Astrophysics and Cosmology - Brown University · Richard Gaitskell PI, Professor Simon Fiorucci...

23
Astrophysics and Cosmology Prof Ian DellAntonio Prof Rick Gaitskell Prof Greg Tucker Prof Savvas Koushiappas Prof. Ian Dell Antonio Prof. Rick Gaitskell Prof. Greg Tucker Prof. Savvas Koushiappas Observational Cosmology Gravitational Lensing Astroparticle Physics Dark Matter searches Theoretical Cosmology/Astrophysics Observational Cosmology From Cosmic Microwave Background to Star Formation

Transcript of Astrophysics and Cosmology - Brown University · Richard Gaitskell PI, Professor Simon Fiorucci...

Astrophysics and Cosmology

Prof Ian Dell’Antonio Prof Rick Gaitskell Prof Greg Tucker Prof Savvas KoushiappasProf. Ian Dell Antonio Prof. Rick Gaitskell Prof. Greg Tucker Prof. Savvas KoushiappasObservational Cosmology Gravitational Lensing

Astro‐particle Physics Dark Matter searches

Theoretical Cosmology/AstrophysicsObservational CosmologyFrom Cosmic Microwave Backgroundto Star Formation

Observational Cosmology and Gravitational Lensing Group

Prof. Ian Dell’Antonio

Currently:  Dell’Antonio, 4 graduate students, 4 undergraduate studentsundergraduate students

Close collaboration with groups at Yale, Harvard and UC Davis

Former members:Gillian Wilson (associate Professor, UCRiverside)Jeff Kubo (postdoc Fermilab)

Paul Huwe Richard CookVan Dao Ryan Michney

Jeff Kubo (postdoc, Fermilab)Hossein Khiabanian (postdoc, Columbia)Wessyl Kelly (postdoc/technician, Pitt)

y y

Goal:  We want to understand the evolution of matter and energy in the Universe.  

How we achieve this goal: Using optical X ray and Infrared observations of galaxies and clustersHow we achieve this goal: Using optical, X‐ray and Infrared observations of galaxies and clusters of galaxies.  We aim to measure the growth of clustering and the evolution of galaxies within that clustering.

Example Graduate Student Project: The evolution of the cluster mass function using orthogonal transfer arrays

New technology—the One Degree Imager at the WIYN telescope in 2012.

orthogonal transfer arrays

The camera/telescope combination will have the best image quality of any ground‐based optical imager. We are leading a program that will use 150 nights of time in 2013‐2015 to map out dark matter clustering.p g

The increase in sensitivity will allow more clusters 

to be detected: best constraint on Dark Energy

xies per sq. arcmin Seeing

A parallel effort will use DECam

Exposure timeNum

ber o

f galaA parallel effort will use DECam 

(installed early 2012) to measure a larger area but in less detail.

Gravitational lensing as a tool for the study of DARK ENERGY

Beyond ODI and DECam.  The 2010 decadal survey highlighted that understanding Dark Energy and its 

LSST camera

equation of state  is one of the critical problems in physics, let alone cosmology.  Gravitational lensing is a tool to measure dark energy, and our group is positioned to contribute strongly to this effort.

We are participating in the design and planning for the next generation of missions to be launched in the coming decade, such as WFIRST.  We are leading the effort on gravitational lensing by clusters of galaxies for LSST.

Direct Detection Dark Matter (Gaitskell)

• Direct Detection of WIMPs orbit h f hthe center of the galaxy

• 50 billion h hthrough a person each second

• Occasionally collides with an atom in normal matter 1/kg/month ‐>1/tonne/decade

7

LUX Experiment/LZ/Sanford Lab2009‐2011 LUX350 kg LXe (Gaitskell is DOE Spokesperson)Spokesperson)

