Axiomas de Zermelo-Fraenkel

17
24/11/2015 Axiomas de ZermeloFraenkel Wikipedia, la enciclopedia libre https://es.wikipedia.org/wiki/Axiomas_de_ZermeloFraenkel 1/17 Axiomas de ZermeloFraenkel De Wikipedia, la enciclopedia libre En lógica y matemáticas, los axiomas de ZermeloFraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomático concebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axioma de elección (axiom of choice), como ZFC. Durante el siglo XIX algunos matemáticos trataron de llevar a cabo un proceso de formalización de la matemática a partir de la teoría de conjuntos. Gottlob Frege intentó culminar este proceso creando una axiomática de la teoría de conjuntos. Lamentablemente, Bertrand Russell descubrió en 1901 una contradicción, la llamada paradoja de Russell. Consecuentemente, a principios del siglo XX se realizaron varios intentos alternativos y hoy en día ZFC se ha convertido en el estándar de las teorías axiomáticas de conjuntos. Índice 1 Introducción 2 Sobre el concepto de conjunto 3 La necesidad de axiomatizar la teoría de conjuntos 4 Los axiomas de ZermeloFraenkel 4.1 Sobre los axiomas y algunas definiciones en ZF 4.1.1 El axioma de extensionalidad 4.1.2 El axioma del conjunto vacío 4.1.3 El axioma de pares 4.1.4 El axioma de unión 4.1.5 El axioma del conjunto potencia 4.1.6 El esquema axiomático de especificación

description

Axiomas de Zermelo-Fraenkel

Transcript of Axiomas de Zermelo-Fraenkel

Page 1: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 1/17

Axiomas de Zermelo­FraenkelDe Wikipedia, la enciclopedia libre

En lógica y matemáticas, los axiomas de Zermelo­Fraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomáticoconcebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axiomade elección (axiom of choice), como ZFC.

Durante el siglo XIX algunos matemáticos trataron de llevar a cabo un proceso de formalización de la matemática a partir de la teoría deconjuntos. Gottlob Frege intentó culminar este proceso creando una axiomática de la teoría de conjuntos. Lamentablemente, Bertrand Russelldescubrió en 1901 una contradicción, la llamada paradoja de Russell. Consecuentemente, a principios del siglo XX se realizaron variosintentos alternativos y hoy en día ZFC se ha convertido en el estándar de las teorías axiomáticas de conjuntos.

Índice

1 Introducción

2 Sobre el concepto de conjunto

3 La necesidad de axiomatizar la teoría de conjuntos

4 Los axiomas de Zermelo­Fraenkel

4.1 Sobre los axiomas y algunas definiciones en ZF

4.1.1 El axioma de extensionalidad

4.1.2 El axioma del conjunto vacío

4.1.3 El axioma de pares

4.1.4 El axioma de unión

4.1.5 El axioma del conjunto potencia

4.1.6 El esquema axiomático de especificación

Page 2: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 2/17

4.1.6 El esquema axiomático de especificación

4.1.7 Esquema axiomático de reemplazo

4.1.8 Axioma de infinitud

4.1.9 Axioma de regularidad o de fundación

4.1.10 Axioma de elección

5 Otras propiedades de ZFC

6 Véase también

7 Bibliografía

Introducción

La teoría de conjuntos es una rama de la matemática relativamente moderna cuyo propósito es estudiar unas entidades llamadas conjuntos,aunque otra parte de esta teoría es reconocida como los fundamentos mismos de las matemáticas. La teoría de conjuntos fue desarrollada por elmatemático alemán Georg Cantor a finales del siglo XIX a partir de ciertas conclusiones hechas por él mismo al reflexionar en unos detalles delas series trigonométricas de Fourier. La teoría de conjuntos fue expuesta por Cantor en una serie de artículos y libros, de los cuales puedendestacarse sus Beiträge zur Begründung der transfiniten Mengenlehre.

