Automated aerodynamic performance estimates for flapping ...

1
Automated aerodynamic performance estimates for flapping flight Diana Chin Department of Mechanical Engineering, Stanford University Motivation Processing Pipeline Future Work Results Related Work and References Quantifying aerodynamic performance for freely flying birds is inherently difficult to do without interfering with their natural flight. Many current methods thus combine kinematic parameters derived from highspeed video with theoretical force and power models. However, these methods often require manual tracking of points in each frame of a video to obtain kinematic data [1, 2]. References: [1] Berg, A. M. and Biewener, A. A. (2010). Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia). J. Exp. Biol. 213, 16511658. [2] Hedrick, T. L. (2008). Software techniques for two and threedimensional kinematic measurements of biological and biomimetic systems. Bioinsp. Biomim. 3, 034001. [3] Ellington, C. P. (1984). The Aerodynamics of Hovering Insect Flight. V. A Vortex Theory. Phil. Trans. R. Soc. B. Biol. Sci. 305, 1122, 115144. [4] Muijres, F.T., Spedding, G. R., Winter, Y. and Hedenstrom, A. (2011). Actuator disk model and span efficiency of flapping flight in bats based on timeresolved PIV measurements. Exp. Fluids. 51, 511525. Record perchtoperch flight, using mirrors to obtain a bottomup view Adjust contrast and suppress background Binarize region selected for analysis Identify centroid of bird in each frame and shift all frames to align centroids Select a new analysis region and use a morphological edge detector to extract the bird outline 1. Create video showing stroke angle 2. Combine extracted data with synchronized force measurements to estimate induced power 3. Use wingbeat timings with footage from another camera to generate a timelapse image of the entire flight Use peaks in stroke angles to identify start and end of all downstrokes EE 368 projects from past years related to flapping flight: Deetjen, Marc. Hovering hummingbird automated segmentation. Spr 201415. Gutierrez, Eric. Quantitative measurements of forward flapping flight using image processing. Spr 201415. Ravnan, Eirik. Automatic phase detection of a bird wing in flight using stereo cameras. Aut 201314 . Identify wingtip in each frame based on distance from centroid and angle relative to horizontal Postprocessing 3 1 The processing steps were tested on videos of ascending, descending, and level flights of 3 different Pacific parrotlets. By adjusting a series of flightspecific parameters, stroke angles and all wingbeats were successfully extracted from 30 out of 31 flight videos. This project utilizes image processing techniques to automatically extract kinematic data (stroke angle and wingbeat timing) from high speed videos of Pacific parrotlets flying from perch to perch. To analyze aerodynamic performance, this data is then used to estimate power requirements based on actuator disc theory [3, 4]. The idealized wake for a flapping wing animal. Induced power can be estimated from the change in momentum through the shaded area, i.e. the “actuator disc” [3]. Extract frames from highspeed video at desired resolution Reduce the number of parameters needed for robust processing of different flight videos Automatically identify optimal region for analysis in new videos Track beak to adjust for changes in body orientation during flight stroke angle 2

Transcript of Automated aerodynamic performance estimates for flapping ...

Page 1: Automated aerodynamic performance estimates for flapping ...

Automated aerodynamic performance estimates for flapping flight

Diana ChinDepartment of Mechanical Engineering, Stanford University

Motivation Processing Pipeline

Future Work

Results

Related Work and References

Quantifying  aerodynamic  performance  for  freely  flying  birds  is  inherently  difficult  to  do  without  interfering  with  their  natural  flight.  Many  current  methods  thus  combine  kinematic  parameters  derived  from  high-­speed  video  with  theoretical  force  and  power  models.  However,  these  methods  often  require  manual  tracking  of  points  in  each  frame  of  a  video  to  obtain  kinematic  data    [1,  2].

References:[1]  Berg,  A.  M.  and  Biewener,  A.  A.  (2010).  Wing  and  body  kinematics  of  takeoff  and  landing  flight  in  the  pigeon  (Columba  livia).  J.  Exp.  Biol.  213,  1651-­1658.[2]  Hedrick,  T.  L.  (2008).  Software  techniques  for  two-­ and  three-­dimensional  kinematic  measurements  of  biological  and  biomimetic  systems.  Bioinsp.  Biomim.  3,  034001.[3]  Ellington,  C.  P.  (1984).  The  Aerodynamics  of  Hovering  Insect  Flight.  V.  A  Vortex  Theory.  Phil.  Trans.  R.  Soc.  B.  Biol.  Sci.  305,  1122,  115-­144.[4]  Muijres,  F.T.,  Spedding,  G.  R.,  Winter,  Y.  and  Hedenstrom,  A.  (2011).  Actuator  disk  model  and  span  efficiency  of  flapping  flight  in  bats  based  on  time-­resolved  PIV  measurements.  Exp.  Fluids.  51,  511-­525.  

Record  perch-­to-­perch  flight,  using  mirrors  to  obtain  a  bottom-­up  view

Adjust  contrast  and  suppress  background  

Binarizeregion  

selected  for  analysis

Identify  centroid  of  bird  in  each  frame  and  shift  all  frames  to  align  centroids

Select  a  new  analysis  region  and  use  a    

morphological  edge  detector  to  extract  the  bird  

outline

1. Create  video  showing  stroke  angle2. Combine  extracted  data  with  synchronized  force  measurements  to  estimate  induced  power

3. Use  wingbeat timings  with  footage  from  another  camera  to  generate  a  time-­lapse  image  of  the  entire  flight

Use  peaks  in  stroke  angles  to  identify  start  and  end  of  all  downstrokes

EE  368  projects  from  past  years  related  to  flapping  flight:• Deetjen,  Marc.  Hovering  hummingbird  automated  segmentation.  Spr 2014-­15.• Gutierrez,  Eric.  Quantitative  measurements  of  forward  flapping  flight  using  image  processing.  Spr 2014-­15.• Ravnan,  Eirik.  Automatic  phase  detection  of  a  bird  wing  in  flight  using  stereo  cameras.  Aut 2013-­14  .

Identify  wingtip  in  each  frame  based  on  

distance  from  centroid  and  angle  relative  to  horizontal

Post-­processing

3

1

The  processing  steps  were  tested  on  videos  of  ascending,  descending,  and  level  flights  of  3  different  Pacific  parrotlets.  By  adjusting  a  series  of  flight-­specific  parameters,  stroke  angles  and  all  wingbeats were  successfully  extracted  from  30  out  of  31  flight  videos.  

This  project  utilizes  image  processing  techniques  to  automatically  extract  kinematic  data  (stroke  angle  and  wingbeat timing)  from  high  speed  videos  of  Pacific  parrotlets  flying  from  perch  to  perch.  To  analyze  aerodynamic  performance,  this  data  is  then  used  to  estimate  power  requirements  based  on  actuator  disc  theory  [3,  4].

The  idealized  wake  for  a  flapping-­wing  animal.  Induced  power  can  be  estimated  from  the  change  in  momentum  through  the  shaded  area,  i.e.  the  “actuator  disc”  [3].

Extract  frames  from  high-­speed   video  at  desired  resolution

• Reduce  the  number  of  parameters  needed  for  robust  processing  of  different  flight  videos  

• Automatically   identify  optimal  region  for  analysis  in  new  videos• Track  beak  to  adjust  for  changes   in  body  orientation  during  flight

stroke  angle

2