Automatic Detection of Bike-Riders Without Helmet

4
@ IJTSRD | Available Online @ www ISSN No: 245 Inte R Automatic Detec Vinayak Department of Computer Science, V ABSTRACT The paper proposes an approach f detection of bike-riders without h surveillance videos in real time. T approach first detects bike riders from video using cross correlation analy determines whether bike-rider is using a using kurtosis features and knn classifie has given an average recognition accura that is satisfactory. Keywords: Detecting Bike riders wi cross correlation, knn classifier. I. INTRODUCTION Two-wheeler is a very general mode of in almost every country. However, involved because of less protection. T risk, it is required for bike rider to government has made it a serious vio bike without helmet & have manual stra the violators. However, the current vide based methods are passive and requi human assistance; such systems are inf participation of humans, whose efficie over period [1]. Automation of this pro required for reliable & robust monito violations along with it also reduces amo sources needed. Also, several countries systems involving surveillance came places. So, detecting violators using infrastructure is also cost-effective. A basic problem that often occurs image to determine the position of a given image, or part of an image, the so-ca interest. This problem is closely w.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 56 - 6470 | www.ijtsrd.com | Volum ernational Journal of Trend in Sc Research and Development (IJT International Open Access Journ ction of Bike-Riders without H k Mudhomath 1 , Prof. S. A. Angadi 2 1 Student, Professor 2 Visvesvaraya Technological University, Belagav for automatic helmet using The proposed m surveillance ysis. Then it a helmet or not er. The system acy of 71.43% ithout helmet, f transportation there is risk To reduce the o use helmet, olation to ride ategies to catch eo surveillance ire significant feasible due to ency decreases ocess is highly oring of these ount of human are employing eras at public the proposed e processing is pattern in an alled region of y related to determination of a received d using e.g. a matched filter. Two basic cases can be differe The position of the pattern An estimate for the pos given. Usually, both cases have to problem of determining the po is an image. In the latter case the position of the pattern can computational effort significan feature tracking in sequence of For both feature tracking and the position of given pattern, known algorithm have been approach that can be used in above is template matching position of the given pattern is wise comparison of the image that contains the desired patter is shifted u discrete steps in th in the y direction of the image calculated over the template (u, v). To calculate this compa correlation is used. In this model frames are ext and converted to grayscale matching method(cross corr riders are detected in the f portion is taken to identify th not. For detecting helmet, fe kurtosis and then knn classifie 2018 Page: 1972 me - 2 | Issue 5 cientific TSRD) nal Helmet vi, Karnataka, India digital signal processing entiated: n is unknown. sition of the pattern is be treated to solve the osition of a given pattern e, the information about n be used to reduce the ntly. It is also known as f image. the initial estimation of a lot of different, well- n developed. One basic n both cases mentioned g. This means that the s determined by a pixel- e with a given template rn. For this, the template he x direction & v steps e, then the comparison is area for each position arison, normalized cross tracted from the videos image, using template relation analysis) bike frame. After that, head he rider using helmet or eature is extracted using er is used to classify the

description

The paper proposes an approach for automatic detection of bike riders without helmet using surveillance videos in real time. The proposed approach first detects bike riders from surveillance video using cross correlation analysis. Then it determines whether bike rider is using a helmet or not using kurtosis features and knn classifier. The system has given an average recognition accuracy of 71.43 that is satisfactory. Vinayak Mudhomath | Prof. S. A. Angadi "Automatic Detection of Bike-Riders Without Helmet" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-5 , August 2018, URL: https://www.ijtsrd.com/papers/ijtsrd18217.pdf Paper URL: http://www.ijtsrd.com/computer-science/data-processing/18217/automatic-detection-of-bike-riders-without-helmet/vinayak-mudhomath

