AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically...

42
INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi- dences. The most precise among those may be the temperature changes recorded in the ice co- res of the Antarctic and Greenland, as well as the δ O 18 /O 16 record on foraminifera from the oceanic bottoms. Periglacial tilt formations and deposits of loess in medial latitudes indicate that there were phases in which the north of Eurasia and North America were covered by an ice cap on several occasions. During these stages (stadials), tempered species took refuge Ardeola 51(1), 2004, 91-132 AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE QUATERNARY IN THE MEDITERRANEAN REGION AND PALEOCLIMATIC INTERPRETATION Antonio SÁNCHEZ MARCO* SUMMARY.—Avian zoogeographical patterns during the Quaternary in the Mediterranean region and pa- leoclimatic interpretation. Aims: The main aim was to present an overview of the avian geographical distribution patterns in the Medi- terranean region during the Quaternary. Results and Conclusions: For this study seventy-two fossil sites located in the current Mediterranean region and in its peripheral fringe have been analysed. Most of the sites bear avian assemblages rich enough to offer an insight on the main features of local paleornithocaenoses. The approach of the steady Mediterranean refu- gia is used to explain the avian geographical distribution drawn from the Mediterranean fossil records. As a consequence, we increase the accuracy of our knowledge on the climatic changes during this period. Key words: fossil birds, Mediterranean region, Neogene, paleoclimatology, Quaternary, Refugia Theory, Steady Mediterranean Refugia approach, zoogeography. RESUMEN.—Patrones zoogeográficos de las aves durante el Cuaternario en la región mediterránea e in- terpretación paleoclimática. Objetivos: La intención de este trabajo es ofrecer un estudio sintético sobre los patrones de distribución ge- ográfica de las aves durante el Cuaternario en la región Mediterránea, destacando los descubrimientos de fó- siles hechos durante las últimas décadas. Resultados y Conclusiones: Para este fin, se aporta la información obtenida en 72 yacimientos repartidos por toda el área de estudio. Esto constituye un total de 89 asociaciones orníticas fósiles de la región del Medite- rráneo (vease el Apéndice 1). La situación geográfica de estos yacimientos se puede ver en la Figura 1, mien- tras que en las Tablas 1 y 2 se puede conocer la posición cronológica de los mismos, que para algunos es apro- ximada. La mayor parte de estos yacimientos poseen asociaciones fósiles con suficiente entidad para aportar datos fiables sobre las paleornitocenosis locales. Existen suficientes evidencias que indican que los límites ge- ográficos de las especies de aves han cambiado varias veces durante el Cuaternario. Además, se acepta que al- gunos de estos cambios no han sido cuasados directamente por cambios pasados en el clima. Como se observa hoy día, se han registrado rápidos movimientos dispersivos hacia la región del Mediterráneo de especies con distribución más septentrional. Estas irrupciones no se han registrado de forma clara en el Plioceno superior ni en las primeras fases del Pleistoceno. Con los datos obtenidos a partir de estos yacimientos, se puede con- cluir que la composición taxonómica de las aves en la región del Mediterráneo no ha diferido, en algunas zo- nas y durante algunos periodos, de la que debía existir en regiones más septentrionales de Europa, pero en otras zonas las comunidades orníticas no fueron análogas a ninguna otra que encontremos en la Europa actual. Se propone un modelo explicativo para interpretar la distribución geográfica que parece indicar el registro fó- sil, al que se ha denominado modelo de los refugios mediterráneos estables. Como consecuencia, se obtienen algunos rasgos de los cambios climáticos que han afectado a la región mediterránea durante este periodo. Palabras clave: aves fósiles, Cuaternario, Neógeno, Modelo de los Refugios Mediterráneos Estables, pa- leoclimatología, Región mediterránea, Teoría de los Refugios, zoogeografía. * Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, E-28006 Madrid, Spain. e-mail: [email protected]

Transcript of AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically...

Page 1: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

INTRODUCTION

The scenario of a climatically unstable lateNeogene is supported on several sets of evi-dences. The most precise among those may bethe temperature changes recorded in the ice co-res of the Antarctic and Greenland, as well as

the δ O18/O16 record on foraminifera from theoceanic bottoms. Periglacial tilt formations anddeposits of loess in medial latitudes indicatethat there were phases in which the north ofEurasia and North America were covered byan ice cap on several occasions. During thesestages (stadials), tempered species took refuge

Ardeola 51(1), 2004, 91-132

AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE QUATERNARY IN THE MEDITERRANEAN REGION

AND PALEOCLIMATIC INTERPRETATION

Antonio SÁNCHEZ MARCO*

SUMMARY.—Avian zoogeographical patterns during the Quaternary in the Mediterranean region and pa-leoclimatic interpretation.Aims: The main aim was to present an overview of the avian geographical distribution patterns in the Medi-terranean region during the Quaternary.Results and Conclusions: For this study seventy-two fossil sites located in the current Mediterranean regionand in its peripheral fringe have been analysed. Most of the sites bear avian assemblages rich enough to offeran insight on the main features of local paleornithocaenoses. The approach of the steady Mediterranean refu-gia is used to explain the avian geographical distribution drawn from the Mediterranean fossil records. As aconsequence, we increase the accuracy of our knowledge on the climatic changes during this period.

Key words: fossil birds, Mediterranean region, Neogene, paleoclimatology, Quaternary, Refugia Theory,Steady Mediterranean Refugia approach, zoogeography.

RESUMEN.—Patrones zoogeográficos de las aves durante el Cuaternario en la región mediterránea e in-terpretación paleoclimática.Objetivos: La intención de este trabajo es ofrecer un estudio sintético sobre los patrones de distribución ge-ográfica de las aves durante el Cuaternario en la región Mediterránea, destacando los descubrimientos de fó-siles hechos durante las últimas décadas.Resultados y Conclusiones: Para este fin, se aporta la información obtenida en 72 yacimientos repartidos portoda el área de estudio. Esto constituye un total de 89 asociaciones orníticas fósiles de la región del Medite-rráneo (vease el Apéndice 1). La situación geográfica de estos yacimientos se puede ver en la Figura 1, mien-tras que en las Tablas 1 y 2 se puede conocer la posición cronológica de los mismos, que para algunos es apro-ximada. La mayor parte de estos yacimientos poseen asociaciones fósiles con suficiente entidad para aportardatos fiables sobre las paleornitocenosis locales. Existen suficientes evidencias que indican que los límites ge-ográficos de las especies de aves han cambiado varias veces durante el Cuaternario. Además, se acepta que al-gunos de estos cambios no han sido cuasados directamente por cambios pasados en el clima. Como se observahoy día, se han registrado rápidos movimientos dispersivos hacia la región del Mediterráneo de especies condistribución más septentrional. Estas irrupciones no se han registrado de forma clara en el Plioceno superiorni en las primeras fases del Pleistoceno. Con los datos obtenidos a partir de estos yacimientos, se puede con-cluir que la composición taxonómica de las aves en la región del Mediterráneo no ha diferido, en algunas zo-nas y durante algunos periodos, de la que debía existir en regiones más septentrionales de Europa, pero enotras zonas las comunidades orníticas no fueron análogas a ninguna otra que encontremos en la Europa actual.Se propone un modelo explicativo para interpretar la distribución geográfica que parece indicar el registro fó-sil, al que se ha denominado modelo de los refugios mediterráneos estables. Como consecuencia, se obtienenalgunos rasgos de los cambios climáticos que han afectado a la región mediterránea durante este periodo.

Palabras clave: aves fósiles, Cuaternario, Neógeno, Modelo de los Refugios Mediterráneos Estables, pa-leoclimatología, Región mediterránea, Teoría de los Refugios, zoogeografía.

* Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal2, E-28006 Madrid, Spain. e-mail: [email protected]

Page 2: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

in the most southern zones of their respectiveareas of distribution, or even further south. Atthe same time, the fossil record demonstratesthe blossoming of immigrant species, whichwere adapted to the colder conditions.

The shifts of the geographical distributionof taxa as well as biocaenoses are explainedby two major theories: the Dispersal theory(Simpson, 1965; Matthew, 1915) and the Vica-riance theory (Croizat et al., 1974). These the-ories have had different methodological deve-lopments, and are usually considered asalternative approaches. The Refugia theorydoes not contradict the isolation of populationssecondary to the fragmentation of the territory,neither the dispersal of some taxa with the sub-sequent arrival into new areas.

The character of refuge assigned to the Me-diterranean region (MR) during the Quaternary,especially during the last glacial phase (Würm),the role it played in the phylogenetic differen-tiation, as well as in the current west Palearcticdistribution of birds, have been the subject of alarge number of studies. Many of them aresummarized in Moreau (1954, 1972), Blondel(1985, 1987), Tyrberg (1991a, 1991b) andMourer-Chauviré (1993). Related to this, somespecies which are assumed to have differentclimatic and habitat significances since theydisplay at present disjunct geographic areas,appear together in the same levels of severalPleistocene deposits in southern Europe. Thisphenomenon has been referred in the literatureas «mixed faunas» and «non-analogue faunas».

The Refugia theory, applied to the Quater-nary, does not propose that all speciations havetaken place in ecological refuges, but tries toexplain many differentiation events which con-tributed to the development of the modern bio-tas (Haffer, 1982). The Mediterranean Refugiatheory (MRT) (Moreau, 1954, 1972), a particu-lar derivation from the Refugia theory, has pro-ved to be limited in its explanatory capacity.Moreover, an uncritical actualistic notion of the«indicator species» (a species that manifests byits presence the existence of certain environ-mental conditions) has overcome in fact theMRT, leading to misinterpretations. The Pleis-tocene avian assemblages from the south of Eu-rope are, with few exceptions, characteristic oftempered climatic conditions, similar to the ac-tual ones. Nevertheless, when the remains ofcurrently northern breeding or resident species,

as the Snowy Owl Nyctea scandiaca or the PineGrosbeak Pinicola enucleator, are found in out-crops of the south of the continent, even in fossilassemblages of Mediterranean type, it continuesto be interpreted as a proof of regional cool con-ditions in the past. Thus, the notion of «indicatorspecies», with the meaning of «local or regionalconditions indicator» leads to misinterpretationof the paleoecological and paleoclimatical im-plications of the avian fossil record (SánchezMarco, 1996). In this way, the indicator value ofindividual taxa prevails in the literature on theornithological community character. The incre-asing number of studies of European Pleistoceneavian localities modifies understanding of thisperiod. Thus, this paper proposes an alternativeinterpretation: the Approach of the Steady Me-diterranean refugia (ASMR).

The ASMR was outlined in Sánchez Marco(1996). It leans on avian community featuresand, as a second step, in the individual speciescomposition. Thus, the ASMR emphasizes thenecessity of using analytical and comparativeapproaches to paleornithological assemblageswith current ornithocaenoses (Sánchez Marco,1999a, 1999b). Therefore, there are severalecological patterns providing the guide to fin-ding out as much the paleoclimatic characteris-tics as the configuration of the landscape in thepast. Some of these patterns have been studiedin mammals and birds, as the habitat spectraof the community (Fleming, 1973; Evans et al.,1981; Sánchez Marco, 1999a, 1999b). The phe-netic behaviour spectra have been used by Sán-chez Marco (1999b). The ASMR attempts toapply in concrete terms the Refugia theory tothe distribution of birds in the Mediterraneanregion during the Quaternary. It relies on thenotion and description of the role of «Northernirruptive species» (see the paragraph «Materialand methods»). Its main difference with theMRT (Moreau, 1954, 1972) consists of com-prising the occurrence of Mediterranean avi-faunas during the whole Quaternary in thesouth of the Mediterranean peninsulas, even inthe cool phases.

GEOGRAPHIC AND CLIMATIC CONDITIONS

IN THE QUATERNARY

The MR is the contact area between two ofthe largest continental plates: the Eurosiberian

92 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 3: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

and the African ones. This condition has led tovery complex geological and paleogeographicalhistories (Maldonado, 1985). Tectonic move-ments of both plates in the early Oligocene dro-ve to a closed sea in this area. Subsequent to thedesiccation of great extensions of the Medite-rranean sea at the fall of the Miocene, the Mes-sinian episode from 5.7 to 5.3 Ma (= millions ofyears) (see Gautier et al., 1994), the opening ofthe strait of Gibraltar decisively transformedthe regional geography, determining importantbiogeographical changes in mammal faunasfrom both the continent and the islands (Moyà-Solà et al., 1999; Alcover, 2000; Azanza et al.,2000). Two other major biotic events which oc-curred at the end of the Neogene affected themammal faunas in the western MR: the Equus-elephant event (Early Villafranchian, MN 16,ca. 2.7 Ma) and the Galerian mammal pulse(1.0 Ma) (Azanza et al., 2000). These eventsare in accordance with two of the three majorshifts to more arid and open conditions, occu-rred in Africa around 2.8 Ma, 1.7 Ma and 1.0Ma and which are recorded in marine eoliandeposits (DeMenocal, 1995). The Mediterrane-an Sea reaches a considerable extension and itsinfluence on the climate constitutes one of themain features of this region, since the landsaround it show more or less homogeneous cli-matic conditions. Faunistic successions in thewestern Mediterranean islands as well as massextinctions episodes are the object of someworks, such as Moyà-Solà et al. (1999), Alco-ver (2000) and Seguí & Alcover (1999).

A critical date in the recent history of theglobal climate is 2.7 Ma. This cooling episodein the Arctic hemisphere had begun towards3.1 Ma (Raymo et al., 1989; Raymo, 1991),causing the growth of the polar cap. Previously,the temperate periods were warmer than thepresent one and the cold periods were warmerthan some later warm interstages. Until thatdate, it is likely that the continents of the Nort-hern hemisphere were free of considerablemasses of ice. Coinciding with the beginning ofthe Matuyama, approximately 2.4 Ma ago, thefirst event of massive formation of icebergs inthe North Atlantic is well documented. Impor-tant amounts of materials transported by ice-bergs were deposited in the Atlantic Ocean(Shackleton et al., 1984; Raymo et al., 1989). Itwas the beginning of the first Cenozoic glacia-tion in the Northern hemisphere.

The marine sediments 2.7 Ma old documentaccused drops of the oceanic temperatures(Raymo, 1992; Raymo et al., 1989). Since then,the oscillations between tempered and cold sta-ges have acquired greater amplitude keeping atendency towards a major cooling. From ap-proximately 1.5 Ma, the thermal oscillationspoint to a rate of increasing amplification, ex-ceeding themselves the previous extremes asmuch mild as cold. Comparing the values of δ 18O in oceanic sediments of the present inter-glacial stage with those of the last one millionand a half of years, only in six occasions werereached such high temperatures. This happensin interstadials 43 (1.2 to 1.3 Ma), 35 (~ 1.1Ma), 31 (0.9 to 1 Ma), 11 (~ 0.4 Ma), 9 (~ 0.3Ma) and (~ 0.13 Ma). In fact, the Holocenetemperatures are surpassed in the four last ones.It is interesting to note that most interglacialsdid not reach as high thermal values as in re-cent times. At the other extreme of the oscilla-tions, the lowest temperatures of the cold epi-sodes also take place at the end of thePleistocene. They are concentrated from ap-proximately 0.5 Ma, and are episodes 16 (< 0.6Ma), 12 (~ 0.4 Ma), 6 (~ 0.15 Ma) and 2 (0.02Ma). A series of datings by the U/Th method inmarine sediment grants to the Eemian intergla-cial a maximum span of 10 ka (= thousands ofyears), and between 1 and 2 ka to the substage5e (Slowey et al., 1996). The fast and short-du-ration climatic changes happened during thelast interglacial and in the base of the Weichse-lean, as showed from the oxygen isotopesanalysis of ice cores from Greenland, were in-terpreted as «artefacts» owing to changes ofstate at the deepest zone of the ice cap (Ad-kins et al., 1997). Although these climaticchanges could be coincident with the abovementioned observations on the faunal changesof rodents in Central European deposits (Ho-rácek & Lozek, 1988).

During the Würm period, the highest peaksin the Iberian Peninsula were covered by gla-cial sheets (Uchupi, 1988). The loess accumu-lations stretched out from west of France to theeast, along the edge of the southern end of thelast European icecap (Horácek & Lozek, 1988).Currents of polar waters descended up to a lati-tude of 42°N during the Quaternary cool peaks,and the Gulf Stream was turned aside towardsthe southwest. The Iberian Peninsula was ex-posed to predominant winds from the west

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 93

Ardeola 51(1), 2004, 91-132

Page 4: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

(Uchupi, 1988). Warmer temperatures givingrise to the present warm interstadial are notedin high latitudes 18 ka BP.

MATERIAL AND METHODS

The scope of this paper covers the Quater-nary, although the lowest limit considered hereis not the generally accepted 1.6 – 1.8 Ma(Aguirre & Pasini, 1985). The reason for thisconsideration is that this limit —as well as thedivisions of this period— has been establishedon the shifts of mammal distributions (mainlyin Europe) (for instance, Mein, 1976; Fahl-busch, 1976; Bruijn et al., 1992; Calvo et al.,1993), and these do not correspond to the chan-ges of avian paleogeography. In this regard,Higueruelas (ca. 3 Ma) is the oldest locality inthe MR with an association of avian taxa si-milar to the ones found during the Lower Pleis-tocene: the small passeriforms constitute an im-portant fraction of the species assemblage; from26 species present in Higueruelas, only one(new) species of Palaeocryptonyx seems notto go through the conventional limit of thePleistocene; and it appears to be a Corvus ofthe pliocaenus/antecorax group (a typical cor-vid or corvids of the European Lower andMiddle Pleistocene). The uppermost limit cho-sen for the present work is the Epipaleolithic(after the last main cool pulse).

For this study seventy-two fossil sites loca-ted in the current MR and in its peripheral frin-ge have been analysed. The African side of thisregion is still a vacuum territory for the paleor-nithology of the Quaternary. Where possible,fossil localities, geological layers or sedimen-tary complexes providing rich avian assembla-ges have been chosen in order that they canapproach to a certain extent the paleoclimaticand paleoenvironmental conditions. This com-prises a total amount of 89 avian assemblages(Appendix 1). Some of the fossil associationsused in this work can be excluded as samplesof paleornithocaenoses, since these constituteclear cases of associations containing the re-cent introduction in Europe of Gallus (BachoKiro, Fontéchevade, Ibex), where the mixtureof layers is in no doubt. Despite this, such lo-calities have been chosen due to the scarcityof fossil assemblages in some areas or to coversome time spans. They are only used to illus-

trate the presence of individual species. Thedata have been taken directly from the originalworks to avoid possible mistakes, with the ex-ception of one or two cases that are pointedout. Some publications have not been conside-red for this paper since they contain obviousmistakes. All the authors and publications donot merit the same degree of confidence; ho-wever, the aim of this paper is not to review thepublished material. Some of the taxonomicalidentifications and the chronological attribu-tions should be re-examined.

The geographical situation of the localities isgiven in the map of Figure 1. The sites havebeen listed in two chronological tables (Tables1 and 2), although their respective positionsare approximative for many of them.

Non-Mediterranean irruptive species

Some high dispersive species, which are no-wadays distributed along northern Eurasia arerecorded in Quaternary localities of MR. Acase repeatedly noted in the literature is that ofthe Snowy Owl Nyctea scandiaca (Lambrecht,1933; Brodkorb, 1971; Boev, 1998a). Accor-ding to their respective current distributions,such species are considered herein as irruptivein the whole or a part of the MR during theQuaternary (Appendix 2). In Appendix 1 eachirruptive species is highlighted with an asteriskwhen the fossil locality falls in the correspon-ding «area of irruption» of that species (seeAppendix 2). The current ranges of the PygmyOwl Glaucidium passerinum and Tengmalm’sOwl Aegolius funereus cover approximatelythe northern border of the MR. When thesespecies appear in localities near the limits of theMR, they are not considered as irruptive into it,but as punctuating the spreading of Eurosibe-rian climatic conditions.

Non-Mediterranean low-dispersive species

The grouses (Lagopus sp., Tetrao sp., Lyru-rus sp., Bonasa sp.) are a low-dispersive groupof birds whose respective geographical distri-butions are fairly outside the MR (Cramp,1998). In this paper it is assumed that thosespecies were not included in the past compo-nents of Mediterranean paleornithocaenoses

94 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 5: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 95

Ardeola 51(1), 2004, 91-132

FB

Vb A

t H1A1

J2

Ce

C1

Fn

Ro G

e

BBO

3S

aF

oLa C

3C

o

Pu

Fu

Vn

Qa,

RT

P Ca,

P

K22

Ac

Kk

Va

BK Li

Du

Ak

Ha U

b

FIG

. 1.—

Map

of

a pa

rt o

f th

e M

edite

rran

ean

regi

on w

ith th

e fo

ssil

loca

litie

s us

ed in

the

pres

ent s

tudy

. Cur

rent

sho

relin

es. A

bbre

viat

ions

: A –

Arb

reda

, A-T

– A

mbr

ona

and

Tor

ralb

a, A

1 –

Ári

dos

1, A

C –

Are

ne C

andi

de, A

c –

Acq

uedo

lci,

Ae

– A

etok

rem

nos,

At –

Ata

puer

ca c

ompl

ex (

Ele

fant

e,D

olin

a, G

aler

ía),

BB

– B

ois-

des-

Bro

usse

s, B

i – B

inig

aus,

BK

– B

acho

Kir

o, C

1 –

Cas

abla

nca

1, C

3 –

Cas

tiglio

ne 3

, Ca

– C

arne

llo, C

B –

Cau

d’e

n B

orrá

s, C

e –

Cen

dres

, CF

– C

on-

trad

a Fu

sco,

CN

– C

ova

Nov

a, C

o –

Cos

cia,

CR

– C

a na

Rei

a, C

t – C

anet

, CV

– C

ingl

e V

erm

ell,

DT

– D

evil’

s T

ower

, Du

– D

ursu

nlu,

EP

– E

s Po

uàs,

F –

La

Fage

, FB

– F

igue

ira

Bra

va, F

n –

Font

éche

vade

, Fo

– Fo

ntbr

égou

a, F

u –

Fum

ane,

G –

Gum

bes

(B, C

), G

e –

Geg

ant,

Go

– G

orha

m, H

1 –

Hué

scar

1, H

a –

Ha-

yoni

m, H

i – H

igue

ruel

as, H

o –

Hor

tus,

Ib

– Ib

ex, J

2 –

Jara

ma

II, K

22 –

K22

, Kk

– K

ozar

nika

, La

– L

azar

et, L

i – L

iko,

M5

– M

onto

ussé

5, M

A –

Mas

-d’A

-zi

l, N

– N

erja

, O2

– O

halo

2, O

3 –

Org

nac

3, P

– P

alid

oro,

PO

– P

edre

ra d

e S’

Òni

x, P

u –

Punt

a di

Cal

cina

, Q –

Qui

bas,

Qa

– Q

uart

acci

o, R

– R

adic

e, R

m –

Rom

anel

li, R

o –

Rom

aní,

Rs

– R

omai

ns, R

z –

Raz

hish

kata

, S –

Sal

pêtr

e, S

a –

Salp

êtri

ère,

Sj –

San

dalja

(I,

II)

, Sp

– Sp

inag

allo

, Te

– T

emna

ta, T

N –

Tor

reN

ave,

TP

– T

orre

in P

ietr

a, T

r –

Tre

back

i, U

b –

Ube

idiy

a, V

a –

Var

shet

s, V

b –

Val

dego

ba, V

i – V

icto

ria,

Vn

– V

indi

ja.