2011‐2013 LZS2011 2013 LZS3 tonne LXe 

2013‐2020 LZD20 tonne LXe

Dark Matter, Double Beta Decay and Solar Neutrinos

8

and Solar Neutrinos

The LUX ExperimentThermosyphon

Titanium Vessels

PMT Holder Copper Plates

Dodecagonal field cageg g+ PTFE reflector panels

• 350 kg LXe detector• 8m x 6m water shield

2’’ Hamamatsu R8778

• 8m x 6m water shield• 1 mile underground• 122 PMTs (2’’ round)• Low-background Ti cryostat 2 Hamamatsu R8778

Photomultiplier Tubes (PMTs)o bac g ou d c yostat

• PTFE reflector cage• Thermosyphon used for cooling (>1 kW)

Richard Gaitskell PI, ProfessorSimon Fiorucci Research AssociateM i P ili P td

Brown XENON10, CDMSCollaboration meeting, Homestake, March 2010Collaboration meeting, Homestake, March 2010

The LUX CollaborationMonica Pangilinan PostdocJeremy Chapman Graduate StudentCarlos Hernandez Faham Graduate StudentDavid Malling Graduate StudentJames Verbus Graduate Student

Case Western SNO, Borexino, XENON10, CDMSThomas Shutt PI, ProfessorDan Akerib ProfessorMike Dragowsky Research Associate ProfessorCarmen Carmona PostdocKen Clark PostdocTom Coffey PostdocKaren Gibson PostdocAdam Bradley Graduate Student

, , ,

SD School of MinesTexas A&MZEPLIN II

Formed in 2007, fully funded DOE/NSF in 2008

Adam Bradley Graduate StudentPatrick Phelps Graduate StudentChang Lee Graduate Student Xinhua Bai Professor

Mark Hanardt Undergraduate Student

Frank Wolfs ProfessorUd Sh d P f

James White ProfessorRobert Webb ProfessorRachel Mannino Graduate StudentTyana Stiegler Graduate StudentClement Sofka Graduate Student

SD School of Mines

UC Davis Double Chooz CMS

ZEPLIN II

University of RochesterZEPLIN II

IceCube

Isabel Lopes ProfessorJosé Pinto da Cunha Assistant ProfessorVladimir Solovov Senior Researcher

LIP Coimbra ZEPLIN III

Bob Jacobsen ProfessorJim Siegrist Professor

Lawrence Berkeley + UC BerkeleySNO, KamLAND

Udo Shroeder ProfessorWojtek Skutski Senior ScientistJan Toke Senior ScientistEryk Druszkiewicz Graduate Student

Mani Tripathi ProfessorRobert Svoboda ProfessorRichard Lander ProfessorBritt Hollbrook Senior EngineerJohn Thomson EngineerMatthew Szydagis PostdocJeremy Mock Graduate StudentM li d S G d t St d t

Double Chooz, CMS

DongMing Mei Professor

U. South Dakota Majorana, CLEAN-DEAP

Vladimir Solovov Senior ResearcherLuiz de Viveiros PostdocAlexandre Lindote PostdocFrancisco Neves Postdoc

Jim Siegrist ProfessorJoseph Rasson EngineerMia ihm Grad Student

Adam Bernstein PI, Leader of Adv. Detectors GroupDennis Carr Senior Engineer

Lawrence Livermore XENON10

Melinda Sweany Graduate StudentNick Walsh Graduate StudentMichael Woods Graduate Student

Daniel McKinsey Professor

Wengchang Xiang PostdocChao Zhang PostdocJason Spaans Graduate StudentXiaoyi Yang Graduate Student

Yale XENON10, CLEAN-DEAPHarry Nelson ProfessorDean White Engineer

UC Santa BarbaraCDMS

Masahiro Morii ProfessorMichal Wlasenko Postdoc

Harvard BABAR, ATLAS

Kareem Kazkaz Staff PhysicistPeter Sorensen Postdoc

University of Maryland EXOCarter Hall ProfessorDouglas Leonard Postdoc

Daniel McKinsey ProfessorJames Nikkel Research ScientistSidney Cahn Research ScientistAlexey Lyashenko PostdocEthan Bernard PostdocLouis Kastens Graduate StudentNicole Larsen Graduate Student