El propósito de Cantor era proporcionar un método para lidiar con asuntos relacionados al infinito actual, un concepto que fue rehuido yrechazado por algunos matemáticos (Pitágoras, Gauss, Kronecker) por considerarlo sin significado. Ciertamente Cantor tuvo éxito, si bien suteoría debía ser precisada y sometida a un sistema axiomático, un proyecto que luego fue llevado a cabo principalmente por Frege, Russell,Zermelo, Albert Skolem y Adolf Fraenkel.

Cantor partió de la convicción platonista de que era posible “comprimir” una colección o conjunto de objetos y considerarla como un todo (omejor dicho, como una sola entidad), y al parecer, aceptando implícitamente los supuestos siguientes:

Page 3: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 3/17

(i) Un conjunto es una reunión de objetos que cumplen con cierta propiedad(llamados los elementos de ese conjunto) y que, por tanto, queda definido portal propiedad.

(ii) Un conjunto es una sola entidad matemática, de modo que puede a su vezser contenido por otro conjunto.

(iii) Dos conjuntos que tengan los mismos elementos son iguales. Así, puededecirse que un conjunto está determinado por sus elementos.

De este modo, Cantor pudo desarrollar su teoría de una forma que en aquel entonces parecía lo suficientemente satisfactoria. Sin embargo, elsistema de Cantor era tan permisivo que dio lugar a resultados contradictorios. Gottlob Frege, que ideó un sistema más preciso, intentófundamentar adecuadamente la teoría de conjuntos (y por tanto todas las matemáticas), pero, para su desaliento, Bertrand Russell descubrióuna paradoja en la teoría de aquél (hoy llamada paradoja de Russell), con lo que el sistema de Frege parecía desbaratarse. A principios delsiglo XX, fue el matemático alemán Ernst Zermelo quien puso la teoría de conjuntos sobre una base aceptable reduciéndola a un sistemaaxiomático más restringido que no permitía la obtención de la Paradoja de Russell. Las ideas de Zermelo fueron después precisadas porThoralf Skolem y Abraham Fraenkel, resultando de ello la primera teoría axiomática de conjuntos, conocida como teoría de Zermelo­Fraenkel,aunque sería más adecuada llamarla teoría de Zermelo­Fraenkel­Skolem. Otra teoría de conjuntos que evitaba las paradojas de la teoríacantoriana fue desarrollada después, principalmente, por John von Neumann, Paul Bernays y Kurt Gödel. Esta última es hoy llamada,naturalmente, la teoría de von Neumann­Bernays­Gödel.

Sobre el concepto de conjunto

Page 4: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 4/17

El concepto de conjunto se encuentra a un nivel tan elemental que no es posible dar una definición precisa del mismo. Palabras comocolección, reunión, agrupación, y algunas otras de significado similar, se usan en un intento de describir a los conjuntos, pero no puedenconstituir una definición, pues son simplemente un reemplazo de la palabra conjunto. Con todo, en la teoría intuitiva de conjuntos lo anteriores admisible, y se acepta la existencia de un universo o dominio de objetos a partir del cual se construyen los conjuntos, así como tambiénpermite tratar conjuntos como una entidad singular. No es de importancia la naturaleza de los objetos, sino el comportamiento de un conjuntocomo entidad matemática.

De lo dicho anteriormente, parece natural introducir una relación diádica de pertenencia. El símbolo usual para representar esta relación es elsímbolo , una versión de la letra griega (épsilon). Los segundos argumentos de la relación son llamados conjuntos, y los primerosargumentos son llamados elementos. Así, si la fórmula

se cumple, se dice que es un elemento del conjunto . Si aceptamos que todo es un conjunto, entonces los primeros y segundos argumentosde pertenecen al mismo dominio.

La negación de se escribe .