[Map

a pa

rcia

l de

la r

egió

n m

edite

rrán

ea c

on la

s lo

calid

ades

con

fósi

les

utili

zada

s en

est

e es

tudi

o. E

l map

a m

uest

ra la

act

ual l

ínea

de

cost

a. P

ara

las

abre

-vi

atur

as v

er a

rrib

a.]

Page 6: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

neither. Thus, their presence in Mediterraneanlocalities may be understood as: (a) the fossilassociation was deposited under non-Medite-rranean conditions or (b) it is a mixture of pa-leornithocaenoses from periods with differentclimatic conditions. These species are underli-ned in Appendix 1.

East Mediterranean surviving species

Appendix 3 lists the species which are no-wadays distributed along the east part of theMR, but that are also recorded in fossil locali-ties from the west part. In Appendix 1 thesetaxa are highlighted with an asterisk when ap-pear in localities from the west area of the MR.

SURVEY OF THE FOSSIL LOCALITIES

Last Pliocene and Early Pleistocene

The Iberian locality of Higueruelas (MN16) (Bruijn et al., 1992) has been dated betwe-en 3.18 and 3.46 Ma (Bonadonna & Villa,1984) and to 3.2 Ma (Aguirre & Morales,1990). The presence of several shallow lakes,combined with regional volcanism, providedsuitable environments for the preservation ofa large sample of the local paleornithocaenoses.In the species assemblage yielded by this out-crop, the larger ecological group was constitu-ted by aquatic birds: Slavonia Grebe Podicepsauritus, Black-necked Grebe P. nigricollis,Whooper Swan Cygnus cygnus, goose sp. An-ser sp., shelduck sp. Tadorna sp., GreaterScaup Aythya marila, White-headed Duck Ox-yura leucocephala and Smew Mergus albellus,as well as for those species also linked to aqua-tic environments: Grey Heron Ardea cinerea,Black-crowned Nightheron Nycticorax nycti-corax, Little Bittern Ixobrychus minutus,Glossy Ibis Plegadis falcinellus, CommonSandpiperActitis hypoleucos and Meadow PipitAnthus pratensis.

The finding of C. cygnus, A. marila and M.albellus constitutes an unexpected event con-cerning the age and geographic situation do-cumented by this locality. At present, they arebreeding species in northern zones of Eurasia,and are rare in Iberian territory. In the case ofthe swan, this only appears with occasion of

hard winters (Díaz et al., 1996). Contingentsof these three species move during the winter,not only to Central Europe and north of France,but also to more southern latitudes, such as theBalkan Peninsula and Anatolia.

Montoussé 5, dated to the Upper Pliocene,in the northern side of the Pyrenees, has yiel-ded a small quantity of bird remains, includingCorvus pliocaenus and Palaeocryptonyx sp.(Clot et al., 1976). The fauna is characteristicof temperate conditions and of forest environ-ments. Each of these mentioned taxa appearin two respective sites in Mallorca (BalearicIslands), Palaeocryptonyx sp. in Ca na Reia(Upper Pliocene), together with a small quan-tity of other taxa (Alcover, 1989), and C. plio-caenus in Pedrera de S’Ònix (Plio-Pleistoce-ne) (Mourer-Chauviré et al., 1977). Moreover,this locality situated near Manacor has yieldeda relatively large collection of birds (Mourer-Chauviré et al., 1977; Mourer-Chauviré in Al-cover et al., 1981), most of them from wood-land habitats, and two irruptive taxa Cygnuscf. cygnus and Bucephala cf. clangula. Furthertaxonomic revision of this fauna by Seguí(1996) has not changed its paleoenvironmentalimplications.

Although it is partially outside of the chro-nological framework of this paper, it is worthwhile mentioning Tyto balearica, a paleospe-cies of barn owl widely distributed in the WestMediterranean area throughout a notable spanof time, which was classified on fossil materialfrom three Balearic localities (Canet, Pedrerade S’Ònix and Binigaus) dated on the Plio-Pleistocene boundary (Mourer-Chauviré et al.,1980). This species was later identified insome older sites in France and Spain: Layna(Early Pliocene, MN 15), Sète (Early Pliocene,MN 15), Balaruc II (Late Pliocene, MN 16),Casablanca 1 (Late Pliocene, MN 17) (Mou-rer-Chauviré & Sánchez Marco, 1988; Mourer-Chauviré, 1995; Sánchez Marco, 1995a), Al-jezar B (Late Miocene, MN 12) (Cheneval &Adrover, 1993), Valdecebro 5 (Late Mioce-ne, MN 12), Layna and Moreda (Late Plioce-ne, MN 16) (Sánchez Marco, 2001). This owlhas been also identified in two Middle Pleisto-cene sites: Castiglione 3 CG (Mourer-Chauvi-ré in Salotti et al., 1997, Mourer-Chauviré etal., 1997) and probably Punta di Calcina(Corsica) (Pereira et al., 2001). Moreover, re-mains from the complex of outcrops of Gar-

96 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 7: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 97

Ardeola 51(1), 2004, 91-132

TABLE 1

Late Pliocene and Pleistocene localities from the Mediterranean region used in the present study. 1.—Chro-nology (× 106 aBP). 2.—Magnetostratigraphy. 3.—Epochs. 4.—Lithic intervals. 5.—Major divisions after mi-cromammals.[Localidades de la región mediterránea del Plioceno superior y Pleistoceno utilizadas en este estudio. 1.—Cronología (× 106 años anteriores al presente). 2.—Magnetoestratigrafía. 3.—Épocas. 4.—Interválos líticos. 5.—Divisiones principales según micromamíferos.]

Page 8: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

gano (Early Pliocene, Southern Italy) havebeen attributed to this species (Mlíkovsky,1998).

Varshets fossil locality is a ponor situatednear the homonymous town, in northwest ofBulgaria. It has been assigned to the Late Plio-cene, MN 17 (Boev, 2002). Its very rich asso-ciation of birds has led to a large bibliographicproduction (Boev 1995, 1997, 1998b, 1998c,1999a, 1999b, 1999c, 1999d, 1999e, 2000a),summarized in Boev (2002). The specific com-position of this fauna is sufficiently differentfrom the Pleistocene ones to establish confi-dent comparisons. There have been no findingsof Geronticus, Tyto balearica or Palaeocryp-tonyx. The presence of Lagopus and Tetrao inthe Balkan Peninsula is constant along the who-le Quaternary.

Located in the north of the Dead Sea Rift(Israel), and near the Tiberias or Kinneret Lake,there is the site of Ubeidiya which is composedof more than sixty archaeological horizons ofan age of c. 1.4 Ma. This lower Pleistocene sitereveals a complex geological structure in whichtectonic movements have tilted the deposits.The cultural remains are assigned to the Acheu-lian tradition (Bar Yosef & Goren-Inbar, 1993).As evidenced by the abundant aquatic species(Tchernov fide Tyrberg, 1998), the outcrop wassituated close to an area of marshes and bodiesof water.

Quibas site has an age between 1.0 and 1.3Ma after the rodents’ association. No avianwintering or northern species have been foundin this outcrop. The group of taxa, where mostof them are related with masses of water andparkland environments, points to moister cli-matic conditions than present ones (Montoya etal., 1999, 2001).

The early Pleistocene site of Victoria is lo-cated on the southern Iberian coast. Some re-mains of swan (Cygnus cf. olor) also appear inthis outcrop, which should be considered as awintering species. Hedge Accentor Prunellamodularis is currently a resident paseriform inmountain areas in the half north of the IberianPeninsula, but during the winter this bird makesshort displacements towards the south or to lo-wer levels throughout its distribution. Black-headed Bunting Emberiza melanocephala isnot resident in the western zone of the Medite-rranean of today and breeds in the Balkan re-gion and Anatolia.

The rich deposit of Dursunlu is placed inthe eastern extreme of the MR, in the Konyabasin, near Llgin (southern Anatolia), which isattributed an age between 0.9 and 1 Ma (Guleçet al., 1998). Louchart et al. (1998) offer a listof 50 species, the immense majority of which isof aquatic habitats. The set of taxa of residentand breeding species corresponds to temperedclimatic conditions, with the presence of nu-merous wintering birds.

The study of Elefante site is still incomplete.This locality belongs to the sierra de Ata-puerca karstic infillings complex, situated inthe northern plateau of the Iberian Peninsula.The lower layers contain a rodent assemblagefrom ca. 1 Ma. Bones from Corvus antecoraxand White-tailed Eagle Haliaeetus albicilla arethe most abundant ones (Rosas et al., 2001).There are no fossil remains fairly attributable towintering species.

There are other rich fossil localities in theIberian Peninsula in chronological range bet-ween 1 Ma and the beginning of the MiddlePleistocene. Huéscar 1 is a fossil locality si-tuated in a present-day arid zone in the southernIberian inland. The avian taxa are, with littleexceptions, aquatic ones, most of them, ana-tids (Sánchez Marco, 1989). Two of the speciesthat appears here, Common Scoter Melanittanigra and Red-breasted Merganser Mergus se-rrator, currently are not inland wintering spe-cies (Díaz et al., 1996). This behaviour is asso-ciated with periods of storms and roughweather on the coasts.

The Lower Pleistocene Dolina outcrop be-longs also to the Atapuerca complex. The la-yer 6 (TD-6) is older than 0.8 Ma and has yiel-ded one of the richest avian assemblages inIberia, where open country species constitutethe best represented group, followed by bush-land biotope and inland water birds (SánchezMarco, 1999b). On the other hand, residentspecies reach the highest values, especially tho-se residents in the modern Eurosiberian zone ofthe Iberian Peninsula. Wintering and breedingtaxa have a comparatively low incidence. Theoccurrence in TD 6 of such taxa as Anas, Me-lanitta, Porzana and Cinclus provides evidencefor the presence of a body of water nearby, lar-ger than the modern-day Arlanzón brook thatruns about 3 km from the outcrops. In conclu-sion, the avian remains from this layer point tothree main ecological traits: (a) the existence of

98 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 9: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

a pool, lake or slow river in (b) an open countrytype of habitat, and (c) that climatic conditionswere similar to modern Iberian winters or thatmost fossils were deposited in the cave duringthe winter season (Sánchez Marco, 1999b).

Middle Pleistocene

The site Orgnac 3, at Orgnac-L’Aven (Fran-ce), was constituted by the fulfilling of a doline.The stratigraphic profile shows 19 layers,among them the layer i is the richest in avianremains. For this reason, as well as for the oc-currence of N. scandiaca, the fossil assemblagefrom this unit has been chosen for the presentstudy. The avian bones were studied by Mou-rer-Chauviré (1975a). After the rodent associa-tion, Jeannet (1974 fide Mourer-Chauviré,1975a) attributed the layer i to the Mindel-Rissphase. An important fraction of the species aretree-dwelling birds, and it is also remarkablethe abundance of galliforms. The rodentsshould indicate a temperate and dry climate(Chaline, 1972, fide Mourer-Chauviré, 1975a).

The Aven 1 of La Fage is a karstic infillingsituated near Noailles town (France). It hasyielded one of the largest list of species in theMiddle Pleistocene, with more than 100 taxa(Mourer-Chauviré, 1975b; Mourer-Chauviré etal., 2003) distributed along the whole strati-graphy (Mourer-Chauviré & Philippe, 1972).Avian remains are more abundant in the strati-graphic unit CO (Mourer-Chauviré, 1975a), asubdivision of the layer 5. The climatic condi-tions for this layer have been interpreted (Mou-rer-Chauviré, 1975b; Mourer-Chauviré et al.,2003) as being slightly colder than today, butwith colder and warmer periods, because te-rrestrial gasteropods, micro- and macromam-mals as well as some birds from this layerwould indicate temperate climatic conditions,and, on the other hand, some other bird spe-cies are tied to cold climates.

Ambrona and Torralba are two localities 3 km apart, both related to acheulean occupa-tions (Santonja, 1989; Santonja & Vila, 1990).The ten avian species found here are aquaticones (Sánchez Marco, 1990, 1999c). With theexception of two rallids (Purple SwamphenPorphyrio porphyrio and Fulica cf. atra), theremaining species were identified as winteringspecies. Also attributable to this age and loca-

ted in the middle of Iberia is Áridos 1, an anth-ropic deposit formed in one bank of the JaramaRiver. The best ecological group representedhere is the one tied to woodlands and forests.Likewise, there are aquatic and open countryspecies (Mourer-Chauviré, 1980).

Castiglione 3 is a karstic cavity in the Olettamassif (north of Corsica). The deposit Casti-glione 3 CG is a fissure that contains a largequantity of fossil remains. It has been attributedto an age of 350 ka (Salotti et al., 1997). Theidentification of the birds is owed to Mourer-Chauviré (in Salotti et al., 1997). This MiddlePleistocene site records one of the last occu-rrences of T. balearica, which appears withBarn Owl T. alba. The major part of the co-llection is composed by diurnal and nocturnalraptors, with two insular paleoendemisms.

Fontéchevade cave is in the middle west ofFrance, near Montbron town. The fossil assem-blage corresponds to a woodland habitat type(Mourer-Chauviré, 1975a). It contains charac-teristic Mediterranean avian taxa as well asnon-Mediterranean ones, and one or two spe-cies which occurrence could be interpreted asthe result of irruptions from north Europe.

The site known as Galería also belongs tothe Atapuerca complex. The three stratipraphicunits containing the highest diversity of avianspecies are, from top to bottom: TG11,TG10A-TN7 and TG10B-TN6 (Sánchez Mar-co, 1995b, 1999a). These units are youngerthan an inmmediately below stalagmitic crustdated to 317.6 ± 60 ka (ESR, Grün & Aguirre,1987), and older than the crust inmmediatelyabove dated to 211 ± 32 ka (ESR, Falguères,1986) and 177.3 ± 23 ka (ESR, Grün & Agui-rre, 1987). The filling of this cavity does notcoincide chronologically with the ones of Doli-na and Elefante (Made et al., 2003).

The bird remains found in the TG10B-TN6and TG10A-TN7 units, compose habitat andphenetic spectra which are characteristic of hu-mid zones with open lands. They correspond tozones in which the fauna acquires its greater di-versity in the wintering periods. Some conside-rable forest masses might have existed, as canbe deduced from the passeriforms related tolandscapes with shrubs and trees. There is noevidence to affirm that these areas, with moreor less open forests, constituted one of the mainelements of the surroundings. The habitat andphenetic spectra of the superior stratigraphic

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 99

Ardeola 51(1), 2004, 91-132

Page 10: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

unit, TG11, points to reductions of the tempe-rature and the humidity for that period, in com-parison with the condition of the underlyinglayers. During the corresponding time intervalthe bodies of water continued to determine thelocal communities of birds and it seems that aregression of the forests took place. One trait ofthe landscape recorded in the Early and MiddlePleistocene of Atapuerca could be the existenceof a humid zone that extended to the foot of themountain range of Atapuerca. This humid zonewas made up of backwaters (pools or fluvialsections of slow-flowing waters) and streams. Itchanged in extension on several occasions and,probably, in depth. It seems that this regionwas a wintering area which was very importantin the periods corresponding to lower layers ofElefante and upper ones of Galería (Made etal., 2003).

The Lazaret site is a 40 m long cavity, loca-ted in the Boron mountain near Nice and 100 mfrom the current coastline. During the MiddlePleistocene its distance from the sea wasaround 500 m (Vilette, 1993). The stratigraphicunit C.III is observed in the profile at the en-trance of the cave. These sediments were depo-sited before the formation of a stalagmitic crustdated between 125 and 70 ka BP (Falguères etal., 1992). Thus, Lazaret C.III has been attri-buted to an age of 150 to 125 ka BP, OIS 6. Allthe species showed in Table 1, except Cincluscinclus, appears in the first layers of this strati-graphic unit (Vilette, 1993: Table XII). Theavian assemblage corresponds to a forest areawith inland humid zones. The nearness of thesea is also noted in the fossil remains of birds.Some years before the work on the unit C.III,Mourer-Chaviré (1964, 1975a) studied two ot-her units of this cave: Locus VIII and some la-yers from the bottom of the cavity. Both infi-llings (Lazaret Locus VIII and Lazaretbottom) are considered to have been depositedduring a large span of time during the Riss in-terval (Mourer-Chauviré, 1975a). Thus, noneof both avian associations may be understoodas samples of individual avifaunas, but as amixture of different ones. In spite of this, theirtaxonomical compositions and their respectiverepresentation of habitats are very similar tothose of the unit C.III, although the latter en-compasses a shorter interval. These three as-sociations include typical Eurosiberian and Me-diterranean taxa, particularly the corresponding

to Locus VIII and C.III. A sharp difference inthis one is the appearance of several northernirruptive species as well as H. albicilla and Pa-llid Harrier Circus macrourus, today restrictedto more eastern areas.

Therefore, either the southern coast of Fran-ce suffered fluctuating climatic conditions du-ring the cool phases of this period or there wasa strip alongside the coast with a real «mixed»ornithofauna with no parallel today.

Approximately in the middle of the ItalianPeninsula, Quartaccio quarry (Vitinia, Rome),records an assemblage from the Vitinia For-mation (Bedetti, 2001). The correspondingavian list of the Appendix 1 is the result of a re-vision by Bedetti (2001) of previous works.Most of the species correspond to aquatic-dwe-lling birds. The occurrence of the Eider Soma-teria molissima should be considered as anirruptive species into this region.

The avian remains from Spinagallo cave,near Siracusa (southeastern Sicily), were stu-died by Pavia (1999). It contains a fossil asso-ciation dated of about 500 ka BP (Bada et al.,1991), and composed of a large list of Medite-rranean taxa. The degree of isolation duringthe period represented by this assemblage se-ems to have been quite reduced.

Among the five Pleistocene faunal comple-xes described in Sicilian localities, one of them,Elephas mnaidriensis Faunal Complex, fromthe Middle Pleistocene, has yielded an impor-tant avian assemblage (Pavia, 2001). Three out-crops contribute to the avian collection: K 22,Acquedolci and Contrada Fusco —the for-mer studied by Cassoli & Tagliacozzo(1996)—. The assemblage of birds shows thetypical traits of the Mediterranean insular avi-faunas (sensu Alcover et al., 1992) but revealsa reduction of the degree of isolation (Pavia,2001). The Goosander Mergus merganser se-ems to be a northern irruptive species.

Upper Pleistocene

Torre in Pietra locality is in the province ofRome and was studied by Cossoli (1978). Thelayer m, with a pre-würmian lithic industry,has a Mediterranean assemblage of birds, witha high proportion of water species.

In the north of Spain, in the area today in-cluded in the Eurosiberian region, Valdegoba

100 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 11: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 101

Ardeola 51(1), 2004, 91-132

TABLE 2

Upper Pleistocene and Holocene localities from the Mediterranean region used in this work. 1.- Chronology(× 103 aBP). 2.—Epochs. 3.—Lithic intervals. 4.—Lithic types. 5.—Oxygen Isotopic Stadials.[Localidades de la región mediterránea del Pleistoceno Superior y del Holoceno utilizadas en este estudio. 1.—Cronología (× 103 años). 2.—Épocas. 3.—Intervalos líticos. 4.—Tipos líticos. 5.—Estadíos isotópicos del 18O.]

Page 12: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

cave whose sediments were deposited duringthe Mousterian period (Díez et al., 1989), offersan avian association with Mediterranean as wellas Eurosiberian characteristic species. Threenorthern irruptive species are recorded. Twomore reduced assemblages, but with similar fe-atures to Valdegoba are the Italian localitiesof Radice valley (Biduttu et al., 1967) andCarnello (Segre et al., 1984), both situatednear Sora village and with some Mousteriantools collections.

The Upper Pleistocene deposits from CovaNova locality (Capdepera, Mallorca Island)have yielded a large sample of a Mediterraneaninsular avifauna (Florit & Alcover, 1987; Mc-Minn & Alcover, 1992). The occurrence of theBullfinch Pyrrhula pyrrhula in the Balearic Is-lands has to be considered as a case of irruptionof a northern species. Another typical Medite-rranean assemblage was collected at the localityof Es Pouàs (Florit et al., 1989). This karsticcavity, where there are no remains of irruptivetaxa, is situated near Santa Agnès de Corona(Eivissa Island).

The fossil remains from Bacho Kiro cavewere studied by Bochenski (1982). This loca-lity from the Stara Planina region (Bulgaria)shows an assemblage characteristic of tempe-rate to mild conditions. The presence of Ptar-migan Lagopus mutus would lead to assump-tion of some relatively cool temperatures,although this species seems to have occurred inforest zones in the Late Pleistocene (Bochenski,1974).

