Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin –...

42
Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008 O F 7 C 3 O Eu O O Yb(O Tf) 3 H H NR 3 NR 3 N N O O N R' R' Ln 3 O O La Li O O O Li Li O (O Tf) 3

Transcript of Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin –...

Page 1: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Asymmetric Frontiers in Lanthanide Catalysis

Andrew LohseHsung Group

University of Wisconsin – MadisonDecember 11, 2008

O

F7C3

O

Eu

O

O

Yb(OTf)3

H

H

NR3

NR3

N

N

OO

N

R' R'

Ln

3

OO

La

Li

O

OO

Li

LiO

(OTf)3

Page 2: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Overview

• Background/Fundamentals• Asymmetric Cycloadditions• Multifunctional Asymmetric Catalysts

• C-C Bond Formation• C-P Bond Formation• C-O Bond Formation

• Conclusions/Future Directions

2

Page 3: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Location

3

Page 4: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

The Lanthanide Contraction

4Mikami, K.; Terada, M.; Matsuzawa, H. Angew. Chem., Int. Ed. 2002, 41, 3554.

Page 5: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Contracted Nature of the f-Orbitals• Shielded by 5s and 5p

– Unavailable for bonding

• Lack of orbital restrictions– No ligand field effects– Sterically saturated

• Ionic character– “Hard” Lewis acids – Oxophilic

5http://int.ch.liv.ac.uk/Lanthanide/Lanthanides.htmlLanthanides: Chemistry and Use in Organic Synthesis; Kobayashi, S., Ed; Springer-Verlag: Berlin, 1999.

“triple-positively charged closed shell inert gas electron cloud”

Page 6: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Well-Known Examples in Synthesis

6Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226. Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447. Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; John Wiley & Sons: New York, 1999.

Luche Reduction

Evans-Tischenko Reduction

Oxidative PMB Deprotection

O OH

CeCl3, NaBH4

MeOH

OH O

nHex

MeCHO

15 % SmI2

O

nHex

O

Me OHH

OMe2HC

O

nHex

O

SmI2

Me

96% >99:1 anti:syn

R O(NH4)2Ce(NO3)6

"CAN"R OH

>99%

OMe

Page 7: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Why Use Lanthanides as Catalysts?

• Variation of Size/Lewis Acidity Tunability• Nature of f orbitals

– ionic character–high coordination #s

• NMR Analysis–Diamagnetic: La3+, Ce4+, Yb2+, Lu3+

–Paramagnetic: Pr3+, Sm2+/3+, Eu3+

• Water/Air stable• Recyclable

7Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed; Wiley Interscience: New York, 2005.Lanthanides: Chemistry and Use in Organic Synthesis; Kobayashi, S., Ed; Springer-Verlag: Berlin, 1999.

Page 8: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Aqueous Aldol

8Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503.Kobayashi, S. Chem. Lett. 1991, 2187.

-78 oC"anhydrous"

OTMS

Ph (HCHO)3

O

Ph

OH64%

H2OTiCl4 (3 eq.)

CH2Cl2

Ph

OTMS

HCHO (aq.) H2O-THF

rt

Ph

O

OH

1st use: 2nd use:3rd use:

94%91%93%

Yb(OTf)3(20 mol%)

• Use of ambient temperature

• Less rigorous conditions

• Recyclable

Yb(OTf)3

Catalyst mol % % Yield

1 90

Yb(OTf)3 20 94

Nd(OTf)3 20 89

Sm(OTf)3 20 91

Eu(OTf)3 20 93

Page 9: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Historical Perspective

9Parker, D. Chem. Rev. 1991, 91, 1441.Aspinall, H. C. Chemistry of the f-Block Elements; Gordon and Breach: Amsterdam , 2001.