Bajo estos supuestos puede desarrollarse un poco la teoría de conjuntos. Sin embargo, la concepción intuitiva de conjuntos no permite llegartan lejos como pudiera desearse, pues llega un momento en que, como sucede en otras áreas de las matemáticas, la intuición es de poca oninguna ayuda (por ejemplo como pasa al hablar de la hipótesis del continuo, de espacios de dimensión mayor que tres, etc.). Es en momentoscomo ese en que se hace evidente la necesidad de axiomatizar y formalizar la teoría de conjuntos para poder llegar a resultados más profundos.Esto implica renunciar a una definición intuitiva de conjunto, y en su lugar postular una serie de principios que determinen el comportamientode éste, de tal forma que los resultados obtenidos no son ya consecuencia de razonamientos intuitivos flojos, sino que se obtienen a partir detales principios.

La necesidad de axiomatizar la teoría de conjuntos

En la teoría de Cantor, es posible formar un conjunto a partir de una propiedad determinada que deben cumplir sus elementos. En otraspalabras, dada cualquier propiedad , existe un conjunto cuyos elementos son precisamente los objetos que verifican . En símbolos,este conjunto se representa por

Page 5: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 5/17

Así, por ejemplo, considerando la fórmula , se obtiene el conjunto

que claramente lo contiene todo. A este conjunto no se le puede aplicar alguno de los resultados de Cantor, ya que esto conduce a ciertasparadojas.Como otro ejemplo más claro de conjuntos contradictorios debido a su 'gran tamaño', está el que da lugar a la paradoja de Russell.Consideremos el conjunto cuyos elementos son aquellos conjuntos que no se pertenecen a sí mismos. Esto es, el conjunto

La paradoja de Russell surge al preguntarse: ¿es un elemento de sí mismo? Si lo es, es decir, si , entonces no satisface la condición , lo que es una contradicción. Si , entonces satisface la condición para ser uno de sus elementos, y así , de nuevo una

contradicción. Así, no puede ni ser un elemento de sí mismo ni no serlo.En un intento de eliminar esta paradoja, Russell y Whitehead desarrollaron la teoría de tipos y la expusieron en un libro titulado PrincipiaMathematica. Si bien esta teoría eliminaba la paradoja de Russell, resultaba demasiado complicada como para poseer interés. La teoría deconjuntos de Zermelo, mucho más simple a nivel lógico, lograba eliminar tanto la paradoja de Russell como todas las demás que surgían en elsistema de Cantor y en el de Frege.

Los axiomas de Zermelo­Fraenkel

La teoría de conjuntos de Zermelo­Fraenkel toma como primitivos los conceptos de conjunto y de pertenencia y consta de los diez axiomassiguientes:

1. Axioma de extensionalidad. Dos conjuntos e son iguales (lo que se representa por ) únicamente si contienen los mismoselementos. Más formalmente, y en la simbología usual,

Page 6: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 6/17

2. Axioma del conjunto vacío. Existe un conjunto (representado por Ø) sin elementos. Esto es,

3. Axioma de pares. Dados cualesquiera conjuntos e , existe otro conjunto, representado por , cuyos elementos son únicamente e. Esto es,

4. Axioma de la unión. Dada cualquier colección de conjuntos , existe un conjunto, representado por y llamado unión de , quecontiene todos los elementos de cada conjunto de . Esto es,

5. Axioma del conjunto potencia Para cualquier conjunto existe otro conjunto, representado por , que contiene todos lossubconjuntos de . En símbolos,

6. Esquema axiomático de especificación. Sea una fórmula de un lenguaje de primer orden que contenga una variable libre .Entonces, para cualquier conjunto existe un conjunto cuyos elementos son aquellos elementos de que cumplen . Formalmente,

Page 7: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 7/17

7. Esquema axiomático de reemplazo. Si es una sentencia tal que para cualquier elemento de un conjunto el conjunto existe, entonces existe una función f:x→y tal que f(a)=y. Formalmente, si

entonces

8. Axioma de infinitud. Existe un conjunto tal que y tal que si , entonces . En símbolos,

.