Cau d’en Borrás is a cavity on the east co-ast of Spain, near Oropesa town as well as thecurrent sea line, in spite of which the only spe-cies recorded which is connected with the sea isHaliaeetus albicilla. The fossil assemblage ischaracteristic of open Mediterranean habitats. Itis important to point out that the closeness ofthe sea does not seem to have any consequencein the avian fossil record at the locality.

Gibraltar has a big number of karstic cavi-ties, a lot of them with a valuable Pleistocenerecord. Gorham’s cave is situated close to thesouth end of this small Peninsula. The fossilremains from this site were studied by East-ham (1968). Two avian assemblages are the ri-chest: one from layers B and D attributed toWürm III (ca. 29 ka BP) another from layers Kand U, attributed to Würm I. The former is anunbalanced sample of the corresponding local

avifauna. Most of the taxa are marine species,raptors and rock inhabitants. The assemblagefrom layers K and M is also of Mediterraneantype but records the presence of some northernirruptive birds.

Devil’s Tower shelter was situated —it wasdismantled some time ago— near the isthmusof Gibraltar. Its faunal remains were identifiedby Bate (1928). The avian association is verysimilar to the ones mentioned for Gorham’sCave. Not far from here, between both locali-ties and about 250-300 m a.s.l., there is Ibexcave, whose fossil association, studied by Coo-per (2000) represents also a Mediterranean or-nithofauna. The dates of Ibex cave (Rhodes etal., 2000) support a Late Pleistocene age forthis cavity but later than Gorham.

With the exception of Great Auk Pinguinusimpennis and northern irruptive species, thetaxa recorded in the Gibraltarian localities arethe same ones that are currently observed atthis migratory point (Finlayson, 1992).

Gegant cave is situated on the coast of Bar-celona, in the Garraf massif. The assemblage ofthe layer II indicates, as in other cases, openareas with climatic conditions typical of theMediterranean region.

Arbreda cave is near the Serinyà village, ina zone of the north of the Iberian Peninsulawith intense processes of travertine formationand karstification (Garcia, 1995). The avianfinds of this outcrop have been studied by Vi-lette (1983) and Garcia (1995, 1997). The lar-gest fossil assemblages correspond to the stra-tigraphic units: Mousterian, Aurignacian (datedto 25,830 ± 400 aBP —years before present—)and Gravettian (dated to 20,130 ± 220 aBP) la-yers by Garcia (1995) and Aurignacian layersby Vilette (1983). All the assemblages are ty-pical of the current Mediterranean region. Inthe Gravettian association, Garcia (1995) attri-buted one of the finds to Lagopus sp., but thisfact does not determine the meaning of thewhole avian association. The appearance of P.enucleator in the Upper Paleolithic layers ofArbreda II (Vilette, 1983) is important.

Romaní site is a rock shelter built in a tra-vertine formation and located just in Capelladesvillage, northeast Iberia. The stratigraphic unitII has been dated between 40-44 ka BP (Bis-choff et al., 1988). It contains a small sample ofthe corresponding ornithofauna. A noticeablefeature is the occurrence of P. enucleator.

102 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 13: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

In the Languedoc region (south of France),the Mousterian layers from Hortus cave haveprovided a collection of fossil birds studied byMourer-Chauviré (1972, 1975a). It is a typicalMediterranean assemblage with no record ofcharacteristic Eurosiberian species. Ten kilo-metres from Hortus there is Salpêtre cave(Mourer-Chauviré, 1975a), this likewise con-taining Mousterian and Upper Paleolithic la-yers. The avian assemblage from the Mouste-rian layers from the latter show the occurrenceof Mediterranean and Eurosiberian species, so-mething already seen at other localities fromthis area. The same features can be observed inlayers 1a and F1 (transition Dryas 3 – Prebore-al) from Salpêtre cave, studied by Vilette etal. (1983).

Coscia localities are situated in the north endof Corsica Island. Two fossil avian depositsare distinguished (Bonifay et al., 1998): Coscia(rock shelter South), from the early Würm,and Coscia cave, ca. 60 ka BP. Both avian as-semblages are typical of western Mediterraneanislands. In the shelter South record there is evi-dence of irruption of northern species.

Cassoli (in Bulgarelli, 1972) identified thefossil birds from Torre Nave cave. This site issituated on the southern coast of the Italian Pe-ninsula, in Cosenza. Unexpectedly, there arenot any marine species in the avian assemblage.Nor northern irruptive species are.

Near the village of Remoulins, not far fromNîmes (southern France), is Salpêtrière shelter.The stratigraphic complex CG5-SLC4 (corres-ponding to layer 14a) has yielded the richestavian association of this site. It has been attri-buted to the early Aurignacian and dated of28,180 ± 1,000 aBP (Vilette, 1983). The pre-sence of aquatic species is explained by thecloseness of the Gordon River, but the recordof low dispersive Eurosiberian species as wellas northern irruptive birds, together with theabsence of typical Mediterranean taxa pointsto Eurosiberian paleoenvironmental conditions.

Fumane rock shelter is located in the regionof Veneto, north Italy, close to the Alps range.Therefore, it is outside of the Mediterraneanregion. The avian remains were studied by Cas-soli and Tagliacozzo (Bartolomei et al., 1992;Cassoli & Tagliacozzo, 1994). The Mousteriancollection is very scarce, but the Aurignacianone constitutes a relatively good sample of thelocal avifauna. It is characteristic of the Euro-

siberian region with presence of some irruptivespecies from north Europe.

At the west end of the Mediterranean region,Figueira Brava cave (Mourer-Chauviré & An-tunes, 1991, 2000) is situated south of Lisbon,on the coast of the Setubal Peninsula. The com-position of its Mousterian assemblage is highlyinfluenced by the closeness of the site to thesea. The avian local fauna was of Mediterrane-an type with a high proportion of aquatic taxa,two of them might be considered as northernirruptive species.

Boev (1994) studied the avian remains fromTemnata cave, near Karlukovo village, and si-tuated in the middle west of Bulgaria. The lar-gest avian assemblage comes from the layer3d, dated of 28,900 ± 1,100 aBP. It is not avery rich layer in fossil birds, but the corres-ponding association of taxa would fit betterwith a Mediterranean avifauna. On the otherhand, the layer 3a, dated of 13,600 ± 200 aBP,contained an avian assemblage characteristicof Eurosiberian conditions. None of these as-semblages record the occurrence of northernirruptive species.

Sandalja I and Sandalja II caves are situa-ted on the northern coast of Croatia. Theiravian remains have been the subject of someworks by Malez (fide Tyrberg, 1998). The layerd of the former has been attributed to the Gra-vettian lithic period (Würm 3) whereas the la-yer E of the latter to the Aurignacian (with adate of 23,540 ± 180 aBP). Both fossil assem-blages are characteristic of woodland habitats,although the presence of Lagopus in Sandalja Icould be understood as an indicator of a coolerphase, in spite of there not being any record ofany northern irruptive taxa in such a large va-riety of aquatic habitat species. The same aut-hor (Malez fide Tyrberg, 1998) has studied thebirds from Vindija cave, situated in the northof the country. Its largest assemblage is dated atca. 26,970 aBP (Würm 3) and corresponds tothe layer E + F, which is attributed to the Au-rignacian. Thus, the above-mentioned assem-blages from these three Croatian sites are chro-nologically very close one another. Moreover,the paleoenvironmental features implicated bythese local associations are practically thesame.

The locality of Ohalo 2, in the Galilee re-gion (Israel), has a rich record from the EarlyEpipaleolithic (Simmons & Nadel fide Tyrberg,

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 103

Ardeola 51(1), 2004, 91-132

Page 14: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

1998), dated of about 19,400 aBP. The assem-blage corresponds to a typical eastern Medite-rranean avifauna, but there are six northernirruptive species recorded.

The avian remains from Bois-des-Broussesshelter were studied by Vilette (1983). This lo-cality is close to the Hérault River, 25 km fromMontpellier. The layer 2B (attributed to the So-lutrean) contains a non-Mediterranean fossilassemblage and the uncertain presence of anorthern irruptive species (cf. Great Snipe Ga-llinago media).

In the middle of the Iberian Peninsula, therock shelter named Jarama II has yielded anavian assemblage attributed to the Early Mag-dalenian phase (Jordá, 1993; Adán et al., 1995)which is clearly of non-Mediterranean type,although there is no record of irruptive speciesfrom north Europe.

Castiglione 3 PL is an Upper Pleistocenekarstic infilling rich in avian remains in theabove-mentioned Castiglione 3 complex. Se-diments from PL fissure are dated of about 15ka BP (Salotti et al., 2000). The correspondingavian assemblage is, as for the CG fissure, alsotypical of Mediterranean islands, with the ex-ception of the presence of Alectoris.

Palidoro quarry is situated near Rome. Ityielded a reduced avian association, which wasattributed to the Upper Paleolithic period (Cas-soli, 1977). The taxonomical composition ofthis association is of Mediterranean type.

Romains cave at Pierre-Châtel, near Virig-nin village (French Alps), is not today —andprobably never was— in the Mediterranean re-gion. Its Magdalenian avian association (Des-brosse & Mourer-Chauviré, 1973; Mourer-Chauviré, 1975a) is consequently characteristicof a woodland habitat under a fresh climate.The high percentage of aquatic species is ex-plained by the nearness of the Rhone River tothe cave. The Snowy Owl appears in the re-cord of this cavity.

Dimitrijevic et al. (2000) have studied theEpigravettian rock shelter of Trebacki. Thislocality is near Berane village, in Yugoslavia.The avian assemblage is characteristic of theEurosiberian region. There is also the recordof P. enucleator.

The fossil birds from Nerja locality —a cavesituated near the homonymous village, in thesouth of Spain, approximately 1 km from thecurrent sea line (Jordá, 1986)— have been the

subject of several works. The most informativeassemblages correspond respectively to: Epi-paleolithic (Boessneck and Driesch, 1980; Her-nández Carrasquilla, 1995; Tyrberg & Hernán-dez Carrasquilla, 1995), Magdalenian(Eastham, 1986) and Upper Paleolithic layers(Hernández Carrasquilla, 1995). The acquaticspecies constitute the largest group in every as-semblage, being the small passeriforms absentor not identified.

Kozarnika cave is located near the town ofBologradchik, north-west Bulgaria. The avianfinds were collected in the cultural layers IIIand IV, which have been attributed to the Gra-vettian (26 to 19 ka BP; Boev, 2001). The fos-sil material was accumulated into the cavity bynocturnal raptors, most probably by Bubo bubo(Boev, 2001). The association of birds shows alarge representation of Eurosiberian species. Itimplies woodland or forest habitats with noMediterranean conditions. The Snowy Owl ap-pears as an irruptive immigrant.

Arene Candide is one of the richest Pleisto-cene avian localities of Europe. The fossil birdsfrom this cave, situated in the Ligurian coast ofItaly, were studied by Cassoli (1980). Sedi-ments from the Upper Paleolithic, with a thick-ness about 3.8 m, show an avian assemblagewith twelve northern irruptive species, as wellas typical low dispersive Eurosiberian and Me-diterranean taxa. This fact may be the result ofa mixture of layers —or avifaunas— or, on thecontrary, to represent the reality during the Up-per Pleistocene in this area.

The site of Mas-d’Azil consists of a largecave situated in the French Pyrenees, 30 kmfrom Foix town. The avian finds, studied byVilette (1983), come from the cavity named«galerie rive droite». All the fossils were co-llected in the Magdalenian layers (13,400 ±1,000 and 13,200 ± 110 aBP) (Vilette, 1983).As it can be expected by the geographical si-tuation of the locality, the avian taxa imply anon-Mediterranean climate. The Snowy Owl isrecorded together with the Eagle Owl. Thesame author (Vilette, 1983) studied the birdsfrom Cingle Vermell, a shelter located nearVilanova de Sau village, northern Iberia. Theavian assemblage of the Tardiglacial layers (da-ted to 11,620 ± 140 aBP) is characteristic ofMediterranean conditions.

Razhishkata cave situated near Lakatnikstation, Sofia district (Bulgaria), has a fossil

104 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 15: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

record from the end of the Pleistocene and pro-bably of the transition to the Holocene (Boev,2000b). The avian assemblage contains lowdispersive species linked to a woodland habitatunder Eurosiberian conditions.

The richest avian association of the final Up-per Pleistocene was recovered from Romanellicave (south of the Italian Peninsula), with twoseries of dates: 11,930 ± 520 and 9,050 ± 100aBP (Cassoli & Tagliacozzo, 1997) and also10,640 ± 100 and 9,980 ± 100 aBP, all of themfor the formation Terre brune (upper part ofthe stratigraphical profile; Tagliacozzo & Gala,2000). A large amount of water species, withclear evidences of human exploitation of an-seriforms (Tagliacozzo & Gala, 2002), and rap-tors are recorded here, and some irruptive taxaamong them.

Cendres cave is in the eastern coast ofSpain, near Teulada village. It has yielded anunbalanced sample of the avian paleornithoca-enoses, identified by Villaverde et al. (1997),from the end of Magdalenian. The authorspoint out the possible presence of the irruptiveBrent Goose Branta bernicla.

Hayonim cave, situated in the Galilee re-gion of Israel, has some very rich collections offossil birds related to Natufian period. The la-yer B, dated of 10.7 to 12.4 ka BP and studiedby Tchernov (fide Tyrberg, 1998) as well asthe sample studied by Pichon (fide Tyrberg,1998) provide and exceptional insight to thelocal avifauna in this period. It is characteristicof the eastern part of the Mediterranean regionand it is worthwhile mentioning that no nort-hern irruptive species have been found in thisvery large fossil record, unlike those seen inOhalo 2, the other Galilean locality.

Fontbrégoua locality is a large cavity situa-ted near Salernes village, about 60 km fromToulon, France. The most important avian co-llection come from the Epipaleolithic layer (50to 53), with an infradate of 8,400 ± 110 (layer54) and 7,600 ± 100 aBP (layers 50 and 51;Vilette, 1983). The very rich fossil assemblageof birds is characteristic of a zone under Medi-terranean conditions, with a predominant wo-odland habitat. Eurosiberian indicator speciesare not recorded.

Mourer-Chauviré (1999) studied the EarlyHolocene fossil bird collection from Akrotirilocality. In spite of its modern age, these avianremains are the oldest known from Cyprus. The

small assemblage represents an insular Medite-rranean ornithofauna with no occurrence ofnorthern species.

Among the localities from Crete studied byWeesie (1988), Liko is the richest one by far.Liko cave is near Likotenaria village, on thenorthwest coast of Crete, in a cliff, a few me-tres above sea level. The fossil assemblage is awide sample of an eastern Mediterranean avi-fauna, with insular endemisms, species of eas-tern distribution and one or two northern irrup-tive taxa (Tengalm’s Owl Aegolius funereusand cf. Pyrrhula pyrrhula). Two other cavitiessituated not far from here, Gumbes B andGumbes C, situated also on the north coast ofthe island, offer two more reduced assemblageswith no irruptive species.

RESULTS

The cooling episodes in the northern he-misphere recorded until now have been notedbefore in high latitudes rather than in low ones.Thus, the temperatures fell in Greenland andIceland around 250 and 150 years, respecti-vely, before those in Europe (Dansgaard et al.,1975; Burton, 1995). It is probable that short-term climatic deteriorations were noted only inhigh latitudes, having no consequences in theclimatic conditions in middle latitudes, alt-hough it may be assumed that some of suchevents should lead to movements of birdssouthwards up to refugia in the MR.

Table 3 shows that the first record of irrupti-ve species from the north of Eurasia in the MRoccurs near 1 Ma (Victoria and Dursunlu), inapproximate coincidence with the Galerianmammal pulse. From this time up to the end ofthe Middle Pleistocene, at least, the inner partof the northern Iberian Peninsula had temperedconditions of Eurosiberian type (Valdegoba,Elefante, Dolina and Galería). On the con-trary, the eastern part held a Mediterranean cli-mate during the all of the Pleistocene, with theexception of occasional enlargements of theEurosiberian area near the Pyrenees (Gravet-tian layers from Arbreda). Therefore, the cli-mate in Iberia was in general fresher and con-siderably moister than it is today.

The irruption of northern species in the MRis constantly recorded in the uppermost layersof the Lower Pleistocene (Huéscar 1 and layer

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 105

Ardeola 51(1), 2004, 91-132

Page 16: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

6 from Dolina) and during the Middle Pleisto-cene, with the exception of CG sediments fromCastiglione 3 (Corsica) and Áridos 1 (in themiddle of Iberia). The MR seems to have di-sappeared during this time from the south ofFrance, and to be restricted to south half of thewestern peninsulas and the islands. We lackdata for this period from the east of the MR.

The Mousterian period spread out the Ee-mian and a large part of the Würmian phases

(OIS 3-5). Thus, these follows a succession ofshifts in the climatic conditions in the northernhemisphere. The respective positions of someof the localities from this span of time on thechronological Table 2 are particularly uncer-tain. Some northern irruptions are clearly re-corded (Valdegoba, layers K and M from Gor-ham, and Carnello) and it seems also that thepaleornithocaenoses from the middle of Italywere quite different from those from the south.

106 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

TABLE 3

List of localities arranged by the presence of irruptive Eurosiberian species and the group of grouses, Pygmyowl and Tengmalm’s owl (see Appendix 2). Localities from islands and Middle East are underlined.[Lista de localidades ordenadas por la presencia de la irrupción de especies Eurosiberianas y el grupo de lostetraónidos, Mochuelo Alpino y Boreal (ver Apéndice 2). Las localidades correspondientes a islas o aquellasdel Oriente Medio están subrayadas.]

Localities with irruptive Eurosiberian species Localities with no irruptive Eurosiberian species[Localidades con especies Eurosiberianas irruptivas] [Localidades sin especies Eurosiberianas irruptivas]

Presence of grouses-Pygmy- No presence of grouses- Presence of grouses-Pygmy- No presence of grouses-Tengmalm’s owls’ group Pygmy-Tengmalm’s owls’ Tengmalm’s owls’ group Pygmy-Tengmalm’s owls’

[Presencia de tetraónidos, group [ No presencia de [Presencia de tetraónidos, group [No presencia de Mochuelo Alpino y Boreal] tetraónidos, Mochuelo Mochuelo Alpino y Boreal] tetraónidos, Mochuelo

Alpino y Boreal] Alpino y Boreal]

Arbreda (Gravet.) Ambrona-Torralba Bacho Kiro AkrotiriArene Candide Arbreda (Aurign.) Elefante Arbreda (Mouster.)Bois-des-Brousses Arbreda II Jarama II Áridos 1Carnello Coscia (South) Lazaret (bottom) Ca na ReiaLa Fage (CO) Coscia (cave) Radice Casablanca 1Fontéchevade Cova Nova Razhishkata Castiglione 3 (CG)Fumane Dolina Salpêtre Castiglione 3 (PL)Kozarnika Dursunlu S�andalja I (d) Cau d’en BorrásLazaret (loc. VIII) EmFC Sicily S�andalja II (E) CendresLazaret (C III) Figueira Brava Temnata (3a) Cingle VermellMas-d’Azil Galería (TG 10B) Varshets Devil’s TowerOrgnac 3 (i) Galería (TG 10A) Vindija Es PouàsRomains Gorham (K-M) FontbrégouaSalpêtrière Higueruelas Galería (TG 11)Treba�ki Huéscar 1 GegantValdegoba Ibex Gorham (B-D)

Liko Gumbes BNerja (Epipaleolit.) Gumbes CNerja (Upper Pal.) HayonimOhalo 2 HortusPedrera de S’Ònix Montoussé 5Quartaccio Nerja (Magdalen.)Romanelli PalidoroRomaní (II) QuibasSpinagallo Temnata (3d)Victoria Torre Nave

Torre in Pietra (d)Ubeidiya (II-23)

Page 17: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

During the Upper Paleolithic the Eurosibe-rian area extended to inner Iberia (Jarama II),southern France (Bois-des-Brousses andSalpêtrière), northern Italy (Arene Candideand Fumane), Adriatic coast (Sandalja I andSandalja II) and northern of Balkan Peninsula(layer 3a from Temnata, Trebacki, Kozarni-ka and Razhishkata).

CONCLUSIONS

The Mediterranean extension during theQuaternary reached out more to the westernpart than to the east, as happens at present. Itseems that the Mediterranean conditions neverreached the territory of current Bulgaria, alt-hough the fossil locations of that area are situa-ted at lower latitudes than the locations fromthe south of France and many from Italy andIberia. Some northern irruptive species, but thegroup of grouse and Pygmy and Tengmalm’sOwls, appear on islands (Coscia, Cova Nova,Sicily Faunal Complex, Liko, Pedrera deS’Ònix) and in the Middle East (Ohalo 2). Thereason for their absence it is not the geographi-cal barrier of the Mediterranean sea (at leastfor owls), neither the reduced time span of coolphases, but the unsuitable climatic conditionsfor these species.

There are sufficient data to assume that thegeographical boundaries of avian species havechanged several times during the Quaternary.Moreover, it may be accepted that some of the-se changes were not caused directly by climaticcircumstances. As can be observed today, in-creasing individuals of some northern specieslead to quick dispersal movements southwards.It is likely that icecap regressions created sui-table conditions for demographic explosions,and some of such events could increase the sizeof populations to magnitudes unmatched byhistoric observations.

Some of the fossil locations in the south ofFrance and northern Italy (Arene Candide,Bois-des-Brousses, La Fage, Fontéchevade,Lazaret, Mas-d’Azil, Orgnac 3, Romains andSalpêtrière) point to several displacements ofcharacteristic Eurosiberian low dispersive taxato the MR during the cool phases, followingthe shifts of climatic and environmental condi-tions southwards (Table 3). The large recordof the genus Loxia (a group of birds specialized

in feeding on seed-cones) in southern Franceand northern Italian localities (Tyrberg, 1991b;see Table 1), implies the existence of at leastsome phases, particularly during the UpperPleistocene, with climatic conditions moistenough to permit the spreading of conifer (mostprobably of pine) forests. The Mediterraneanislands, as well as Iberia and the south of theItalian Peninsula, were excluded from this phe-nomenon and maintained a rather steady paleo-ecological condition.

