Atmospheric Organic Aerosol: More Than Primary Emissions Brent J. Williams Brent J. Williams Raymond...

34
Atmospheric Organic Aerosol: More Than Primary Emissions Brent J. Williams Raymond R. Tucker ICARES Career-Development Assistant Professor Washington University in St. Louis Department of Energy, Environmental, & Chemical Engineering PI: Atmospheric Chemistry & Technology (ACT) Laboratory Mumbai: December 7, 2012

Transcript of Atmospheric Organic Aerosol: More Than Primary Emissions Brent J. Williams Brent J. Williams Raymond...

Atmospheric Organic Aerosol: More Than Primary Emissions

Brent J. Williams

Raymond R. Tucker ICARES Career-Development Assistant ProfessorWashington University in St. Louis

Department of Energy, Environmental, & Chemical Engineering

PI: Atmospheric Chemistry & Technology (ACT) Laboratory

Mumbai: December 7, 2012

2 main questions to discuss today:

1) Why do we care?

2) Where does it come from?

Organic Aerosol

Why Do We Care: Size-dependent Health Effects

[NARSTO, 2003]

Course aerosols deposit by impaction in nose and throat.

Ultrafine aerosol deposit by diffusion deeper in lungs in smaller pathways.

Fine aerosol has a minimum in deposition efficiency at approximately 0.5 micron diameter.

Many organic species in Fine PM are classified as toxins, mutagens, and carcinogens.

IPCC-Climate Change, 2007

Radiative forcing components

Why Do We Care: Climate Effects

Changes since 1750 (preindustrial)

Not accounting for many aerosol indirect effects.

IPCC-Climate Change, 2007

• Sulfate• Primary Organic Carbon from Fossil Fuels • Black Carbon from Fossil Fuels• Biomass burning• Nitrate• Mineral Dust

IPCC-Climate Change, 2007

• Sulfate• Primary Organic Carbon from Fossil Fuels • Black Carbon from Fossil Fuels• Biomass burning• Nitrate• Mineral Dust

Not Accounting for Secondary Organic Aerosol (SOA). Is there

enough SOA to make a difference?

2 main questions to discuss today:

1) Why do we care?

2) Where does it come from?

-primary vs. secondary

Organic Aerosol

Organic Aerosol is Most Abundant Fine PM Component Globally

Zhang et al., 2007organics sulfate nitrate ammonium

Organics44%

Sulfate32%

Ammonium13%

Nitrate10%

Chloride1%

• Northern Hemisphere Average (37 studies)• More Summer data than Winter • Non-Refractory Only (doesn’t include metals and elemental carbon)• Sulfate and Nitrate are formed through secondary processes• Organics previously thought of as mostly primary emissions, but that view has changed.

Major Atmospheric Species (fine PM)

Zhang et al., Geophys Res Lett, 2007

Sources of Atmospheric Aerosols

Meng et al. 1997, Science, 277, 116.

aerosol

ORIGINS OF ATMOSPHERIC AEROSOL

Soil/dust/Sea salt

Combustion

Atmospheric Organic Matter:Oxidation state and carbon numbers

oleicacid

ethane

acetaldehydephenanthrene

sucrose levoglucosan

sesquiterpene monoterpene isoprene

C5 tetrol

CH2O

glyoxalglyoxaldimer

oxalicacid

pinonic

pinic

C8triacid

butaneoctane

toluene

CH4

CO2

CO

MVK

methylglyoxal

fulvicacid

dodecane CH3OH

elementalcarbon

Ox. State ≈ 2 (O/C) – (H/C)

Kroll, Nature Chemistry, 2011.

C40

Chemical complexity of atmospheric organics

carbonyls, alcohols, acids only

Ox. State ≈ 2 (O/C) – (H/C) C40

Ambient Mass Concentrations Decrease

Kroll, Nature Chemistry, 2011.

Oxidation state of organic aerosol

Organic aerosol is an intermediate in the oxidationof most organics to CO2

CO2

CO

C40

Kroll, Nature Chemistry, 2011.