Arrhenius1787

Rare-earths discoveredin Ytterby

1907

All naturallyoccurring rare-earths

isolated

O

tBu

O

Eu

3[(+)-Eu(pvc)3]

Whitesides1970

O

F7C3

O

Eu

3[(+)-Eu(hfc)3]

Danishefsky1983

"First Frontier"

Page 10: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Asymmetric Hetero-Diels-Alder

10Bednarski, M.; Maring, C.; Danishefsky, S. Tetrahedron Lett. 1983, 24, 3451.Mikami, K.; Terada, M.; Matsuzawa, H. Angew. Chem., Int. Ed. 2002, 41, 3554.

O

F7C3

O

Eu

3

Me3SiO

R

OtBu

H

O

Ph

[Eu(hfc)3](1 mol%)

-10 oC

O

O

R

Ph

O

TMSO

R

Ph

OtBu

TFA

[(+)-Eu(hfc)3]

R = H R = Me

58% ee 55% ee

Me3SiO

OR'

H

O

R

MXn

LnX3

(cat.)

R'O

O

R

O

MXn-1

MXn = TiCl4

TMSO

OR'

O

R

LnX3O

TMSO

OR'

R

O

O R

workup

Page 11: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Aza-Diels-Alder

11Kobayashi, S.; Ishitani, H., Araki, M.; Hachiya, I. Tetrahedron Lett. 1994, 35, 6325.Lanthanides: Chemistry and Use in Organic Synthesis; Kobayashi, S., Ed; Springer-Verlag: Berlin, 1999.

Ar H

N

HO

R

R'MS4Å, CH2Cl2, -15 oC

(R)-Yb cat. (10-20 mol%)DTBP (1 eq)

OH

NH

Ar

R'

R

OH

NH

OEt

N tButBuOH

NH

H

H

74% yield, 91% ee>99:1 cis:trans

OH

NH

OH

H

92% yield, 71% ee>99:1 cis:trans

67% yield, 86% ee93:7 cis:trans

DTBP:

Pre-formed (R)-Yb cat.

O

O

Yb(OTf)3

H

H

N

N

N

N

Page 12: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Proposed Transition State

12Kobayashi, S.; Ishitani, H., Araki, M.; Hachiya, I. Tetrahedron Lett. 1994, 35, 6325.Lanthanides: Chemistry and Use in Organic Synthesis; Kobayashi, S., Ed; Springer-Verlag: Berlin, 1999.

O

O Yb

H

H

N

N

Ar

OHN

N NtBu

tBu

NR

R'

• First catalytic asymmetric aza-Diels-Alder

• Lewis acid activation of diene

• Catalyst not poisoned by nitrogen functionality

Page 13: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

1,3-Dipolar Cycloaddition

13Sanchez-Blanco, A. I.; Gothelf, K. V.; Jørgensen, K. A. Tetrahedron Lett. 1997, 38, 7923.Kobayashi, S.; Kawamura, M. J. Am. Chem. Soc. 1999, 120, 5840.

N

O

O

O toluene, 5 days

Yb(OTf)3 (20 mol%)iPr-pybox (20 mol%)

ArH

NOR

NOPh

tolylN

O

O

O

Jørgensen

NOBn

PhN

O

O

O

92% yield, 96% ee99:1 endo:exo

Kobayashi

54% yield, 73% ee96:4 endo:exo

MS4Å, CH2Cl2, 20 hr

(S)-Yb cat. (20 mol%)(R)-MNEA (40 mol%)

N

(R)-MNEA

N

N

OO

N

(S,S)-iPr-pybox

1. MeOMgI2. Pd/C, H2

Ph

NH2

CO2Me

OH

65%1. TBSCl, Imid

2. LDANHO

HH

Ph

TBSO

78%

ß-Lactam

Page 14: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Overview

• Historical Perspective• Asymmetric Cycloadditions• Multifunctional Asymmetric Catalysts

• C-C Bond Formation• C-P Bond Formation• C-O Bond Formation

• Conclusions/Future Directions

14

Page 15: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Concept of Multifunctional Catalysis

15Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Shibasaki, M.; Kanai, M.; Matsunaga, S. Aldrichim. Acta 2006, 39, 31.