There is a very scarce fossil record of irrup-tive species in the MR during upper Plioceneand early lower Pleistocene. During this spanof time, cold pulses only became apparent inthe arrival of wintering species into the MR.This fact is unknown until this date, and isfirstly observed at Higueruelas, which may beconsidered as the first known avian fossil siteof the Quaternary in the Iberian Peninsula.From the Middle Pleistocene onwards, the suc-cession of stadials and interstadials in Europecaused two patterns of avian distribution: a)north and central Europe were severely affectedby climatic changes and extensions of the icecap, which probably led to habitat destructionand latitudinal displacements following distri-butions in east-west belts (Made, 1992), and(b) the MR —at times, only a part of its currentextension— supported a Mediterranean ornit-hofauna during the whole of this time.

In Quaternary fossil localities from the MRno ornithocaenoses have been found with thesame taxonomic composition as those existingat present time in northern Eurasia. A numberof outcrops that encompass the fossil record ofa great part of the Pleistocene points to theirruption of species from northern Europe intothe Mediterranean avifaunas. This fact does notimply that the climatic conditions in the Medi-terranean region were similar to those in thenorth of the continent. On the north face of theMediterranean Sea tempered conditions stayedmore or less constant throughout all the Pleis-tocene. In the south of Europe, not only theMediterranean region acted like a refuge fromthe end of the Lower Pleistocene onwards forspecies that in the interstages occupied morenorthern territories, but also did so in other zo-nes adjacent to the south of Europe. During thecoldest periods MR diminished, although thesouthern halves of Italy and Iberia, as well asthe eastern coast of the latter, were always do-

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 107

Ardeola 51(1), 2004, 91-132

Page 18: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

minated by Mediterranean faunas. Some spe-cies currently characteristic of the MR sharedthe same habitats in a part of northern Iberia,southern France, northern Italy and most of theBalkan Peninsula with species today typical ofthe Eurosiberian region of Europe.

ACKNOWLEDGEMENTS.—I would like to thank to J.A. Alcover and M. Elorza for their valuable com-ments on the manuscript and to M. Martinón, A. Pa-terson and J. J. Sanz for his technical assistance. Thefinal phase of this study has relied on the economicsupport of the European Union Interregional III-BMedocc Project PALAEOMED.

BIBLIOGRAPHY

ADÁN, G. et al. 1995. Prospecciones y excavacionesarquelógicas en el alto valle del Jarama (Valdeso-tos, Guadalajara, Castilla-La Mancha). En, R. Bal-bín, J. Valiente & M. T. Mussat (Eds.): Arquelogíaen Guadalajara, pp. 111-124. Junta de Comuni-dades Castilla-La Mancha. Toledo.

ADKINS, J. F., BOYLE, E. A., KEIGWIN, L. & CORTIJO,E. 1997. Variability of the North Atlantic thermo-haline circulation during the last interglacial pe-riod. Nature, 390: 154-156.

AGUIRRE, E. & MORALES, J. 1990. Villafranchianfaunal record of Spain. Quartärpaläontologie(Berlin), 8: 7-12.

AGUIRRE, E. & PASINI, G. 1985. The Pliocene-Pleis-tocene boundary. Episodes, 8: 116-120.

ALCOVER, J. A. 1989. Les aus fòssils de la cova deCa na Reia. Endins, 14-15: 95-100.

ALCOVER, J. A. 2000. Vertebrate evolution and ex-tinction on western and central Mediterranean is-lands. Tropics, 10: 103-123.

ALCOVER, J. A., FLORIT, F., MOURER-CHAUVIRÉ, C. &WEESIE, P. D. M. 1992. The avifaunas of the iso-lated Mediterranean islands during the Middle andLate Pleistocene. Natural History Museum of LosAngeles County, Science Series, 36: 273-283.

ALCOVER, J. A. & MCMINN, M. 1992. Presència del’àguila marina Haliaeetus albicilla (Linnaeus1758) al jaciment espeleològic quaternari d’EsPouàs (Sant Antoni de Portmany, Eivissa). En-dins, 17/18: 81-87.

ALCOVER, J. A., MOYÀ-SOLÀ, S. & PONS-MOYÀ, J.1981. Les quimeres del passat. Els vertebrats fòs-sils del Plio-Quaternari de les Balears i Pitiüses.Institució Catalana d’Història Natural, Memòries,11. Editorial Moll. Palma de Mallorca.

AZANZA, B., ALBERDI, M. T. & PRADO, J. L. 2000.Large mammal turnover pulses correlated with la-test Neogene glacial trends in the northwesternMediterranean region. En, M.B. Hart (Ed.): Cli-

mates: past and present, pp. 161-170. GeologicalSociety. London.

BADA, J. L., BELLUOMINI, G., BONFIGLIO, L., BRAN-CA, M., BURGIO, E. & DELITALA, L. 1991. Isoleu-cine epimerisation ages of Quaternary mammalsfrom Sicily. Il Quaternario, 4: 49-54.

BAR YOSEF, O. & GOREN-INBAR, N. 1993. The LithicAssemblages of `Ubeidiya: A Lower PalaeolithicSite in the Jordan Valley. Qedem, vol. 34. IsraelExploration Society. Jerusalem.

BARTOLOMEI, G. et al. 1994. La grotte de Fumane: unsite aurignacien au pied des Alpes Preistoria Al-pina, 28: 131-179.

BATE, D. M. A. 1928. The animal remains. En, D. A.E. Garrod, L. H. D. Buxton, G. Elliot Smith & D.M. A. Bate (Eds.). Excavation of a mousterianrock-shelter at Devil’s Tower, Gibraltar. Journalof the Royal Anthropological Institute, 58: 92-111.

BEDETTI, C. 2001. Update Middle Pleistocene fossilbirds data from Quartaccio quarry (Vitinia, Roma,Italy). Proceedings 1st International Congress TheWorld of Elephants: 18-22.

BIDDUTTU, I., CASSOLI, P. & MALPIERI, L. 1967. Sta-zione Musteriana in Valle Radice nel comune diSora (Frosinone). Quaternaria, 9: 321-348.

BISCHOFF, J. L., JULIA, R. & MORA, R. 1988. Ura-nium-series dating of the Mousterian occupation atAbric Romaní, Spain. Nature, 332: 68-70.

BLONDEL, J. 1985. Historical and ecological evidenceof the development of Mediterranean avifaunas.Proceedings of the XVIII International Ornitholo-gical Congress, Moscow 1985: 373-386.

BLONDEL, J. 1987. History and development of birdfaunas in the Mediterranean region. Documentsdu Laboratoire de Géologie de Lyon, 99: 231-238.

BOCHE_SKI, Z. 1974. Ptaki Mlodsego CzwartorzeduPolski. Panstwowe Wydawictwo Naukowe. Wars-zawa-Kraków.

BOCHENSKI, Z. 1982. Aves. En, J. K. Kozlowski(Ed.): Excavation in the Bacho Kiro cave (Bulga-ria). Final Report, pp. 31-38. Panstwowe Wy-dawnictwo Naukowe. Warszawa.

BOESSNECK, J. & DRIESCH, A. 1980. Tierknochen-funde aus vier südspanischen Höhlen. Studienüber frühe Tierknochenfunde von der IberischenHalbinsel, 7: 1-83.

BOEV, Z. 1994. The Upper Pleistocene birds. En, J.K. Kozlowski, H. Laville & B. Ginter (Eds.):Temnata cave. Excavations in Karlukovo karstarea, Bulgaria, vol 1.2, pp. 55-86. JagellonianUniversity Press. Cracovia.

BOEV, Z. 1995. Middle Villafranchian birds fromVarshets (Western Balkan Range - Bulgaria). Cou-rier Forschungsinstitut Senckenberg, 181: 259-269.

BOEV, Z. 1997. Chauvireria balcanica gen. n., sp. n.(Perdicinae-Galliformes) from the Middle Villa-franchian of Western Bulgaria. Geologica Balca-nica, 27: 69-78.

108 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 19: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

BOEV, Z. 1998a. First fossil record of the Snowy owlNyctea scandiaca (Linnaeus, 1758) (Aves; Stri-gidae) from Bulgaria. Historia naturalis bulgarica,9: 79-86.

BOEV, Z. 1998b. Actitis balcanica sp. n. - a LatePliocene Sandpiper (Aves: Scolopacidae) fromBulgaria. Historia Naturalis Bulgarica, 9: 71-77.

BOEV, Z. 1998c. Late Pliocene Hawfinches (Coc-cothraustes Brisson, 1760) (Aves: Fringillidae)from Bulgaria. Historia naturalis bulgarica, 9:87-99.

BOEV, Z. 1999a. Earliest finds of crossbills (genusLoxia) (Aves: Fringillidae) from Varshets (NWBulgaria). Geologica Balcanica, 29(3/4): 51-57.

BOEV, A. 1999b. Falco bakalovi sp. n. - a Late Plio-cene falcon (Falconidae, Aves) from Varshets (WBulgaria). Geologica Balcanica, 29: 131-135.

BOEV, A. 1999c. Gallinula balcanica sp. n. (Ralli-dae: Gruiformes) - a Middle Villafranchian Moor-hen from Western Bulgaria. Acta Zoologica Bul-garica, 51: 43-47.

BOEV, A. 1999d. Regulus bulgaricus sp. n. - the firstfossil Kinglet (Aves: Sylviidae) from the LatePliocene of Varshets, Western Bulgaria. HistoriaNaturalis Bulgarica, 10: 109-115.

BOEV, A. 1999e. Late Pliocene Bustards (Aves: Oti-didae) from Western Bulgaria. Historia NaturalisBulgarica, 10: 97-108.

BOEV, A. 2000a. The presence of Apus baranensisJanossy, 1977 (Aves: Apodidae) in the Late Plio-cene of Bulgaria. Acta Zoologica Bulgarica, 52:43-52.

BOEV, Z. 2000b. Late Pleistocene avifauna of theRazhishkata cave, western Bulgaria. Historia Na-turalis Bulgarica, 12: 71-87.

BOEV, Z. 2001. Late Pleistocene birds from the Ko-zarnika cave (Montana district; NW Bulgaria). Pro-ceedings First National Conference on Environ-ment and Cultural Heritage in Karst, vol. I, pp.113-128. Earth and Man National Museum. Sofia.

BOEV, Z. 2002. Neogene avifauna of Bulgaria. En, Z.Zhou & F. Zhang (Eds.). Proccedings of the 5th.Symposium of the Society of Avian Paleontologyand Evolution: 29-40. Sciences Press. Beijing.

BONADONNA, F. P. & VILA, I. M. 1984. Estudio geo-cronológico del volcanismo de Las Higueruelas.En, El medio físico de Castilla-La Mancha, vol.III, 249-253. Junta de Comunidades de Castilla-LaMancha. Albacete.

BONIFAY, E., BASSIAKOS, Y., BONIFAY, M. F., LOU-CHART, A., MOURER-CHAUVIRÉ, C., PEREIRA, E.,QUINIF, Y. & SALOTTI, M. 1998. La grotte de laCoscia (Rogliano, Macinaggio): étude préliminai-re d’un nouveau site du Pléistocène supérieur deCorse. Paleo, 10: 17-41.

BRODKORB, P. 1971. Catalogue of fossil birds: Part 4(Columbiformes through Piciformes). Bulletin ofthe Florida State Museum, Biological Sciences,11: 99-220.

BRUIJN, H. D. DE, DAAMS, R., DAXNER-HÖCK, G.,FAHLSBUSCH, V., GINSBURG, L., MEIN, P. & MO-RALES, J. 1992. Report of the RCMNS workinggroup on fossil mammals, Reisensburg 1990.Newsletters on Stratigraphy, 26: 65-118.

BULGARELLI, G. M. 1972. Il paleolitico della Grottadi Torre Nave (Praia a Mare-Cosenza). Quater-naria, 16: 149-188.

CALVO, J. P. et al. 1993. Up-to-date Spanish conti-nental Neogene synthesis and paleoclimatic inter-pretation. Revista de la Sociedad Geológica deEspaña, 6: 29-40.

CASSOLI, P. F. 1977. Upper Paleolithic fauna at Pali-doro (Rome): 1955 excavations. Quaternaria, 19:187-196.

CASSOLI, P. F. 1978. L’avifauna pre-würmiana diTorre in Pietra. Quaternaria, 20: 429-440.

CASSOLI, P. F. 1980. L’avifauna del pleistocene su-periore delle Arene Candide (Liguria). Memoriedell’Istituto Italiano di Paleontologia Umana,nouva serie, 3: 155-234.

CASSOLI, P. F. & TAGLIACOZZO, A. 1994. Considera-zioni paleontologiche, paleoecologiche e archeo-zoologiche sui macromammiferi e gli uccelli deilivelli del Pleistocene superiore del riparo di Fu-mane (VR) (scavi 1988-91). Bollettino del MuseoCivico de Storia Naturale di Verona, 18: 349-445.

CASSOLI, P. F. & TAGLIACOZZO, A. 1996. L’avifauna.En, B. Basile & S. Chilardi (Eds.): Siracusa: leossa dei giganti, pp. 61-67. Arnaldo LombardiPromozione. Siracusa.

CASSOLI, P. F. & TAGLIACOZZO, A. 1997. Butche-ring and cooking of birds in the palaeolithic site ofgrotta Romanelli (Italy). International Journal ofOsteoarchaeology, 7: 303-320.

CHENEVAL, J. & ADROVER, R. 1993. L’avifaune duMiocène supérieur d’Aljezar B (Los Aljezares, pro-vince de Teruel, Espagne). Systématique et paléoé-cologie. Paleontologia i Evolució, 26/27: 133-144.

CLOT, A., CHALINE, J., HEINTZ, E., JAMMOT, D.,MOURER-CHAUVIRÉ, C. & RAGE, J. C. 1976. Mon-toussé 5 (Hautes-Pyrenées), un nouveau remplis-sage de fissure à faune de vertébrés du Pléistocèneinférieur. Géobios, 9: 511-514.

COOPER, J. H. 2000. A preliminary report on the Pleis-tocene avifauna of Ibex cave, Gibraltar. En, J. C.Finlayson, G. Finlayson & D. Fa (Eds.): Gibraltarduring the Quaternary, pp. 227-232. Gibraltar Go-vernment Heritage Publications. Gibraltar.

CRAMP, S. 1998. The complete birds of the westernPalearctic. Oxford University Press. (CD-ROM).

CROIZAT, L., NELSON, G. & ROSEN, D. E. 1974. Cen-ters of origin and related concepts. Systematic zo-ology, 23: 265-287.

DEMENOCAL, P. B. 1995. Plio-Pleistocene Africanclimate. Science, 270: 53-58.

DESBROSSE, R. & MOURER-CHAUVIRÉ, C. 1973. Lesoiseaux magdaléniens de Pierre-Châtel (Ain).Quartär, 23/24: 149-164.

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 109

Ardeola 51(1), 2004, 91-132

Page 20: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

DÍAZ, M., ASENSIO, B. & TELLERÍA, J. L. 1996. Avesibéricas, I. No paseriformes. J. M. Reyero Editor.Madrid.

DÍEZ, C., GARCÍA, M. A., GIL, E., JORDÁ, J. F., OR-TEGA, A. I., SÁNCHEZ MARCO, A. & SÁNCHEZ, B.1989. La cueva de Valdegoba (Burgos). Primeracampaña de excavaciones. Zephyrus, XLI-XLII:55-74.

DIMITRIJEVIC, V., GÁL, E. & KESSLER, E. 1999. Thebird fauna from the Epigravettian site of Trebackikrs near Berane (NE Montenegro). Annales de Gé-ologie de la Peninsule Balkanique, 63: 107-118.

EASTHAM, A. 1968. The avifauna of Gorham’s cave,Gibraltar. Bulletin of the Institute of Archaeology,7: 37-42.

EASTHAM, A. 1986b. The birds of the Cueva de Ner-ja. En, J. F. Jordá (Ed.): La prehistoria de la Cue-va de Nerja (Málaga), pp. 109-131. Patronato dela Cueva de Nerja. Nerja.

EVANS, E. M. N., VAN COUVERING, J. A. H. & AN-DREWS, P. 1981. Palaeoecology of Miocene sites inwestern Kenya. Journal of Human Evolution, 10:99-116.

FAHLBUSCH, V. 1976. Report on the internationalsymposium on mammalian stratigraphy of the Eu-ropean Tertiary. Newsletter on Stratigraphy, 5:160-167.

FALGUÈRES, C. 1986. Datations des sites acheuléenset mousteriens du Midi Méditeranéen par al mét-hode de Résonnance de Spin Electronique. PhDThesis, Musée National d’Histoire Naturelle, Paris.

FALGUÈRES, C., LUMLEY, H. DE & BISCHOFF, J. L.1992. U-series dates for stalagmitic flowstone E(Riss/Würm interglaciation) at Grotte du Lazaret,Nice, France. Quaternary Research, 38: 227-233.

FINLAYSON, C. 1992. Birds of the strait of Gibraltar.T. & D. Poyser. London.

FLEMING, T. H. 1973. Numbers of mammal speciesin north and central American forest communi-ties. Ecology, 54: 555-563.

FLORIT, X. & ALCOVER, J. A. 1987. Els ocells delPleistocè superior de la cova Nova (Capdepera,Mallorca). I. El registre. Bolletí de la Societat d’Història Natural dels Balears, 31: 7-32.

FLORIT, X., MOURER-CHAUVIRÉ, C. & ALCOVER, J. A.1989. Els ocells pleistocènics d’Es Pouàs, Eivissa.Nota preliminar. Bolletí del Institut Català d’-Història Natural, 56: 35-46.

GARCIA, L. 1995. Preliminary study of Upper Pleis-tocene bird from bone remains from l’Arbredacave (Catalonia). Courier Forschungsinstitut Senc-kenberg, 181: 215-227.

GAUTIER, F., CALUZÓN, F, SUC, J. P. & VIOLANTI, D.1994. Âge et durée de la crise de salinité Messi-nienne. Comptes Rendus de l’Académie des Scien-ces de Paris, 318: 1103-1109.

GULEÇ, E., HOWELL, F. C. & WHITE, T. D. 1998.Dursunlu. A new Lower Pleistocene faunal andartifact-bearing locality in southern Anatolia. En,

H. Ullrich (Ed.): Lifestyles and survival strategiesin Pliocene and Pleistocene hominids. Edition Ar-chaea. Schweln.

HAFFER, J. 1982. General aspects of the Refuge The-ory. En, G. T. Prance (Ed.): Biological diversifi-cation in the tropics, pp. 6-24. Columbia Univer-sity Press. New York.

HERNÁNDEZ CARRASQUILLA, F. 1995. Cueva de Ner-ja (Málaga): las aves de las campañas de 1980 y1982. Trabajos sobre la cueva de Nerja, 5: 221-293.

HORÁCEK, I. & LOZEK, V. 1988. Palaeozoology andthe Mid-European Quaternary past: scope of theapproach and selected results. Academia. Praga.

JORDÁ, J. F. 1986. La cueva de Nerja en su entornogeográfico. En, J. F. Jordá (Ed.): La prehistoria dela cueva de Nerja (Málaga). Trabajos sobre lacueva de Nerja, 1: 21-28.

LAMBRECHT, K. 1933. Handbuch der Paläornitho-logie. Gebrüder Borntraeger, Berlin.

LOUCHART, A., MOURER-CHAUVIRÉ, C., GULEÇ, E.,HOWELL, F. C. & WHITE, T. D. 1998. L’avifaunede Dursunlu, Turquie, Pléistocène inférieur: cli-mat, environnement et biogéographie. ComptesRendus de l’Académie des Sciences de Paris, 327:341-346.

MADE, J. VAN DER 1992. Migrations and climate.Courier Forschungsinstitut Senckenberg, 153: 27-37.

MADE, J. VAN DER et al. 2003. El registro paleonto-lógico y arqueológico de los yacimientos de laTrinchera del Ferrocarril en la Sierra de Atapuer-ca. Coloquios de Paleontología, vol. ext. I: 345-372.

MALDONADO, A. 1985. Evolution of the Mediterra-nean basins and a detailed reconstruction of theCenozoic paleoceanography. En, R. Margalef(Ed.): Western Mediterranean, pp. 17-59. Perga-mon Press. Oxford.

MATTHEW, W. D. 1915. Climate and evolution. An-nals of the New York Academy of Sciences, 24:171-318.

MCMINN, M. & ALCOVER, J. A. 1992. Els ocells delPleistocè superior de la Cova Nova (Capdepera,Mallorca). III. Noves aportacions al registre. Bo-lletí de la Societat d’Història Natural de les Bale-ars, 35: 17-31.

MCMINN, M., ALTABA, C. R. & ALCOVER, J. A.1993. La fauna fòssil de la cova den Jaume Orat(parròquia d’Albarca, Sant Antoni de Portmany,Eivissa). Endins, 19: 49-54.

MEIN, P. 1976. Résultats du groupe de travail desvertébrés: Biozonation du Néogène méditerranéenà partir des mammifères. Actas del VI congresodel RCMNS, vol. 2: 78-81.

MLÍKOVSKY, J. 1998. A new barn owl (Aves: Strigi-formes) from the early Miocene of Germany, withcomments on the fossil history of the Tytoninae.Journal für Ornithologie, 139: 247-261.

110 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 21: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

MONTOYA, P. et al. 2001. Une faune très diversifiéedu Pléistocène inférieur de la Sierra de Quibas (pro-vince de Murcia, Espagne). Comptes Rendus del’Académie des Sciences de Paris, 332: 387-393.

MONTOYA, P. et al. 1999. La fauna del Pleistocenoinferior de la sierra de Quibas (Abanilla, Murcia).Estudios Geológicos, 55: 127-161.

MOREAU, R. E. 1954. The main vicissitudes of theEuropean avifauna since the Pliocene. Ibis, 96:411-431.

MOREAU, R. E. 1972. The Palaearctic-African birdmigration systems. Academic Press. London &New York.

MOURER-CHAUVIRE, C. 1964. Les oiseaux du LocusVIII de la grotte du Lazaret à Nice (A.-M.). Bulle-tin du Musée d’Anthropologie Préhistorique deMonaco, 11 : 61-80.