Transcript of Automatic Detection of Bike-Riders Without Helmet

Page 1: Automatic Detection of Bike-Riders Without Helmet

@ IJTSRD | Available Online @ www

ISSN No: 2456

International

Research

Automatic Detection of BikeVinayak Mudhomath

Department of Computer Science, Visvesvaraya Technological University

ABSTRACT The paper proposes an approach for automatic detection of bike-riders without helmet using surveillance videos in real time. The proposed approach first detects bike riders from surveillavideo using cross correlation analysis. Then it determines whether bike-rider is using a helmet or not using kurtosis features and knn classifier. The system has given an average recognition accuracy of 71.43% that is satisfactory. Keywords: Detecting Bike riders without helmet, cross correlation, knn classifier. I. INTRODUCTION Two-wheeler is a very general mode of transportation in almost every country. However, there is risk involved because of less protection. To reduce the risk, it is required for bike rider to use helmet, government has made it a serious violation to ride bike without helmet & have manual strategies to catch the violators. However, the current video surveillance based methods are passive and require significant human assistance; such systems are infeasible due to participation of humans, whose efficiency decrover period [1]. Automation of this process is highly required for reliable & robust monitoring of these violations along with it also reduces amount of human sources needed. Also, several countries are employing systems involving surveillance cameraplaces. So, detecting violators using the proposed infrastructure is also cost-effective. A basic problem that often occurs image processing is to determine the position of a given pattern in an image, or part of an image, the so-called regiointerest. This problem is closely related to

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific

Research and Development (IJTSRD)

International Open Access Journal

Automatic Detection of Bike-Riders without Helmet

Vinayak Mudhomath1, Prof. S. A. Angadi2 1Student, Professor2

Visvesvaraya Technological University, Belagavi

The paper proposes an approach for automatic riders without helmet using

surveillance videos in real time. The proposed approach first detects bike riders from surveillance video using cross correlation analysis. Then it

rider is using a helmet or not using kurtosis features and knn classifier. The system has given an average recognition accuracy of 71.43%

Bike riders without helmet,

wheeler is a very general mode of transportation in almost every country. However, there is risk involved because of less protection. To reduce the risk, it is required for bike rider to use helmet, government has made it a serious violation to ride

ke without helmet & have manual strategies to catch the violators. However, the current video surveillance based methods are passive and require significant human assistance; such systems are infeasible due to participation of humans, whose efficiency decreases over period [1]. Automation of this process is highly required for reliable & robust monitoring of these violations along with it also reduces amount of human sources needed. Also, several countries are employing systems involving surveillance cameras at public places. So, detecting violators using the proposed

A basic problem that often occurs image processing is to determine the position of a given pattern in an

called region of is closely related to

determination of a received digital signal processing using e.g. a matched filter. Two basic cases can be differentiated: � The position of the pattern is unknown. � An estimate for the position of the pattern is

given. Usually, both cases have to be treated to solve the problem of determining the position of a given pattern is an image. In the latter case, the information about the position of the pattern can be usecomputational effort significantly. It is also known as feature tracking in sequence of image. For both feature tracking and the initial estimation of the position of given pattern, a lot of different, wellknown algorithm have been develapproach that can be used in both cases mentioned above is template matching. This means that the position of the given pattern is determined by a pixelwise comparison of the image with a given template that contains the desired pattern. Fis shifted u discrete steps in the x direction & v steps in the y direction of the image, then the comparison is calculated over the template area for each position(u, v). To calculate this comparison, normalized cross correlation is used. In this model frames are extracted from the videos and converted to grayscale image, using template matching method(cross correlation analysis) bike riders are detected in the frame. After that, head portion is taken to identify the rider using henot. For detecting helmet, feature is extracted using kurtosis and then knn classifier is used to classify the

Aug 2018 Page: 1972

6470 | www.ijtsrd.com | Volume - 2 | Issue – 5

Scientific

(IJTSRD)

International Open Access Journal

ithout Helmet

Belagavi, Karnataka, India

determination of a received digital signal processing

Two basic cases can be differentiated: The position of the pattern is unknown. An estimate for the position of the pattern is

Usually, both cases have to be treated to solve the problem of determining the position of a given pattern is an image. In the latter case, the information about the position of the pattern can be used to reduce the computational effort significantly. It is also known as feature tracking in sequence of image.

For both feature tracking and the initial estimation of the position of given pattern, a lot of different, well-known algorithm have been developed. One basic approach that can be used in both cases mentioned above is template matching. This means that the position of the given pattern is determined by a pixel-wise comparison of the image with a given template that contains the desired pattern. For this, the template is shifted u discrete steps in the x direction & v steps in the y direction of the image, then the comparison is calculated over the template area for each position

v). To calculate this comparison, normalized cross

In this model frames are extracted from the videos and converted to grayscale image, using template matching method(cross correlation analysis) bike riders are detected in the frame. After that, head portion is taken to identify the rider using helmet or not. For detecting helmet, feature is extracted using kurtosis and then knn classifier is used to classify the