A

B

AB

Enzyme

A B

AB

Enzyme

"synergistic cooperation"

Page 16: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Preparation of Catalysts

16Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Shibasaki, M.; Kanai, M.; Matsunaga, S. Aldrichim. Acta 2006, 39, 31.

LnCl3·7H2O

Ln{N(SiMe3)2}3

Ln(O-iPr)3

Ln(OTf)3

3 BINOL + 3 - 6 BuLi, NaO-tBu, or KHMDS

3 BINOL + 3 - 6 BuLi, NaO-tBu, or KHMDS

OO

La

Li

O

OO

Li

LiO

"LnMB"

(S)-LLB (S)-LSB (S)-LPB

Page 17: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Asymmetric Nitro-Aldol

17Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Sasai, H.; Suzuki, T.; Itoh, N.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992, 114, 4418.

O

OMe

OH

NO2

90% yield, 94% ee3.3 mol% cat.

10% Pt(OH)2, H2

MeOH, rt, 2 hr

then acetone50 oC, 16 hr

O

OMe

OH

NH

90% yield

(S)-metoprolol

ß-Blocker

R H

O

H3C NO2

(R)-LLB (10 mol%)

THF, -40 oC, 18 hr R

OH

NO2

OH

NO2OH

NO2

OH

NO2Ph

91% yield, 90% ee 80% yield, 85% ee 79% yield, 73% ee

Page 18: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Postulated Catalytic Cycle

18Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Sasai, H.; Suzuki, T.; Itoh, N.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992, 114, 4418.

OO

La

Li

O

OO

Li

Li

O

H2C NO2

O

O

La

Li

O

OOLi

O

HO

LiN CH2

O

O

O

La

Li

O

O OLi

O

H

O

LiN CH2

O

OR

H

RCHO

R

O

NO2H

H

= (R)-BINOLO

O

Page 19: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

OH

NO291% yield90% ee

Tunability of Ln3+ Ionic Radius

19Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Sasai, H.; Suzuki, T.; Itoh, N.; Arai, S.; Shibasaki, M. Tetrahedron Lett. 1993, 34, 2657.

OH

NO2Ph

79% yield73% ee

Ph

OH

NO291% yield72% ee

• 1st systematic study of its kind • Small changes (0.1 Å) cause drastic differences

Page 20: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Concept of Direct Aldol Reaction

20Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168.

Direct Reaction

R'

O

R

OH

R'

Ochiral catalyst

RCHO

"Atom Economical"

R'

O A: SiR3 or CH3

R

OA

wastes

R'

O

R'

OA

chiral cat.

RCHO

H+ or F-

wastes

R

OH

R'

O

Conventional Reaction

Page 21: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Direct Aldol Reaction

21Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168.

R'

O(R)-LLB

(20 mol%)

THF, -20 oCR

OH

R'

O

RCHO

OH

Ph

O OH O OH

Et

O

76% yield88% ee

55% yield76% ee

71% yield94% ee

Ph

88 hr 253 hr 185 hr

• Long reaction times

• Excess amounts of ketone

(5 eq) (8 eq) (50 eq)

43% yield87% ee135 hr

(1.5 eq) pKa (H2O) nitroalkanes ~ 10pKa (H2O) ketones ~ 17

R NO2

• High catalyst loading

Page 22: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Base Time (h) % Yield

18 trace

KHMDS 18 83

KHMDS 5 74

% ee

85

84

*KHMDS 33 71 85

* 3 mol% (R)-LLB

A Heteropolymetallic Catalyst

22Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168.

OH

Et

O

PhPhEt

O(R)-LLB (8 mol%)base (7.2 mol%)

H2O (16 mol%)THF, -20 oC

H

O

(5 eq)

• KOH formed in situ

• Use of (R)-LPB ineffective

Page 23: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Mechanistic Insights

23Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168.