9. Axioma de regularidad. Para todo conjunto no vacío existe un conjunto tal que . Esto es, en términos formales,

10. Lema de Zorn. Todo conjunto inductivo no vacío tiene elemento maximal

En un principio Zermelo trató de probar el "Lema de Zorn" a partir de los otros nueve axiomas, pero no lo consiguió, además, posteriormentelos Teoremas de Incompletitud de Gödel probaron que el Lema de Zorn no era demostrable a partir de los restantes axiomas. Por lo tanto seañadió como décimo axioma de la teoría.

Page 8: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 8/17

Es equivalente a

Axioma de elección. Dada una familia de conjuntos no vacíos podemos coger un elemento de cada conjunto. Este axioma puede expresarse demanera equivalente a, dado un conjunto cualquiera x, existe una función f que elige un elemento de cada conjunto no vacío de x:

Sobre los axiomas y algunas definiciones en ZF

El axioma de extensionalidad

El axioma de extensionalidad dice que dos conjuntos son iguales si y solo si tienen los mismos elementos. En otras palabras, afirma que unconjunto está determinado por su extensión (todos sus elementos). Una relación más general que la igualdad es la inclusión ( ), que se definecomo sigue:

A diferencia del signo de la igualdad, el símbolo no figura dentro del lenguaje de primer orden con el que se construye la teoría ZF, pues ladefinición antes dada debería en ese caso ser introducida como un axioma que establezca el empleo de , cosa que no se ha hecho aquí. En sulugar, la simbología se emplea simplemente para representar la fórmula del lenguaje de la teoría de conjuntos.

En vista del axioma de extensionalidad y de la definición anterior, resulta que puede probarse que dos conjuntos e son iguales si puedeprobarse que e .

El axioma del conjunto vacío

El axioma del conjunto vacío nos da un conjunto sin elementos. Este axioma se presentó usando el símbolo . Esto está justificado, pues elaxioma de extensionalidad nos dice que este conjunto es único.

Page 9: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 9/17

(3)

Demostración

El axioma del conjunto vacío puede deducirse de otro axioma más débil, que afirma la existencia de un conjunto, digamos , y del esquema deespecificación con la fórmula aplicada a este conjunto . Así, el conjunto vacío es el conjunto

con el término una descripción impropia.

El axioma de pares

EL axioma de pares, un axioma de la teoría de Zermelo­Fraenkel, establece que, dados cualesquiera dos conjuntos e , existe otro conjunto,representado por , cuyos elementos son únicamente e . Esto es,

Del axioma de pares se tiene, a partir de dos conjuntos e , el conjunto . Este conjunto se llama par desordenado de e . Si seaplica el axioma de pares a un solo conjunto , se obtiene el par cuyo único elemento es, obviamente, , y por ello puederepresentarse como . A este último conjunto puede aplicársele de nuevo el axioma de pares, dando lugar al conjunto , conjunto alcual puede aplicarse también el axioma de pares, obteniéndose el conjunto , y así sucesivamente. Este proceso de construcción deconjuntos puede aplicarse al único conjunto dado y conocido explícitamente, , obteniéndose una serie infinita de conjuntos

El axioma de unión

Si es una colección de conjuntos, entonces la unión contiene aquellos y solo aquellos elementos que están en algún conjunto de . Si, un conjunto con elementos, entonces es común escribir

Page 10: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 10/17

para representar la unión de los conjuntos de . Es fácil ver que

de modo que el axioma de unión y el axioma de pares garantizan la existencia del conjunto paracualesquiera conjuntos e , un hecho que no puede deducirse simplemente del esquema de especificación junto con los axiomas restantes. Adiferencia de la unión, la intersección de conjuntos es deducible a partir del axioma de pares y el esquema de especificación. Efectivamente,pues se define el conjunto mediante

y por tanto existe. Más general, se define el conjunto

El axioma del conjunto potencia

El axioma del conjunto potencia nos da un conjunto que contiene a todos los subconjuntos de cualquier conjunto. Por tanto, .Puesto que para cualquiera que sea el conjunto , puede hacerse uso del esquema de especificación para obtener el conjunto

Page 11: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 11/17

Si es otro conjunto, similarmente se obtiene al conjunto como un subconjunto de . Luego

de manera que el axioma de pares puede deducirse del axioma del conjunto potencia, el esquema de especificación y el axioma de unión. Asípues, no todos los axiomas de ZF son independientes.