Page 2: Automatic Detection of Bike-Riders Without Helmet

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1973

helmet or no-helmet. We used 10 videos among them out of 28 bike-riders 20 bike-riders are detected correctly and 8 bike-riders are detected wrong. The average recognition accuracy obtained is about 71.43% This paper has 5 sections. Section 2 gives related work, section 3 describes proposed methodology, section 4 lists results and conclusion is given in section 5. II. RELATED WORK Paper [1] has described an automatic analysis of a video stream so as to make alerts when an “unusual” incident happens. Such algorithms may use as an attention mechanism, which with appropriate detection and false alert rate, will allow a single operator to effectively “watch” number of cameras. Paper [2] describes about a real time monocular vision based rear vehicle & motorcycle detection & tracking method is presented for Lane Change Assistant (LCA). To attain robustness & accurateness this work detects and tracks multiple vehicles and motorcycles by combining multiple signals. Paper [3] describes about a vision based motorcycle observing system to identify and tracking motorcycles. The technique uses visual length, width & pixel ratio to identify the type of the motorcycle. Because the motor cycle riders necessity to wear their helmets, helmet detection or search process required whether helmet or motor cycles exits or not. Paper [4] works on visual surveillance in dynamic scenes try to detect, identify & track object from image sequences. The aim of visual surveillance is to make whole surveillance automatically. III. PROPOSED METHODOLOGY

Fig.3.1 System Design

This section present the technique for real time identification of bike rider with helmet or without helmet which work in two phase. In the first phase, we identify bike rider in the frame. In second phase, Find the head of bike rider and identify whether the rider is wearing helmet or not. Phase-I: Detection Bike-riders This phase include identification of bike rider in a frame. All the frames are read and converted into grayscale, so that the filters can be applied on it. Template matching methods compare area of images against another using normalized correlation method. Sample frame used to recognize same object in source frame. The matching procedure moves templates to all possible locations in source frame & the template matches the frame in that location. The algorithm employed following formula to calculate the correlation coefficient c (u, v).

Where � f(x, y) is coordinate of image. � g(x, y) is the coordinate of template image. � g is the mean of the template. � f is the mean of f(x, y) in the region under the

template. The center of object which looks like the template image has the position where the calculated cross correlation coefficient is the largest. The question is what size of the image f is to reduce the computational time using template matching technique to the possible extent. The template image g has a defined size that is dependent on the size of the target which we want to recognize. Phase-II: Detection of Bike-riders Without Helmet After bike riders are identified in previous phase, the next step is to identify if bike ride is wearing helmet or not. 1. Feature Extraction: Identified around head portion

of bike rider is used to identify if bike-rider is wearing helmet or not. To achieve this, kurtosis is used to identify the head of bike-rider, taking mean average of RGB to identify the bike-rider wearing helmet or not.

Page 3: Automatic Detection of Bike-Riders Without Helmet

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1974

Where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the expected value of the quantity t. kurtosis computes a sample version of this population value. 2. Classification: The technique need to identify if

bike rider is violating the law i.e. not using helmet. For this, we consider knn classifier is used to classify using extracted features from previous step. To analyse the classification results and identify the best solution, different combination of features. We have dataset of helmet/no-helmet using kurtosis. knn classifier the predict value calculated after applying kurtosis, then predict value matched with stored dataset then classify predicted value corresponding to kurtosis value.

IV. RESULTS In the experiments, we used our own dataset by collecting videos. The frames are extracted from videos and set the database. The sample features are shown in table1.