Organic Aerosol

gas

particle

Jimenez, Canagaratna, Donahue, et al., Science, 2009

2D – Volatility Basis Set space

Illustration of SOA evolution through 2D-VBS space

Secondary Organic Aerosol (SOA) Formation: Example

- 10 days of measurements from thermal desorption aerosol gas chromatograph (TAG)- PAR = visible light

Naphthalene: C10H8 (mostly in Gas-phase)Phthalic acid: C8H6O4 (In both Gas- and Particle-phase)

Williams et al., PNAS, 2010

Fractional Time Of Day

Na

ph

tha

len

e (

ng

m-3

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

20

40

60

80

Ph

tha

lic

Ac

id (

ng

m-3

)

0

500

1000

1500

PA

R (

um

ole

s m

-2 s

-1)

Par

ticle

-Pha

se C

once

ntra

tions

Jimenez et al, Science, 2009

Major Chemical Composition of Atmospheric Fine Particulate Matter

Primary vs Secondary Organic Aerosol (OA)

Zhang et al., Geophys Res Lett, 2007

Effects of organic gases and organic particles can NOT be thought of as separate issues.

Secondary OA > Primary OA

Observed SOA > modeled SOALack in our fundamental knowledge of SOA formation and transformation.At least partially due to lack of measurements for semivolatile compounds.

Volkamer et al., Geophys Res Lett, 2006.

Major discrepancy between measured and modeled SOA

Organics make up 20-90% of fine particle mass and contain tens of thousands of compounds that can be used to determine sources and transformations (much is Secondary).

What we need to know about atmospheric organic matter:

-Physical Properties of Particles

-Chemical Properties-composition and concentrations (gases and particles)-composition transformations as air masses age

-Want to determine all sources and fate of atmospheric gases and particles.

-What effects do these particles and gases have on the environment?

-What can be done about it? (Policy and Management)

Organics44%

Sulfate32%

Ammonium13%

Nitrate10%

Chloride1%

• Northern Hemisphere Average (37 studies)• More Summer data than Winter • Non-Refractory Only (doesn’t include metals and elemental carbon)

General Speciation: AMS Speciation (PM1)

Zhang et al., Geophys Res Lett, 2007

Organics44%

Sulfate32%

Ammonium13%

Nitrate10%

Chloride1%

Low Volatility Oxygenated Organic Aerosol (LV-OOA)

x%

y%

z%Semivolatile OOA (SV-OOA)

Hydrocarbon-like OA (HOA)

• x, y, z% varies (x > y > z in urban locations, z > y > x in remote locations)• Can also provide estimate of Biomass OA, but some interference exists• Still lacks specifics on sources of OA • Specifics are crucial for Regulation and Modeling Efforts

More Specific: AMS Speciation (w/ PMF of OA)

TAG

Thermal Desorption Aerosol Gas Chromatograph (TAG)

An in-situ instrument used to study the Sources and Transformation of Organic Particulate Matter

Hourly measurements of organic aerosol molecular composition

Williams et al., Aerosol Sci Technol, 2006

More Specific Yet: TAG

1. Collection technique:– Inertial Impaction (300C)

2. Sample transfer:– Thermal Desorption (50-3000C)

3. Chemical separation:– Gas Chromatography

4. Compound identification and quantification:– Electron Impact Mass Spectrometry

Gas Chromatograph

MassSpectrometer

Heated valve

Aerosol Collector &

Thermal Desorption Cell

Cyclone Precut(PM2.5)

Humidifier(adhesion)

Filter (field blank)

x

1

2

34

Note: many particles will be internally mixed.

Factor Analysisto group compounds

15.00 20.00 25.00 30.00 35.00 40.00 45.000

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

Time-->

Abundance

TIC: 33702-12.DTIC: 33702-13.D (*)

Various forms of Petroleum Combustion

Coffee

Residential Wood Combustion

Plant WaxesRela

tive

Abun

danc

e

Retention Time

Secondary Organic Aerosol

• Organic portion (20-90% of total mass) is helpful in determining and understanding:- Particle sources- Particle formation processes- Particle transformations

Williams et al., Aerosol Sci Technol, 2006

Organics44%

Sulfate32%

Ammonium13%

Nitrate10%

Chloride1%

• Example Sources• Positive Matrix Factorization of Molecular Marker Compounds• Multivariate fit of TAG PMF factors to total OA from AMS

Primary Vehicle EmissionsFood Cooking

Plant Waxes

Biomass Burning:Softwood

Biomass Burning:Hardwood

Pesticides

Pharmaceuticals

Anthropogenic Secondary Organic Aerosol (SOA)

Biogenic SOA: Isoprene SOA

Biogenic SOA: Terpene SOA

More Specific Yet: TAG Speciation(scaling to AMS OA mass)