El esquema axiomático de especificación

El esquema de especificación resulta ser una versión limitada o débil del axioma de Frege. Para este último, era posible tener un conjuntocuyos elementos satisfacían cierta propiedad. Con ello Frege garantizaba demasiado y daba lugar en su sistema a paradojas como la de Russell,entre otras. Por otra parte, el esquema de especificación va de acuerdo con una doctrina de reducción del tamaño. Permite obtener conjuntos apartir de otros, y cuyo tamaño es menor que el de aquellos de los que han sido obtenidos. Esto implica que, necesariamente, contemos conconjuntos previamente dados. Por tanto, nunca es posible pensar en la fórmula , pues el conjunto no puede ser obtenido sin más quesí mismo. La paradoja de Russell surge precisamente de considerar que conjuntos muy grandes pueden ser obtenidos de forma gratuita sin másque especificar cuales son sus elementos. Otras paradojas que tienen que ver con el gran tamaño de los conjuntos, quedan excluidas de ZFmediante el esquema de especificación. Ahora bien, el calificativo de esquema se debe a que no es un único axioma, sino que este afirma(metamatemáticamente) que cualquier expresión de la forma

donde es una fórmula del lenguaje de la teoría de conjuntos es un axioma de ZF. Así, si consideramos la existencia de un conjunto como un axioma, el conjunto vacío sería también un axioma resultante de aplicar el esquema de especificación al conjunto con la fórmula

.

El esquema de especificación no es independiente en ZF, pues se deduce del esquema de reemplazo, introducido por Fraenkel y Skolem elmismo año y de forma independiente.

Esquema axiomático de reemplazo

Page 12: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 12/17

El esquema axiomático de reemplazo dice que si es un conjunto y es una fórmula con dos variables libres e , tales que para cada existe un único tal que se cumple, entonces existe un conjunto tal que si y solo si .

Para mostrar como el esquema de especificación se deduce del esquema de reemplazo, se considera la fórmula

donde cualquier elemento de un conjunto . Si , entonces ciertamente existe un único tal que (pues es mismo),por lo que la hipótesis del esquema de reemplazo se cumple, con lo que existe un conjunto tal que

lo que es lógicamente equivalente a que existe un conjunto tal que

La formulación que se ha dado del axioma de reemplazo fue introducida por primera vez por Fraenkel [1929], y apareció también en lostrabajos de Church [1942]. Una forma más débil de este esquema axiomático a parece en los trabajos de Tarski [1948]. La formulaciónoriginal, dada por Fraenkel [1921/22 y 1927] y Skolem [1922/23 y 1929], es en esencia como sigue:

Para todo conjunto y cualquier función definida en , existe un conjunto tal que para todo .

El esquema de reemplazo fue introducido por Fraenkel y Skolem con la finalidad de extender la fuerza del esquema de especificación, asícomo también posibilitar el conteo de números ordinales más allá de lo que permite el axioma de infinitud.