OO

La

Li

O

OO

Li

Li

O

O R'

K

O

H

H

OO

La

Li

O

OO

Li

Li

O

KOH

HR'

O

rate-determining step

R

O

R'

O RCHOH

• kH/kD ~ 5 with d3-acetophenone

• Rate independent of aldehyde

• Coordination of aldehyde to La3+

confirmed by NMR studies

Page 24: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

OH

Ph

O

BnOBnO Ph

O (R)-LLB (8 mol%)KHMDS (7.2 mol%)

H2O (16 mol%)THF, -20 oC

H

O

(5 eq)70% yield, 93% ee

O O

OH

O

OH

H

H

O

H

S

N

1. mCPBA2. LiAlH4

OH OH

BnO

1. (CH3O)2C(CH3)2

2. Li, NH33. (COCl)2, DMSO, Et3N

O

H O Oepothilone A

*

*

68% yield, 93% ee

Application in Total Synthesis

24Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168.

Page 25: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Michael Addition of Malonates

25Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.Sasai, H.; Arai, T.; Satow, Y.; Houk, K. N.; Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194.

O

CO2Bn

Me CO2Bn

Ph

CO2Me

CO2Me

Ph

O

89% yield, 72% ee-40 oC

93% yield, 77% ee-50 oC

O

n

RO

O

R'

O

OR(R)-LSB (10 mol%)

O

nCOOR

R' COOR

THF, rt, 12 hr

O

CO2Bn

CO2Bn

O

CO2Me

CO2Me

98% yield, 83% ee98% yield, 85% ee

O

CO2Bn

CO2Bn

96% yield, 90% ee

Me

Page 26: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Postulated Catalytic Cycle

26Sasai, H.; Arai, T.; Satow, Y.; Houk, K. N.; Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194.Lanthanides: Chemistry and Use in Organic Synthesis; Kobayashi, S., Ed; Springer-Verlag: Berlin, 1999.

OO

La NaOO

O

Na

Na

O

OO

La

Na

OO

O

Na

Na

O

OO OMe

OMe

OO

O

La

Na

OHO

O

Na

Na

O

O

CO2MeMeO2C

O

CO2Me

CO2Me

O

CO2Me

CO2Me

H

H

H

Page 27: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Enantiofacial Control

27Sasai, H.; Arai, T.; Satow, Y.; Houk, K. N.; Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194.Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1995, 114, 10024.

pro-(R)

pro-(S)

Favored

Disfavored+ 4.9 kcal/mol

(UFF)

OHLa

O

O

OO

O

Na

O

OHLa

O

O

OO

O

Na

O

Page 28: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

NMR Studies

28Sasai, H.; Arai, T.; Satow, Y.; Houk, K. N.; Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194.Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.

1

• No coordination with LLB

• LSB activates enone and controls its direction

ppm

• Size of coordination sphere

• Difference in dihedral angles of BINOL ligands

Catalyst M-O (Å)

~1.8

LSB ~2.2

La-M (Å)

6

5.1LLB

Why LSB vs. LLB?

Page 29: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Tunability of Alkali Metal

29Sasai, H.; Arai, T.; Satow, Y.; Houk, K. N.; Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194.Shibasaki, M.; Sasai, H.; Arai, T.; Iida, T. Pure & Appl. Chem. 1998, 70, 1027.

BnO

O O

OBn

(R)-La cat. (10 mol%)

O O

CO2Bn

CO2Bn

0 oC

O

OMe

OH

NO2O

OMe

CHO(R)-La cat.(3.3 mol%)

-40 oC

MeNO2

Michael Addition Nitro-Aldol

(R)-La cat. % Yield

78

LSB 91

LPB 99

% ee

92

48

2LLB

(R)-La cat. % Yield

90

LSB 92

LPB

% ee

2

94LLB

NE NE

Page 30: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Improved Catalyst

30Kim, Y. S.; Matsunaga, S.; Das, J.; Sekine, A.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 6506.