MOURER-CHAUVIRE, C. 1972. Les oiseaux du Wür-mien II de la grotte de l’Hortus (Valflaunès, Hé-rault). Études Quaternaires, 1: 271-288.

MOURER-CHAUVIRE, C. 1975a. Les oiseaux du Pléis-tocène moyen et supérieur de France. Documentsdu Laboratoire de Géologie de la Faculté deSciences de Lyon, 64: 1-624.

MOURER-CHAUVIRE, C. 1975b. Conclusions généralessur les faunes de l’aven 1 des Abîmes de La Fage(Corrèze). Nouvelles Archives du Muséum d’His-toire Naturelle de Lyon, 13: 123-129.

MOURER-CHAUVIRE, C. 1980. Las aves del sitio deocupación achelense de Áridos-1 (Arganda, Ma-drid). En, M. Santonja, N. López & A. Pérez(Eds.). Ocupaciones achelenses en el Valle delJarama, pp. 145-160. Diputación Provincial deMadrid. Madrid.

MOURER-CHAUVIRE, C. 1984. Les oiseaux du grandabri de La Ferrassie. En, G. Delporte (Dir.): Legrand abri de La Ferrassie, à Savignac-de-Mire-mont (Dordogne): 99-103. Études Quaternaires.Marseille.

MOURER-CHAUVIRE, C. 1993. The Pleistocene avi-faunas of Europe. Archaeofauna, 2: 53-66.

MOURER-CHAUVIRE, C. 1995. Pliocene avian locali-ties of France. En, J. Mlíkovsky (Ed.): Tertiaryavian localities of Europe. Acta Universitatis Ca-rolinae Geologica 39: 613-618.

MOURER-CHAUVIRE, C. 1999. Avifauna. En, A. H.Simmons and Associates. Faunal extinctions inan Island Society. Pygmy hippopotamus hunters ofCyprus, pp. 170-181. Kluwer Academic/PlenumPress. New York.

MOURER-CHAUVIRE, C., ALCOVER, J. A., MOYÀ, S. &PONS, J. 1980. Une nouvelle forme insulaire d’ef-fraie géante, Tyto balearica n. sp. (Aves, Strigi-formes), du Plio-Pléistocène des Baléares. Geo-bios, 13: 803-811.

MOURER-CHAUVIRE, C. & ANTUNES, M. T. 1991. Pré-sence du grand pingouin, Pinguinus impennis(Aves, Charadriiformes) dans le Pléistocène duPortugal. Geobios, 24: 201-205.

MOURER-CHAUVIRE, C. & ANTUNES, M. T. 2000.L’avifaune pléistocène et holocène de Gruta daFigueira Brava (Arrábida, Portugal). En, M. T.Antunes (Ed.): Colloquium Last neanderthals inPortugal. Memórias da Academia das Ciências deLisboa, 38: 129-159.

MOURER-CHAUVIRE, C., MOYÀ, S. & ADROVER, R.1977. Les oiseaux des gisements quaternaires deMajorque. Nouveaux Archives du Museum d’His-toire Naturelle de Lyon, 15: 61-64.

MOURER-CHAUVIRE, C. & PHILIPPE, M. 1972. Géo-métrie du gisement paléontologique de La Fage.Nouvelles Archives du Muséum d’Histoire Natu-relle de Lyon, 10: 11-20.

MOURER-CHAUVIRE, C., PHILIPPE, M., QUINIF, Y.,CHALINE, J., DEBARD, E., GUÉRIN, C. & HUGUE-NEY, M. 2003. Position of the palaeontological siteAven 1 des Abîmes de La Fage, at Noailles(Corrèze, France), in the European Pleistocene ch-ronology. Boreas, 32 : 521-531.

MOURER-CHAUVIRE, C., SALOTTI, M., PEREIRA, E.,QUINIF, Y., COURTOIS, J. Y., DUBOIS, J. N. & LA

MILZA, J. C. 1997. Athene angelis n. sp. (Aves,Strigiformes), nouvelle espèce endémique insu-laire éteinte du Pléistocène moyen et supérieur deCorse (France). Comptes Rendues de l’Academiede Science de Paris, 324: 677-684.

MOURER-CHAUVIRE, C. & SÁNCHEZ MARCO, A.1988. Présence de Tyto balearica (Aves, Strigi-formes) dans des gisements continentaux duPliocène de France et d’Espagne. Géobios, 21:639-644.

MOYÀ-SOLÀ, S., QUINTANA, J., ALCOVER, J. A. &KÖHLER, M. 1999. Endemic island faunas of theMediterranean Miocene. En, G. Rössmer & K.Heissrig (Eds.): The Miocene land mammals ofEurope, pp. 435-442.

PAVIA, M. 1999. The Middle Pleistocene avifaunaof Spinagallo cave (Sicily, Italy): preliminary re-port. Smithsonian Contributions to Paleobiology,89: 125-127.

PAVIA, M. 2001. The Middle Pleistocene fossil avi-fauna from the «Elephas mnaidriensis FaunalComplex» of Sicily (Italy): preliminary results.Proceedings 1st. International Congress TheWorld of Elephants: 497-501.

PEREIRA, E., OTTAVIANI-SPELLA, M. M. & SALOTTI,M. 2001. Nouvelle datation (Pléistocène moyen)du gisement de Punta di Calcina (Conca, Corsedu sud) par la découverte de Talpa tyrrhenicaBate, 1945 et d’une forme primitive de Microtus(Tyrrhenicola) henseli Forsyth-Major, 1882. Geo-bios, 34:697-705.

RAYMO, M. E. 1991. Geochemical evidence suppor-ting T.C. Chamberlin’s theory of glaciation. Geo-logy, 19: 344-347.

RAYMO, M. E. 1992. Global climate change: a threemillion year perspective. En, G. Kukla & E. Went(Eds.): Start of Glacial. Proceedings of the Ma-

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 111

Ardeola 51(1), 2004, 91-132

Page 22: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

llorca NATO ARW NATO ASI, series I, vol. 3,207-223. Springer Verlag. Heidelberg.

RAYMO, M. E., RUDDIMAN, W. F., BACKMAN, J., CLE-MENT, B. M. & MARTINSON, D. G. 1989. LatePliocene variation in northern hemisphere ice she-ets and North Atlantic deep water circulation. Pa-leoceanography, 4: 413-446.

RHODES, E. J., STRINGER, C. B., GRÜN, R., BARTON,R. N. E., CURRANT, A. & FINLAYSON, J. C. 2000.Preliminary ESR dates from Ibex cave, Gibraltar.En, J. C. Finlayson, G. Finlayson & D. Fa (Eds.):Gibraltar during the Quaternary, pp. 109-112.Gibraltar Government Heritage Publications. Gi-braltar.

ROSAS, A., PÉREZ, A., CARBONELL, E., MADE, J. VAN

DER, SÁNCHEZ, A., LAPLANA, C., CUENCA, G., PA-RÉS, J. M. & HUGUET, R. 2001. Le gisement pléis-tocène de la «Sima del Elefante» (sierra de Ata-puerca, Espagne). L’Anthropologie, 105: 301-312.

SALOTTI, M. et al. 1997. Castiglione 3, un nouveauremplissage fossilifère d’âge Pléistocène moyendans le karst de la région d’Oletta (Haute-Corse).Comptes Rendues de l’Academie de Science deParis, 324: 67-74.

SALOTTI, M., BELLOT-GOURLET, L., COURTOIS, J. Y.,DUBOIS, J. N., LOUCHART, A., MOURER-CHAUVI-RÉ, C., OBERLIN, C., PEREIRA, E., POUPEAU, G. &TRAMONI, P. 2000. La fin du Pléistocène supé-rieur et le début de l’Holocène en Corse: apportspaléontologique et archéologique du site de Cas-tiglione (Oletta, Haute-Corse). Quaternaire, 11:219-230.

SÁNCHEZ MARCO, A. 1987a. Saalian s.l. avian fin-dings in the northern Iberian Plateau. En, C. Mou-rerChauviré (Coord.): L’évolution des oiseauxd’après le témoignage des fossiles. Documents duLaboratoire de Géologie de Lyon, 99: 193196.

SÁNCHEZ MARCO, A. 1987b. Aves fósiles de Ata-puerca. En, E. Aguirre, E. Carbonell & J. M. Ber-múdez de Castro (Eds.): El hombre fósil de Ibeas yel Pleistoceno de la Sierra de Atapuerca, I, pp.6773. Junta de Castilla y León. Valladolid.

SÁNCHEZ MARCO, A. 1989. Huéscar1 (Granada, Es-paña): avance de la lista de aves y consiguientesconjeturas sobre paleoambiente y paleogeografía.En, M. T. Alberdi & F. P. Bonadonna (Eds.): Ge-ología y paleontología de la Cuenca de Guadix-Baza. Trabajos sobre NeógenoCuaternario, 11:175182.

SÁNCHEZ MARCO, A. 1990. Aves de los yacimientosmesopleistocenos de Torralba y Ambrona (Soria,España). En, J. Civis & J. A. Flores (Eds.): Actasde Paleontología. Acta Salmanticensia, 68:349357.

SÁNCHEZ MARCO, A. 1995a. Tertiary avian locali-ties of Spain. En, J. Mlíkovsky, (Ed.): Tertiaryavian localities of Europe. Acta Universitatis Ca-rolinae Geologica, 39: 719-732.

SÁNCHEZ MARCO, A. 1995b. Las aves de la unidadestratigráfica TG-11 de la Galería (sierra de Ata-puerca, Burgos, España). En, J. M. Bermúdez, J.L. Arsuaga & E. Carbonell (Eds.): 137-146. Evo-lución Humana en Europa y los yacimientos de laSierra de Atapuerca. Junta de Castilla y León.Valladolid.

SÁNCHEZ MARCO, A. 1996. Aves fósiles del Pleisto-ceno Ibérico: rasgos climáticos, ecológicos y zoo-geográficos. Ardeola, 43: 207-219.

SÁNCHEZ MARCO, A. 1999a. Aves del yacimientomesopleistoceno de Galería (sierra de Atapuerca).Patrones ecológicos en el Pleistoceno medio. En,E. Carbonell, A. Rosas & J. C. Díez (Eds.). Ata-puerca: ocupaciones humanas y paleoecología delyacimiento de Galería. Arqueología en Castilla yLeón, 7: 211-224.

SÁNCHEZ MARCO, A. 1999b. Implications of theavian fauna for paleoecology in the Early Pleisto-cene of the Iberian Peninsula. Journal of HumanEvolution, 37: 375-388.

SÁNCHEZ MARCO, A. 1999c. Nuevas aves fósiles delyacimiento mesopleistocénico de Ambrona (So-ria, España). Trabajos de Prehistoria, 56: 115-118.

SÁNCHEZ MARCO, A. 1999d. Catálogo paleornitoló-gico del Terciario ibérico y balear. Estudios Geo-lógicos, 55: 163-171.

SÁNCHEZ MARCO, A. 2001. Strigiformes from theNeogene of Spain. Ibis, 143: 313-316.

SANTONJA, M. 1989. Torralba y Ambrona, nuevosargumentos. Seminario de Estudios de Arte y Ar-queología, 5-13.

SANTONJA, M. & VILA, P. 1990. The Lower Paleolit-hic of Spain and Portugal. Journal of WorldPrehistory, 4: 45-94.

SEGRE, A. G., BIDDUTTU, I. & CASSOLI, P. F. 1984. Ilbacino paleolacustre di Sora (Frosinone) e i suoigiacimenti musteriani. XXIV Riunione Scientificadell’Istituto Italiano di Preistoria e Protostoria:149-154.

SEGUÍ, B. 1996. Les avifaunes fòssils dels jacimentscàrstics del Pliocè, Plistocè i Holocè de les Gimnè-sies. Bolletí de la Societat d’Història Natural delsBalears, 39: 25-42.

SEGUÍ, B. 2001. A new species of Pica (Aves: Cor-vidae) from the Plio-Pleistocene of Mallorca, Ba-learic islands (Western Mediterranean). Geobios,34: 339-347.

SEGUÍ, B. & ALCOVER, J. A. 1999. Comparison ofPaleoecological Patterns in Insular Bird Faunas: ACase Study from the Western Mediterranean andHawaii. En, S. Olson (Ed.): Avian Paleontology atthe Close of the 20th Century. Smithsonian Con-tributions to Paleobiology, 89: 67-73.

SHACKLETON, N. J. et al. 1984. Oxygen isotope cali-bration of the onset of ice-rafting and history ofglaciation in the North Atlantic region. Nature,307: 620-623.

112 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Page 23: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

SIMMONS, T. & NADEL, D. 1998. The avifauna of theEarly Epipalaeolithic site of Ohalo 2 (19400 yearsBP), Israel: species diversity, habitat and seasona-lity. International Journal of Osteoarchaeology, 8:79-96.

SIMPSON, G. G. 1965. The geography of evolution:collected essays. Clifton Books. Philadelphia.

SLOWEY, N. C., HENDERSON, G. M. & CURRY, W. B.1996. Direct UTh dating of marine sediments fromthe two most recent interglacial periods. Nature,383: 242244.

TAGLIACOZZO, A. & GALA, M. 2000. Sfruttamento emacellazione degli anseriformi nel giacimentodell’Epigravettiano finale di grotta Romanelli(Le). 2.o Convegno Nazionale di Archeozoologia(ABACO Edizioni, Forli): 151-166.

TAGLIACOZZO, A. & GALA, M. 2002. Exploitation ofAnseriformes at two Upper Palaeolithic sites insouthern Italy: grotta Romanelli (Lecce, Apulia)and grotta del Santuario della Madonna a Praia aMare (Cosenza, Calabria). Acta Zoologica Cra-coviensia, 45: 117-131.

TYRBERG, T. 1991a. Arctic, montane and steppe birdsas glacial relicts in the West Palearctic. Ornitho-logische Verhandlungen, 25: 29-49.

TYRBERG, T. 1991b. Crossbill (genus Loxia) evolu-tion in the West Palearctic – a look at the fossilevidence. Ornis Svecica, 1: 3-10.

TYRBERG, T. 1998. Pleistocene birds of the Palearc-tic: a catalogue. Publications of the Nuttall Ornit-hological Club No. 27. Cambridge.

TYRBERG, T & HERNÁNDEZ CARRASQUILLA, F. 1995.First fossil record of the Great Skua. Bulletin ofthe British Ornithological Club, 115: 167-168.

UCHUPI, E. 1988. The Mesozoic-Cenozoic geologicevolution of Iberia, a tectonic link between Africaand Europe. Revista de la Sociedad Geológica deEspaña, 1: 257-294.

WEESIE, P. D. M. 1988. The Quaternary avifauna ofCrete, Greece. Palaeovertebrata, 18: 1-94.

VILETTE, P. 1983. Avifaunes du Pléistocène final etde l’Holocène dans le Sud de la France et en Ca-talogne. Antacina, 11: 1-190.

VILETTE, P. 1993. La paléoavifaune du Pléistocènemoyen de la grotte du Lazaret. Bulletin du Muséed’Anthropologie Préhistorique de Monaco, 36:15-29.

VILETTE, P., MOURER-CHAUVIRÉ, C. & MEIGNEN, L.1983. Les oiseaux de la grotte du Salpètre de Pom-pignan (Gard). Nouveaux Archives du Muséumd’Histoire naturelle de Lyon, 21: 45-48.

VILLAVERDE, V., MARTÍNEZ VALLE, R., GUILLEM, P.M., BADAL, E., ZALBIDEA, L. & GARCÍA, R. 1997.Els nivells Magdalenians de la cova de les Cen-dres (Teulada, Moraira). Resultats del sondeig delquadre A-17. Aguaits, 13/14: 77-115.

The scientific activity of Antonio Sánchez isfocussed on the paleornithology, in particular,on the taxonomy, distribution and ecology ofTertiary and Quaternary birds from the IberianPeninsula, as well as on the climatic changesduring the Quaternary. Recently, he has alsobegun to work in the Canary Islands. He is amember of some archeo-paleontological andneontological teams.

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 113

Ardeola 51(1), 2004, 91-132

APPENDIX 1

Lists of fossil taxa from Mediterranean localities of the Quaternary. The localities are arranged in alphabeti-cal order. Irruptive species for each locality, following the criterium of area of irruption (Appendix 2), are inbold. The group of Pygmy-Tengmalm’s owl-grouses (see «areas of irruption» in Appendix 2) is underlined.* = nowadays survivors in the east part of the region when recorded in the west area. ? = uncertain identifi-cation.[Lista de especies fósiles de las localidades del Mediterráneo en el Cuaternario. Las localidades están or-denadas alfabeticamente. Especies irruptivas para cada localidad, según el criterio del Apéndice 2 se mar-can en negrita. El grupo de los tetraónidos, Mochuelo Alpino y Boreal (ver Apéndice 2) están subrayados. * = supervivientes hoy día en la parte este de la región, cuando fueron registrados en la parte oeste. ? = Iden-tificación dudosa.]

Akrotiri Podiceps nigricollis Anas crecca Athene noctua(Early Holocene) Puffinus puffinus cf. Circus sp. Turdus iliacus s. philomelos(Mourer-Chauviré, 1999) Phalacrocorax aristotelis Rallus aquaticus Corvus corone s. frugilegus

Anser anser s. fabalis Otis tarda small PasseriformesAnser sp. Columba livia s. oenas

Asio flammeus

Ambrona & Torralba Anser anser Mergus serrator Vanellus vanellus(Sánchez Marco, 1990, Tadorna ferruginea M. merganser1999c) Anas strepera Porphyrio porphyrio

Anas cf. acuta Fulica cf. atra

Page 24: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

114 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Arbreda Anser s. Branta Perdix perdix Coracias garrulus(Mousterian layers) Anas platyrhynchos Coturnix coturnix Picus viridis(García, 1995) Anas sp. Porzana porzana Turdus viscivorus

Accipiter gentilis Calidris canutus Pyrrhocorax pyrrhocorax Falco naumanni Chlidonias nigra P. graculusFalco tinnunculus Columba livia Corvus monedulaFalco vespertinus C. oenas C. coroneFalco subbuteo Athene noctua small PasseriformesAlectoris graeca cf. Caprimulgus sp.Alectoris rufa

Arbreda Anser s. Branta Rallus aquaticus C. palumbus(Aurignacian layers) Anas platyrhynchos Porzana porzana Otus scops(García, 1995) Aquila cf. chrysaetos Grus grus Bubo bubo

Falco naumanni Tetrax tetrax Athene noctuaF. tinnunculus cf. Charadrius vociferus Turdus viscivorusF. vespertinus Gallinago gallinago Garrulus glandariusF. columbarius G. media Pica picaF. subbuteo Larus cf. melanocephalus Pyrrhocorax pyrrhocoraxAlectoris graeca Larus cf. melanocephalus P. graculus A. rufa Columba livia s. oenas Corvus monedulaA. barbara C. oenas small PasseriformesPerdix perdixCoturnix coturnix

Arbreda Podiceps auritus s. Alectoris graeca Asio flammeus(layers 23-28, Aurignacian) nigricollis Perdix perdix cf. Galerida cristata(Vilette, 1983) Branta bernicla Coturnix coturnix Pyrrhocorax pyrrhocorax

Anas crecca Eudromias morinellus P. graculusAnas platyrhynchos cf. Limosa limosa Corvus coraxAnas querquedula Columba oenascf. Falco subbuteo Athene noctua

Arbreda Anas sp. A. barbara Columba livia s. oenas(Gravettian layers) Anas platyrhynchos Perdix perdix Strix aluco(Garcia, 1995 Falco naumanni Coturnix coturnix Pica pica

F. tinnunculus Porzana porzana Pyrrhocorax pyrrhocoraxF. vespertinus Otis tarda P. graculusF. subbuteo Tetrax tetrax Corvus monedulaLagopus sp. Burhinus oedicnemus C. frugilegus s. coroneAlectoris graeca s. rufa Gallinago media small Passeriformes

Arbreda II Falco tinnunculus Turdus torquatus Pyrrhocorax pyrrhocorax(Upper Paleolithic layers) Alectoris graeca cf. T. merula P. graculus(Vilette, 1983) Coturnix coturnix Pinicola enucleator

Asio flammeus

Arene Candide Podiceps auritus Crex crcrex Anthus trivialis(Upper Paleolithic layers) Puffinus puffinus Tringa totanus Cinclus cinclus(Cassoli, 1980) Calonectris diomedea T. glareola Prunella collaris

Phalacrocorax aristotelis Gallinago sp. Zoothera daumaCygnus cygnus Calidris canutus Turdus viscivorusBranta bernicla Calidris canutus T. pilarisAnas platyrhynchos Calidris canutus T. torquatusA. crecca Eudromias morinellus Plectrophenax nivalisA. penelope C. alexandrinus Fringilla coelebsMelanitta nigra Stercorarius pomarinus Carduelis chlorisBucephala clangula Sterna paradisaea C. carduelisMergus albellus Uria aalge C. flammeaM. merganser Alca torda Acanthis cannabinaM. serrator Fratercula arctica Pinicola enucleatorAccipiter gentilis Columba livia Loxia pytyopsittacusButeo lagopus C. oenas L. curvirostraAquila chrysaetos C. palumbus L. leucopteraCircus cyaneus cf. Cuculus canorus Pyrrhula pyrrhulaC. pygargus Nyctea scandiaca Coccothraustes coccothraustesC. aeruginosus Surnia ulula Montifringilla nivalisPandion haliaetus Athene noctua Petronia petronia

Page 25: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 115

Ardeola 51(1), 2004, 91-132

cf. Falco rusticolus Strix aluco Sturnus vulgarisF. eleonorae cf. S. aluco Pica picaF. vespertinus Asio otus Nucifraga caryocatactesF. tinnunculus A. flammeus Pyrrhocorax pyrrhocoraxTetrao tetrix Aegolius funereus P. graculusLagopus lagopus Apus apus Corvus monedulaL. mutus Picus canus C. coraxAlectoris graeca Melanocorypha sp.Perdix perdix Eremophila alpestrisCoturnix coturnix Lullula arboreaRallus aquaticus Ptyonoprogne rupestris

Áridos 1 Anas platyrhynchos Columba oenas Hirundo rustica(Mourer-Chauviré, 1980) A. crecca C. palumbus Turdus pilaris

A. clypeata Strix aluco T. iliacusAccipiter nisus Upupa epops Parus cristatusAlectoris graeca - rufa Picus viridis Coccothraustes coccothraustesPerdix palaeoperdix Dendrocopos major Corvus monedulaPorzana porzana Galerida cristata

Bacho Kiro Anas platyrhynchos Porzana porzana cf. Anthus campestris(Bochenski, 1982) Aquila chrysaetos Gallinula chloropus Loxia curvirostra

Circus aeruginosus cf. Bubo bubo cf. Turdus philomelosLagopus mutus cf. Ptyonoprogne rupestris Pyrrhocorax pyrrhocoraxAlectoris graeca Delichon urbica P. graculusPerdix perdix cf. Lullula arborea Corvus monedulaCoturnix coturnix Alauda arvensis C. coraxGallus gallusRallus aquaticus

Bois-des-Brousses Anas platyrhynchos cf. Gallinago media Ptyonoprogne rupestris(Solutrean layers) Aythya ferina Scolopax rusticola Cinclus cinclus(Vilette, 1983) Falco tinnunculus cf. Calidris temminckii Pyrrhocorax graculus

Lagopus lagopus Philomachus pugnax cf. Corvus coroneLagopus sp. Columba sp.Perdix perdix Otus scops

Ca na Reia Puffinus nestori Palaeocryptonyx sp. Athene cf. veta(Alcover, 1989) cf. Buteo sp. Columba livia s. oenas small Passeriformes

Carnello Cygnus cygnus Anas platyrhynchos Tetrao tetrix(Segre et al., 1984) C. columbianus A acuta Alectoris graeca

Anser fabalis A penelope Strix aluco

Casablanca 1 Geronticus eremita Pterocles orientalis Corvus corone(Sánchez Marco 1995b, Gypaetus barbatus Pyrrhocorax s. Corvus 1999d) Tyto balearica monedula

Castiglione 3 Aquila chrysaetos Porzana porzana Tyto balearica(fissure CG) Buteo cf. buteo Columba livia T. alba(Salotti et al., 1997; B. rufinus Bubo insularis Pyrrhocorax graculusMourer-Chauviré et al., Accipiter nisus Otus sp. small Passeriformes1997) A. gentilis Athene angelis

Castiglione 3 Gyps melitensis Columba livia s. oenas Emberiza sp.(fissure PL) Aquila n. sp. Tyto alba Pica pica(Salotti et al., 2000) Bubo insularis Lullula arborea Pyrrhocorax pyrrhocorax

Athene angelis Muscicapa striata P. graculusGypaetus barbatus Turdus spp. Corvus monedulaFalco tinnunculus Loxia curvirostraAlectoris sp.