Axioma de infinitud

Page 13: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 13/17

El axioma de infinitud, introducido (aunque no en la forma en que se ha presentado aquí) por Zermelo 1908, permite la obtención de losnúmeros naturales como conjuntos dentro de ZF. En términos generales, este axioma da un conjunto infinito según Dedekind, pues garantiza laexistencia de un conjunto sobre el cual existe al menos una función inyectiva y no sobreyectiva (que claramente no existepara un conjunto finito). Es decir, la función es tal que y , por lo que el rango de es un subconjunto propio de sudominio, . Pero, en ese caso, la aplicación

dada por , es biyectiva. La conclusión es que existe una biyección entre y uno de sus subconjuntos propios. Ahora bien, elconjunto cuya existencia garantiza el axioma de infinitud, cumple:

Pero es posible que subconjuntos de cumplan esto mismo (un subconjunto así de X se denomina conjunto inductivo). Si es el conjuntode todos los subconjuntos inductivos de , es no vacío, pues . Así, puede formarse la intersección

de todos los conjuntos inductivos. Este conjunto es claramente inductivo, y sus elementos son

mismos que pueden ser considerados los números naturales en ZF, y puede llamarse . Se observa que, de este modo, un númeronatural es un conjunto que contiene a todos los números naturales anteriores a él. El conjunto de números naturales queda de esta forma bien

Page 14: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 14/17

ordenado por la inclusión. Cualquier número natural de la forma para algún se llama sucesor de , y se representa por opor . Mediante esta definición de pueden probarse los axiomas de Peano, con lo que en ZF estos se convierten en teoremas (másexactamente, cuatro teoremas y un metateorema) sencillos:

implica .

La forma en que se ha presentado el axioma de infinitud se debe a Fraenkel, y permite la construcción de los números naturales como númerosordinales en el sentido de von Neumann. En esta forma fue utilizado por R. M. Robinson en su The thory of classes [1937] (en donde presentauna modificación del sistema de von Neumann), así como también por Bernays [1942].

Zermelo introdujo el axioma de infinitud [1908] de forma esencialmente similar a la siguiente:

Existe un conjunto tal que

( i )

( ii )

Así, puede obtenerse el conjunto de números naturales cuyos elementos son

El orden que se establece entre estos elementos es el de la inclusión.

Page 15: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 15/17

Este axioma de infinitud de Zermelo no tiene las ventajas que tiene el axioma de infinitud de Fraenkel.

Axioma de regularidad o de fundación

El axioma de regularidad dado aquí se debe a Zermelo [1930], si bien von Neumann presentó uno equivalente [1929], aunque más complicado.Este axioma prohíbe la existencia de conjuntos extraños, tales como conjuntos que cumplan: x∈x; o un par de conjuntos con x∈y ∧ y∈x; asícomo también la existencia de cadenas descendientes infinitas:

Existen teorías de conjuntos donde se excluye este axioma. La teoría que resulta de añadir un contrario del axioma de regularidad se conocecomo teoría de conjuntos no bien fundados.

Axioma de elección

A diferencia de los axiomas de ZF, el axioma de elección es un axioma no constructivo, en el sentido de que no determina un conjunto único apartir de su información. Además, como puede observarse, carece de la obviedad que (aunque la complejidad notacional de estos haga enalgunos casos pensar lo contrario) caracteriza a todos los otros axiomas. Esto llevó a algunos matemáticos al intento de probar el axioma deelección a partir de los demás axiomas, cosa en lo que todos ellos fracasaron. Estos intentos vanos de probar el axioma de elección después degrandes esfuerzos, y ciertas peculiaridades del mismo, algunos matemáticos pensaban ya en la posible independencia del axioma de elecciónrespecto de los axiomas de ZF, aunque no sabían en que dirección se encontraba la prueba de ello. Gödel probó [1930/1940] que el axioma deelección era consistente con los axiomas de ZF, por lo que podía emplearse junto con ellos sin temor de obtener contradicciones.

El axioma de elección fue presentado por Russell en 1906 de manera esencialmente similar a la siguiente:

Para todo conjunto no vacío de conjuntos disjuntos tal que , el producto cartesiano de es no vacío.

Russell llamó a este principio Axioma multiplicativo. El nombre de Axioma de elección (Auswahlaxiom) fue dado por Zermelo al principiomás general que el de Russell:

Para todo conjunto no vacío tal que , existe una función cuyos argumentos son elementos de , tal que .