0

% ee >99 >99

93% Yield 94

storage time (week) 1 2 3 4

94 94 95

>99 >99 >99

Air Stable/Storable

(R,R)-La-linked-BINOL (10 mol%)

O

CO2Bn

CO2Bn

DME, rt

O

CO2Bn

CO2Bn

La

O

O

OO

O

H

(R,R)-La-linked-BINOL% ee >99

82% Yield

cycle 1 2 3 4

94 68 50

>99 99 98

Recyclable

>99

94

0

Page 31: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Overview

31

• Historical Perspective• Asymmetric Cycloadditions• Multifunctional Asymmetric Catalysts

• C-C Bond Formation• C-P Bond Formation• C-O Bond Formation

• Conclusions/Future Directions

Page 32: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Hydrophosphonylation of Imines

32Sasai, H.; Arai, S.; Tahara, Y.; Shibasaki, M. J. Org. Chem. 1995, 60, 6656.Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.

(R)-La cat. % Yield

46

LSB 38

LPB 70

% ee

49

96

38LLB

DAM =

MeO OMe

H

NDAM

P(OMe)2

O

H

(R)-La cat. (10-20 mol%)

toluene-THFrt, 21 hr

P(OMe)2

HNDAM

O

P(OH)2

NH2

O

-amino phosphonic acid

Page 33: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Hydrophosphonylation of Imines

33Gröger, H.; Saida, Y.; Sasai, H.; Yamaguchi, K.; Martens, J.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 3089.Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.

P(OMe)2

O

H

(R)-YbPB (10 mol%)

toluene-THF50 oC, 48 hr

S

NR'

R'

R

R S

NHR'

R'

R

R

(MeO)2PO

S

NHCH3

CH3

(MeO)2PO

S

NHH3C

H3C

(MeO)2PO

85% yield, 87% ee 81% yield, 93% ee

S

NHCH3

CH3

H3C

H3C

(MeO)2PO

88% yield, 95% ee

P(OMe)2

O

H

Ti(O-iPr)2(TADDOL)(20 mol%)

THF65 oC, 5 days

S

NCH3

CH3

H3C

H3C S

NHCH3

CH3

H3C

H3C

(MeO)2PO

57% yield, 46% ee

Page 34: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Effectiveness of Cyclic Phosphites

34Maffei, M.; Buono, G. Tetrahedron 2003, 59, 8821.Schlemminger, I.; Saida, Y.; Gröger, H.; Maison, W.; Durot, N.; Sasai, H.; Shibasaki, M.; Martens, J. J. Org. Chem. 2000, 65, 4818.

POHRO

RO

Phosphonatetautomer

Phosphitetautomer

PO

H

RO

RO

PO

H

O

OS

NCH3

CH3

H3C

H3C S

NHCH3

CH3

H3C

H3C

PO

99% yield, 99% ee

(R)-YbPB (2.5 mol%)

toluene-THF50 oC, 48 hr

O

O

O

POH3C

CH3

O

H

O P

O

CH3

H3C

O

H

no - *P=O

Stabilized 1.70 kcal/mol(HF/6-31G**)

O P

O

CH3

H3C

OH

no - *P-O

Page 35: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Proposed Catalytic Cycle

35Gröger, H.; Saida, Y.; Sasai, H.; Yamaguchi, K.; Martens, J.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 3089.Schlemminger, I.; Saida, Y.; Gröger, H.; Maison, W.; Durot, N.; Sasai, H.; Shibasaki, M.; Martens, J. J. Org. Chem. 2000, 65, 4818.