Plasticizers

Further Aged Anthro-SOA

Los Angeles Riverside

N

80 km

San Diego

135 km

PM2.5 Gridded Emissions (short tons/ozone season day/grid cell)

Williams et al., Atmos Chem Phys Discuss, 2010

Example TAG Field Study:Study of Organic Aerosol at Riverside (SOAR)

• Use hundreds of TAG compound timelines in Positive Matrix Factorization (PMF)• Determine major OA components (sources)• Scale TAG factors to AMS OA mass

0.0

0.2

0.4

0.6

0.8

1.0

Ph

th

alic A

cid

No

rh

op

an

e

21

0

211

21

2

21

3

21

4

21

5

21

6

21

7

21

8

21

9

22

0

22

1

0.0

0.2

0.4

0.6

0.8

1.0

7/2

9/2

00

5

7/3

0/2

00

5

7/3

1/2

00

5

8/0

1/2

00

5

8/0

2/2

00

5

8/0

3/2

00

5

8/0

4/2

00

5

8/0

5/2

00

5

8/0

6/2

00

5

8/0

7/2

00

5

8/0

8/2

00

5

8/0

9/2

00

5Veh

icle

Mar

ker

SO

A M

arke

r

TAG’s 1-hour time resolution provides diurnal trends

Main methods to determine particle sources:

Chemical Mass Balance:

Factor Analysis (e.g., Positive Matrix Factorization):

cik= concentration of chemical species i in the fine particles at receptor site kaij = relative concentration of species i in the fine particle emissions from source jsjk = increment to total fine PM concentration at receptor site k originating from source jm= # of source types

Schauer and Cass, ES&T, 2000

Ulbrich et al., Atm Chem Phys, 2009

X = concentration of chemical speciesG = Factor Profile F = Factor Time SeriesE = Residualsp = Factor#s = estimated errors (uncertainty)Q = quality of fit parameter

G and F are determined by minimizing sum of least squares between residuals and errors:

302010

0

x10

-3

nona

deca

nehe

neic

osan

edo

cosa

netr

icos

ane

tetr

acos

ane

pent

acos

ane

hexa

cosa

nehe

ptac

osan

eoc

taco

sane

nona

cosa

netr

iaco

ntan

ehe

ntria

cont

ane

4-m

ethy

loct

adec

ane

2-m

ethy

loct

adec

ane

3-m

ethy

loct

adec

ane

pent

adec

ene

anth

race

neflu

oran

then

eac

ephe

nant

hryl

ene

pyre

nebe

nzo(

b)flu

oren

ebe

nz(d

,e)a

nthr

acen

ebe

nzo(

a)an

thra

cene

cycl

open

ta(c

,d)p

yren

ech

ryse

nedi

met

hyl(p

hena

nthr

enes

+an

thra

cene

s)1-

met

hylp

hena

nthr

ene

2-m

ethy

lant

hrac

ene

1-m

ethy

lpyr

ene

2-m

ethy

lpyr

ene

rete

nesi

mon

ellit

eis

opro

pyl-d

imet

hylp

hena

nthr

ene

rimue

neno

rhop

ane

hopa

nete

trad

ecyl

cycl

ohex

ane

pent

adec

ylcy

cloh

exan

ehe

xade

cylc

yclo

hexa

nehe

ptad

ecyl

cycl

ohex

ane

octa

decy

lcyc

lohe

xane

nona

decy

lcyc

lohe

xane

eico

sylc

yclo

hexa

nem

ethy

ldia

man

tane

met

hylo

xaad

aman

tane

dode

cano

ic a

cid

tetr

adec

anoi

c ac

idhe

xade

cano

ic a

cid

octa

deca

noic

aci

dol

eic

acid

phth

alic

aci

d3-

met

hylp

htha

lic a

cid

4-m

ethy

lpht

halic

aci

d1,

8-na

phth

alic

anhy

drid

ebe

nzyl

buty

lpht

hala

tebi

s(2-

ethy

lhex

yl)p

htha

late

dioc

tylp

htha

late

dino

nylp

htha

late

dihy

dro-

5-et

hyl-2

(3H

)fur

anon

edi

hydr

o-5-

decy

l-2(3

H)f

uran

one

dihy

dro-

5-un

decy

l-2(3

H)f

uran

one

dihy

dro-

5-do

decy

l-2(3

H)f

uran

one

dihy

dro-

5-tr

idec

yl-2

(3H

)fur

anon

edi

met

hylis

oben

zofu

rand

ione

naph

thof

uran

dion

em

ethy

lfura

none

nona

nal

levo

gluc

osen

one

anth

raqu

inon

e2-

hept

adec

anon

eoc

tade

cano

ned-

dode

cala

cton

ed-

tetr

adec

alac

tone

unde

cane

dion

edo

deca

nedi

one

sabi

na k

eton

epe

ntyl

cycl

ohex

anon

edi

oxas

piro

nona

nedi

one

diox

aspi

roun

deca

none

diph

enyl

-eth

aned

ione

dim

etho

xydi

phen

yl-e

than

one

xant

hone

cycl

open

ta(d

,e,f)