Cau d’en Borrás Tadorna tadorna Alectoris rufa T. cf. viscivorus(Sánchez Marco, Anas penelope Columba livia s. oenas Pica picanew identifications) Haliaeetus albicilla* Bubo bubo Pyrrhocorax pyrrhocorax

cf. Aegipyus monachus Athene noctua P. graculusAquila chrysaetos Apus melba Corvus monedulaFalco naumanni Anthus spinoletta C. coroneF. tinnunculus Oenanthe oenanthe

Turdus philomelos

Page 26: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

116 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Cendres Anser s. Branta Haematopus ostralegus cf. T. merula(Upper Magdalenian) cf. Branta bernicla Columba livia s. oenas Sylvia sp.(Villaverde et al., 1997) Aquila chrysaetos Bubo bubo Pica pica

Accipiter nisus Athene noctua Pyrrhocorax pyrrhocoraxFalco tinnunculus Apus apus P. graculusF. naumanni Lullula arborea Corvus monedulaAlectoris rufa Turdus sp. C. coroneCoturnix coturnix cf. Turdus viscivorusCalidris ferruginea

Cingle Vermell Anser cf. anser Apus apus T. iliacus(Tardiglacial layers) Falco tinnunculus A. melba T. viscivorus(Vilette, 1983) Alectoris barbara Melanocorypha calandra Pyrrhocorax pyrrhocorax

Perdix perdix Monticola saxatilis Corvus monedulaCoturnix coturnix Turdus torquatusColumba livia

Coscia Calonectris diomedea P. parva Anthus cf. spinoletta(shelter South) Anser erythropus* Crex crex Motacilla sp.(Bonifay et al., 1998) Anas cf. platyrhynchos Gallinula chloropus Lanius collurio

A. crecca Tetrax tetrax L. cf. meridionalisA. cf. penelope Gallinago gallinago L. minorAnatidae indet. G. media Saxicola sp.Gyps melitensis Scolopax rusticola Luscinia cf. megarhynchosButeo buteo Tringa erythropus Turdus spp.B. lagopus Fratercula arctica Sylvia atricapillaAccipiter nisus Columba livia Emberiza citrinellaA. gentilis C. palumbus Fringilla sp.Milvus sp. Bubo insularis Coccothraustes coccothraustesHaliaeetus albicilla* Asio otus Sturnus sp.Circus cf. cyaneus Otus scops Oriolus oriolusFalco peregrinus Caprimulgus europaeus Pyrrhocorax pyrrhocoraxF. subbuteo Apus melba Corvus corone s. frugilegusF. naumanni Merops apiaster Corvus coraxF. tinnunculus Coracias garrulusFalco sp. Dendrocopos majorCoturnix coturnix cf. Galerida cristataPorzana porzana Hirundo cf. rusticaP. pusilla

Coscia Tachybaptus ruficollis Coturnix coturnix Alauda arvensis(cave) Anas platyrhynchos Crex crex Turdus sp.(Bonifay et al., 1998) A. platyrhynchos s. acuta Tetrax tetrax Coccothraustes coccothraustes

A. crecca cf. Pluvialis squatarola Prunella collarisAnas spp. Gallinago gallinago Sturnus sp.Gyps melitensis Scolopax rusticola Pyrrhocorax pyrrhocoraxAccipiter nisus Columba cf. livia Corvus monedulaHaliaeetus albicilla* C. palumbus C. coroneFalco biarmicus Bubo insularis small PasseriformesF. naumanni Apus melbaF. tinnunculus Coracias garrulus

Cova Nova Phalacrocorax aristotelis Melanocorypha calandra Emberiza cia s. hortulana(Upper Pleistocene) Anas crecca Hirundo rupestris Loxia curvirostra(Florit & Alcover, 1987) Aquila chrysaetos Lanius minor Pyrrhula pyrrhula

Falco eleonorae L. excubitor Pyrrhocorax pyrrhocoraxF. tinnunculus Prunella collaris P. graculusScolopax rusticola Turdus iliacus s. philomelos Corvus coroneColumba livia T. merulaApus melba T. viscivorusUpupa epops

Cova Nova (addenda) Calonectris diomedea Alca torda Erithacus rubecula(Upper Pleistocene) Accipiter nissus Tyto alba Montifringilla nivalis(McMinn & Alcover, 1992) Falco cf. naumanni Prunella modularis Fringilla sp.

Devil’s Tower Calonectris diomedea F. eleonorae C. palumbus(Bate, 1928) Puffinus puffinus F. tinnunculus Apus melba

Phalacrocorax (?) carbo F. subbuteo Picus viridis

Page 27: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 117

Ardeola 51(1), 2004, 91-132

P. aristotelis F. peregrinus Hirundo rusticaMelanitta fusca Alectoris (?) barbara Turdus cf. merulaMergus cf. serrator Larus fuscus T. viscivorusHaliaeetus albicilla* Sterna (?) sandvicensis Turdus sp.Gyps fulvus Pinguinus impennis Fringilla coelebsHieraaetus fasciatus Uria aalge Passer sp.Hieraaetus pennatus Columba livia Pyrrhocorax pyrrhocoraxFalco (?) naumanni C. oenas P. graculus

Dolina Anas crecca Calandrella Prunella collaris(layer TD6) Melanitta fusca cf. brachydactyla P. modularis(Sánchez Marco, 1999b, Falco naumanni Galerida cristata Turdus merulanew identifications) Perdix palaeoperdix Lullula arborea Turdus iliacus

Coturnix coturnix Alauda arvensis Turdus philomelosPorzana pusilla Eremophila alpestris Sylvia hortensisPorzana sp. Hirundo rustica Muscicapa striataLimosa limosa Ptyonoprogne rupestris Emberiza citrinellaEudromias morinellus Motacilla flava Fringilla coelebsScolopax rusticola Anthus pratensis Sturnus sp.Columba livia s. oenas Cinclus cinclus Corvus antecoraxMelanocorypha calandra

Dursunlu Tachybaptus ruficollis A. crecca Rallus aquaticus(Louchart et al., 1998) Podiceps cristatus A. acuta Crex crex

P. nigricollis A. querquedula Porzana porzanaPhalacrocorax cf. carbo A. aff. clypeata Gallinula chloropusBubulcus ibis Marmaronetta angustirostris Fulica atraArdeola ralloides Aythya ferina Rallidae indet.Nycticorax nycticorax A. nyroca Tetrax tetraxArdeidae indet. A. fuligula Otididae indet.Platalea leucorodia Aythya sp. Gallinago gallinagoCygnus sp. Somateria sp. Limosa limosaAnser anser Bucephala sp. Tringa nebulariaA. cf. erythropus Mergus albellus Scolopacidae indet.Tadorna ferruginea M. merganser Larus canusTadorna sp. Oxyura leucocephala Larus sp.Anas platyrhynchos Accipitridae indet. Turdus cf. pilarisA. penelolpe Perdix palaeoperdix Fringillidae indet.

Elefante Anas sp. Lymnocryptes minimus C. chloris(Rosas et al., 2001; Haliaeetus albicilla* Columba livia s. oenas Pyrrhocorax pyrrhocorax(Sánchez Marco, Falco cf. tinnunculus Phoenicurus ochruros Corvus corax s. frugilegusnew identifications) Lagopus mutus Turdus spp. C. antecorax

Perdix palaeoperdix Acanthis flammeaCoturnix coturnix Carduelis carduelisVanellus vanellus

Elephas mnaidriensis Tachybaptus ruficollis Anas sp. Numenius phaeopusFaunal Complex of Sicily Podiceps cristatus Aythya sp. Scolopax rusticola(K 22, Acquedolci and P. auritus Mergus merganser Tringa sp.Contrada Fusco) Phalacrocorax carbo Oxyura leucocephala Pterocles orientalis(Pavia, 2001) Pelecanus crispus Buteo buteo Columba livia s. oenas

Ixobrychus minutus Gyps melitensis Bubo buboBotaurus stellaris Accipiter gentilis Strix alucoEgretta garzetta A. nisus Athene noctuaArdea cinerea Aquila sp. Apus melbaPlegadis falcinellus Pandion haliaetus Coracias garrulusCygnus falconeri Falco columbarius Anthus sp.Anser sp. Coturnix coturnix Erithacus rubeculaBranta sp. Fulica atra Turdus sp.Tadorna tadorna Grus grus Sylvia sp.Anas crecca s. querquedula G. cf. melitensis Sturnus unicolor s. vulgarisA. platyrhynchos Tetrax tetrax Corvus coroneA. clypeata Otis tarda

Limosa limosa s. lap ponica

Es Pouàs Colonectris diomedea Grus primigenia Alauda arvensis(Upper Pleistocene) Puffinus puffinus Otis tarda Hirundo sp.

Page 28: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

118 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

(Florit et al., 1989) Phalacrocorax aristotelis Columba livia Lanius minorAnser sp. Otus scops Turdus spp.Falco eleonorae Asio flammeus Pyrrhocorax pyrrhocoraxF. tinnunculus Strigidae n. sp. Corvus antecoraxCoturnix coturnix Apus apus

Es Pouàs (addendum) Haliaeetus albicilla*(Upper Pleistocene)(Alcover & McMinn, 1992)

La Fage Anas platyrhynchos Eudromias morinellus H. daurica(layer CO) A. crecca Limnocryptes minimus Anthus campestris(Mourer-Chauviré, 1975a) Aegypius monachus Scolopax rusticola A. trivialis

Aquila chrysaetos Tringa stagnatilis A. spinolettaButeo buteo Calidris alpina Motacilla flavaAccipiter nisus Phalaropus fulicarius Cinclus cinclusCircus macrourus* Glareola pratincola ? Saxicola rubetraFalco subbuteo Alle alle Monticola saxatilisF. columbarius Columba livia Luscinia luscinia*F. naumanni C. oenas Turdus pilarisF. tinnunculus C. palumbus T. merulaLagopus lagopus Cuculus canorus T. viscivorusL. mutus Nyctea scandiaca Emberiza calandraTetrao urogallus Asio flammeus E. citrinellaT. tetrix Aegolius funereus ? Plectrophenax nivalisAlectoris graeca Picus viridis Acanthis cannabinaPerdix palaeoperdix Dendrocopos major Carduelis flammeaCoturnix coturnix D. minor Serinus citrinella ?Rallus aquaticus Calandrella brachydactyla Petronia petroniaPorzana porzana Galerida cristata Montifringilla nivalisCrex crex Lullula arborea Pica picaOtis tarda Alauda arvensis Pyrrhocorax pyrrhocoraxO. tetrax Ptyonoprogne rupestris P. graculuVanellus vanellus Hirundo rustica Corvus monedulaPluvialis apricaria Corvus antecoraxP. squatarola

Férrassie Anas crecca Gallinago media Delichon urbica(Mourer-Chauviré, 1984) Aegypius monachus Tringa hypoleucos Cinclus cinclus

Aquila chrysaetos Calidris canutus Turdus pilarisFalco tinnunculus C. alpina T. merulaLagopus mutus Callandrella brachydactyla Emberiza citrinellaLagopus sp. Melanocorypha calandra Carduelis flammeaTetrao tetrix Galerida cristata Petronia petroniaPerdix perdix Lullula arborea Pyrrhocorax graculusCoturnix coturnix Ptyonoprogne rupestris Corvus coraxPluvialis squatarolaEudromias morinellus

Figueira Brava Gavia stellata Hieraaetus fasciatus Larus fuscus(Mourer-Chauviré & Podiceps nigricollis Accipiter nisus Pinguinus impennisAntunes, 1991, 2000) Puffinus holeae Milvus migrans Columba palumbus

Sula bassana Falco cf. tinnunculus Bubo buboAnas platyrhynchos Alectoris rufa Athene noctuaMelanitta nigra Grus primigenia Pyrrhocorax pyrrhocoraxM. fusca Scolopax rusticolaClangula hyemalis Numenius phaeopusAquila chrysaetos Calidris canutus

Fontbrégoua Accipiter nisus Hirundo rustica S. cantillans(Epipaleolithic) Alectoris cf. rufa H. daurica S. melanocephala(Vilette, 1983) Coturnix coturnix Anthus pratensis Phylloscopus collybita

Rallus aquaticus Motacilla flava P. bonelliPorzana porzana M. alba Regulus sp.cf. Gallinago gallinago Lanius collurio Ficedula hypoleucaColumba oenas L. senator Parus caeruleusC. palumbus Prunella modularis P. majorCuculus canorus Saxicola rubetra cf. Sitta europaea

Page 29: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 119

Ardeola 51(1), 2004, 91-132

Otus scops Oenanthe hispanica Emberiza citrinellaStrix aluco Monticola solitarius E. hortulanaCaprimulgus europaeus Phoenicorus phoenicorus Fringilla coelebsApus cf. pallidus Erithacus rubecula Acanthis cannabinaMerops apiaster Turdus pilaris Carduelis spinusCoracias garrulus T. merula Serinus serinusUpupa epops T. philomelos Pyrrhula pyrrhulaPicus viridis T. viscivorus Coccothraustes coccothraustesDendrocopos major Acrocephalus palustris Garrulus glandariusD. medius Hippolais polyglota Pyrrhocorax pyrrhocoraxGalerida cristata Sylvia risoria P. graculusPtyonoprogne rupestris S. hortensis

S. atricapilla

Fontéchevade Anas platyrhynchos Coturnix coturnix Erithacus rubecula(Mourer-Chauviré, 1975a) Anas crecca Gallus gallus (?) Turdus sp.

Anas penelope Crex crex Carduelis carduelisMergus merganser Scolopax rusticola Acanthis cannabinaMergus merganser s. serrator Picus canus Loxia curvirostraButeo buteo Ptyonoprogne rupestris Pyrrhula pyrrhulaButeo cf. lagopus Anthus cf. spinoletta Sturnus vulgaris s. unicolorLagopus cf. mutus Lanius excubitor Sturnus roseusTetrao tetrix Prunella collaris Oriolus oriolusTetrao urogallus Phoenicurus phoenicurus Pica picaAlectoris barbara Corvus coronePerdix perdix

Fumane Anas platyrhynchos Crex crex Turdus viscivorus(Aurignacian layers) A. querquedula Tringa hypoleuca T. pilaris(Bartolomei et al., 1992; Buteo lagopus T. glareola Achantis cannabinaCassoli & Tagliacozzo, Aquila chrysaetos Scolopax rusticola Loxia pytyopsittacus1994) Circus pygargus Vanellus vanellus L. curvirostra

Falco vespertinus Columba oenas Pyrrhula pyrrhulaF. tinnunculus Nyctea scandiaca Montifringilla nivalisF. subbuteo Strix aluco Pica picaF. columbarius Asio otus Garrulus glandariusTetrao tetrix Dendrocopos leucotos Nucifraga caryocatactesLagopus mutus Eremophila alpestris Pyrrhocorax graculusPerdix perdix Lullula arborea Corvus monedulaCoturnix coturnix Ptyonoprogne rupestrisRallus aquaticus

Galería Falco naumanni T. totanus Alauda arvensis(layer TG10B) F. tinnunculus Actitis hypoleucos Prunella collaris(Sánchez Marco, 1999a) Perdix perdix Gallinago gallinago Oenanthe oenanthe

Coturnix coturnix G. media E. citrinellaRallus aquaticus Calidris alpina Pyrrhocorax pyrrhocoraxHimantopus himantopus Columba livia s. oenas P. graculusGlareola pratincola C. palumbus Corvus monedulaEudromias morinellus Eremophila alpestris C. antecoraxTringa erythropus Galerida cristata

Lullula arborea

Galería Anas platyrhynchos Actitis hypoleucos Ficedula hypoleuca(layer TG10A) Aegypius monachus Calidris alba Carduelis chloris(Sánchez Marco, 1999a, Falco naumanni Gallinago gallinago Pinicola enucleatornew identifications) F. tinnunculus G. media Pyrrhocorax pyrrhocorax

Perdix perdix Columba livia s. oenas P. graculusCoturnix coturnix Cuculus canorus Corvus antecoraxOtis tetrax Athene noctuaEudromias morinellus Alauda arvensisPluvialis apricaria Oenanthe oenanthe

Galería Anas crecca Tringa erythropus T. pilaris s. viscivorus(layer TG11) A. platyrhynchos T. totanus T. viscivorus(Sánchez Marco, 1987a, A. cf. querquedula Gallinago media Emberiza citrinella1987b, 1995a) Falco tinnunculus G. gallinago Fringilla coelebs

Perdix palaeoperdix Calidris alpina Sturnus sp.

Page 30: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

120 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Coturnix coturnix Sterna albifrons Pica picaPorzana cf. pusilla Columba livia s. oenas Pyrrhocorax pyrrhocoraxOtis tarda Galerida cristata P. graculusVanellus vanellus Lullula arborea Corvus monedulaPluvialis apricaria Alauda arvensis C. antecoraxLimosa limosa Turdus merula

Gegant Puffinus puffinus Strix aluco Pyrrhocorax pyrrhocorax(layer II) Accipiter nisus Anthus spinoletta P. graculus(Sánchez Marco, Alectoris rufa Turdus viscivorus Corvus monedulanew identifications) Coturnix coturnix Emberiza calandra Corvus corone

Columba livia s. oenas Fringilla coelebsTyto alba Carduelis chlorisAthene noctua Coccothraustes

coccothraustes

Gorham Puffinus yelkouan Charadrius cf. dubius Hirundo rustica(layers B and D) Phalacrocorax aristotelis Himantopus ? himantopus Fringilla coelebs(Eastham, 1968) Milvus milvus Larus fuscus Sturnus sp.

Haliaeetus albicilla* L. argentatus Pyrrhocorax pyrrhocoraxGyps fulvus Fratercula arctica P. graculusFalco tinnunculus Columba livia Corvus monedulaF. peregrinus Bubo bubo C. coroneAlectoris rufa

Gorham Gavia stellata Gyps fulvus Alle alle(layers K and M) Phalacrocorax aristotelis Hieraaetus fasciatus Columba livia(Eastham, 1968) Ardea purpurea ? Falco tinnunculus Nyctea scandiaca

Tadorna ferruginea Alectoris rufa Strix cf. alucoNetta rufina Anthropoides virgo ? Pyrrhocorax pyrrhocoraxAythya nyroca Fulica atra P. graculusA. fuligula Haematopus ostralegus Corvus monedulaClangula hyemalis Larus ridibundus C. coroneMelanitta fusca L. fuscus C. coraxMilvus milvus Pinguinus impennis

Gumbes B Falco tinnunculus C. palumbus Turdus sp.(Weesie, 1988) Fulica atra Tyto alba Garrulus glandarius

Columba livia Athene cretensis Corvus monedulaC. livia s. oenas Asio flammeus C. corax

Gumbes C Columba oenas Athene cretensis Garrulus glandarius(Weesie, 1988) C. livia s. oenas Asio flammeus Corvus monedula

Otus scops Dendrocopos leucotos

Hayonim Anser sp. Upupa epops Sylvia hortensis(Natufian layers) Anas platyrhynchos Alcedo atthis S. melanocephalaTchernov (fide Tyrberg, Aquila pomarina Alauda arvensis Sylvia sp.1998) Milvus migrans Melanocorypha calandra Phylloscopus sp.

