type Ca2+-channels

1 m baclofen

Page 46: B. Bettler Institute of Physiology - unibas.ch

Purves Fig 8.6

G effector systems: Phosphorylation of ion channels

Page 47: B. Bettler Institute of Physiology - unibas.ch

G effector systems: Incorporation of additional ion channels atsynapses

Purves 3rd Fig 7.11

longterm effects

structural plasticity /synaptic plasticity- synapse ↑

- receptors ↑

Page 48: B. Bettler Institute of Physiology - unibas.ch

History

Ionotropic receptors: - Structure and synaptic functions- Pathology

Metabotropic receptors: - Structure and synaptic functions- New insights (structure/signaling/pharmacology)

Overview

Page 49: B. Bettler Institute of Physiology - unibas.ch

Cloned GABAB receptor subunits bind GABA but do not activateeffector systems

130100

Mr (K) Cor

tex

Western blot

1a 1b

2a 3a 4a 5a 61b

Met 1a Met 1b

2 sushi domains

GABAB1 Gene

Page 50: B. Bettler Institute of Physiology - unibas.ch

No efficient functional coupling of GABAB1a and GABAB1b to effector K+ / Ca2+ channelsand adenylate cyclase

Agonist afffinity differs between recombinant GABAB1a and GABAB1b proteins and native GABAB receptors

Page 51: B. Bettler Institute of Physiology - unibas.ch

[125 I]

ant

i-myc

sur

face

bin

ding

(%)

1100

80

6040

20

20

myc

-GA

BAA1

myc

-GA

BAA3

Nm

yc-1

a

Cm

yc-1

a

myc-GABAA3 myc-1a

Couve et al., J. Biol. Chem., 1998

non-perm

perm

GABAB1a and GABAB1b are retained in the endoplasmaticreticulum

Page 52: B. Bettler Institute of Physiology - unibas.ch

GABAB receptors only function as heterodimeric receptors

Nature 396, 1998

Page 53: B. Bettler Institute of Physiology - unibas.ch

GABAB(1,2) receptors coupled to Kir3-type K+ channels in Xenopus oocytes

1a+2

1b+2

1a 1b 2

1a+1b

2

surface expression coupling to P/Q-, N-type Ca2+ channels negative coupling to adenylate cyclase

Heteromerization between GABAB(1) and GABAB(2) subunits is a prerequisite for receptor function in heterologous cells

Page 54: B. Bettler Institute of Physiology - unibas.ch

Increasing number of reports demonstrating theexistence of heteromeric GPCRs

- 1998: 1st heteromeric GPCR- 2005: 35 heteromeric GPCRs

Page 55: B. Bettler Institute of Physiology - unibas.ch

change in pharmacology (+ opioid, SSTR5+D2, M2+M3)

change in G-protein coupling selectivity (Go/i > Gs + opioid)

stabilization of receptor at cell surface (GABAB(1,2), + opioid)

increased agonist affinity (GABAB(1,2), SSTR5+D2)

Functional consequences of GPCR heterodimerization

Page 56: B. Bettler Institute of Physiology - unibas.ch

Heteromeric GABAB(1,2) receptors display increased affinity foragonists but still do not match native pharmacology

Page 57: B. Bettler Institute of Physiology - unibas.ch

Complete loss of GABAB responses in GABAB1 and GABAB2knockout mice: Core receptor subunits

WT

GABAB1-/-

GABAB2-/-

Anti-GABAB1 Anti-GABAB2

Schuler et al., Neuron, 2001Gassmann et al., J. Neurosci., 2004Fritschy et al., J. Comp. Neurol., 2004

Page 58: B. Bettler Institute of Physiology - unibas.ch

Coupling to Kir3-type K+-channels in Xenopus oocytes

No pharmacological or functional differences between GABAB(1a, 2)and GABAB(1b,2) receptor subtypes in heterologous systems

GABAB(1a,2) GABAB(1b,2)

Page 59: B. Bettler Institute of Physiology - unibas.ch

Cruz et al., Nature Neurosci., 2004

… but native GABAB responses differ in their pharmacological and kinetic properties

Possible explanations:

- effector channel subunit composition- phosphorylation of the receptor or effector- proteins that influence the G-protein activation/deactivation cycle (RGS)- unidentified auxiliary subunits (similar to the TARPs, cornichons etc).

Page 60: B. Bettler Institute of Physiology - unibas.ch

“Regulator of G-protein signaling” (RGS) proteins accelerate GTP hydrolysis by Gα subunits and produce desensitization

RGS proteins are negative regulators of GPCR signaling

GEF: guanine nucleotide exchange factorGAP: GTPase-accelerating protein

Page 61: B. Bettler Institute of Physiology - unibas.ch

Affinity purification of GABAB receptors reveals a high-molecular weight complex and lack of heterodimers

ab

Page 62: B. Bettler Institute of Physiology - unibas.ch

Identification of four sequence-related auxiliary GABAB receptor Subunits using affinity purifcation/tandem MS

In press

Page 63: B. Bettler Institute of Physiology - unibas.ch

GAS are tightly associated with high-molecular weight GABABreceptor complexes

GABAB2

GABAB1

anti-GAS4anti-GAS2

Page 64: B. Bettler Institute of Physiology - unibas.ch

Differential but overlapping spatial distribution of GAS proteins in the adult mouse brain

Page 65: B. Bettler Institute of Physiology - unibas.ch

GAS differentially alter baclofen-mediated Kir3 currentdesensitization in transfected CHO cells

+GAS2+GAS4

Native

Page 66: B. Bettler Institute of Physiology - unibas.ch

GAS shorten the rise-time of baclofen-mediated Kir3 currentsin transfected CHO cells

baclofen

w/o GAS

w/o

GA

S

+GA

S1

+GA

S2

+GA

S3

+GA

S4

Page 67: B. Bettler Institute of Physiology - unibas.ch

GAS differentially alter baclofen-mediated Cav2.2 currentinactivation

GAS1

GAS2

Page 68: B. Bettler Institute of Physiology - unibas.ch

GAS alter baclofen-mediated Kir3 current kinetics in transfected hippocampal neurons

+GAS2

+GAS4Native

Page 69: B. Bettler Institute of Physiology - unibas.ch

GAS2 knock-down alters baclofen-mediated Kir3 current kineticsin hippocampal neurons

Control shRNA

GAS2 shRNA

Page 70: B. Bettler Institute of Physiology - unibas.ch

GAS4 knock-down/knock-out alters baclofen-mediated Kir3 current kinetics in hippocampal neurons

WT+GAS4 shRNAGAS4 KO mice

WT GAS4 shRNA

GAS4 KO

Page 71: B. Bettler Institute of Physiology - unibas.ch

GAS increase agonist potency at GABAB receptors

+control+GAS1+GAS2

Page 72: B. Bettler Institute of Physiology - unibas.ch

GAS do not alter agonist affinity at recombinant GABAB receptors:Additional auxiliary subunits?

[3H] CGP54626A radioligand Displacement

GAS1GAS2GAS4

Page 73: B. Bettler Institute of Physiology - unibas.ch

Conclusions

Auxiliary receptor subunits not only exist for ion channels, but also for GPCRs

Auxiliary subunits alter kinetic and pharmacological propertiesof the receptor response (similar to auxiliary subunits of AMPA receptors

Page 74: B. Bettler Institute of Physiology - unibas.ch