phen

anth

reno

neho

mom

enth

ylsa

licyl

ate

hexa

deca

noic

aci

d-m

ethy

lest

eris

opro

pylp

alm

itate

dehy

droa

biet

ic a

cid-

met

hyle

ster

hexa

nedi

oic

acid

-bis

ethy

lhex

yles

ter

oxod

ehyd

roab

ietic

aci

d-m

ethy

lest

erte

rphe

nyl

met

hylb

isph

enyl

met

hyl-b

enze

neva

nilli

nlim

onen

ep-

cym

enen

ea-

phel

land

rene

d-3-

care

neci

s-a-

bisa

bole

ned-

cadi

nene

nora

biet

atet

raen

e m

ixno

rabi

eta-

4,8,

11,1

3-te

trae

neeu

pato

rioch

rom

ene

ence

calin

hexa

deca

neni

trile

octa

deca

neni

trile

tert

-but

ylna

phth

alen

edic

arbo

nitr

iledi

met

hylb

utyl

phen

yl-b

enze

nedi

amin

edi

phen

ylam

ine

4-ni

trop

heno

lm

ethy

lnitr

ophe

nol

di-t

ert-

buty

lnitr

ophe

nol

phth

alim

ide

nitr

ophe

nylb

enze

nam

ine

peno

xalin

ein

dolo

quin

olin

em

etho

xyph

enyl

met

hyle

ne-b

enze

nam

ine

met

hoxy

pyrid

ine

pelle

tierin

ebu

tylb

enze

nesu

lfona

mid

ech

loro

thal

onil

chlo

roph

osph

atep

ropa

nol

bis-

1,3-

chlo

ropr

opyl

phos

phat

eet

hylm

ethy

lfura

nm

onop

alm

itin

mon

oste

arin

nonv

ol-5

7ox

-non

vol-4

3C

wax

2010

0

x10

-3

302010

0

x10

-3

40

20

0

x10

-3

2010

0

x10

-3

2010

0

x10

-3

4020

0

x10

-3

302010

0

x10

-3

302010

0

x10

-3

Co

ntr

ibu

tio

n t

o F

ac

tor

(ea

ch

fa

cto

r p

rofi

le s

um

s t

o 1

)

SO

A1

SO

A2

SO

A3

SO

A4

+S

VR

PA

LVF

CB

BB

io

Hydrocarbon Oxygenated Biogenic N-Containing Other

Williams et al., Atmos Chem Phys Discuss, 2010

TAG PMF Components (SOAR)Biogenic Particles

Biomass Burning

Food Cooking

Local Vehicles

Regional Primary Anthropogenics

Aged SOA + Biogenic SOA

Aged SOA

Regional Fresh SOA

Local Fresh SOA

5

10

15N

S

W E

SOA

Supporting Information

Local Meteorology Backward Trajectory Modeling Correlations

RHTemp

O3

COOC/EC

gas-phase organics

AMS species

ATOFMS (single particles)

Etc.

8.0

6.8 mg m-3

8.6

10.0

13.0

11.610.7

10.1

11.7

8.0

5.3

9.5

0:002:00

4:00

6:00

8:00

10:0012:00

14:00

16:00

18:00

20:00

22:00

SOA1SOA2SOA3

SOA4+SemivolatileRegional Primary AnthropogenicLocal Vehicle

Food CookingBiomass BurningPrimary BiogenicMeasured OA

Williams et al., Atmos Chem Phys Discuss, 2010

TAG PMF Components (summer)

SOA1 = Local Fresh SOA

SOA2 = Regional Fresh SOA

SOA3 = Aged SOA

SOA4 = Aged SOA + Biogenic SOA

SOA~70% of fine OAImmediately downwind of large urban area

Previous Studies: SOA~20-50% of fine OA

Docherty et al., ES&T, 2008

Spracklen et al., ACPD, 2011

What Models are still missing