Buteo buteo Galerida cristata Nectarinia oseaFalco tinnunculus Motacilla cinerea Lanius senatorF. peregrinus Hirundo daurica Passer domesticusAccipiter nisus H. rustica Petronia petroniaA. cf. gentilis Hirundo sp. Carduelis carduelisGyps fulvus Miliaria calandra C. spinusAlectoris chukar Regulus sp. C. chlorisCoturnix coturnix Turdus merula Coccothraustes coccothraustesPhasianus colchicus T. philomelos Loxia curvirostraCrex crex Monticola sp. Serinus serinusGallinula chloropus Oenanthe spp. Emberiza caesiaColumba livia Phoenicurus sp. Garrulus glandariusC. palumbus Saxicola torquata Sturnus vulgarisStreptopelia sp. Erithacus rubecula Sturnus sp.Athene noctua Luscinia megarhynchos Pica picaOtus scops L. svecica Pyrrhocorax pyrrhocoraxTyto alba Luscinia sp. Corvus monedulaAsio sp.Apus affinis

Page 31: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 121

Ardeola 51(1), 2004, 91-132

Hayonim Anser anser Pterocles alchata L. megarhynchos(Natufian layers) A. albifrons Pterocles sp. Turdus iliacusPichon (fide Tyrberg, 1998) Tadorna tadorna Columba livia T. philomelos

Anas crecca C. palumbus T. merulaA. platyrhynchos Streptopelia senegalensis Turdus sp.Aythya nyroca Streptopelia sp. Prinia gracilisA. fuligula Tyto alba Sylvia hortensisPandion haliaetus Asio otus Sylvia borinNeophron percnopterus Otus scops Sylvia atricapillaGyps fulvus Athene noctua S. melanocephalaAegypius monachus Strix aluco Phylloscopus collybitaAccipiter nisus Apus affinis P. sibilatrixA. gentilis Alcedo atthis Phylloscopus sp.Buteo buteo Merops apiaster Regulus regulusB. rufinus Coracias garrulus Muscicapa striataButeo sp. Upupa epops Remiz pendulinusAquila pomarina Melanocorypha calandra Parus majorA. chrysaetos Alauda arvensis Oriolus oriolusFalco naumanni Hirundo rustica Garrulus glandariusF. tinnunculus H. daurica Miliaria calandraF. subbuteo Motacilla cinerea Emberiza caesiaPerdix perdix M. alba Fringilla coelebsAlectoris chukar Lanius senator Serinus pusillusCoturnix coturnix L. nubicus Carduelis carduelisPhasianus cf. colchicus Troglodytes troglodytes C. chlorisGrus grus Nectarinia osea C. spinusRallus aquaticus Saxicola torquata Loxia curvirostraCrex crex Oenanthe oenanthe Passer domesticusPorzana porzana O. hispanica P. hispaniolensisFulica atra Monticola solitarius Passer sp.Tetrax tetrax Phoenicurus ochruros Petronia petroniaOtis tarda Erithacus rubecula Sturnus vulgarisChlamydotis undulata Luscinia svecica Sturnus sp.Vanellus vanellus Pica pica

Corvus monedulaC. corone

Higueruelas Podiceps auritus Aythya sp. Anthus pratensis(Sánchez Marco, Podiceps nigricollis Aythya marila Turdus sp.new identifications) Ardea cinerea Mergus albellus Turdus iliacus s. philomelos

Nycticorax nycticorax Oxyura leucocephala Emberiza citrinellaIxobrychus minutus Palaeocryptonyx sp. Passer cf. montanusPlegadis falcinellus Crex crex Corvus monedulaCygnus cygnus Actitis hypoleucos C. antecoraxAnser sp. Pterocles alchata Tadorna sp. Columba sp.Marmaronetta angustirostris

Hortus Gyps fulvus Asio accipitrinus Coccothraustes coccothraustes(Mourer-Chauviré, 1972) Falco peregrinus Apus melba Petronia petronia

F. tinnunculus Picus viridis ? Sturnus vulgarisFalco sp. Hirundo daurica Nucyfraga caryocatactesAlectoris graeca Riparia riparia Pyrrhocorax pyrrhocoraxA. barbara Ptyonoprogne rupestris P. graculusPerdix perdix Motacilla alba Corvus monedulaCoturnix coturnix Anthus trivialis C. coroneScolopax rusticola Ficedula hypoleucaColumba livia Turdus viscivorusC. palumbus Emberiza citrinellaAthene noctua

Huéscar 1 Tachybaptus ruficollis A. clypeata Mergus serrator(Sánchez Marco, 1989, Tadorna sp. cf. Netta rufina cf. Perdix sp.pers. obs.) Anas crecca Aythya nyroca Coturnix coturnix

A. strepera s. acuta Aythya sp. Bubo buboA. querquedula Melanitta nigra

Page 32: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

122 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Ibex Puffinus cf. puffinus Pinguinus impennis Turdus sp.(Cooper, 2000) Sula bassana Columba livia s. oenas Fringillidae indet.

Branta cf. bernicla C. palumbus Coccothraustes s. EmberizaHaliaeetus albicilla* cf. Bubo bubo Pyrrhocorax pyrrhocoraxAquila cf. chrysaetos Apus melba Corvus cf. coroneFalco naumanni Alaudidae indet. C. coraxF. tinnunculus cf. Anthus sp.F. peregrinus Prunella cf. modularisAlectoris cf. rufa P. cf. collarisGallus gallus cf. Monticola solitariusLarus cf. cachinnans

Jarama II Anas platyrhynchos Perdix perdix Alaudidae indet.(Adan et al., 1995; Netta rufina Tringidae indet. Emberiza citrinellaSánchez Marco, Aquila chrysaetos Scolopax rusticola Turdus iliacus s. philomelosnew identifications) Buteo buteo Columba livia s. oenas Pyrrhocorax graculus

Falco tinnunculus Columba palumbus Corvus monedulaLagopus mutus Strix alucoAlectoris rufa Athene noctua

Kozarnika Anas crecca Tringa totanus Monticola saxatilis(Boev, 2001) Falco tinnunculus T. stagnatilis Carduelis cannabina

F. vespertinus Tringa sp. Carduelis carduelisTetrao tetrix Apus apus Coccothraustes coccothraustesT. urogallus Nyctea scandiaca cf. Pyrrhula pyrrhulaLagopus lagopus Aegolius funereus ? Fringilla coelebsLagopus sp. Athene noctua Loxia curvirostraBonasa bonasia Eremophila alpestris Pyrrhocorax cf. pyrrhocoraxPerdix palaeoperdix Hirundo daurica P. graculusP. perdix Ptyonoprogne rupestris Garrulus glandariusCoturnix coturnix Riparia riparia Corvus monedulaAlectoris graeca s. chukar Anthus trivialis C. coroneCrex crex Lanius collurio Corvus sp.Gallinula chloropus cf. Erithacus sp.Porzana cf. Parva Turdus merulacf. Charadrius sp. T. viscivorus

Lazaret Nycticorax nycticorax Nyctea scandiaca Saxicola rubetra(Locus VIII) Anas platyrhynchos Bubo bubo Turdus merula(Mourer-Chauviré, 1975a) Aegypius monachus Athene noctua T. pilaris

Gypaetus barbatus Asio flammeus T. iliacusAccipiter nisus Otus scops T. viscivorusA. gentilis Aegolius funereus Sylvia communisAquila chrysaetos Strix aluco Aegithalos caudatusButeo buteo Caprimulgus ruficollis Emberiza citrinellaCircus cf. cyaneus Apus apus Fringilla coelebsFalco peregrinus A. melba Serinus serinus ?F. tinnunculus Coracias garrulus Coccothraustes coccothraustesF. subbuteo Dendrocopos major Passer montanusTetrao tetrix D. leucotos Petronia petroniaAlectoris graeca Picoides tridactylus Montifringilla nivalisA. barbara Jynx torquilla Sturnus vulgarisPerdix palaeoperdix Lullula arborea Garrulus glandariusCoturnix coturnix Alauda arvensis Pica picaRallus aquaticus Riparia riparia Pyrrhocorax pyrrhocoraxPorzana porzana Ptyonoprogne rupestris P. graculusCrex crex Lanius senator Corvus monedulaEudromias morinellus Troglodytes troglodytes C. antecoraxGallinago gallinago Prunella collarisColumba liviaC. palumbus

Lazaret Accipiter nisus Aegolius funereus Carduelis flammea(Bottom) A. gentilis Strix aluco Coccothraustes coccothraustes(Mourer-Chauviré, 1975a) Aquila chrysaetos Apus apus Passer domesticus

Alectoris graeca Picus viridis Petronia petroniaA. barbara Dendrocopos major Montifringilla nivalisPerdix palaeoperdix Galerida cristara Garrulus glandarius

Page 33: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 123

Ardeola 51(1), 2004, 91-132

Coturnix coturnix Hirundo rustica Pica picaPorzana cf. parva Anthus spinoletta Pyrrhocorax pyrrhocoraxScolopax rusticola Troglodytes troglodytes P. graculusNumenius arquata Prunella modularis Corvus monedulaLarus fuscus Turdus merula C. coroneColumba livia T. pilaris C. cf. coraxC. palumbus T. iliacusBubo bubo T. viscivorusAthene noctua Fringilla coelebsOtus scops

Lazaret Anas cf. acuta Larus cf. canus Oenanthe hispanica(layer C III) cf. A. clypeata Sterna cf. hirundo Phoenicurus phoenicurus(Vilette, 1993) Aythya cf. marila Chidonias hybrida Erithacus rubecula

Bucephala clangula Uria lomvia s. aalge Turdus viscivorusAegypius monachus Fratercula arctica T. pilarisGypaetus barbatus Burhinus oedicnemus T. merulacf. Buteo buteo Columba livia T. iliacusAquila chrysaetos C. cf. oenas Emberiza hortulanacf. Hieraaetus fasciatus C. palumbus Plectrophenax nivalisHaliaeetus albicilla* Cuculus canorus Fringilla coelebsCircus cf. cyaneus Nyctea scandiaca Pinicola enucleatorC. macrourus* Bubo bubo Loxia pytyopsittacusFalco subbuteo Athene noctua Carpodacus erythrinusF. eleonorae Strix cf. aluco Pyrrhula pyrrhulaF. cf. columbarius Otus scops Coccothraustes coccothraustesF. cf. vespertinus Asio otus Montifringilla nivalisF. tinnunculus A. flammeus Petronia petroniaTetrao tetrix Aegolius funereus Sturnus vulgarisAlectoris graeca Apus apus Garrulus glandariusPerdix paleoperdix A. melba Pica picaCoturnix coturnix A. cf. pallidus Nucyfraga cariocatactescf. Rallus aquaticus cf. Dendrocopos major Pyrrhocorax pyrrhocoraxCrex crex cf. D. medius P. graculusTringa stagnatilis cf. D. minor Corvus monedulacf. Pluvialis squatarola Galerida cristata C. coronecf. Charadrius dubius Lullula arborea C. coraxcf. Eudromias morinellus Alauda arvensisScolopax rusticola Anthus pratensis

Motacilla albaCinclus cinclus

Liko Phalacrocorax aristotelis Glareola sp. Oenanthe cf. hispanica(Weesie, 1988) cf. Branta ruficollis Calidris canutus Monticola cf. solitarius

Anas penelope Scolopax rusticola cf. Zoothera daumaA. querquedula Columba livia cf. Turdus iliacusHaliaeetus albicilla C. oenas Turdus spp.Gypaetos barbatus C. palumbus cf. Muscicapa striataGyps fulvus Tyto alba Fringilla sp.G. melitensis Otus scops Carduelis chlorisAegypius monachus Ketupa zeylonensis cf. Pyrrhula pyrrhulaAccipiter gentilis Athene cretensis Coccothraustes coccothraustesA. cf. nisus Asio flammeus cf. Emberiza calandraButeo buteo Aegolius funereus Emberiza spp.Aquila chrysaetos Caprimulgus cf. europaeus Sturnus sp.A. c. simurgh Apus cf. apus Garrulus glandariusFalco tinnunculus A. melba Pyrrhocorax pyrrhocoraxF. subbuteo Dendrocopos leucotos P. graculusF. eleonorae cf. Calandrella brachydactyla Corvus monedulaF. peregrinus cf. Hirundo daurica Corvus sp.Coturnix coturnix Prunella collarisPorzana porzana cf. Erithacus rubeculaGallinulla chloropus

Malagrotta Anser brachyrhynchus A. acuta Calidris temminckii(Cassoli et al., 1982) Branta bernicla A. penelope Rallus aquaticus

Anas platyrhynchos A. querquedula Perdix perdix

Page 34: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

124 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Mas-d’Azil Anas platyrhynchos Perdix perdix cf. Turdus viscivorus(Magdalenian layers) A. crecca Larus canus Montifringilla nivalis(Vilette, 1983) Aythya ferina Columba oenas Sturnus vulgaris

Aegypius monachus Columba sp. Pyrrhocorax graculusFalco tinnunculus Nyctea scandiaca Corvus coraxLagopus lagopus Bubo buboL. mutus cf. Lanius excubitor

Montoussé 5 Palaeocryptonyx sp. Turdus cf. merula Corvus cf. monedula(Clot et al., 1976) cf. Dendrocopos major T. cf. viscivorus C. pliocaenus

Oenanthe sp. Ficedula sp.cf. Garrulus glandarius

Nerja Puffinus griseus Falco tinnunculus Lanius excubitor(Magdalenian layers) Sula bassana Alectoris rufa Coccothraustes coccothraustes(Eastham, 1986) Anser sp. Larus fuscus Pyrrhocorax pyrrhocorax

Anas platyrhynchos Uria aalge P. graculusA. crecca Pinguinus impennis C. coroneAythya nyroca Columba liviaCircaetus gallicus Monticola solitarius

Nerja ? Gavia stellata Gypaetus barbatus Alca torda(Epipaleolithic layers) Calonectris diomedea Accipiter gentilis Uria aalge(Boesneck & Driesch, 1980) Puffinus gravis Buteo buteo Columba livia

P. puffinus Aquila heliaca Tyto albaSula bassana Alectoris rufa Bubo bubo? Anser albifrons Grus grus Athene noctuaTadorna tadorna Fulica atra Sturnus sp.Anas platyrhynchos ? Larus canus Pyrrhocorax pyrrhocoraxAnas sp. L. argentatus Corvus corone? Aythya ferina L. fuscus C. coraxMelanitta nigra L. marinusMilvus milvus Pinguinus impennis

Nerja Gavia stellata Anas clypeata Alca torda(Upper Paleolithic layers) Calonectris diomedea Aythya nyroca Pinguinus impennis(Hernández Carrasquilla, Puffinus yelkouan A. ferina s. fuligula Columba livia s. oenas1995) P. aff. griseus Milvus milvus Bubo bubo

Sula bassana Buteo buteo Alauda arvensisPhalacrocorax carbo Alectoris rufa Hirundo rusticaP. aristotelis Fulica atra Turdus sp.Branta bernicla Grus grus Pyrrhocorax pyrrhocoraxTadorna ferruginea Larus marinus Corvus coraxT. tadorna s. ferruginea L. canus

Uria aalge

Nerja Sula bassana Anas platyrhynchos Uria aalge(Epipaleolithic layers) Phalacrocorax aristotelis Stercorarius skua Columba livia s. oenas(Hernández Carrasquilla, Ardea cinerea Larus cachinnans s.1995) argentatus s. fuscus

Nerja Catharacta skua(Epipaleolithic layers)(Tyrberg & Hernández Carrasquilla, 1995)

Ohalo 2 Podiceps auritus A. crecca F. cherrug(Simmons & Nadel, 1998) P. cristatus A. penelope Alectoris chukar

P. grisegena A. platyrhynchos Ammoperdix heyiP. nigricollis A. querquedula Coturnix coturnixTachybaptus ruficollis A. strepera Fulica atraPhalacrocorax aristotelis Aythya fuligula Porphyrio porphyrioP. pygmaeus A. marila Tetrax tetraxArdea cinerea Netta rufina Otis tardaA. purpurea Mergus merganser Himantopus himantopusArdeola ralloides M. serrator Recurvirostra avosettaEgretta garzetta Melanitta fusca Vanellus vanellusPlatalea leucorodia Bucephala clangula Numenius phaeopusPlegadis falcinellus Haliaeetus albicilla* N. arquata

Page 35: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 125

Ardeola 51(1), 2004, 91-132

Cygnus cygnus Milvus migrans Arenaria interpresC. columbianus Circus aeruginosus Larus minutusAnser anser C. cyaneus L. sabiniA. albifrons Accipiter nisus L. argentatusA. fabalis A. gentilis Bubo buboTadorna tadorna Melierax metabates Strix aluco s. butleriAlopochen aegyptiacus Buteo rufinus Corvus monedula Anas acuta B. buteo C. coroneA. capensis Aquila rapax C. frugilegusA. clypeata Falco tinnunculus

F. columbariusF. biarmicus

Orgnac 3 Anas platyrhynchos Aegolius funereus Saxicola rubetra(layer i) Aythya nyroca Athene noctua Turdus merula(Mourer-Chauviré, 1975a) A. marila Strix aluco T. iliacus

Accipiter nisus Caprimulgus europaeus T. viscivorusFalco naumanni Apus melba Acrocephalus arundinaceus ?F. tinnunculus Coracias garrulus Sylvia nisoriaLagopus sp. Upupa epops S. atricapillaTetrao urogallus Picus viridis S. melanocephalaT. tetrix Dendrocopos major Ficedula hypoleucaAlectoris graeca D. medius Parus cristatusA. barbara Jynx torquilla Emberiza citrinella ?Perdix palaeoperdix Melanocorypha calandra E. hortulana ?Coturnix coturnix Galerida cristata Carduelis chlorisCrex crex Lullula arborea Serinus citrinellaPluvialis squatarola Alauda arvensis Pyrrhula pyrrhulaScolopax rusticola Ptyonoprogne rupestris Coccothraustes coccothraustesTringa cf. stagnatilis Motacilla alba Garrulus glandariusColumba livia Bombycilla garrulus Pica picaC. palumbus Troglodytes troglodytes Corvus coroneCuculus canorus C. antecoraxNyctea scandiacaAsio flammeusOtus scops

Palidoro Anser fabalis Athene noctua Pyrrhocorax pyrrhocorax(Cassoli, 1977) Falco tinnunculus Melanocorypha calandra P. graculus

Perdix perdix Alauda arvensis Corvus coroneCoturnix coturnixColumba livia

Pedrera de S’Ònix Aegypius monachus Turdus iliacus Fringilla coelebs(Mourer-Chauviré et al., Scolopax rusticola Aegithalos caudatus ? Carduelis carduelis1977) Troglodytes troglodytes ? Parus cristatus ? Corvus pliocaenus

Pedrera de S’Ònix Cygnus cf. cygnus cf. Lullula arborea Fringilla cf. coelebs(Mourer-Chauviré in Bucephala cf. clangula Sylvia cf. atricapilla Carduelis cf. carduelisAlcover et al., 1981) Coturnix cf. coturnix Parus cf. ater Coccothraustes

cf. Porzana porzana Prunella cf. modularis cf. coccothraustesOtus cf. scops Erithacus cf. rubecula Pica picaTyto balearica Turdus cf. merula Pyrrhocorax cf. pyrrhocoraxDendrocopos cf. major T. cf. iliacus s. philomelos Corvus pliocaenusMelanocorypha cf. calandra

Pedrera de S’Ònix Pica mourerae(Seguí, 2001)

Romains Podiceps auritus Grus grus ? Hirundo daurica(Desbrosse & Mourer- Cygnus olor Gallinago gallinago Delichon urbicaChauviré, 1973) C. cygnus Scolopax rusticola Prunella collaris

Anas platyrhynchos Numenius arquata Turdus cf. torquatusA. crecca N. tenuirostris T. merulaA. strepera Tringa totanus T. iliacusA. acuta Calidris alba Acrocephalus paludicolaA. querquedula Larus argentatus Sylvia atricapillaA. clypeata L. canus Ficedula hypoleuca

Page 36: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

126 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Aythya fuligula Sterna sandvicensis Emberiza hortulanaMelanitta nigra Columba livia Pyrrhula pyrrhulaClangula hyemalis Cuculus canorus Coccothraustes coccothraustesGypaetus barbatus Nyctea scandiaca Montifringilla nivalisAquila chrysaetos Asio otus Garrulus glandariusButeo buteo A. flammeus Pica picaFalco rusticolus Strix aluco Pyrrhocorax graculusF. tinnunculus Apus apus Corvus coroneLagopus lagopus A. melba C. coraxL. mutus Dryocopus martiusTetrao tetrix Dendrocopos mediusPerdix perdix Lullula arborea

Quartaccio Podiceps grisegena Anas platyrhinchos Fulica atra(Bedetti, 2001) Ardea purpurea Anas clypeata Gallinago sp.

Anser sp. Somateria molissima Sturnus vulgarisBranta ruficollis Mergus serrator Pyrrhula pyrrhula

Quibas Geronticus eremita Delichon urbica Oenanthe hispanica(Montoya et al., 1999, 2001; Gypaetus barbatus Prunella modularis Parus majorSánchez Marco, Coturnix coturnix Anthus pratensis Carduelis chlorisnew identifications) Columba livia s. oenas Phoenicurus ochruros C. carduelis

Cuculus canorus Saxicola torquata C. spinusAthene noctua S. rubetra Serinus serinus

Radice Tetrao urogallus Alectoris graeca P. graculus(Bidduttu et al., 1967) T. tetrix Strix aluco

Perdix perdix Pyrrhocorax pyrrhocorax

Razhishkata Anser sp. Melanocorypha sp. Carduelis chloris(Boev, 2000b) Anas sp. Anthus cf. trivialis Carduelinae indet.