Dean White EngineerSusanne Kyre Engineer

Observational Cosmology

Prof. Greg Tucker

Dr. Andrei Korotkov Kyle Helson Ata Karakci

Former students: Matt Truch (postdoc, UPenn)Former students:  Matt Truch (postdoc, UPenn)Jaiseung Kim (postdoc, Niels Bohr Institute, Denmark)Jerry Vinokurov (postdoc, Carnegie Mellon University)

A Brief History of the Universe

Power Spectrum of the CMB

Cosmic Microwave Background Far Infrared Backgroundg(CMB)

Far Infrared Background(from the first dust enshrouded galaxies) Inflation

Measuring Polarization of theCosmic Microwave Background (CMB)

CMB l i ti b th i 10 35 ft th Bi B (thCMB polarization probes the universe 10‐35 s after the Big Bang (the epoch of inflation).

QUBIC – QU Bolometric Interferometer for The Millimeter‐wave Bolometric 

Cosmology will be installed at Dome C (~2013)

Interferometer (MBI)

MBI is a prototype to demonstrate the BI technique.

Projects involve designing and building QUBIC, simulating performance and analyzing data

The E and B Experiment (EBEX)

Another way to search for CMB polarization

1000 ft

Next flight will be long duration from the Antarctic in 2011

1000 ft.

New MexicoJune 2009 Projects include data pipeline 

development and analysis

The Balloon‐borne Large Aperture Submillimeter Telescope (BLAST)

Antarctica 2006

What BLAST has done: Resolved the far infrared background (re-radiated starlight) into individual galaxies

E b i thi iEvery bump in this map is a galaxy

GOODS‐SChandra 2 Ms

ReradiatedStarlight

DirectStarlight

Chandra/VLA/FIDEL/LABOCABGS‐DeepECDF‐S Spitzer SWIRE

How do stars form?  The collapse time from a gas cloud

What BLAST is doing now  (from the Antarctic in December 2010)

p gis longer than one would naively expect        braking mechanism. Is braking due to magnetic fields or turbulence?BLAST will answer this by measuring the polarization of dust.

A star forming region in Vela

BLAST mapOptical map

This ~10 K cloud is the future birthplace of stars

http://blastexperiment.info

p

Theoretical Astrophysics/Cosmology

Prof. Savvas Koushiappas Dr. Jacqueline Chen Alex Geringer-Sameth

Andrew Favaloro

http://www.physics.brown.edu/BTAC/Home.html

Theoretical Astrophysics/Cosmology

What we do: Develop methods that help us understand the distribution of dark matter in the Universe - structure formation

http://www.physics.brown.edu/BTAC/Home.html

Theoretical Astrophysics/Cosmology

What we do: Develop methods that help us understand the distribution of dark matter in the

Why we do it: Dark matter detection (direct, indirect) is ultimately linked to the understanding of hierarchical structure formation - the growth of primordial perturbations

Universe - structure formation

g p p

http://www.physics.brown.edu/BTAC/Home.html

Theoretical Astrophysics/Cosmology

What we do: Develop methods that help us understand the distribution of dark matter in the

Why we do it: Dark matter detection (direct, indirect) is ultimately linked to the understanding of hierarchical structure formation - the growth of primordial perturbations

Universe - structure formation

g p p

How we do it: We use analytical, numerical and semi-analytical techniques

http://www.physics.brown.edu/BTAC/Home.html

Theoretical Astrophysics/Cosmology

Example: Develop new statistical tools for the extraction of a time-dependent spatial signal in an otherwise diffuse unresolved background

FGST

http://www.physics.brown.edu/BTAC/Home.html

Alex Geringer-Sameth & Koushiappas arXiv:1012.1873

Theoretical Astrophysics/Cosmology

Future Directions: Develop a framework where cosmological predictionscan be used to interpret data from dark matter experiments

Physics approach to the problem:Physics approach to the problem:1) Data from different experimental techniques2) Sophisticated theory and modelling3) High-performance computing simulations 4) New and existing statistical and analysis tools

http://www.physics.brown.edu/BTAC/Home.html