El nombre del axioma se debe al hecho de que la función elige un elemento de cada elemento (conjunto) de .

Page 16: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 16/17

Zermelo introdujo el axioma de elección para probar el teorema de buena ordenación que afirma que todo conjunto puede ser bien ordenado.Mostró también que el lema de Kuratowski­Zorn se deduce del axioma de elección. En realidad, el axioma de elección es equivalente tanto alteorema de buena ordenación como al lema de Kuratowski­Zorn (la mayoría de las veces simplemente llamado Lema de Zorn). La siguientelista enumera algunos principios equivalentes en ZF al axioma de elección:

Teorema de buena ordenación.Lema de Kuratowski­Zorn.Ley de tricotomía de cardinales.Principio del maximal de Hausdorff.Lema de Teichmüler­Tukey.

Wacław Sierpiński probó en 1947 que la hipótesis del continuo (un principio ad hoc que debe ser aceptado como axioma de la teoría deconjuntos) implica el axioma de elección, si bien lo recíproco no es cierto. Otro principio que implica el axioma de elección es el axioma deconjuntos inaccesibles de Tarski [1938/1939].

El sistema axiomático de ZFC admite las demostraciones por reducción al absurdo como método para demostrar teoremas. Dado un (presunto)conjunto nos basta con llegar a una contradicción con el resto de la teoría después de haber supuesto su existencia para demostrar que no existetal conjunto. un ejemplo típico es la no existencia del conjunto de todos los conjuntos.

De existir este conjunto V podríamos definir el conjunto , lo que irremisiblemente lleva a la Paradoja de Russell, porlo cual V no es un conjunto.

Procedimiento igual nos llevará a demostrar la no existencia de conjunto conjugado(conjunto de los elementos no pertenecientes al conjunto)dado un conjunto cualquiera, ya que de ser así existiría su unión, por el axioma de la unión, y esta sería igual a V.

Otras propiedades de ZFC

Kurt Gödel probó que la consistencia lógica de los axiomas de ZFC es indemostrable. A lo sumo se pueden demostrar afirmaciones como siZFC es consistente, entonces "T" también lo es, es decir la consistencia relativa. En cuanto a la completitud, el propio Gödel en sus teoremasde incompletitud demostró que si un sistema axiomático es lo suficientemente fuerte como para construir una aritmética recursiva, dichosistema no puede ser completo y consistente.

Véase también

Page 17: Axiomas de Zermelo-Fraenkel

24/11/2015 Axiomas de Zermelo­Fraenkel ­ Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Axiomas_de_Zermelo­Fraenkel 17/17

AxiomaTeoría de conjuntos de Morse­KelleyTeoría de conjuntos de Von Neumann­Bernays­GödelLenguaje formalLógica matemáticaNoción primitivaSistema formalTeoría de conjuntos

Bibliografía

Cameron, Peter J. Sets, Logic and Categories, Springer, New York.Devlin, Keith. The Joy of Sets (Fundamentals of Contemporary Set Theory), Springer, New York.Halmos, Paul R. Naive Set Theory, Springer, New York.Henle, James M. An Outline of Set Theory, Springer, New Oyrk.Suppes, Patrick. Axiomatic Set theory, Van Nostrand Company, New York.

Obtenido de «https://es.wikipedia.org/w/index.php?title=Axiomas_de_Zermelo­Fraenkel&oldid=81063214»

Categoría: Teorías axiomáticas de conjuntos

Esta página fue modificada por última vez el 29 mar 2015 a las 00:57.El texto está disponible bajo la Licencia Creative Commons Atribución Compartir Igual 3.0; podrían ser aplicables cláusulasadicionales. Léanse los términos de uso para más información.Wikipedia® es una marca registrada de la Fundación Wikimedia, Inc., una organización sin ánimo de lucro.