Tetrao tetrix Anthus sp. Petronia petroniaBonasa bonasia Parus major cf. Garrulus glandariusPerdix palaeoperdix Sylvia sp. Pyrrhocorax pyrrhocoraxP. perdix Ptyonoprogne rupestris P. graculusCoturnix coturnix Fringilla montifringilla Corvus monedulaCrex crex Loxia curvirostra C. corone s. frugilegusTringa cf. stagnatilis Coccothraustes Corvus sp.Athene noctua coccothraustesAsio otusApus melba

Romanelli Podiceps auritus Accipiter gentilis L. argentatus(Cassoli & Tagliacozzo, P. nigricollis Buteo lagopus Rissa tridactyla1997) Gavia arctica Aquila chrysaetos Pinguinus impennis

G. stellata A. heliaca Columba liviaPuffinus puffinus Haliaeetus albicilla C. oenasPelecanus crispus Aegypius monachus Streptopelia turturPhalacrocorax carbo Gyps fulvus Pterocles alchataP. aristotelis Circus cyaneus P. orientalisArdea cinerea C. macrourus Tyto albaNycticorax nycticorax C. aeruginosus Otus scopsCygnus cygnus Falco peregrinus Bubo buboAnser anser F. eleonorae Nyctea scandiacaA. erythropus* F. subbuteo Athene noctuaA. albifrons F. vespertinus Asio otusA. fabalis F. tinnunculus A. flammeusA. brachyrhynchus Alectoris graeca Apus apusA. caerulescens A. rufa Galerida cristataBranta bernicla Coturnix coturnix Ptyonoprogne rupestrisB. leucopsis Crex crex Hirundo rusticaB. ruficollis Gallinula chloropus Zoothera daumaTadorna tadorna Fulica atra Turdus viscivorusAnas platyrhynchos Grus grus T. iliacusA. crecca G. cf. leucogeranus T. pilarisA. strepera Anthropoides virgo Loxia curvirostraA. penelope Otis tetrax Pyrrhula pyrrhulaA. acuta O. tarda Sturnus vulgaris

Page 37: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 127

Ardeola 51(1), 2004, 91-132

A. querquedula Numenius arquata Pica picaA. clypeata N. phaeopus Nucifraga caryocatactesNetta rufina Limosa limosa Pyrrhocorax pyrrhocoraxAythya ferina Scolopax rusticola P. graculusA. nyroca Philomachus pugnax Corvus monedulaA. fuligula Vanellus vanellus C. frugilegusMelanitta fusca Pluvialis squatarola C. coroneBucephala clangula P. apricaria C. coraxClangula hyemalis Eudromias morinellusOxyura leucocephala Burhinus oedicnemusMergus albellus Larus marinusM. serrator

Romaní Anas platyrhynchos Columba livia s. oenas Pinicola enucleator(unit II) A. acuta Athene noctua Pica pica(Sánchez Marco, Buteo buteo Delichon urbica Pyrrhocorax pyrrhocoraxnew identifications) B. rufinus Hirundo rustica

Alectoris rufa Turdus sp.Perdix perdix

Salpêtre Accipiter nisus Columba livia T. viscivorus(Mousterian layers) Falco columbarius Cuculus canorus Emberiza citrinella(Mourer-Chauviré, 1975a) F. naumanni Asio flammeus Serinus citrinella

F. tinnunculus Otus scops Coccothraustes coccothraustesLagopus lagopus Athene noctua Montifringilla nivalisL. mutus Dendrocopos major Garrulus glandariusLyrurus tetrix D. medius Pica picaAlectoris graeca Jynx torquilla ? Pyrrhocorax pyrrhocoraxPerdix perdix Galerida cristata P. graculusCoturnix coturnix Hirundo daurica Corvus coraxEudromias cf. morinellus Saxicola rubetraScolopax rusticola Turdus merula

Salpêtre Aythya fuligula Upupa epops Acrocephalus sp.(Dryas 3 / Preboreal layers) Falco subbuteo Dendrocopos medius Sylvia atricapilla(Vilette et al., 1983) F. naumanni Jynx torquilla Phylloscopus sp.

F. tinnunculus Ptyonoprogne rupestris Ficedula hypoleucaLagopus sp. Hirundo rustica Parus cristatusAlectoris graeca s. rufa Lanius senator P. aterPerdix perdix Troglodytes troglodytes Emberiza citrinellaCoturnix coturnix Erithacus rubecula Fringilla coelebsScolopax rusticola Turdus pilaris Coccothraustes coccothraustesTringa sp. T. merula Passer domesticusColumba cf. livia T. iliacus s. philomelos Pica picaCuculus canorus T. viscivorus Nucifraga caryocatactesOtus scops Acrocephalus arundinaceus Pyrrhocorax pyrrhocoraxAthene noctua P. graculusGlaucidium passerinumMerops apiaster

Salpêtrière Anas platyrhynchos Pluvialis apricaria Lullula arborea(Aurignacian layers) A. clypeata Charadrius hiaticula Hirundo rustica(Vilette, 1983) Aythya fuligula Eudromias morinellus Cinclus cinclus

cf. Falco peregrinus Lymnocryptes minimus cf. Turdus merulaF. subbuteo Numenius arquata T. viscivorusLagopus lagopus Columba oenas Loxia pytyopsittacusLagopus sp. C. livia Petronia petroniacf. Lyrurux tetrix Asio otus Pletrophenax nivalisPerdix perdix Galerida cristata Pyrrhocorax graculusCoturnix coturnix Corvus corone

S�andalja I Tachybaptus ruficollis Porzana sp. Motacilla flava(layer d) Anser fabalis Fulica atra Bombycilla garrulusMalez (several publications, Anas penelope Tetrax tetrax Erithacus rubeculafide Tyrberg, 1998) A. acuta Scolopax rusticola Sitta europaea

A. crecca Limosa limosa Emberiza citrinellaAythya ferina Larus argentatus Fringilla coelebsAegypius monachus L. minutus Coccothraustes coccothraustes

Page 38: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

128 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Accipiter nisus Sterna hirundo Pyrrhula pyrrhulaFalco vespertinus Columba livia Sturnus vulgarisF. tinnunculus Asio otus Lanius collurioLagopus lagopus A. flammeus Pica picaL. mutus Dendrocopos minor Pyrrhocorax graculusTetrao tetrix Galerida cristata Corvus monedulaBonasa bonasia Hirundo rustica C. coroneCoturnix coturnix H. cf. Daurica C. coraxPhasianus colchicus Delichon urbicaRallus aquaticus

S�andalja II Podiceps auritus Tetrax tetrax Galerida cristata(layer E) Falco subbuteo Vanellus vanellus Motacilla albaMalez (several publications, F. vespertinus Scolopax rusticola Garrulus glandariusfide Tyrberg, 1998) F. tinnunculus Larus ridibundus Pica pica

Tetrao tetrix Columba livia Pyrrhocorax pyrrhocoraxT. urogallus Tyto alba P. graculusCoturnix coturnix Bubo bubo Corvus monedulaGrus grus Asio flammeusRallus aquaticus Dendrocopos mediusOtis tarda Dendrocopos minor

Spinagallo Geronticus eremita C. palumbus Monticola solitarius(Pavia, 1996) Anser erythropus* Streptopelia turtur Turdus spp.

Branta sp. Cuculus canorus Sylvia sp.Anas penelope Tyto sp. Phylloscopus sibilatrix A. querquedula Otus scops s. collybitaMarmaronetta angustirostris cf. Surnia ulula Lanius senatorAccipiter gentilis Athene sp. Sturnus sp.A. nisus Asio otus Petronia petroniaFalco tinnunculus Caprimulgus cf. europaeus Fringilla coelebs F. columbarius Apus apus s. pallidus s. montifringillaF. subbuteo A. melba Serinus sp.F. eleonorae Picus viridis Carduelis chlorisCoturnix coturnix Dendrocopos leucotos Carduelis sp.Rallus aquaticus Calandrella brachydactyla Pyrrhula pyrrhulaGrus sp. Lullula arborea Coccothraustes coccothraustesRecurvirostra avosetta Hirundo sp. Emberiza spp.Scolopax rusticola Anthus sp. Pica picaLarus minutus Prunella modularis Pyrrhocorax graculusL. ridibundus Erithacus rubecula Corvidae indet.Columba livia Oenanthe cf. hispanica Passeriformes indet.C. livia s. oenas

Temnata Aquila pomarina Alectoris graeca Alauda cf. arvensis(layer 3d) Aegypius monachus Perdix perdix Nucifraga caryocatactes(Boev, 1994) Circus cyaneus Streptopelia sp. Pica pica

Falco tinnunculus Columba oenas Corvus monedulaFalco sp. Bubo bubo

Temnata Falco tinnunculus Asio otus Pyrrhula pyrrhula(layer 3a) Falco cf. subbuteo cf. Aegolius sp. Sturnus vulgaris(Boev, 1994) Tetrao sp. Apus apus Pyrrhocorax graculus

Perdix perdix Dendrocopos minor Corvus monedulaCoturnix coturnix Turdus viscivorus Corvus sp.Strix aluco

Torre Nave Ixobrychus minutus C. palumbus T. philomelos(Cassoli in Bulgarelli, Anas platyrhynchos Pterocles orientalis T. merula1972) Falco subbuteo Athene noctua Carduelis chloris

F. tinnunculus Strix aluco Garrulus glandariusAlectoris graeca Apus melba Pyrrhocorax pyrrhocoraxPerdix perdix Picus viridis P. graculusCoturnix coturnix Dendrocopos medius Corvus monedulaOtis tetrax Hirundo rustica C. frugilegusCrex crex Turdus pilaris C. coraxColumba livia T. viscivorus

Page 39: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 129

Ardeola 51(1), 2004, 91-132

Torre in Pietra Phalacrocorax carbo A. penelope Alauda arvensis(layer d) Botaurus stellaris A. acuta Turdus pilaris(Cassoli, 1978) Ixobrychus minutus Aythya nyroca T. iliacus

Cygnus cygnus Pandion haliaeetus T. merulaAnser fabalis Alectoris graeca Nucifraga caryocatactesA. albifrons Perdix perdixAnas platyrhynchos Crex crex

Trebac�ki Falco sp. Lanius minor F. cf. coelebs(Epigravettian) Lagopus lagopus Turdus viscivorus Carduelis chloris(Dimitrijevic et al., 2000) Tetrao tetrix T. merula Pyrrhula pyrrhula

Crex crex T. pilaris Coccothraustes coccothraustesGallinago gallinago T. philomelos Pinicola enucleatorApus apus T. cf. torquatus Emberiza citrinellaGalerida cristata T. cf. iliacus Passer domesticusAlauda arvensis Luscinia luscinia Passeriformes indet.Lullula arborea Sturnus vulgarisHirundo rustica Fringilla montifringillaDelichon urbica

Ubeidiya Podiceps cristatus Porzana spp. Cercomela cf. melanura(layer II-23) P. auritus Crex crex Turdus sp.Tchernov (several Phalacrocorax africanus Fulica stekelesi Acrocephalus sp.publications, fide Tyrberg, P. carbo Porphyrio porphyrio Lanius excubitor1998) Anhinga rufa Columba livia Lanius sp.

Tadorna tadorna Strix butleri Parus sp.Anas crecca Asio cf. capensis Petronia brevirostrisA. acuta Ketupa zeylonensis Fringilla coelebsA. penelope Melanocorypha calandra Carduelis cf. chlorisAythya sp. M. gracilis Sturnus vulgarisMilvus pygmaeus Alauda jordanica Sturnus sp.Falco subbuteo cf. Calandrella sp. Pica picaFalco sp. Motacilla alba Corvus monedulaAquila sp. M. cf. cinerea C. coroneAlectoris baryosefi Saxicola cf. torquata C. coraxFrancolinus sp. Oenanthe sp.Rallus aquaticus

Valdegoba Anser fabalis F. peregrinus P. modularis(Sánchez Marco, Anas crecca Lagopus mutus Oenanthe oenanthenew identifications) A. platyrhynchos Tetrao tetrix Turdus sp.

A. platyrhynchos s. acuta Alectoris graeca Muscicapa striataA. querquedula Coturnix coturnix Emberiza calandraSomateria sp. Otis tetrax E. citrinellaMilvus migrans Columba livia s. oenas Acanthis cf. cannabinaGypaetus barbatus C. palumbus Pinicola enucleatorGyps fulvus Caprimulgus sp. Petronia petroniaAegypius monachus Athene noctua Sturnus sp.Accipiter gentilis Alauda arvensis Pica picaButeo buteo Hirundo rustica Pyrrhocorax pyrrhocoraxB. lagopus Delichon urbica P. graculusFalco naumanni Anthus spinolettaF. tinnunculus Prunella collaris

Varshets Anatini indet. Porzana sp. Fringilla sp.(Boev, 2002) Accipiter sp. Otis aff. khosatzkii Loxia patevi

Circaetus sp. Otididae indet. Coccothraustes simeonoviAquila cf. clanga Actitis balcanica Carduelis sp.Aquila sp. Charadriiformes indet. Emberiza sp.Hieraaetus cf. fasciatus Apus baranensis Turdus cf. merulaHieraaetus sp. Columba spp. T. cf. philomelosGyps sp. Streptopelia sp. T. cf. iliacusButeo sp. Athene sp. Turdus sp.Accipitridae indet. Anthus sp. Erithacus sp.Falco cf. tinnunculus Motacilla sp. Sturnus sp.F. bakalovi Melanocorypha sp. Pyrrhocorax cf. pyrrhocoraxFalco sp. Alauda sp. P. cf. graculusTetrao aff. partium Lullula sp. Pica sp.

Page 40: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

130 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Lagopus balcanicus Lullula arborea Corvus cf. monedulacf. Perdix sp. Galerida spp. Corvus sp.Chauvireria balcanica Eremophila sp. Corvidae indet.Phasianus sp. Parus sp.Gallinula balcanica Regulus bulgaricus

cf. Muscicapa sp.

Victoria Cygnus cf. olor Tyto alba S. cf. atricapilla(Sánchez Marco, Tadorna tadorna Bubo bubo Ficedula hypoleuca new identifications) cf. Anas crecca Athene noctua Emberiza cf. citrinella

Milvus migrans Strix aluco E. melanocephalacf. Aegypius monachus Picus viridis Carduelis carduelisButeo cf. buteo Dryocopus martius Sturnus sp.Falco peregrinus Calandrella Pica picaTetrao tetrix cf. brachydactyla Pyrrhocorax pyrrhocoraxAlectoris graeca Lullula arborea P. graculusHimantopus himantopus Alauda arvensis Corvus monedulaSyrrhaptes s. Pterocles Hirundo rustica C. frugilegus s. coroneColumba livia s. oenas Anthus spinoletta C. antecoraxC. palumbus Turdus sp.

Prunella modularisSylvia hortensis

Vindija Ardeola sp. Alecoris graeca Dendrocopos major(layer E + F) Anas platyrhynchos Phasianus colchicus Hirundo rusticaMalez (several publications, A. querquedula Gallinula chloropus Lanius excubitorfide Tyrberg, 1998) A. crecca Rallus aquaticus Sylvia borin

Aythya fuligula Vanellus vanellus Sturnus vulgarisA. nyroca Recurvirostra avosetta Nucifraga caryocatactesA. ferina Scolopax rusticola Garrulus glandariusMergus merganser Gallinago gallinago Pica picaButeo buteo Larus minutus Corvus coroneAccipiter gentilis Tyto alba C. monedulaFalco rusticolus Bubo bubo Pyrrhocorax pyrrhocoraxFalco subbuteo Nyctea scandiaca P. graculusLagopus mutus Asio otusL. lagopus A. flammeusTetrao urogallus Strix alucoT. tetrix

APPENDIX 2

Northern irruptive species in the Mediterranean region during the Quaternary. Current distributions afterCramp (1998).[Especies nórdicas irruptivas en la región mediterránea durante el Cuaternario. Los datos de distribución ac-tual se han tomado de Cramp (1998).]

Species Current European distribution Areas of irruption Direction of movements[Especie] [Distribución europea actual] [Área de irrupción] [Dirección de los movimientos]

Cygnus olor Resident in Europe from France Irruptive species in the Movements to south and west.east to Black sea. Wintering and islands, Iberia and part resident in zones of southern Italy, of ItalyBalkans and Anatolia.

Cygnus cygnus Winters in north and central Irruptive species in the Movements to south and west.Europe, Adriatic coast, southern islands, Iberia and Italy.Balkans, Black sea and southern Anatolia.

Cygnus columbianus Winters in coasts of British Irruptive in the whole Movements to south.islands, from Germany west to Mediterranean region, north France, and in inland points except in Azure and to Azure coast. Adriatic coasts.

Page 41: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

AVIAN GEOGRAPHICAL DISTRIBUTION PATTERNS DURING THE QUATERNARY 131

Ardeola 51(1), 2004, 91-132

Anser brachyrhynchus Winters in British islands and Irruptive in the whole Movements to south.north Germany. Mediterranean region.

Branta bernicla Winters in coasts from Denmark Irruptive in the whole Movements to south.to west France. Mediterranean region.

Branta leucopsis Winters in British islands and Irruptive in the whole Movements to south.north Germany. Mediterranean region.

Aythya marila Winters in coasts of north Europe, Irruptive in the whole Movements to south.Adriatic and Black sea, also in Mediterranean region,

points of central Europe. except in Adriatic coasts.

Melanitta fusca Winters in Atlantic coasts of Irruptive in the whole Movements to south.Europe, in north-west Mediterranean region,Mediterranean coasts and in except in north AdriaticBlack sea. coast, and from north Italy

west to coasts of northern half of Iberia.

Melanitta nigra Winters in Atlantic and Baltic Irruptive in the islands Movements to south and west.coasts from Skandinavia to and south Italy to east.Mauritania, also in coasts of Iberia, south France and north Italy.

Bucephala clangula Winters in north Europe, inland Irruptive species in the Movements to south and west.points, Balkan peninsula, Anatolia, islands, Iberia and Greece.Azure and Adriatic coasts.

Somateria molissima Resident and wintering in Atlantic Irruptive in the whole Movements to south.coasts of north and central Europe. Mediterranean region.

Clangua hyemalis Winters in coasts of north, south Irruptive in the whole Movements to south.France and north Italy. Mediterranean region,

except in north Italy and south France.

Mergus merganser Winters in north Europe, inland Irruptive in west Movements to south and west.points, Adriatic coasts, northern Mediterranean area, Balkan peninsula and points of islands, southern BalkanicAnatolia. peninsula and Anatolia.

Mergus albellus Winters in coasts of central and Irruptive in west Movements to south and west.western Europe, inland points, Mediterranean area, Adriatic coasts, northern Balkan islands, southern Balkanic peninsula and points of Anatolia. peninsula.

Buteo lagopus Winters in north, central and east Irruptive in west Movements to south and west.Europe, in Balkan peninsula and Mediterranean area,points of northern Anatolia. islands, southern Balkanic

peninsula and Anatolia.

Gallinago media Breeds in North and Eastern Irruptive in the whole Movements to south and west.Europe. Mediterranean region.

Nyctea scandiaca North Eurasia. Irruptive in the whole Movements to south.Mediterranean region.

Surnia ulula Resident in northern Eurasia. Irruptive in the whole Movements to south.Mediterranean region.

Aegolius funereus Resident in mountains and in the Irruptive in the islands, Movements to south and west.taiga. Iberia, Italy and southern

Anatolia.

Eremophila alpestris Resident in Balkan peninsula, Irruptive in islands and Movements to south and west.Anatolia and Atlas. Wintering western Mediterraneanspecies in northern and eastern region.Europe.

Carpodacus erythrinus Breeding in north and east Irruptive in the whole Movements to south and west.Europe, in points of central Mediterranean regionEurope and Anatolia. except in Anatolia.

Page 42: AVIAN ZOOGEOGRAPHICAL PATTERNS DURING THE … · INTRODUCTION The scenario of a climatically unstable late Neogene is supported on several sets of evi-dences. The most precise among

132 SÁNCHEZ MARCO, A.

Ardeola 51(1), 2004, 91-132

Plectrophenax nivalis Winter species in north, centre Irruptive in the whole Movements to south.and east of Europe. Also in Mediterranean region.Atlantic coasts of France and northern coasts of Iberia.

Pinicola enucleator Resident and wintering species Irruptive in the whole Movements to south.from Scandinavia to the east. Mediterranean region.

Loxia pytyopsittacus Resident in Scandinavia and in Irruptive in the whole Movements to south.the north of Eastern Europe. Mediterranean region.

Loxia leucoptera Resident in the taiga belt, from Irruptive in the whole Movements to south.Eastern Europe to the east. Mediterranean region.

Pyrrhula pyrrhula Resident and wintering species in Irruptive in the islands Movements to south.the whole of Europe, except two and southern Iberia,southern thirds of Iberia, south Greece and Anatolia.of Greece, south of Anatolia and in the mediterranean islands.

Bombycilla garrulus Winters in North, centre and east Irruptive in the whole Movements to south.of Europe. Reaches the Balkan region, except in the northmountains. of the Balkanic peninsula.

Carduelis flammea Resident in north and central Irruptive in the whole Movements to south.Europe. Winters from France Mediterranean region,to the east. except in north Iberia,

France and north Italy.

APPENDIX 3

Nowadays surviving species in the east part of the Mediterranean region, with fossil record in the west Me-diterranean area during the Quaternary. Current distributions after Cramp (1998).[Actuales especies supervivientes en la parte este de la región del Mediterráneo, con fósiles registrados en elárea del oeste del Mediterráneo durante el Cuaternario. Los datos de distribución actual se han tomado deCramp (1998).]

Species Current European distribution Highlighted in Appendix 1 when [Especie] [Distribución europea actual] appeared in localities [Subrayado en

el Apéndice 1 cuando apareció en alguna localidad]

Anser erythropus Breeding species in north From Italy west to Iberia.Eurasia. It winters in Balkan peninsula and coast of Black sea.

Haliaeetus albicilla Resident and wintering species From north Italy (also Corsica andin north and east Europe, in zones Sardinia) west to Iberia.of the Balkans and Anatolia.

Circus macrourus Breeds north Black sea. Winters From north Italy (also Corsica andin east Mediterranean region. Sardinia) west to Iberia.

Luscinia luscinia Breeds in eastern Europe to east. From the west of the MR.Vagrant in Balkans and Anatolia.

Emberiza melanocephala Breeds in Italy, Balkan From western islands (from Corsica andpeninsula and Anatolia. Sardinia), southern France and Iberia.