Figure 4.1 Input frames

Figure 4.2 Output frame

Fig.4.3 Cross Correlation

Table.1 Feature set for some of Helmet/No Helmet

Videos Actual Images Recognized Images

matches

1 No Helmet No Helmet

Helmet No Helmet

0 1

2 No Helmet No Helmet No Helmet

No Helmet Helmet

No Helmet

1 0 1

3 No Helmet No Helmet

No Helmet No Helmet

1 1

4 No Helmet No Helmet

Helmet No Helmet

0 1

5 No Helmet No Helmet No Helmet

No Helmet No Helmet No Helmet

1 1 1

6

Helmet Helmet Helmet Helmet Helmet Helmet

Helmet Helmet

No Helmet Helmet Helmet

No Helmet

1 1 0 1 1 0

7 Helmet Helmet 1 1

8 Helmet Helmet

Helmet Helmet

1 1

9 Helmet Helmet Helmet

Helmet Helmet

No Helmet

1 1 0

10 Helmet No Helmet 0

Page 4: Automatic Detection of Bike-Riders Without Helmet

International Journal of Trend in Scientific Research and

@ IJTSRD | Available Online @ www

Fig.4.4 ROC graph Finally recognition of Helmet/No Helmet using KNN classifier is carried out and is plotted as an ROC graph. We used 10 videos among them out of 28 bikeriders 20 bike-riders are detected correctly and 8 bikeriders are detected wrong. The average recognitiaccuracy obtained is about 71.43% V. CONCLUSION A framework for real-time detection of traffic rule violators who ride bike without using helmet. Proposed framework will also assist the traffic police for detecting such violators. This framework can be extended to detect and report number plates of violators in future work. REFERENCES 1. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz,

“Robust real-time unusual event detection using multiple fixed-location monitors,” IEEE Transactions on Pattern Analysis and Machine Intelligence.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www. ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018

Finally recognition of Helmet/No Helmet using KNN classifier is carried out and is plotted as an ROC graph. We used 10 videos among them out of 28 bike-

riders are detected correctly and 8 bike-riders are detected wrong. The average recognition

time detection of traffic rule violators who ride bike without using helmet. Proposed framework will also assist the traffic police for detecting such violators. This framework can be extended to detect and report number plates of

Adam, E. Rivlin, I. Shimshoni, and D. Reinitz, time unusual event detection using

location monitors,” IEEE Transactions on Pattern Analysis and Machine

2. Duan, W. Liu, P. Fu, C. Yuan, “Real-time on road vehicle and motorcycle detection using a single camera,” in Procs. IEEE Int. Conf. on Industrial Technology (ICIT).

3. C. -C. Chiu, M. -Y. Ku, and H.“Motorcycle detection and tracking system withocclusion segmentation,” in Int. Workshop on Image Analysis for Multimedia Interactive Services, Santorini.

4. W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews.

5. J. Chiverton, “Helmet presence classification with motorcycle detection and tracking,” Intelligent Transport Systems (IET).

6. Z. Chen, T. Ellis, and S. Velastin, “Vehicle detection, tracking and classification traffic,” in Procs. of the IEEE Int. Conf. on Intelligent Transportation Systems (ITS).

7. R. Silva, K. Aires, T. Santos, K. Abdala, R. Veras, and A. Soares, “Automatic detection of motorcyclists without helmet,” in Computing Conf. (CLEI).

8. R. Rodrigues Veloso e Silva, K. Teixeira Aires, and R. De Melo Souza Veras, “Helmet detection on motorcyclists is usingclassifiers,” in Procs. of the Graphics, Patterns and Images.

9. Z. Zivkovic, “Improved adaptive gaussian mixture model for background subtraction,” in Proc. of the Int. Conf. on Pattern Recognition (ICPR).

10. Stauffer and W. Grimson, “Adaptive background mixture models for real-time tracking,” in Proc. of the IEEE Conf. on Computer VisionRecognition (CVPR).

Development (IJTSRD) ISSN: 2456-6470

Aug 2018 Page: 1975

Duan, W. Liu, P. Fu, C. Yang, X. Wen, and H. road vehicle and motorcycle

detection using a single camera,” in Procs. of the IEEE Int. Conf. on Industrial Technology (ICIT).

Y. Ku, and H.-T. Chen, “Motorcycle detection and tracking system with occlusion segmentation,” in Int. Workshop on Image Analysis for Multimedia Interactive

W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Transactions on Systems, Man,

ybernetics, Part C: Applications and

J. Chiverton, “Helmet presence classification with motorcycle detection and tracking,” Intelligent

Z. Chen, T. Ellis, and S. Velastin, “Vehicle detection, tracking and classification in urban traffic,” in Procs. of the IEEE Int. Conf. on Intelligent Transportation Systems (ITS).

R. Silva, K. Aires, T. Santos, K. Abdala, R. Veras, and A. Soares, “Automatic detection of motorcyclists without helmet,” in Computing

gues Veloso e Silva, K. Teixeira Aires, and R. De Melo Souza Veras, “Helmet detection

motorcyclists is using image descriptors and classifiers,” in Procs. of the Graphics, Patterns and

Z. Zivkovic, “Improved adaptive gaussian mixture background subtraction,” in Proc. of the

Int. Conf. on Pattern Recognition (ICPR).

Stauffer and W. Grimson, “Adaptive background time tracking,” in Proc. of

the IEEE Conf. on Computer Vision and Pattern