O O

Yb

K

O

O

O

K

K

O

(RO)2PO

H

O O

Yb

K

O

O

O

K

K

O

O

P(OR)2H

O O

Yb

K

O

O

O

K

K

O

O

P(OR)2

H

O O

Yb

K

O

O

O

H

K

O

O

P(OR)2

K

RDS

O O

Yb

K

OO

O

K

O

O

P(OR)2

H

S

N

S

NK

O

P(OR)2S

NH

Page 36: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Overview

36

• Historical Perspective• Asymmetric Cycloadditions• Multifunctional Asymmetric Catalysts

• C-C Bond Formation• C-P Bond Formation• C-O Bond Formation

• Conclusions/Future Directions

Page 37: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Epoxidation of Enones

37

R

O

R'

La-(R)-BINOL-Ph3As=O (5 mol%)TBHP (1.2 eq)

MS 4Å, THF1-6 hr, rt

R

O

R'

O

Ph

O

Ph

O

O

Ph

O

95% yield, 97% ee3 min

H3C

OO

Ph

Ph

OO

94% yield, 98% ee 98% yield, 92% ee

95% yield, 96% ee

LaO

OO-iPr

O

AsPh3

La-(R)-BINOL-Ph3As=O

Nemoto, T.; Ohshima, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2725.

Page 38: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Postulated Catalytic Cycle

38Nemoto, T.; Ohshima, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2725.

LaO

OO-iPr

OAsPh3

TBHP

LaO

OO-O-tBu

OAsPh3

TBHP

tBuOH

LaO

OO-O-tBu

OAsPh3

R

O

R'

LaO

OO

AsPh3

R

O

R'

OO-tBu

LaO

OO-tBu

OAsPh3

R

O

R'

R

O

R'

O

Page 39: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Diversity in Catalysis

39Shibasaki, M.; Sasai, H.; Arai, T.; Iida, T. Pure & Appl. Chem. 1998, 70, 1027.Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.

BnO

O O

OBn

(R)-La cat. (10 mol%)

O O

CO2Bn

CO2Bn

0 oC

O

OMe

OH

NO2O

OMe

CHO

(R)-La cat.(3.3 mol%)

-40 oC

MeNO2

O O

La

Li

O

O

O

Li

Li

O

O O

La

Na

O

O

O

Na

Na

O

O O

La

K

O

O

O

K

K

O

H

NDAM (R)-La cat.

(10 mol%)

rt P(OMe)2

HNDAM

O

90% yield

94% ee

92% yield

2% ee

Not

Examined

78% yield

2% ee

46% yield

38% ee

91% yield

92% ee

38% yield

49% ee

99% yield

48% ee

70% yield

96% eeP(OMe)2

O

H

Page 40: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Conclusions

40

• Advantages of lanthanide catalysis‒ Tunability ‒ Diversity of possible reactions‒ Water/air stable‒ Recyclable

• Limitations‒ Long reaction times‒ High catalyst loading‒ Aggregation of complexes

Page 41: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Future Directions

41Aspinall, H. C. Chemistry of the f-Block Elements; Gordon and Breach: Amsterdam , 2001.

• Increase efficiency of catalysts• Application in industry• Broaden the scope of substrates

“These elements perplex us in our researches, baffle us in our speculations, and haunt us in our very dreams. They stretch like an unknown sea before us; mocking, mystifying and murmuring strange revelations and possibilities.”

- Sir William Crookes (1887)Address to the Royal Society

Page 42: Asymmetric Frontiers in Lanthanide Catalysis Andrew Lohse Hsung Group University of Wisconsin – Madison December 11, 2008.

Acknowledgements

42

• Professor Richard Hsung

• Hsung group members

• Practice talk attendees- John Feltenberger

- Kyle DeKorver

- Brittland DeKorver

- Lauren Carlson

- Jenny Werness

- Aaron Almeida

- Kevin Williamson

- Dr. Yu Zhang

- Dr. Ryuji Hayashi

- Dr. Yu Tang

- Ting Lu

- Gang Li

- Grant Buchanan

- Yonggang Wei

- Hongyan Li

• Kat Myhre

• Colleen Lohse